JP2013217333A - Ocean current power generating equipment - Google Patents

Ocean current power generating equipment Download PDF

Info

Publication number
JP2013217333A
JP2013217333A JP2012090192A JP2012090192A JP2013217333A JP 2013217333 A JP2013217333 A JP 2013217333A JP 2012090192 A JP2012090192 A JP 2012090192A JP 2012090192 A JP2012090192 A JP 2012090192A JP 2013217333 A JP2013217333 A JP 2013217333A
Authority
JP
Japan
Prior art keywords
turbine
ocean current
current power
generator
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012090192A
Other languages
Japanese (ja)
Inventor
Shigeki Nagaya
茂樹 長屋
Yoshiki Minamiya
芳樹 南家
Yasuo Aizawa
保夫 相澤
Koichi Shiraishi
浩一 白石
Masaki Igeta
正樹 井桁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Niigata Power Systems Co Ltd
Original Assignee
IHI Corp
Niigata Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Niigata Power Systems Co Ltd filed Critical IHI Corp
Priority to JP2012090192A priority Critical patent/JP2013217333A/en
Publication of JP2013217333A publication Critical patent/JP2013217333A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide ocean current power generating equipment with high self-stability in the ocean that has improved power generation efficiency by disposing a power generator avoiding a position on an extension of a rotary shaft of a turbine.SOLUTION: Ocean current power generating equipment includes: a turbine part 1 in which a turbine 10 that rotates by ocean current energy is disposed at the end on the upstream side, and which incorporates a turbine rotary shaft 30 connected to the turbine 10; a central body 2a that incorporates a power generator 20 disposed avoiding a position on an extension of the turbine rotary shaft 30; and a gear mechanism 3 connected to the turbine 10 that transmits energy by the rotation of the turbine 10 to the power generator 20. The turbine part 1 is disposed in a pair, each of the pair being at the same distance from the central body 2a, and the respective turbines 10 rotate in the directions opposite to each other.

Description

本発明は、海流発電装置に関し、特に、タービン部を旋回可能な海流発電装置に関する。   The present invention relates to an ocean current power generation device, and more particularly to an ocean current power generation device capable of turning a turbine section.

近年、化石燃料や原子力による発電の代替として、海流、潮流等の海流エネルギーを利用した発電が注目されている。海流エネルギーを利用した発電は、二酸化酸素や汚染物の排出等がないので、公害や汚染等の問題の解決につながる手段の一つであるといえる。   In recent years, power generation using ocean current energy such as ocean currents and tidal currents has attracted attention as an alternative to power generation using fossil fuels and nuclear power. Power generation using ocean current energy is one of the means to solve problems such as pollution and pollution because it does not emit oxygen dioxide or pollutants.

海流エネルギーを利用した発電としては、海流発電装置を海中に浮遊させる海中浮遊式とし、タービンの回転モーメントを減殺するために、互いに逆方向に回転する2基のタービンを連結する構造が提案されている(例えば、特許文献1参照。)。海中浮遊式の海流発電装置は、海流エネルギーによってタービンが回転し、タービンの回転によって発生した電力を送電ケーブルにより地上に送電する。海中浮遊式の海流発電装置は、係留索によって海中に浮遊しているので風や波浪の影響を避けられる利点がある。   As power generation using ocean current energy, a structure in which two ocean turbines that rotate in opposite directions are connected to reduce the turbine rotating moment is proposed. (For example, refer to Patent Document 1). In a submerged floating ocean current power generation device, a turbine is rotated by ocean current energy, and electric power generated by the rotation of the turbine is transmitted to the ground using a transmission cable. The undersea floating current generator has the advantage of avoiding the influence of wind and waves because it is suspended in the sea by mooring lines.

特許文献1の海中浮遊式の海流発電装置は、タービン回転軸の延長上の上流側に発電機を配置している。この海流発電装置で発電量を多くするために大型の発電機を採用する場合、発電機を格納するナセルも大型化してしまうため海流の流れを遮ってしまう。海流の流れを遮ることになると、タービンに流入する海流の速度低下が著しくなり、発電性能が低下してしまう問題がある。   In the submerged floating ocean current power generation device of Patent Document 1, a generator is arranged on the upstream side of the extension of the turbine rotation shaft. When a large generator is employed to increase the amount of power generated by this ocean current power generation device, the nacelle for storing the generator is also increased in size, thereby blocking the flow of the ocean current. If the flow of the ocean current is interrupted, there is a problem that the speed of the ocean current flowing into the turbine is remarkably reduced and the power generation performance is degraded.

上記問題に鑑み、発電機の上流側にタービンを配置した場合、海流発電装置を係留する係留索と絡んでしまう危険性がある。また、タービンを海流発電装置の上流側に配置することによって、吹き流し効果がなくなり自己安定性がなくなってしまう。自己安定性がなくなった海流発電装置は、タービンを効率よく回転させることができなくなり、発電を効率よく行うことができなくなってしまう問題がある。   In view of the above problems, when a turbine is arranged on the upstream side of the generator, there is a risk of being entangled with a mooring line mooring the ocean current power generation device. Moreover, by arranging the turbine on the upstream side of the ocean current power generation device, the blowing effect is lost and the self-stability is lost. The ocean current power generation apparatus that has lost its self-stability has a problem in that the turbine cannot be efficiently rotated and power generation cannot be performed efficiently.

特開2002−266743号公報JP 2002-266743 A

本発明は上記実情に鑑みてなされたものであって、タービンの回転軸の延長上を避けて発電機を配置することで発電効率を良くし、海中での自己安定性が高い海流発電装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an ocean current power generation device that improves power generation efficiency by arranging a generator avoiding the extension of the rotating shaft of the turbine and has high self-stability in the sea. The purpose is to provide.

本願発明の一態様によれば、海流エネルギーにより回転するタービンが上流側端部に設けられ、タービンに接続されたタービン回転軸を内蔵するタービン部と、タービン回転軸の延長上を避けて配置された発電機を内蔵する中心胴体と、タービンと接続され、タービンの回転によるエネルギーを発電機に伝達するギア機構とを備え、タービン部は、中心胴体から等距離で対に配置され、それぞれのタービンが互いに逆方向に回転する海流発電装置であることを要旨とする。   According to one aspect of the present invention, a turbine that is rotated by ocean current energy is provided at an upstream end, and is disposed so as to avoid the extension of the turbine rotating shaft, which includes a turbine rotating shaft that is connected to the turbine. And a gear mechanism that is connected to the turbine and transmits energy generated by the rotation of the turbine to the generator. The turbine sections are arranged in pairs at equal distances from the center fuselage. Is a current generator that rotates in opposite directions.

本発明によれば、タービンの回転軸の延長上を避けて発電機を配置することで発電効率を良くし、海中での自己安定性が高い海流発電装置を提供することができる。   According to the present invention, it is possible to improve the power generation efficiency by disposing the generator while avoiding the extension of the rotating shaft of the turbine, and to provide an ocean current power generation device with high self-stability in the sea.

本発明の第1の実施の形態に係る海流発電装置の上面図である。1 is a top view of an ocean current power generation device according to a first embodiment of the present invention. 従来の海流発電装置のタービン部周辺の海流の流向を示す模式図である。It is a schematic diagram which shows the flow direction of the ocean current around the turbine part of the conventional ocean current power generation device. 本発明の第2の実施の形態に係る海流発電装置の上面である。It is an upper surface of the ocean current electric power generating apparatus which concerns on the 2nd Embodiment of this invention.

以下に図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。したがって、具体的な厚みや寸法は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
本発明の第1の実施の形態に係る海流発電装置は、図1に示すように、海流エネルギーにより回転するタービン10が上流側端部に設けられ、タービン10に接続されたタービン回転軸30を内蔵するタービン部1と、タービン回転軸30の延長上を避けて配置された発電機20を内蔵する中心胴体2aと、タービン10と接続され、タービン10の回転によるエネルギーを発電機20に伝達するギア機構3とを備える。
(First embodiment)
As shown in FIG. 1, the ocean current power generation apparatus according to the first embodiment of the present invention includes a turbine rotating shaft 30 that is connected to the turbine 10 and is provided with a turbine 10 that is rotated by ocean current energy at an upstream end. The built-in turbine unit 1, the central body 2 a that houses the generator 20 arranged so as to avoid the extension of the turbine rotating shaft 30, and the turbine 10 are connected to transmit energy generated by the rotation of the turbine 10 to the generator 20. A gear mechanism 3.

タービン部1は、タービン10と、タービン10に接続されたタービン回転軸30を内蔵するタービン筐体11とを備える。タービン部1は、中心胴体2aから等距離で対に配置され、それぞれのタービン10が互いに逆方向に回転する。海流発電装置は、左右に配置されたタービン10が互いに逆回転することで回転モーメントを打ち消すことができる双発タービン式である。   The turbine unit 1 includes a turbine 10 and a turbine casing 11 that houses a turbine rotating shaft 30 connected to the turbine 10. The turbine sections 1 are arranged in pairs at equal distances from the central body 2a, and the respective turbines 10 rotate in opposite directions. The ocean current power generation device is a twin-engine turbine type that can cancel the rotational moment by the turbines 10 arranged on the left and right rotating in reverse directions.

中心胴体2aは、タービン10の回転エネルギーにより発電する発電機20を内蔵する。中心胴体2aの上流側端部には、係留索50が先端部に備えられており、係留索50をアンカー等と繋ぐことで海流発電装置を海中に係留することができる。また、中心胴体2aの下流側端部近傍には、安定装置22aが設けられている。   The central body 2 a contains a generator 20 that generates electric power using the rotational energy of the turbine 10. At the upstream end of the central body 2a, a mooring line 50 is provided at the tip, and the ocean current power generation device can be moored in the sea by connecting the mooring line 50 to an anchor or the like. A stabilizing device 22a is provided in the vicinity of the downstream end of the central body 2a.

安定装置22aは、海流発電装置の海中での自己安定性を高めるために使用される翼である。本実施の形態における安定装置22aは、海面に対して水平の水平翼、及び海面に対して垂直の垂直翼によりなる。安定装置22aは、面積が大きくなれば自己安定性が高まるので好ましい。しかし、安定装置22aは、面積が大きすぎてしまうと海流の抵抗が大きくなってしまい破損してしまう等の問題が発生してしまう。そこで、安定装置22aの各翼面積S(m2)は、タービン10の直径をD(m)とし、安定装置22aの取り付け位置をタービン10から距離X(m)とすると、S=0.1×(D2/4)×(1/X)を満たす面積であることが好ましい。 The stabilizer 22a is a wing that is used to increase the self-stability of the ocean current power generator in the sea. The stabilizer 22a in the present embodiment is composed of horizontal wings that are horizontal to the sea surface and vertical wings that are perpendicular to the sea surface. The stabilizing device 22a is preferable because the self-stability is increased if the area is increased. However, if the area of the stabilizing device 22a is too large, there will be a problem that the resistance of the ocean current will increase and it will break. Accordingly, each blade area S (m 2 ) of the stabilizer 22a is S = 0.1, where D (m) is the diameter of the turbine 10 and the distance X (m) from the turbine 10 is the mounting position of the stabilizer 22a. × (D 2/4) is preferably an area that satisfies × (1 / X).

ギア機構3は、タービン回転軸30と、タービン回転軸30から中心胴体2aに向けて回転軸方向を90度変える第1ギア31と、第1ギア31を経た回転を伝達する伝達回転軸32と、伝達回転軸32を経たそれぞれのタービン10からの回転を一つに纏める第2ギア33と、第2ギア33を経た回転を発電機20に伝達する発電機回転軸34とを備える。ギア機構3は、タービン10の回転エネルギーを、タービン部1と別途に設けられた中心胴体2a内の発電機20に伝達させる。第1ギア31は、直角に交わるタービン回転軸30から伝達回転軸32へと2軸間の動力を伝達するヘリカルギア等である。第2ギア33は、2方向からの回転エネルギーを伝達してくる伝達回転軸32の動力を纏めて発電機回転軸34へ伝達するデファレンシャルギア等である。   The gear mechanism 3 includes a turbine rotation shaft 30, a first gear 31 that changes the rotation shaft direction from the turbine rotation shaft 30 toward the central body 2a by 90 degrees, and a transmission rotation shaft 32 that transmits rotation through the first gear 31. The second gear 33 that combines the rotations from the respective turbines 10 that have passed through the transmission rotation shaft 32 and the generator rotation shaft 34 that transmits the rotation through the second gear 33 to the generator 20 are provided. The gear mechanism 3 transmits the rotational energy of the turbine 10 to the generator 20 in the central body 2 a provided separately from the turbine unit 1. The first gear 31 is a helical gear or the like that transmits power between two axes from the turbine rotating shaft 30 that intersects at right angles to the transmitting rotating shaft 32. The second gear 33 is a differential gear or the like that collectively transmits the power of the transmission rotating shaft 32 that transmits rotational energy from two directions to the generator rotating shaft 34.

第1の実施の形態に係る海流発電装置の発電時は、海流エネルギーを安定して得られる黒潮等の海流が流れている箇所に浮遊させて係留されている。海流発電装置は、回転する2基のタービン10から得られる回転エネルギーをギア機構3を用いて中心胴体2aの発電機20まで導いて発電する。   At the time of power generation by the ocean current power generation apparatus according to the first embodiment, the ocean current is suspended and moored at a location where ocean currents such as the Kuroshio current that can stably obtain ocean current energy are flowing. The ocean current power generation apparatus uses the gear mechanism 3 to guide the rotational energy obtained from the two rotating turbines 10 to the generator 20 of the central body 2a to generate electric power.

第1の実施の形態に係る海流発電装置によれば、発電機20をタービン部1と別途に設けた中心胴体2aに配置することで、タービン回転軸30を格納するタービン筐体11を小型化、スリム化することができる。タービン筐体11を小型化、スリム化することで海流の流れの速度低下を抑えられるため、発電性能の低下を防ぐことができる。   According to the ocean current power generation device according to the first embodiment, the turbine casing 11 that houses the turbine rotating shaft 30 is downsized by disposing the generator 20 on the central body 2a provided separately from the turbine unit 1. Can be slimmed. By reducing the size and slimness of the turbine casing 11, it is possible to suppress a decrease in the flow velocity of the ocean current, and thus it is possible to prevent a decrease in power generation performance.

更に、第1の実施の形態に係る海流発電装置によれば、発電機20をタービン部1と別途に設けた中心胴体2aに配置することで、大型の発電機を用いてもタービン10へ流入する海流の速度低下の影響が生じない。図2に示すように、タービン部1に発電機20を内蔵させる従来の海流発電装置の場合であっては、大型の発電機20を用いるとタービン筐体11が大型化してしまい、タービン10へ流入する海流の速度低下が生じるので発電性能が低下してしまう。第1の実施の形態に係る海流発電装置によれば、発電量を多くするために大型の発電機を採用する場合であっても、タービン10に流入する海流の速度低下を抑えることができる。   Furthermore, according to the ocean current power generation device according to the first embodiment, the generator 20 is arranged in the central body 2a provided separately from the turbine unit 1, so that it flows into the turbine 10 even when a large generator is used. The effect of the reduced current speed is not generated. As shown in FIG. 2, in the case of the conventional ocean current power generation apparatus in which the generator 20 is built in the turbine unit 1, if the large generator 20 is used, the turbine casing 11 becomes large, and the turbine 10 Since the speed of the inflowing ocean current is reduced, the power generation performance is reduced. According to the ocean current power generation apparatus according to the first embodiment, it is possible to suppress a decrease in the speed of the ocean current flowing into the turbine 10 even when a large generator is employed to increase the amount of power generation.

更に、第1の実施の形態に係る海流発電装置によれば、大型の発電機20を用いることが可能であるので、低回転のタービン出力から増速器を用いることなく発電することができる。このことにより、海流発電装置は、増速器等の機器を付加することが必要ないので構造を簡素にすることができる。   Furthermore, according to the ocean current power generation apparatus according to the first embodiment, it is possible to use the large generator 20, and therefore it is possible to generate power without using a speed increaser from a low-rotation turbine output. This makes it possible to simplify the structure of the ocean current power generation device because it is not necessary to add equipment such as a speed increaser.

更に、第1の実施の形態に係る海流発電装置によれば、2基のタービン回転軸30を連結し、タービン10の回転を同期させることで回転の変動を抑制することができる。   Furthermore, according to the ocean current power generation device according to the first embodiment, it is possible to suppress fluctuations in rotation by connecting two turbine rotation shafts 30 and synchronizing the rotation of the turbine 10.

更に、第1の実施の形態に係る海流発電装置によれば、タービン10の上流側に流れを妨げる部材等が配置されていないので、タービン10に流入する海流の流れが一様になり、タービン10が発生するトルクの変動を軽減することができる。また、タービン10が発生するトルクの変動を軽減することで、海流発電装置は、発電性能、耐久性、姿勢安定性を向上させることができる。   Furthermore, according to the ocean current power generation device according to the first embodiment, since no member or the like that impedes the flow is arranged on the upstream side of the turbine 10, the flow of the ocean current flowing into the turbine 10 becomes uniform, and the turbine 10 can reduce torque fluctuations. Moreover, the ocean current power generation device can improve power generation performance, durability, and posture stability by reducing fluctuations in torque generated by the turbine 10.

更に、第1の実施の形態に係る海流発電装置によれば、海流の向きが変化する等により海流発電装置の姿勢が変化し流れに対して角度がついた場合、下流端の安定装置22aは、海流発電装置の角度を流れと平行になるように流体力を発生するので、海流発電装置の姿勢を復原し、安定させることができる。   Furthermore, according to the ocean current power generation device according to the first embodiment, when the orientation of the ocean current power generation device changes due to the change in the direction of the ocean current and the angle is set with respect to the flow, the stabilizer 22a at the downstream end is Since hydrodynamic force is generated so that the angle of the ocean current power generator is parallel to the flow, the attitude of the ocean current power generator can be restored and stabilized.

(第2の実施の形態)
本発明の第2の実施の形態に係る海流発電装置は、図3に示すように、図1に示した海流発電装置と比して、中心胴体2b及び安定装置22b,22c,22dの形状が異なる。その他に関しては、実質的に同様であるので、重複する記載を省略する。
(Second Embodiment)
As shown in FIG. 3, the ocean current power generator according to the second embodiment of the present invention has a shape of the central body 2b and stabilizers 22b, 22c, and 22d as compared to the ocean current power generator shown in FIG. Different. Others are substantially the same, and thus redundant description is omitted.

中心胴体2bは、両端にタービン部1が設けられている形状である。係留索50がタービン10より下流側で中心胴体2bに接続するようにすると、タービン10と接触してしまうので、中心胴体2bの上流側の一部を係留索接続部としてタービン10より上流側まで引き延ばしてある。係留索接続部は、1箇所である必要はなく、2箇所以上の複数であっても構わない。   The central body 2b has a shape in which the turbine part 1 is provided at both ends. If the mooring line 50 is connected to the central body 2b on the downstream side of the turbine 10, the mooring line 50 comes into contact with the turbine 10. Therefore, a part of the upstream side of the central body 2b is used as a mooring line connection part to the upstream side of the turbine 10. It has been extended. The mooring cable connection portion does not have to be one place, and may be a plurality of two or more places.

本実施の形態における支持装置22bは、安定装置22cおよび22dをタービン部1と固定するための支持構造である。安定装置22cは、2つの安定装置22bに渡って設けられ、海面に対して水平の水平翼である。安定装置22dは、安定装置22bに設けられた海面に対して垂直の垂直翼である。   The support device 22b in the present embodiment is a support structure for fixing the stabilizers 22c and 22d to the turbine unit 1. The stabilizer 22c is a horizontal wing that is provided across the two stabilizers 22b and is horizontal to the sea surface. The stabilizer 22d is a vertical wing perpendicular to the sea surface provided in the stabilizer 22b.

第2の実施の形態に係る海流発電装置でも、第1の実施の形態に係る海流発電装置と同様の効果を得ることができる。   Even in the ocean current power generation device according to the second embodiment, the same effect as that of the ocean current power generation device according to the first embodiment can be obtained.

また、第2の実施の形態に係る海流発電装置は、安定装置22b,22c,22dの面積を大きくすることが可能であるので、海流発電装置の自己安定性を更に高めることができる。   Moreover, since the ocean current power generation apparatus according to the second embodiment can increase the areas of the stabilization devices 22b, 22c, and 22d, the self-stability of the ocean current power generation apparatus can be further improved.

(その他の実施の形態)
上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。
(Other embodiments)
As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art.

例えば、安定装置は、航空機のエルロンのような可動翼とすることができる。安定装置が可動翼である場合、海流発電装置を能動的に姿勢制御を行うことができる。尚、安定装置は、連結部21に設けても構わない。   For example, the stabilizer may be a movable wing such as an aircraft aileron. When the stabilizer is a movable wing, the ocean current power generator can be actively controlled. The stabilizing device may be provided in the connecting portion 21.

このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。   Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

1…タービン部
2a,2b…中心胴体
3…ギア機構
10…タービン
11…タービン筐体
20…発電機
21…連結部
22a,22b,22c,22d…安定装置
30…タービン回転軸
31…第1ギア
32…伝達回転軸
33…第2ギア
34…発電機回転軸
50…係留索
DESCRIPTION OF SYMBOLS 1 ... Turbine part 2a, 2b ... Center fuselage 3 ... Gear mechanism 10 ... Turbine 11 ... Turbine housing 20 ... Generator 21 ... Connection part 22a, 22b, 22c, 22d ... Stabilizer 30 ... Turbine rotating shaft 31 ... 1st gear 32 ... Transmission rotary shaft 33 ... Second gear 34 ... Generator rotary shaft 50 ... Mooring cable

Claims (5)

海流エネルギーにより回転するタービンが上流側端部に設けられ、前記タービンに接続されたタービン回転軸を内蔵するタービン部と、
前記タービン回転軸の延長上を避けて配置された発電機を内蔵する中心胴体と、
前記タービンと接続され、前記タービンの回転によるエネルギーを前記発電機に伝達するギア機構
とを備え、前記タービン部は、前記中心胴体から等距離で対に配置され、それぞれの前記タービンが互いに逆方向に回転することを特徴とする海流発電装置。
A turbine rotating by ocean current energy is provided at an upstream end, and a turbine part including a turbine rotating shaft connected to the turbine;
A central fuselage with a built-in generator arranged avoiding the extension of the turbine rotating shaft;
A gear mechanism that is connected to the turbine and transmits energy generated by rotation of the turbine to the generator, and the turbine portions are arranged in pairs at equal distances from the central body, and the turbines are in opposite directions. An ocean current power generator characterized by rotating in the direction.
前記ギア機構は、
前記タービン回転軸と、
前記タービン回転軸から前記中心胴体に向けて回転軸方向を変える第1ギアと、
前記第1ギアを経た回転を伝達する伝達回転軸と、
前記伝達回転軸を経たそれぞれの前記タービンからの回転を一つに纏める第2ギアと、
前記第2ギアを経た回転を前記発電機に伝達する発電機回転軸
とを備えることを特徴とする請求項1に記載の海流発電装置。
The gear mechanism is
The turbine rotating shaft;
A first gear that changes the direction of the rotation axis from the turbine rotation axis toward the central body;
A transmission rotating shaft for transmitting rotation via the first gear;
A second gear that combines the rotations from the turbines through the transmission rotation shaft into one;
The ocean current power generation device according to claim 1, further comprising: a generator rotating shaft that transmits the rotation through the second gear to the generator.
前記タービン部の下流側に、海中での自己安定性を高める安定装置を設けることを特徴とする請求項1又は2に記載の海流発電装置。   The ocean current power generation device according to claim 1, wherein a stabilization device that increases self-stability in the sea is provided downstream of the turbine section. 前記安定装置の各翼面積S(m2)は、前記タービンの直径をD(m)とし、前記安定装置の取り付け位置を前記タービンから距離X(m)とすると、S=0.1×(D2/4)×(1/X)を満たすことを特徴とする請求項3に記載の海流発電装置。 Each blade area S (m 2 ) of the stabilizer is S = 0.1 × (D = m) where the diameter of the turbine is D (m) and the mounting position of the stabilizer is a distance X (m) from the turbine. D 2/4) × (1 / X) ocean current power generator according to claim 3, characterized in that meet. 前記安定装置は、可動翼であることを特徴とする請求項3又は4に記載の海流発電装置。   The ocean current power generation device according to claim 3 or 4, wherein the stabilizer is a movable wing.
JP2012090192A 2012-04-11 2012-04-11 Ocean current power generating equipment Pending JP2013217333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090192A JP2013217333A (en) 2012-04-11 2012-04-11 Ocean current power generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012090192A JP2013217333A (en) 2012-04-11 2012-04-11 Ocean current power generating equipment

Publications (1)

Publication Number Publication Date
JP2013217333A true JP2013217333A (en) 2013-10-24

Family

ID=49589705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090192A Pending JP2013217333A (en) 2012-04-11 2012-04-11 Ocean current power generating equipment

Country Status (1)

Country Link
JP (1) JP2013217333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112706919A (en) * 2021-01-14 2021-04-27 湖南翰坤实业有限公司 Air-sea amphibious unmanned combat equipment

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160934A (en) * 1978-01-25 1979-12-20 Philippe Vauthier Hydraulic power generator
WO1981000595A1 (en) * 1979-08-22 1981-03-05 Bbc Brown Boveri & Cie Plant for producing electrical power from a watercourse and turbine assembly for such a plant
JPS60216070A (en) * 1984-04-09 1985-10-29 Akaho Yoshio Submersible dalius turbine generator
JPH01501647A (en) * 1986-12-03 1989-06-08 ペデルセン,ハンス マリウス Floating tidal power plant installed on ocean currents and river currents to obtain energy
US4850190A (en) * 1988-05-09 1989-07-25 Pitts Thomas H Submerged ocean current electrical generator and method for hydrogen production
JPH01200066A (en) * 1988-02-05 1989-08-11 Eiji Shinno Horizontal rotary wind mill
US20070257492A1 (en) * 2006-05-03 2007-11-08 Robson John H Submersible electrical power generating plant
JP2008528846A (en) * 2004-12-27 2008-07-31 フリース,ケヴィン Multi-turbine airflow amplification generator
WO2009004308A2 (en) * 2007-06-30 2009-01-08 John Richard Carew Armstrong Improvements in water turbines
JP2010519446A (en) * 2007-02-16 2010-06-03 ハイドラ タイダル エナージイ テクノロジー エイエス Floating device for generating energy from water streams
WO2010098813A1 (en) * 2009-02-28 2010-09-02 Ener2 Llc Wind energy device
US20110018279A1 (en) * 2009-07-22 2011-01-27 Che Hue N Water and wind current power generation system
JP2011106274A (en) * 2009-11-12 2011-06-02 Fujinoya Kk Wind turbine generator
WO2011091448A2 (en) * 2010-01-22 2011-07-28 Stephen Gavin John Oldfield Method of counteracting the tendency of a tethered electricity water current-driven turbine to dive when power is produced

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160934A (en) * 1978-01-25 1979-12-20 Philippe Vauthier Hydraulic power generator
WO1981000595A1 (en) * 1979-08-22 1981-03-05 Bbc Brown Boveri & Cie Plant for producing electrical power from a watercourse and turbine assembly for such a plant
JPS60216070A (en) * 1984-04-09 1985-10-29 Akaho Yoshio Submersible dalius turbine generator
JPH01501647A (en) * 1986-12-03 1989-06-08 ペデルセン,ハンス マリウス Floating tidal power plant installed on ocean currents and river currents to obtain energy
JPH01200066A (en) * 1988-02-05 1989-08-11 Eiji Shinno Horizontal rotary wind mill
US4850190A (en) * 1988-05-09 1989-07-25 Pitts Thomas H Submerged ocean current electrical generator and method for hydrogen production
JP2008528846A (en) * 2004-12-27 2008-07-31 フリース,ケヴィン Multi-turbine airflow amplification generator
US20070257492A1 (en) * 2006-05-03 2007-11-08 Robson John H Submersible electrical power generating plant
JP2010519446A (en) * 2007-02-16 2010-06-03 ハイドラ タイダル エナージイ テクノロジー エイエス Floating device for generating energy from water streams
WO2009004308A2 (en) * 2007-06-30 2009-01-08 John Richard Carew Armstrong Improvements in water turbines
WO2010098813A1 (en) * 2009-02-28 2010-09-02 Ener2 Llc Wind energy device
US20110018279A1 (en) * 2009-07-22 2011-01-27 Che Hue N Water and wind current power generation system
JP2011106274A (en) * 2009-11-12 2011-06-02 Fujinoya Kk Wind turbine generator
WO2011091448A2 (en) * 2010-01-22 2011-07-28 Stephen Gavin John Oldfield Method of counteracting the tendency of a tethered electricity water current-driven turbine to dive when power is produced

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112706919A (en) * 2021-01-14 2021-04-27 湖南翰坤实业有限公司 Air-sea amphibious unmanned combat equipment
CN112706919B (en) * 2021-01-14 2023-02-21 湖南翰坤实业有限公司 Air-sea amphibious unmanned combat equipment

Similar Documents

Publication Publication Date Title
CA2807876C (en) System and method for generating electrical power from a flowing current of fluid
JP5678391B2 (en) Floating offshore wind power generation facility
JP5936291B2 (en) Energy storage device
KR101301241B1 (en) Model test system for tidal current turbine
JP2016113996A (en) Wind power generation system
JP6132088B2 (en) Ocean current power generator
JP2010515851A (en) A rotatable energy generator for obtaining electrical energy from water streams
US9709024B2 (en) Vortex energy recovery turbine
KR101687815B1 (en) Generator using ocean wave power and Power generation system made by connecting a plurality of the generator
JP5702781B2 (en) Wave tidal power plant and method
EP2896820B1 (en) Submersible power generator
JP5993188B2 (en) Ocean current power generator
KR20160140118A (en) Offshore Floating wind turbine comprising a plurality of generator units.
JP2013217333A (en) Ocean current power generating equipment
JP6759116B2 (en) Hydro power generator
WO2010109233A2 (en) Horizontal axis turbine assembly and hydro-power generation apparatus
WO2016147245A1 (en) Floating wind power generation system and floating combined power generation system
JP5863575B2 (en) Water current generator
JP2005214142A (en) Power generating device
JP5518276B1 (en) Submerged generator
JP2016169696A (en) Ocean current power generating device
KR20160011049A (en) Dual turbine assembly for low-head hydropower generation
JP2008240581A (en) Power generation device
JP7411192B1 (en) Hull wave power generation device and power generation ship
WO2012100128A2 (en) Hydroelectric power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912