JP2013100479A - Silica-styrene-butadiene rubber composite and manufacturing method thereof, rubber composition, and pneumatic tire - Google Patents
Silica-styrene-butadiene rubber composite and manufacturing method thereof, rubber composition, and pneumatic tire Download PDFInfo
- Publication number
- JP2013100479A JP2013100479A JP2012221538A JP2012221538A JP2013100479A JP 2013100479 A JP2013100479 A JP 2013100479A JP 2012221538 A JP2012221538 A JP 2012221538A JP 2012221538 A JP2012221538 A JP 2012221538A JP 2013100479 A JP2013100479 A JP 2013100479A
- Authority
- JP
- Japan
- Prior art keywords
- silica
- butadiene rubber
- latex
- composite
- rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、シリカ・スチレンブタジエンゴム複合体及びその製造方法、並びに該複合体を含むゴム組成物及びそれを用いた空気入りタイヤに関する。 The present invention relates to a silica / styrene butadiene rubber composite, a method for producing the same, a rubber composition containing the composite, and a pneumatic tire using the same.
タイヤの低燃費化のために充填剤としてシリカを配合し、良好な低発熱性を得ることが検討されているが、シリカは、表面にシラノール基を有し、親水性を示すため、一般に疎水性を示すゴムとの親和性が低く、更に自己凝集性も強いため、ゴム中に均一に分散させることは容易ではない。 In order to reduce the fuel consumption of tires, it has been studied to add silica as a filler to obtain good low heat build-up, but silica has a silanol group on the surface and exhibits hydrophilicity. It is not easy to disperse uniformly in the rubber because it has a low affinity with rubber exhibiting good properties and also has strong self-aggregation.
シリカをゴム中に分散させる方法として、天然ゴムラテックスにシリカスラリーを添加、攪拌した後、酸を添加しゴムを凝固させる方法が知られている。この方法によれば、ゴムとシリカをドライ状態で混合する方法に比べて、シリカの分散性が良くなるものの、その分散性は未だ充分とはいえず、シリカのロスも多い。 As a method for dispersing silica in rubber, a method is known in which a silica slurry is added to natural rubber latex and stirred, and then an acid is added to solidify the rubber. According to this method, although the dispersibility of silica is improved as compared with the method of mixing rubber and silica in a dry state, the dispersibility is still not sufficient and there is a lot of silica loss.
また、特許文献1にもゴムラテックスに水ガラスから製造される微粒子シリカを液体状態で混合し、複合体を製造する方法が開示されているが、スチレンブタジエンゴムラテックスを用いた製法を提案するものではない。また、シリカの分散性、ロスという点で改善の余地がある。 Also, Patent Document 1 discloses a method for producing a composite by mixing fine particles silica produced from water glass with rubber latex in a liquid state, and proposes a production method using styrene butadiene rubber latex. is not. There is also room for improvement in terms of silica dispersibility and loss.
本発明は、前記課題を解決し、シリカが微細に分散したシリカ・スチレンブタジエンゴム複合体及びその製造方法を提供することを目的とする。また、該複合体を用いたゴム組成物及び空気入りタイヤを提供することを目的とする。 An object of the present invention is to solve the above problems and to provide a silica / styrene butadiene rubber composite in which silica is finely dispersed and a method for producing the same. Another object of the present invention is to provide a rubber composition and a pneumatic tire using the composite.
シリカが微細に分散したシリカ・スチレンブタジエンゴム複合体の調製において、スチレンブタジエンゴムラテックスとシリカスラリーの混合物のpHを酸性側に調整して凝固させる方法では、ゴムが大きなブロックとなり、シリカがゴムに十分に取り込まれないため、シリカとゴムが分離してしまう。その結果、シリカが大きな凝集塊となるので、シリカが均一に微分散した複合体を得られない。また、分離により、シリカの充填量が低くなり、シリカのロスも生じてしまう。 In the preparation of a silica-styrene butadiene rubber composite in which silica is finely dispersed, in the method of adjusting the pH of the mixture of styrene butadiene rubber latex and silica slurry to the acidic side and solidifying, the rubber becomes a large block, and the silica becomes the rubber. Silica and rubber are separated due to insufficient incorporation. As a result, since silica becomes a large aggregate, a composite in which silica is uniformly finely dispersed cannot be obtained. In addition, due to the separation, the packing amount of silica is lowered, and silica loss occurs.
これに関し、本発明者らは種々検討した結果、界面活性剤とアルカリを併用した存在下において乳化重合で合成されたスチレンブタジエンゴムラテックスと微粒子シリカの分散液とを混合することにより、シリカとゴムの相互作用を高めた状態で凝固でき、シリカの分散性向上が可能になることを見出し、本発明を完成した。 In this regard, as a result of various studies, the present inventors have found that silica and rubber are mixed by mixing a styrene butadiene rubber latex synthesized by emulsion polymerization in the presence of a combination of a surfactant and an alkali with a dispersion of fine particle silica. The present invention has been completed by finding that it is possible to coagulate in a state in which the above interaction is enhanced and the dispersibility of silica can be improved.
すなわち、本発明は、非イオン性界面活性剤及びアルカリの存在下で、乳化重合スチレンブタジエンゴムラテックスと、平均粒子径1μm以下の微粒子シリカ分散液とを混合して調製された配合ラテックスから得られるシリカ・スチレンブタジエンゴム複合体に関する。ここで、上記アルカリがアンモニアであることが好ましい。 That is, the present invention is obtained from a blended latex prepared by mixing an emulsion-polymerized styrene butadiene rubber latex and a fine particle silica dispersion having an average particle size of 1 μm or less in the presence of a nonionic surfactant and an alkali. The present invention relates to a silica / styrene butadiene rubber composite. Here, the alkali is preferably ammonia.
本発明はまた、非イオン性界面活性剤及びアルカリの存在下で、乳化重合スチレンブタジエンゴムラテックスと、平均粒子径1μm以下の微粒子シリカ分散液とを混合して配合ラテックスを調製する工程1、及び上記工程1で得られた配合ラテックスのpHを5〜7に調整し、凝固させる工程2を含む上記シリカ・スチレンブタジエンゴム複合体の製造方法に関する。 The present invention also includes a step 1 of preparing a compounded latex by mixing an emulsion-polymerized styrene butadiene rubber latex and a fine particle silica dispersion having an average particle size of 1 μm or less in the presence of a nonionic surfactant and an alkali, and It is related with the manufacturing method of the said silica styrene butadiene rubber composite including the process 2 which adjusts the pH of the mixing | blending latex obtained at the said process 1 to 5-7, and solidifies.
本発明はまた、上記シリカ・スチレンブタジエンゴム複合体を含むゴム組成物に関する。本発明はまた、上記ゴム組成物を用いて作製した空気入りタイヤに関する。 The present invention also relates to a rubber composition containing the silica-styrene butadiene rubber composite. The present invention also relates to a pneumatic tire produced using the rubber composition.
本発明によれば、非イオン性界面活性剤及びアルカリの存在下で、乳化重合スチレンブタジエンゴムラテックスと、平均粒子径1μm以下の微粒子シリカ分散液とを混合して調製された配合ラテックスを用いているので、ゴム成分中にシリカを微細に分散したシリカ・スチレンブタジエンゴム複合体を得ることができる。また、製造時のシリカやスチレンブタジエンゴムのロスも抑制できる。 According to the present invention, using a compounded latex prepared by mixing an emulsion-polymerized styrene butadiene rubber latex and a fine particle silica dispersion having an average particle size of 1 μm or less in the presence of a nonionic surfactant and an alkali. Therefore, a silica / styrene butadiene rubber composite in which silica is finely dispersed in the rubber component can be obtained. Further, loss of silica or styrene butadiene rubber during production can be suppressed.
<シリカ・スチレンブタジエンゴム複合体>
本発明のシリカ・スチレンブタジエンゴム複合体(シリカ・SBR複合体)は、非イオン性界面活性剤及びアルカリの存在下で、乳化重合スチレンブタジエンゴムラテックス(E−SBRラテックス)と、平均粒子径1μm以下の微粒子シリカ分散液とを混合して調製された配合ラテックスから得られる。
<Silica-styrene butadiene rubber composite>
The silica / styrene butadiene rubber composite (silica / SBR composite) of the present invention is prepared by using an emulsion-polymerized styrene butadiene rubber latex (E-SBR latex) and an average particle diameter of 1 μm in the presence of a nonionic surfactant and an alkali. It is obtained from a blended latex prepared by mixing the following fine particle silica dispersion.
本発明における検討により、非イオン性界面活性剤の存在下でE−SBRラテックス及び微粒子シリカ分散液を混合した場合、酸などを添加しても凝固しないのに対し、非イオン性界面活性剤とともにアンモニアなどのアルカリを併用することで、シリカとゴムの相互作用を高め、シリカとゴムの分離やシリカの凝集を抑制できるだけでなく、良好な凝固性も得られるため、シリカが均一に微分散した複合体を調製できる。アルカリ添加による凝固メカニズムについては必ずしも明らかではないが、pHの影響、アンモニウムイオンによる電荷の影響などが有効に働く結果、凝固が進行すると推察される。 According to the study in the present invention, when the E-SBR latex and the fine particle silica dispersion are mixed in the presence of a nonionic surfactant, it does not coagulate even when an acid is added, but with a nonionic surfactant. By using together with alkali such as ammonia, the interaction between silica and rubber is enhanced, not only can the separation of silica and rubber and the aggregation of silica be suppressed, but also good coagulation properties can be obtained, so silica is uniformly finely dispersed. A complex can be prepared. The coagulation mechanism due to the addition of alkali is not necessarily clear, but it is presumed that coagulation proceeds as a result of effective effects of pH, the influence of charge by ammonium ions, and the like.
また、非イオン性界面活性剤及びアルカリの存在下で複合体を調製することで、シリカやスチレンブタジエンゴムのロスも抑制できる。 Moreover, the loss of silica or styrene butadiene rubber can be suppressed by preparing the composite in the presence of a nonionic surfactant and an alkali.
上記複合体は、例えば、非イオン性界面活性剤及びアルカリの存在下で、E−SBRラテックスと、平均粒子径1μm以下の微粒子シリカ分散液とを混合して配合ラテックスを調製する工程1、及び上記工程1で得られた配合ラテックスのpHを5〜7に調整し、凝固させる工程2を含む製造方法により得られる。 The composite is prepared, for example, by mixing E-SBR latex and a fine particle silica dispersion having an average particle size of 1 μm or less in the presence of a nonionic surfactant and an alkali to prepare a compounded latex, and It is obtained by a production method including the step 2 of adjusting the pH of the compounded latex obtained in the step 1 to 5 to 7 and coagulating it.
(工程1)
工程1では、E−SBRラテックスが使用される。ここで、E−SBRラテックスのpHは、好ましくは8.5以上、より好ましくは9.5以上である。該pHが8.5未満では、E−SBRラテックスが不安定となり、凝固しやすい傾向がある。E−SBRラテックスのpHは、好ましくは12以下、より好ましくは11以下である。該pHが12を超えると、E−SBRラテックスが劣化するおそれがある。
(Process 1)
In step 1, E-SBR latex is used. Here, pH of E-SBR latex becomes like this. Preferably it is 8.5 or more, More preferably, it is 9.5 or more. When the pH is less than 8.5, the E-SBR latex becomes unstable and tends to coagulate. The pH of the E-SBR latex is preferably 12 or less, more preferably 11 or less. If the pH exceeds 12, the E-SBR latex may be deteriorated.
E−SBRラテックスは、従来公知の製法で調製でき、各種市販品も使用できる。
なお、E−SBRラテックスは、ゴム固形分が10〜70質量%のものを使用することが好ましい。
E-SBR latex can be prepared by a conventionally known production method, and various commercially available products can also be used.
The E-SBR latex preferably has a rubber solid content of 10 to 70% by mass.
工程1では、平均粒子径1μm以下の微粒子シリカ分散液が使用される。即ち、シリカの粉末ではなく、特定粒径のシリカが水中に分散した分散液(スラリー)が使用される。分散液に含まれる微粒子シリカとしては、特に制限はないが、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられ、シラノール基が多いという理由から、湿式法シリカが好ましい。微粒子シリカは、単独で用いてもよく、2種以上を併用してもよい。 In step 1, a fine particle silica dispersion having an average particle size of 1 μm or less is used. That is, not a silica powder but a dispersion (slurry) in which silica having a specific particle diameter is dispersed in water is used. The fine particle silica contained in the dispersion is not particularly limited, and examples thereof include dry method silica (anhydrous silicic acid), wet method silica (hydrous silicic acid), and the wet method silica is used because there are many silanol groups. preferable. The fine particle silica may be used alone or in combination of two or more.
上記分散液において、微粒子シリカの平均粒子径は、好ましくは1μm以下、より好ましくは0.05μm以下である。1μmを超えると、破壊強度が劣る傾向がある。該平均粒子径は、好ましくは0.005μm以上、より好ましくは0.01μm以上である。0.005μm未満であると、微粒子シリカが強く凝集し、分散させることが難しくなるおそれがある。 In the dispersion, the average particle size of the fine particle silica is preferably 1 μm or less, more preferably 0.05 μm or less. When it exceeds 1 μm, the fracture strength tends to be inferior. The average particle diameter is preferably 0.005 μm or more, more preferably 0.01 μm or more. If it is less than 0.005 μm, the fine-particle silica is strongly aggregated and may be difficult to disperse.
なお、本明細書において、微粒子シリカの平均粒子径の測定方法は、透過型電子顕微鏡(TEM)観察が用いられる。具体的には、微粒子を透過型電子顕微鏡で写真撮影し、微粒子の形状が球形の場合には球の直径を粒子径とし、針状又は棒状の場合には短径を粒子径とし、不定型の場合には中心部からの平均粒径を粒子径とし、微粒子100個の粒径の平均値を平均粒子径とする。 In this specification, transmission electron microscope (TEM) observation is used as a method for measuring the average particle size of the fine particle silica. Specifically, the microparticles are photographed with a transmission electron microscope. If the shape of the microparticles is spherical, the diameter of the sphere is the particle diameter, and if it is needle-shaped or rod-shaped, the minor diameter is the particle diameter. In this case, the average particle diameter from the center is defined as the particle diameter, and the average value of the particle diameters of 100 fine particles is defined as the average particle diameter.
上記分散液において、微粒子シリカのBET法によるチッ素吸着比表面積(N2SA)は、40m2/g以上が好ましく、60m2/g以上がより好ましく、140m2/g以上が更に好ましい。40m2/g未満では、破壊強度が劣る傾向がある。また、該N2SAは300m2/g以下が好ましく、200m2/g以下がより好ましい。300m2/gを超えると、微粒子シリカが強く凝集し、分散させることが難しくなるおそれがある。
なお、シリカのBET法によるチッ素吸着比表面積は、ASTM D3037−81に準拠した方法により測定することができる。
In the above dispersion, the nitrogen adsorption specific surface area (N 2 SA) of the fine particle silica by the BET method is preferably 40 m 2 / g or more, more preferably 60 m 2 / g or more, and still more preferably 140 m 2 / g or more. If it is less than 40 m < 2 > / g, there exists a tendency for fracture strength to be inferior. Further, the N 2 SA is preferably 300 meters 2 / g or less, 200 meters 2 / g or less is more preferable. When it exceeds 300 m 2 / g, the fine particle silica is strongly aggregated and may be difficult to disperse.
In addition, the nitrogen adsorption specific surface area by the BET method of a silica can be measured by the method based on ASTM D3037-81.
上記微粒子シリカ分散液は、公知の方法で製造でき、特に限定されず、例えば、高圧ホモジナイザー、超音波ホモジナイザー、コロイドミル等を用いて、微粒子シリカを分散させることで調製できる。ここで、上記分散液中の微粒子シリカの含有量は特に限定されないが、分散液(100質量%)中での均一分散性の点から、1〜10質量%が好ましい。 The fine particle silica dispersion can be produced by a known method and is not particularly limited. For example, the fine particle silica dispersion can be prepared by dispersing fine particle silica using a high-pressure homogenizer, an ultrasonic homogenizer, a colloid mill, or the like. Here, the content of the fine particle silica in the dispersion is not particularly limited, but is preferably 1 to 10% by mass from the viewpoint of uniform dispersibility in the dispersion (100% by mass).
工程1では、非イオン性界面活性剤が使用される。非イオン性界面活性剤としては特に限定されず、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリプロピレンアルキルエーテル、ポリオキシエチレンポリブチレンアルキルエーテルなどのポリオキシアルキレンアルキルエーテル;ポリオキシエチレンアルケニルエーテルなどのポリオキシアルキレンアルケニルエーテル;ポリオキシエチレンアルキルフェニルエーテル;高級脂肪酸アルカノールアミドなど、従来公知のものを使用でき、ポリオキシエチレン基によりシリカ表面との水素結合力を増加できる点から、親水性基としてポリオキシエチレン基、疎水性基として炭化水素基を有する非イオン性界面活性剤を好適に使用できる。 In step 1, a nonionic surfactant is used. The nonionic surfactant is not particularly limited, and polyoxyalkylene alkyl ethers such as polyoxyethylene alkyl ethers, polyoxyethylene polypropylene alkyl ethers, polyoxyethylene polybutylene alkyl ethers; polyoxyethylenes such as polyoxyethylene alkenyl ethers Conventionally known ones such as alkylene alkenyl ethers; polyoxyethylene alkyl phenyl ethers; higher fatty acid alkanolamides can be used, and the polyoxyethylene group can increase the hydrogen bonding force with the silica surface. A nonionic surfactant having a hydrocarbon group as a group or a hydrophobic group can be preferably used.
このような非イオン性界面活性剤として、本発明の効果が良好に得られるという点から、下記式(I)で表される化合物を好適に使用できる。
R1−O−(EO)x−H (I)
(式(I)において、R1は炭素数3〜50のアルキル基又は炭素数3〜50のアルケニル基を表す。EOはオキシエチレン基を表す。平均付加モル数xは3〜100である。)
As such a nonionic surfactant, a compound represented by the following formula (I) can be suitably used from the viewpoint that the effect of the present invention can be obtained satisfactorily.
R 1 —O— (EO) x —H (I)
(In the formula (I), R 1 represents an alkyl group having 3 to 50 carbon atoms or an alkenyl group having 3 to 50 carbon atoms. EO represents an oxyethylene group. The average added mole number x is 3 to 100. )
上記R1の炭素数は、好ましくは5〜30、より好ましくは8〜20である。
上記xは、好ましくは5〜50、より好ましくは8〜30である。
The number of carbon atoms of R 1 is preferably 5-30, more preferably 8-20.
Said x becomes like this. Preferably it is 5-50, More preferably, it is 8-30.
工程1では、アルカリが使用される。これにより、ゴム成分の凝固を充分に進行させ、ゴム成分中にシリカを微細に分散したシリカ・スチレンブタジエンゴム複合体を得ることができる。アルカリとしては特に限定されず、従来公知の塩基性化合物を使用でき、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム等が挙げられる。なかでも、凝固性が優れ、シリカが均一に分散した複合体が良好に得られるという理由から、アンモニアが好ましい。 In step 1, an alkali is used. Thereby, coagulation | solidification of a rubber component can fully advance and the silica * styrene butadiene rubber composite body which disperse | distributed the silica finely in a rubber component can be obtained. It does not specifically limit as an alkali, A conventionally well-known basic compound can be used, For example, ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium hydrogencarbonate, ammonium carbonate etc. are mentioned. Among these, ammonia is preferable because it has excellent coagulability and can provide a composite in which silica is uniformly dispersed.
工程1の混合工程では、非イオン性界面活性剤及びアルカリの存在下で、E−SBRラテックスと、平均粒子径1μm以下の微粒子シリカ分散液とを公知の方法により混合できる。ブレンダーミルなどの公知の攪拌装置にE−SBRラテックスを入れ、撹拌しながら、微粒子シリカ分散液、非イオン性界面活性剤及びアルカリを滴下する方法や、微粒子シリカ分散液を撹拌しながら、これにE−SBRラテックス、非イオン性界面活性剤及びアルカリを滴下する方法などが挙げられる。均一な分散液になるまで十分に攪拌することで、配合ラテックス(混合液)を調製できる。 In the mixing step of Step 1, E-SBR latex and a fine particle silica dispersion having an average particle diameter of 1 μm or less can be mixed by a known method in the presence of a nonionic surfactant and an alkali. E-SBR latex is put into a known stirring device such as a blender mill, and a method of dropping the fine particle silica dispersion, nonionic surfactant and alkali while stirring, or stirring the fine particle silica dispersion, Examples thereof include a method of dropping E-SBR latex, nonionic surfactant and alkali. By thoroughly stirring until a uniform dispersion is obtained, a compounded latex (mixed solution) can be prepared.
配合ラテックスのpHは、好ましくは9.0以上、より好ましくは9.5以上である。該pHが9.0未満では、配合ラテックスが不安定になる傾向がある。配合ラテックスのpHは、好ましくは12以下、より好ましくは11.5以下である。該pHが12を超えると、配合ラテックスが劣化するおそれがある。 The pH of the compounded latex is preferably 9.0 or higher, more preferably 9.5 or higher. When the pH is less than 9.0, the compounded latex tends to be unstable. The pH of the compounded latex is preferably 12 or less, more preferably 11.5 or less. If the pH exceeds 12, the blended latex may be deteriorated.
上記混合工程では、SBR100質量部(固形分)に対して微粒子シリカが5〜150質量部(SiO2換算)となるように微粒子シリカ分散液を混合することが好ましい。5質量部未満であると、微粒子シリカの配合量が少なく、本発明の効果が充分に得られない傾向がある。150質量部を超えると、シリカの均一分散性が低下する傾向がある。該微粒子シリカの含有量は、より好ましくは30質量部以上である。また、該含有量は、より好ましくは100質量部以下、更に好ましくは70質量部以下である。 In the mixing step, the fine particle silica dispersion is preferably mixed so that the fine particle silica is 5 to 150 parts by mass (in terms of SiO 2 ) with respect to 100 parts by mass (solid content) of SBR. When the amount is less than 5 parts by mass, the amount of fine particle silica is small, and the effects of the present invention tend not to be obtained sufficiently. When it exceeds 150 parts by mass, the uniform dispersibility of silica tends to be lowered. The content of the fine particle silica is more preferably 30 parts by mass or more. The content is more preferably 100 parts by mass or less, still more preferably 70 parts by mass or less.
上記混合工程において、界面活性剤の添加量は、SBR100質量部(固形分)に対して、0.1〜10質量部であることが好ましい。0.1質量部未満であると、非イオン性界面活性剤の配合量が少なく、本発明の効果が充分に得られない傾向がある。10質量部を超えると、非イオン性界面活性剤が物性の劣化に影響する傾向がある。シリカの均一分散性が低下する傾向がある。該添加量は、より好ましくは0.3質量部以上である。また、該添加量は、より好ましくは8質量部以下、更に好ましくは6質量部以下である。 In the mixing step, the amount of the surfactant added is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass (solid content) of SBR. If the amount is less than 0.1 parts by mass, the amount of the nonionic surfactant is small, and the effects of the present invention tend not to be sufficiently obtained. When it exceeds 10 parts by mass, the nonionic surfactant tends to affect the deterioration of physical properties. There exists a tendency for the uniform dispersibility of a silica to fall. The added amount is more preferably 0.3 parts by mass or more. Moreover, this addition amount becomes like this. More preferably, it is 8 mass parts or less, More preferably, it is 6 mass parts or less.
上記混合工程において、アルカリの添加量は、SBR100質量部(固形分)に対して、好ましくは0.1質量部以上、より好ましくは0.2質量部以上である。該含有量は、好ましくは2.0質量部以下、より好ましくは1.2質量部以下である。また、上記アルカリとしてアンモニアを使用する場合、アンモニアの添加量は、SBR100質量部(固形分)に対して、好ましくは0.1質量部以上、より好ましくは0.2質量部以上である。該含有量は、好ましくは1.5質量部以下、より好ましくは1質量部以下である。アルカリやアンモニアの添加量が下限未満であると、ゴムの凝固性が劣り、所望の複合体が得られないおそれがある。上限を超えると、シリカの均一分散性が低下する傾向がある。 In the mixing step, the amount of alkali added is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more with respect to 100 parts by mass (solid content) of SBR. The content is preferably 2.0 parts by mass or less, more preferably 1.2 parts by mass or less. Moreover, when using ammonia as said alkali, the addition amount of ammonia becomes like this. Preferably it is 0.1 mass part or more with respect to SBR100 mass part (solid content), More preferably, it is 0.2 mass part or more. The content is preferably 1.5 parts by mass or less, more preferably 1 part by mass or less. If the amount of alkali or ammonia added is less than the lower limit, the solidification property of the rubber is inferior, and the desired composite may not be obtained. When the upper limit is exceeded, the uniform dispersibility of silica tends to decrease.
上記アルカリとしてアンモニアを使用する場合、良好な凝固性が得られる点から、好ましくは2〜20質量%(より好ましくは5〜15質量%)の濃度のアンモニア水を使用することが好ましい。 When ammonia is used as the alkali, it is preferable to use ammonia water having a concentration of preferably 2 to 20% by mass (more preferably 5 to 15% by mass) from the viewpoint of obtaining good solidification properties.
上記混合工程の温度及び時間は、均一な配合ラテックスが調製できる点から、好ましくは10〜40℃で30〜120分、より好ましくは15〜30℃で45〜90分である。 The temperature and time of the mixing step are preferably 10 to 40 ° C. for 30 to 120 minutes, more preferably 15 to 30 ° C. for 45 to 90 minutes, from the viewpoint that a uniform blended latex can be prepared.
(工程2)
工程2では、工程1で得られた配合ラテックスのpHを5〜7(好ましくは6〜7)に調整し、凝固させる。pHが5未満であると、シリカの分散が悪化する傾向がある。また該pHが7を超えると、凝固が進行せず、シリカの分散が悪化する傾向がある。
(Process 2)
In step 2, the pH of the compounded latex obtained in step 1 is adjusted to 5-7 (preferably 6-7) and coagulated. When the pH is less than 5, silica dispersion tends to deteriorate. On the other hand, when the pH exceeds 7, coagulation does not proceed and silica dispersion tends to deteriorate.
pH5〜7に調整し、配合ラテックスを凝固させる方法としては、通常、酸が使用され、これを配合ラテックスに添加することで凝固される。凝固させるための酸としては、硫酸、塩酸、蟻酸、酢酸などが挙げられる。凝固工程の温度は、10〜40℃で行うことが好ましい。 As a method for adjusting the pH to 5 to 7 and coagulating the compounded latex, an acid is usually used, and the acid is coagulated by adding it to the compounded latex. Examples of the acid for coagulation include sulfuric acid, hydrochloric acid, formic acid, acetic acid and the like. It is preferable to perform the temperature of a coagulation process at 10-40 degreeC.
得られた凝固物(凝集ゴム及びシリカを含む凝集物)を公知の方法でろ過、乾燥させ、更に乾燥後、2軸ロール、バンバリーなどでゴム練りを行うと、微粒子シリカがSBRマトリックスに均一に分散した複合体を得ることができる。
なお、本発明のシリカ・SBR複合体は、本発明の効果を阻害しない範囲で他の成分を含んでもよい。
The obtained coagulated material (agglomerated rubber and agglomerate containing silica) is filtered and dried by a known method, and further dried and then kneaded with a biaxial roll, a banbury, etc., so that the fine particle silica is uniformly formed in the SBR matrix. A dispersed complex can be obtained.
The silica / SBR composite of the present invention may contain other components as long as the effects of the present invention are not impaired.
<ゴム組成物>
本発明のゴム組成物は、上記シリカ・SBR複合体を含有する。上記シリカ・SBR複合体は、マスターバッチとして使用できる。上記シリカ・SBR複合体はゴム中にシリカが均一に分散しているので、他の成分と混合したゴム組成物においてもシリカを均一に分散できる。そのため、効果的な補強性の発揮が期待できる。
<Rubber composition>
The rubber composition of the present invention contains the silica / SBR composite. The silica / SBR composite can be used as a master batch. In the silica / SBR composite, since silica is uniformly dispersed in rubber, silica can be uniformly dispersed even in a rubber composition mixed with other components. Therefore, effective reinforcement can be expected.
本発明のゴム組成物には、上記シリカ・SBR複合体以外に、タイヤ工業において一般的に用いられているSBR以外のゴム成分、カーボンブラックなどの充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、老化防止剤、硫黄、加硫促進剤等の各種材料を適宜配合できる。 In addition to the silica / SBR composite, the rubber composition of the present invention includes rubber components other than SBR generally used in the tire industry, fillers such as carbon black, silane coupling agents, zinc oxide, stearin. Various materials such as acid, anti-aging agent, sulfur, and vulcanization accelerator can be appropriately blended.
<空気入りタイヤ>
本発明のゴム組成物は空気入りタイヤに好適に使用できる。上記空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形することにより未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。
<Pneumatic tire>
The rubber composition of the present invention can be suitably used for a pneumatic tire. The pneumatic tire is manufactured by a normal method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of each member of the tire at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming an unvulcanized tire by heating, the tire can be manufactured by heating and pressing in a vulcanizer.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
SBR(E−SBRラテックス):公知の手法により合成した。(スチレン含量:23.5質量%、ゴム固形分濃度:23質量%、pH:10.1)
湿式シリカ:(株)トクヤマ製トクシールUSG(平均粒子径:20nm、N2SA:170m2/g)
非イオン性界面活性剤:ハンツマン(株)製のteric 16A29(CH3(CH2)15(OC2H4)29−OH)
10%硫酸:和光純薬工業(株)製
10質量%アンモニア水:和光純薬工業(株)製
シランカップリング剤:EVONIK−DEGUSSA社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
亜鉛華:三井金属鉱業(株)製の亜鉛華2種
ステアリン酸:日油(株)製の椿
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N’−フェニルーp−フェニレンジアミン)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
SBR (E-SBR latex): synthesized by a known method. (Styrene content: 23.5% by mass, rubber solid content concentration: 23% by mass, pH: 10.1)
Wet silica: Tokuyama USG manufactured by Tokuyama Corporation (average particle size: 20 nm, N 2 SA: 170 m 2 / g)
Nonionic surfactant: Huntsman Corp. of teric 16A29 (CH 3 (CH 2 ) 15 (OC 2 H 4) 29 -OH)
10% sulfuric acid: 10% by mass ammonia water manufactured by Wako Pure Chemical Industries, Ltd .: Silane coupling agent manufactured by Wako Pure Chemical Industries, Ltd .: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide manufactured by EVONIK-DEGUSSA )
Zinc Hana: Mitsui Mining & Mining Co., Ltd. Zinc Hana 2 types Stearic Acid: NOF Co., Ltd. Anti-aging Agent: Nouchi 6C (N- (1,3- Dimethylbutyl) -N′-phenyl-p-phenylenediamine)
Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd .: Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
<実施例1>
(シリカ分散液の調製)
湿式シリカ4.5gに純水85.5gを添加し、シリカ5%懸濁液を作製し、これを攪拌、及び超音波処理を10分間行い、シリカ分散液を得た。
<Example 1>
(Preparation of silica dispersion)
85.5 g of pure water was added to 4.5 g of wet silica to prepare a 5% silica suspension, which was stirred and sonicated for 10 minutes to obtain a silica dispersion.
(シリカ・SBR複合体の調製)
E−SBRラテックス43.5gに、シリカ分散液90g、界面活性剤0.5g及び10質量%アンモニア水0.5gを添加し、室温で1時間混合、攪拌し、pH9.8の配合ラテックスを得た。次いで、室温下で硫酸を加え、pH6〜7に調整し、凝固物を得た。得られた凝固物をろ過し、乾燥してシリカ・SBR複合体1を得た。
(Preparation of silica / SBR composite)
To 43.5 g of E-SBR latex, 90 g of silica dispersion, 0.5 g of surfactant and 0.5 g of 10% by mass ammonia water are added, and mixed and stirred at room temperature for 1 hour to obtain a blended latex having a pH of 9.8. It was. Subsequently, sulfuric acid was added at room temperature to adjust the pH to 6 to 7 to obtain a coagulated product. The obtained solidified product was filtered and dried to obtain silica / SBR composite 1.
<実施例2>
界面活性剤0.05gに変更した以外は、実施例1の方法と同様にして、シリカ・SBR複合体2を得た。
<Example 2>
A silica / SBR composite 2 was obtained in the same manner as in Example 1 except that the surfactant was changed to 0.05 g.
<比較例1〜2>
比較例1では、10質量%アンモニア水を添加しなかった他は実施例と同様の方法により、シリカ・SBR複合体を得た。
比較例2では、界面活性剤を添加しなかった他は実施例と同様の方法により、シリカ・SBR複合体を得た。
<Comparative Examples 1-2>
In Comparative Example 1, a silica / SBR composite was obtained in the same manner as in Example except that 10% by mass of ammonia water was not added.
In Comparative Example 2, a silica / SBR composite was obtained in the same manner as in Example except that the surfactant was not added.
得られたシリカ・SBR複合体を用いて、以下の評価を行った。その結果を表1に示す。 The following evaluation was performed using the obtained silica / SBR composite. The results are shown in Table 1.
(ろ過操作)
上記複合体の調製におけるろ過操作性について、凝集塊が生成し、ろ過操作が可能であるか否かを評価した。
(Filtration operation)
Regarding filtration operability in the preparation of the composite, it was evaluated whether aggregates were generated and filtration operation was possible.
(ろ液の状態(シリカ・SBRロス))
シリカ及びSBRのロスについて、ろ過後のろ液の状態を観察し、下記基準で評価した。
透明又は半透明:ロスがほとんどない。
白濁:ロスが多い。
(The state of the filtrate (silica / SBR loss))
Regarding the loss of silica and SBR, the state of the filtrate after filtration was observed and evaluated according to the following criteria.
Transparent or translucent: There is almost no loss.
Cloudiness: There are many losses.
(乾燥後試料(シリカ・SBR複合体))
乾燥後試料におけるシリカ分散性を下記基準により、目視で評価した。
半透明:シリカの分散性が良好である。
不透明:シリカの分散性が悪い。
(Sample after drying (silica / SBR composite))
The silica dispersibility in the sample after drying was visually evaluated according to the following criteria.
Translucent: Good dispersibility of silica.
Opaque: The dispersibility of silica is poor.
10質量%アンモニア水及び界面活性剤を用いた実施例では、凝集塊が生成し、ろ過性が良好であったのに対し、比較例ではろ過しても固形分を回収できなかった。また、実施例のろ液の状態は透明であり、シリカとSBRのロスがほとんどなかったが、比較例では白濁し、ロスが多かった(図1、2)。 In the examples using 10% by mass aqueous ammonia and surfactant, aggregates were formed and the filterability was good, whereas in the comparative example, the solid content could not be recovered by filtration. Moreover, although the state of the filtrate of an Example was transparent and there was almost no loss of silica and SBR, in the comparative example, it became cloudy and there were many losses (FIGS. 1, 2).
乾燥後試料について、実施例では、試料が半透明であり、シリカが均一に分散していることがわかった。比較例では、試料が不透明であり、シリカの分散性が実施例に比べて劣っていた。 About the sample after drying, in the Example, it turned out that a sample is translucent and the silica is disperse | distributing uniformly. In the comparative example, the sample was opaque and the dispersibility of the silica was inferior to that of the example.
<実施例3〜4及び比較例3>
表2に示す配合に従って、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、ロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で15分間プレス加硫して加硫物を得た。得られた加硫物を下記方法により評価し、結果を表2に示した。
<Examples 3 to 4 and Comparative Example 3>
According to the formulation shown in Table 2, chemicals other than sulfur and a vulcanization accelerator were kneaded using a 1.7 L Banbury mixer. Next, using a roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized at 170 ° C. for 15 minutes to obtain a vulcanized product. The obtained vulcanizates were evaluated by the following methods, and the results are shown in Table 2.
(転がり抵抗)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度50℃、初期歪み10%、動歪み2%、周波数10Hzの条件下で各配合(加硫物)のtanδを測定し、比較例3のゴム試験片のtanδを100として、下記計算式により、各配合を指数表示した(転がり抵抗指数)。指数が大きいほど転がり抵抗特性(低燃費性)が優れる。
(転がり抵抗指数)=(比較例3のtanδ)/(各配合のtanδ)×100
(Rolling resistance)
Using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), tan δ of each compound (vulcanized product) was measured under the conditions of a temperature of 50 ° C., an initial strain of 10%, a dynamic strain of 2%, and a frequency of 10 Hz. The tan δ of the rubber test piece of Comparative Example 3 was set to 100, and each compounding was expressed as an index (rolling resistance index) by the following formula. The larger the index, the better the rolling resistance characteristics (low fuel consumption).
(Rolling resistance index) = (tan δ of Comparative Example 3) / (tan δ of each formulation) × 100
(摩耗試験)
ランボーン摩耗試験機を用いて、温度20℃、スリップ率20%及び試験時間2分間の条件下でランボーン摩耗量を測定した。更に、測定されたランボーン摩耗量から容積損失量を計算し、比較例3のゴム試験片の容積損失量を100とし、下記計算式により、各配合を指数表示した(耐摩耗指数)。指数が大きいほど、耐摩耗性に優れることを示す。
(耐摩耗指数)=(比較例3の容積損失量)/(各配合の容積損失量)×100
(Abrasion test)
Using a Lambourn abrasion tester, the Lambourn abrasion amount was measured under the conditions of a temperature of 20 ° C., a slip ratio of 20% and a test time of 2 minutes. Further, the volume loss amount was calculated from the measured amount of lamborn wear, the volume loss amount of the rubber test piece of Comparative Example 3 was set to 100, and each compounding was indicated by an index according to the following calculation formula (wear resistance index). It shows that it is excellent in abrasion resistance, so that an index | exponent is large.
(Abrasion resistance index) = (Volume loss amount of Comparative Example 3) / (Volume loss amount of each formulation) × 100
(破断強度・破断時伸び)
加硫物を用いて、3号ダンベル型ゴム試験片を作製し、JIS K6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に準じて引張試験を行い、破断強度(TB)、破断時伸び(EB)を測定した。比較例3のゴム試験片のTB、EBを100とし、下記計算式により、各配合を指数表示した。TB指数が大きいほど、補強性に優れ、EB指数が大きいほど耐クラック性に優れることを示す。
(TB指数)=(各配合のTB)/(比較例3のTB)×100
(EB指数)=(各配合のEB)/(比較例3のEB)×100
(Breaking strength / elongation at break)
A vulcanized product was used to prepare a No. 3 dumbbell-shaped rubber test piece and subjected to a tensile test according to JIS K6251 “vulcanized rubber and thermoplastic rubber-Determination of tensile properties”, breaking strength (TB), breaking The time elongation (EB) was measured. TB and EB of the rubber test piece of Comparative Example 3 were set to 100, and each compounding was indicated by an index by the following calculation formula. It shows that it is excellent in reinforcement property, so that TB index is large, and it is excellent in crack resistance, so that EB index is large.
(TB index) = (TB of each formulation) / (TB of Comparative Example 3) × 100
(EB index) = (EB of each formulation) / (EB of Comparative Example 3) × 100
非イオン性界面活性剤とアルカリの存在下において、E−SBRラテックスと微粒子シリカ分散液とを混合して調製された配合ラテックスから作製したシリカ・SBR複合体を用いた実施例3〜4の配合ゴムは、SBR、シリカなどを混練して作製した比較例3のものに比べて、低燃費性、耐摩耗性、破断強度及び破断時伸びが高い次元でバランスよく得られた。特に、複合体の作成時における界面活性剤を減量した実施例4では、より顕著な効果が得られた。 Formulations of Examples 3 to 4 using a silica / SBR composite prepared from a blended latex prepared by mixing an E-SBR latex and a fine particle silica dispersion in the presence of a nonionic surfactant and an alkali The rubber was obtained in a well-balanced manner with high fuel economy, wear resistance, breaking strength and elongation at break as compared with Comparative Example 3 prepared by kneading SBR, silica and the like. In particular, in Example 4 in which the amount of the surfactant was reduced at the time of producing the composite, a more remarkable effect was obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012221538A JP6068910B2 (en) | 2011-10-12 | 2012-10-03 | Silica / styrene butadiene rubber composite, method for producing the same, rubber composition and pneumatic tire |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011224962 | 2011-10-12 | ||
JP2011224962 | 2011-10-12 | ||
JP2012221538A JP6068910B2 (en) | 2011-10-12 | 2012-10-03 | Silica / styrene butadiene rubber composite, method for producing the same, rubber composition and pneumatic tire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013100479A true JP2013100479A (en) | 2013-05-23 |
JP6068910B2 JP6068910B2 (en) | 2017-01-25 |
Family
ID=48621397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012221538A Expired - Fee Related JP6068910B2 (en) | 2011-10-12 | 2012-10-03 | Silica / styrene butadiene rubber composite, method for producing the same, rubber composition and pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6068910B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021001253A (en) * | 2019-06-20 | 2021-01-07 | 住友ゴム工業株式会社 | Method for producing rubber-filler composite |
JP2021038403A (en) * | 2016-01-25 | 2021-03-11 | 日本エイアンドエル株式会社 | Process for producing rubber composition, and method for improving take-in ratio of silica in rubber composition |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4482657A (en) * | 1982-09-01 | 1984-11-13 | Polysar Limited | Silica-polymer mixtures |
JPH09111039A (en) * | 1995-10-17 | 1997-04-28 | Bridgestone Corp | Tire tread rubber composition for passenger car and small truck |
JPH09143311A (en) * | 1995-11-24 | 1997-06-03 | Bridgestone Corp | Pneumatic tire |
JPH11130908A (en) * | 1997-10-29 | 1999-05-18 | Sumitomo Rubber Ind Ltd | Rubber composition |
JP2001253975A (en) * | 2000-03-10 | 2001-09-18 | Rondekkusu:Kk | Thready rubber material and method of producing the same and method of producing rubber composition for constituting rubber product |
JP2002241507A (en) * | 2000-12-12 | 2002-08-28 | Jsr Corp | Diene-based rubber/inorganic compound composite and method for producing the same and rubber composition containing the same |
JP2005248121A (en) * | 2004-03-08 | 2005-09-15 | Sumitomo Rubber Ind Ltd | Rubber composition for base tread and pneumatic tire produced by using the same |
JP2005325172A (en) * | 2004-05-12 | 2005-11-24 | Sumitomo Rubber Ind Ltd | Rubber composition with silica-filled rubber as rubber component and manufacturing process of silica-filled rubber |
JP2011079912A (en) * | 2009-10-05 | 2011-04-21 | Sumitomo Rubber Ind Ltd | Composite, rubber composition and pneumatic tire |
JP2011084651A (en) * | 2009-10-15 | 2011-04-28 | Sumitomo Rubber Ind Ltd | Composite, rubber composition and pneumatic tire |
JP2011157453A (en) * | 2010-01-29 | 2011-08-18 | Sumitomo Rubber Ind Ltd | Method for producing rubber/silica composite and rubber/silica composite |
JP2012107099A (en) * | 2010-11-16 | 2012-06-07 | Sumitomo Rubber Ind Ltd | Composite, method for producing the same, rubber composition and pneumatic tire |
-
2012
- 2012-10-03 JP JP2012221538A patent/JP6068910B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4482657A (en) * | 1982-09-01 | 1984-11-13 | Polysar Limited | Silica-polymer mixtures |
JPH09111039A (en) * | 1995-10-17 | 1997-04-28 | Bridgestone Corp | Tire tread rubber composition for passenger car and small truck |
JPH09143311A (en) * | 1995-11-24 | 1997-06-03 | Bridgestone Corp | Pneumatic tire |
JPH11130908A (en) * | 1997-10-29 | 1999-05-18 | Sumitomo Rubber Ind Ltd | Rubber composition |
JP2001253975A (en) * | 2000-03-10 | 2001-09-18 | Rondekkusu:Kk | Thready rubber material and method of producing the same and method of producing rubber composition for constituting rubber product |
JP2002241507A (en) * | 2000-12-12 | 2002-08-28 | Jsr Corp | Diene-based rubber/inorganic compound composite and method for producing the same and rubber composition containing the same |
JP2005248121A (en) * | 2004-03-08 | 2005-09-15 | Sumitomo Rubber Ind Ltd | Rubber composition for base tread and pneumatic tire produced by using the same |
JP2005325172A (en) * | 2004-05-12 | 2005-11-24 | Sumitomo Rubber Ind Ltd | Rubber composition with silica-filled rubber as rubber component and manufacturing process of silica-filled rubber |
JP2011079912A (en) * | 2009-10-05 | 2011-04-21 | Sumitomo Rubber Ind Ltd | Composite, rubber composition and pneumatic tire |
JP2011084651A (en) * | 2009-10-15 | 2011-04-28 | Sumitomo Rubber Ind Ltd | Composite, rubber composition and pneumatic tire |
JP2011157453A (en) * | 2010-01-29 | 2011-08-18 | Sumitomo Rubber Ind Ltd | Method for producing rubber/silica composite and rubber/silica composite |
JP2012107099A (en) * | 2010-11-16 | 2012-06-07 | Sumitomo Rubber Ind Ltd | Composite, method for producing the same, rubber composition and pneumatic tire |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021038403A (en) * | 2016-01-25 | 2021-03-11 | 日本エイアンドエル株式会社 | Process for producing rubber composition, and method for improving take-in ratio of silica in rubber composition |
JP7079829B2 (en) | 2016-01-25 | 2022-06-02 | 日本エイアンドエル株式会社 | A method for producing a rubber composition and a method for improving the yield ratio of silica in the rubber composition. |
JP2021001253A (en) * | 2019-06-20 | 2021-01-07 | 住友ゴム工業株式会社 | Method for producing rubber-filler composite |
Also Published As
Publication number | Publication date |
---|---|
JP6068910B2 (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5997283B2 (en) | Silica / styrene butadiene rubber composite, method for producing the same, rubber composition, and pneumatic tire | |
JP6526072B2 (en) | Composite and method for producing the same | |
JP6502695B2 (en) | Microfibrillated plant fiber-rubber composite, method for producing the same, rubber composition and pneumatic tire | |
JP5394993B2 (en) | COMPOSITE MANUFACTURING METHOD, RUBBER COMPOSITION, AND PNEUMATIC TIRE | |
JP2007238803A (en) | Rubber composition for tire tread and method for producing the same | |
JP5524810B2 (en) | Composite, production method thereof, rubber composition and pneumatic tire | |
JP5670768B2 (en) | Composite, production method thereof, rubber composition and pneumatic tire | |
JP4813818B2 (en) | Tread rubber composition for studless tire and method for producing the same | |
US20170121511A1 (en) | A process to prepare high-quality natural rubber silica masterbatch by liquid phase mixing | |
JP5860660B2 (en) | Silica / natural rubber composite and production method thereof, rubber composition and pneumatic tire | |
JP2006225600A (en) | Pneumatic tire using rubber composition | |
JP5391022B2 (en) | Composite, rubber composition and pneumatic tire | |
JP2014133829A (en) | Composite body and production method of the same, rubber composition, and pneumatic tire | |
JP6068910B2 (en) | Silica / styrene butadiene rubber composite, method for producing the same, rubber composition and pneumatic tire | |
JP5860661B2 (en) | Method for producing silica and rubber composition for tire | |
JP2007291205A (en) | Wet natural rubber masterbatch and rubber composition using the same | |
JP5443453B2 (en) | Manufacturing method of composite, composite, rubber composition, and pneumatic tire | |
JP2008231152A (en) | Wet master batch, method for producing the same and rubber composition by using the same | |
JP2006265400A (en) | Method of manufacturing rubber composition and pneumatic tire using the same | |
JP5829473B2 (en) | Method for producing silica and rubber composition | |
JP5480585B2 (en) | Composite, rubber composition and pneumatic tire | |
JP5758195B2 (en) | Silica-containing rubber masterbatch and method for producing the same | |
WO2024085032A1 (en) | Master batch, method for producing master batch, rubber composition for tires, method for producing rubber composition for tires, rubber material for tires, and tire | |
KR102696402B1 (en) | A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same | |
WO2024085031A1 (en) | Masterbatch, method for producing masterbatch, tire rubber composition, method for producing tire rubber composition, tire rubber material, and tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160607 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160808 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6068910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |