JP2012220893A - Nonlinear optical effect suppressor and optical relay device - Google Patents
Nonlinear optical effect suppressor and optical relay device Download PDFInfo
- Publication number
- JP2012220893A JP2012220893A JP2011089484A JP2011089484A JP2012220893A JP 2012220893 A JP2012220893 A JP 2012220893A JP 2011089484 A JP2011089484 A JP 2011089484A JP 2011089484 A JP2011089484 A JP 2011089484A JP 2012220893 A JP2012220893 A JP 2012220893A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- optical
- delay
- signal light
- multiplexed signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Abstract
Description
本発明は、波長分割多重光伝送システムにおける伝送可能距離を伸延するための非線形光学効果抑圧器及び光中継装置に関する。 The present invention relates to a nonlinear optical effect suppressor and an optical repeater for extending a transmittable distance in a wavelength division multiplexing optical transmission system.
波長分割多重を用いた波長分割多重光伝送システムにおいては、伝送する信号を光波の振幅および位相を変調することによって表現し、複数の波長に異なる信号チャネルを割り当てて伝送を行う。送信ノードにおいて生成された複数の波長チャネルの光信号は、合波器により多重化され、光ファイバ伝送路および光増幅器等で構成される中継光ノードを通過して受信ノードまで伝送される。受信ノードにおいて、各々の波長チャネルの光信号は光受信器によって光信号から電気信号に変換され、符号判定によって伝送された信号を確定する。 In a wavelength division multiplexing optical transmission system using wavelength division multiplexing, a signal to be transmitted is expressed by modulating the amplitude and phase of a light wave, and transmission is performed by assigning different signal channels to a plurality of wavelengths. Optical signals of a plurality of wavelength channels generated at the transmission node are multiplexed by a multiplexer, and transmitted to a reception node through a relay optical node composed of an optical fiber transmission line and an optical amplifier. At the receiving node, the optical signal of each wavelength channel is converted from an optical signal to an electric signal by an optical receiver, and the transmitted signal is determined by sign determination.
また、100Gb/s以上の波長分割多重光伝送システムにおいては、符号判定の際にデジタル信号処理を用いることにより、波長分散等の線形な信号劣化の補償を行うことが可能となっている。 Further, in a wavelength division multiplexing optical transmission system of 100 Gb / s or more, it is possible to compensate for linear signal degradation such as chromatic dispersion by using digital signal processing at the time of code determination.
波長分割多重光伝送システムにおいては、光ファイバ伝送路および光増幅器内で生じる非線形光学効果による信号劣化が課題となっている(非特許文献1)。これらの非線形光学効果は伝送される光信号の強度に応じて影響が増大するため、波長分割多重光伝送システムにおいて伝送可能距離を制限する要因となっている。 In the wavelength division multiplexing optical transmission system, signal degradation due to the nonlinear optical effect generated in the optical fiber transmission line and the optical amplifier is a problem (Non-Patent Document 1). Since these nonlinear optical effects increase in accordance with the intensity of the transmitted optical signal, they are factors that limit the transmittable distance in the wavelength division multiplexing optical transmission system.
非線形光学効果の中でも相互位相変調(XPM)や四光波混合(FWM)等といった複数波長チャネルの相互作用によるものは、受信端におけるデジタル信号処理を用いての補償が困難である。特に、受信端にてコヒーレント検波を行う伝送方式においては、相互位相変調によって光信号の位相が正しい信号の状態から大きくずれてしまい、大幅な伝送ペナルティを生じることが問題となっている。 Among nonlinear optical effects, those due to the interaction of multiple wavelength channels such as cross-phase modulation (XPM) and four-wave mixing (FWM) are difficult to compensate using digital signal processing at the receiving end. In particular, in the transmission method in which coherent detection is performed at the receiving end, the phase of the optical signal is greatly deviated from the correct signal state due to cross-phase modulation, which causes a significant transmission penalty.
本発明は、波長チャネル間の相互作用によって生じる非線形光学効果を抑圧し、波長分割多重光伝送システムにおいて伝送可能距離の伸延を可能にすることを目的とする。 An object of the present invention is to suppress the nonlinear optical effect caused by the interaction between wavelength channels and to extend the transmission distance in the wavelength division multiplexing optical transmission system.
上記目的を達成するために、本発明は、波長分割多重伝送において、隣接する波長チャネルを分波し、各波長チャネルに異なる遅延を付与し、各波長チャネルを合波する。これにより、波長分割多重伝送において、複数波長チャネルの相互作用による非線形光学効果を抑圧し、長距離伝送を可能にする。 In order to achieve the above object, according to the present invention, in wavelength division multiplexing transmission, adjacent wavelength channels are demultiplexed, different delays are given to the respective wavelength channels, and the respective wavelength channels are multiplexed. This suppresses the nonlinear optical effect due to the interaction of a plurality of wavelength channels and enables long-distance transmission in wavelength division multiplex transmission.
具体的には、本発明の非線形光学効果抑圧器は、複数の波長チャネルの光信号が多重化された波長多重信号光を各波長チャネルの光信号に分岐する分波部と、前記分波部からの各波長チャネルの光信号に、各波長チャネルで異なる遅延量の遅延を付与する個別遅延付与部と、前記個別遅延付与部からの各波長チャネルの光信号を合波する合波部と、を備える。 Specifically, the nonlinear optical effect suppressor of the present invention includes a demultiplexing unit for branching wavelength multiplexed signal light, in which optical signals of a plurality of wavelength channels are multiplexed, into optical signals of each wavelength channel, and the demultiplexing unit To each optical signal of each wavelength channel from, an individual delay applying unit that applies a delay of a different delay amount in each wavelength channel, and a multiplexing unit that combines the optical signals of each wavelength channel from the individual delay applying unit, Is provided.
本発明の非線形光学効果抑圧器は、分波部と、個別遅延付与部と、を備えるため、各波長チャネルで異なる遅延量の遅延を付与することができる。このため、波長チャネル間の相互作用によって生じる非線形光学効果を抑圧し、波長分割多重光伝送システムにおいて伝送可能距離の伸延を可能にすることができる。 Since the nonlinear optical effect suppressor of the present invention includes a demultiplexing unit and an individual delay providing unit, it is possible to apply a delay having a different delay amount in each wavelength channel. For this reason, it is possible to suppress the nonlinear optical effect caused by the interaction between the wavelength channels and to extend the transmission distance in the wavelength division multiplexing optical transmission system.
本発明の非線形光学効果抑圧器では、前記個別遅延付与部は、隣接する波長チャネルとの間に、前記光信号のシンボル間隔の半分以上の時間幅を有する遅延差が生じるように、各波長チャネルの光信号に遅延を付与することが好ましい。
本発明により、隣接する波長チャネルの同じシンボルから受ける非線形光学効果の影響を抑えることができ、信号品質の改善が可能となる。
In the nonlinear optical effect suppressor of the present invention, the individual delay applying unit is configured so that a delay difference having a time width of half or more of the symbol interval of the optical signal is generated between adjacent wavelength channels. It is preferable to add a delay to the optical signal.
According to the present invention, it is possible to suppress the influence of the nonlinear optical effect received from the same symbol of adjacent wavelength channels, and it is possible to improve the signal quality.
本発明の非線形光学効果抑圧器では、前記波長多重信号光を伝搬した光ファイバ伝送路の群遅延特性と逆特性の群遅延特性を有する共通波長分散補償部を、前記分波部の前段にさらに備える。
本発明により、光ファイバ伝送路にて生じる波長分散による信号歪を補償することができるため、非線形光学効果をさらに抑圧することが可能となる。
In the nonlinear optical effect suppressor of the present invention, a common chromatic dispersion compensator having a group delay characteristic opposite to the group delay characteristic of the optical fiber transmission line that propagates the wavelength-multiplexed signal light is further provided before the demultiplexing part. Prepare.
According to the present invention, it is possible to compensate for signal distortion caused by chromatic dispersion that occurs in an optical fiber transmission line, and thus it is possible to further suppress the nonlinear optical effect.
具体的には、本発明の非線形光学効果抑圧器は、複数の波長チャネルの光信号が多重化された波長多重信号光を各波長チャネルの光信号に分岐する分波部と、前記分波部からの各波長チャネルの光信号を、前記波長多重信号光を伝搬した光ファイバ伝送路における各波長チャネルの群遅延特性と逆特性の群遅延特性を有する媒質に通過させる個別波長分散補償部と、前記個別波長分散補償部からの各波長チャネルの光信号を合波する合波部と、を備える。 Specifically, the nonlinear optical effect suppressor of the present invention includes a demultiplexing unit for branching wavelength multiplexed signal light, in which optical signals of a plurality of wavelength channels are multiplexed, into optical signals of each wavelength channel, and the demultiplexing unit An individual chromatic dispersion compensator that passes the optical signal of each wavelength channel from a medium having a group delay characteristic opposite to the group delay characteristic of each wavelength channel in the optical fiber transmission line that propagates the wavelength multiplexed signal light; A multiplexing unit that combines the optical signals of the respective wavelength channels from the individual chromatic dispersion compensation unit.
本発明の非線形光学効果抑圧器は、分波部と、個別波長分散補償部と、を備えるため、各波長チャネルで異なる遅延量の遅延を付与することができる。このため、波長チャネル間の相互作用によって生じる非線形光学効果を抑圧し、波長分割多重光伝送システムにおいて伝送可能距離の伸延を可能にすることができる。 Since the nonlinear optical effect suppressor of the present invention includes a demultiplexing unit and an individual chromatic dispersion compensation unit, delays having different delay amounts can be given to the respective wavelength channels. For this reason, it is possible to suppress the nonlinear optical effect caused by the interaction between the wavelength channels and to extend the transmission distance in the wavelength division multiplexing optical transmission system.
具体的には、本発明の光中継装置は、複数の波長チャネルの光信号が多重化された波長多重信号光が光ファイバ伝送路から入力され、入力された前記波長多重信号光を増幅する第1光増幅器と、前記第1光増幅器からの波長多重信号光が入力され、前記光ファイバ伝送路で発生した非線形光学効果を抑圧する、本発明に係る非線形光学効果抑圧器と、前記非線形光学効果抑圧器からの波長多重信号光を増幅する第2光増幅器と、を備える。 Specifically, in the optical repeater of the present invention, wavelength multiplexed signal light in which optical signals of a plurality of wavelength channels are multiplexed is input from an optical fiber transmission line, and the input wavelength multiplexed signal light is amplified. A non-linear optical effect suppressor according to the present invention, which receives a wavelength-division multiplexed signal light from the first optical amplifier and suppresses a non-linear optical effect generated in the optical fiber transmission line; and the non-linear optical effect A second optical amplifier that amplifies the wavelength multiplexed signal light from the suppressor.
本発明の光中継装置は、光増幅器を備えるため、光ファイバ伝送路における信号損失を光増幅器で補償することができる。また、本発明の光中継装置は、非線形光学効果抑圧器を備えるため、波長チャネル間の相互作用によって生じる非線形光学効果を抑圧することができる。したがって、本発明の光中継装置は、波長分割多重光伝送システムにおいて伝送可能距離の伸延を可能にすることができる。 Since the optical repeater according to the present invention includes an optical amplifier, signal loss in the optical fiber transmission line can be compensated by the optical amplifier. In addition, since the optical repeater according to the present invention includes the nonlinear optical effect suppressor, the nonlinear optical effect caused by the interaction between the wavelength channels can be suppressed. Therefore, the optical repeater of the present invention can extend the transmission distance in the wavelength division multiplexing optical transmission system.
具体的には、本発明の非線形光学効果抑圧方法は、複数の波長チャネルの光信号が多重化された波長多重信号光を各波長チャネルの光信号に分波し、各波長チャネルで異なる遅延量の遅延を付与し、当該遅延付与後の各波長チャネルの光信号を合波する個別遅延付与手順を有する。 Specifically, the nonlinear optical effect suppression method of the present invention demultiplexes wavelength multiplexed signal light, in which optical signals of a plurality of wavelength channels are multiplexed, into optical signals of each wavelength channel, and has different delay amounts for each wavelength channel. And an individual delay adding procedure for multiplexing the optical signals of the respective wavelength channels after the delay is added.
本発明の非線形光学効果抑圧方法は、個別遅延付与手順を有するため、各波長チャネルで異なる遅延量の遅延を付与することができる。このため、波長チャネル間の相互作用によって生じる非線形光学効果を抑圧し、波長分割多重光伝送システムにおいて伝送可能距離の伸延を可能にすることができる。 Since the nonlinear optical effect suppressing method of the present invention has an individual delay providing procedure, it is possible to apply a delay having a different delay amount in each wavelength channel. For this reason, it is possible to suppress the nonlinear optical effect caused by the interaction between the wavelength channels and to extend the transmission distance in the wavelength division multiplexing optical transmission system.
本発明の非線形光学効果抑圧方法では、前記個別遅延付与手順において、隣接する波長チャネルとの間に、前記光信号のシンボル間隔の半分以上の時間幅を有する遅延差が生じるように、各波長チャネルの光信号に遅延を付与することが好ましい。
本発明により、隣接する波長チャネルの同じシンボルから受ける非線形光学効果の影響を抑えることができ、信号品質の改善が可能となる。
In the nonlinear optical effect suppressing method of the present invention, each wavelength channel is set such that, in the individual delay providing procedure, a delay difference having a time width of half or more of a symbol interval of the optical signal is generated between adjacent wavelength channels. It is preferable to add a delay to the optical signal.
According to the present invention, it is possible to suppress the influence of the nonlinear optical effect received from the same symbol of adjacent wavelength channels, and it is possible to improve the signal quality.
本発明の非線形光学効果抑圧方法では、前記波長多重信号光を伝搬した光ファイバ伝送路の群遅延特性と逆特性の群遅延特性を有する媒質を、前記波長多重信号光に通過させる共通波長分散補償手順を、前記個別遅延付与手順の前にさらに有してもよい。
本発明により、光ファイバ伝送路にて生じる波長分散による信号歪を補償することができるため、非線形光学効果をさらに抑圧することが可能となる。
In the nonlinear optical effect suppressing method of the present invention, the common wavelength dispersion compensation for allowing the wavelength multiplexed signal light to pass through a medium having a group delay characteristic opposite to the group delay characteristic of the optical fiber transmission line that propagates the wavelength multiplexed signal light. A procedure may further be included before the individual delay provision procedure.
According to the present invention, it is possible to compensate for signal distortion caused by chromatic dispersion that occurs in an optical fiber transmission line, and thus it is possible to further suppress the nonlinear optical effect.
具体的には、本発明の非線形光学効果抑圧方法は、複数の波長チャネルの光信号が多重化された波長多重信号光を各波長チャネルの光信号に分波し、各波長チャネルの光信号を、前記波長多重信号光を伝搬した光ファイバ伝送路における各波長チャネルの群遅延特性と逆特性の群遅延特性を有する媒質に通過させ、当該媒質を通過後の各波長チャネルの光信号を合波する個別波長分散補償手順を有する。 Specifically, the nonlinear optical effect suppression method of the present invention demultiplexes wavelength-multiplexed signal light obtained by multiplexing optical signals of a plurality of wavelength channels into optical signals of each wavelength channel, and converts the optical signals of each wavelength channel. And passing the optical signal of each wavelength channel after passing through the medium through the medium having the group delay characteristic opposite to the group delay characteristic of each wavelength channel in the optical fiber transmission line that propagates the wavelength multiplexed signal light. And an individual chromatic dispersion compensation procedure.
本発明の非線形光学効果抑圧方法は、個別波長分散補償手順を有するため、各波長チャネルで異なる遅延量の遅延を付与することができる。このため、波長チャネル間の相互作用によって生じる非線形光学効果を抑圧し、波長分割多重光伝送システムにおいて伝送可能距離の伸延を可能にすることができる。 Since the nonlinear optical effect suppressing method of the present invention has an individual chromatic dispersion compensation procedure, it is possible to give delays having different delay amounts in each wavelength channel. For this reason, it is possible to suppress the nonlinear optical effect caused by the interaction between the wavelength channels and to extend the transmission distance in the wavelength division multiplexing optical transmission system.
具体的には、本発明の光中継方法は、複数の波長チャネルの光信号が多重化された波長多重信号光が光ファイバ伝送路から入力され、入力された前記波長多重信号光を増幅する第1光増幅手順と、前記第1光増幅手順で増幅後の波長多重信号光が入力され、本発明に係る非線形光学効果抑圧方法を用いて、前記光ファイバ伝送路で発生した非線形光学効果を抑圧する非線形光学効果抑圧手順と、前記非線形光学効果抑圧手順で非線形光学効果を抑圧した波長多重信号光を増幅する第2光増幅手順と、を有する。 Specifically, in the optical repeater of the present invention, a wavelength multiplexed signal light in which optical signals of a plurality of wavelength channels are multiplexed is input from an optical fiber transmission line, and the input wavelength multiplexed signal light is amplified. One optical amplification procedure and wavelength multiplexed signal light amplified in the first optical amplification procedure are input, and the nonlinear optical effect generated in the optical fiber transmission line is suppressed using the nonlinear optical effect suppression method according to the present invention. And a second optical amplification procedure for amplifying the wavelength multiplexed signal light whose nonlinear optical effect is suppressed by the nonlinear optical effect suppression procedure.
本発明の光中継方法は、光増幅手順を有するため、光ファイバ伝送路における信号損失を補償することができる。また、本発明の光中継方法は、非線形光学効果抑圧手順を有するため、波長チャネル間の相互作用によって生じる非線形光学効果を抑圧することができる。したがって、本発明の光中継方法は、波長分割多重光伝送システムにおいて伝送可能距離の伸延を可能にすることができる。 Since the optical repeater of the present invention has an optical amplification procedure, it can compensate for signal loss in the optical fiber transmission line. In addition, since the optical relay method of the present invention has a nonlinear optical effect suppression procedure, it is possible to suppress the nonlinear optical effect caused by the interaction between wavelength channels. Therefore, the optical relay method of the present invention can extend the transmission distance in the wavelength division multiplexing optical transmission system.
なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
本発明によれば、波長チャネル間の相互作用によって生じる非線形光学効果を抑圧し、波長分割多重光伝送システムにおいて伝送可能距離の伸延を可能にすることができる。 ADVANTAGE OF THE INVENTION According to this invention, the nonlinear optical effect produced by the interaction between wavelength channels can be suppressed, and the transmission possible distance can be extended in a wavelength division multiplexing optical transmission system.
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.
(第一の実施形態)
本実施形態に係る非線形光学効果抑圧方法は、個別遅延付与手順を有する。本実施形態に係る非線形光学効果抑圧器の構成を図1に示す。本実施形態に係る非線形光学効果抑圧器101は、分波部12、個別遅延付与部11、合波部13によって構成される。
(First embodiment)
The nonlinear optical effect suppression method according to the present embodiment has an individual delay provision procedure. The configuration of the nonlinear optical effect suppressor according to this embodiment is shown in FIG. The nonlinear
個別遅延付与手順では、非線形光学効果抑圧器101が以下のように動作する。
分波部12に、複数の波長チャネルの光信号が多重化された波長多重信号光が入力される。分波部12は、入力された波長多重信号光を各波長チャネルの光信号に分岐する。光信号の分岐数は、波長分割多重にて多重された波長チャネル数Nと等しくする。個別遅延付与部111〜11Nは、分波部12からの各波長チャネルの光信号に、各波長チャネルで異なる遅延量の遅延を付与する。例えば、個別遅延付与部111〜11Nの遅延量は、それぞれ異なる。合波部13は、個別遅延付与部11からの各波長チャネルの光信号を合波する。これにより、遅延が付与された波長チャネルを合波し、再び元の波長分割多重信号を出力する。
In the individual delay providing procedure, the nonlinear
Wavelength multiplexed signal light in which optical signals of a plurality of wavelength channels are multiplexed is input to the
図2に、個別遅延付与部11の遅延付与後の各波長チャネルの群遅延特性の一例を示す。波長チャネルCH1の群遅延と波長チャネルCH2の群遅延との間には、Δτの遅延差がある。このように、個別遅延付与部11は、隣接する波長チャネルとの間にΔτの遅延差がつくように遅延を付与する。
FIG. 2 shows an example of the group delay characteristic of each wavelength channel after the delay is added by the individual
以上説明したように、非線形光学効果抑圧器101は、各波長チャネルで異なる遅延量の遅延を付与する。これにより、非線形光学効果を抑圧することができる。
As described above, the nonlinear
(第二の実施形態)
第一の実施形態で示す個別遅延付与手順において、個別遅延付与部11は、波長チャネル毎に分岐した光信号に対し、隣接する波長チャネルとの間にΔτの遅延差がつくように遅延を付与する。遅延差Δτは、光信号のシンボル間隔Tsの半分以上の時間幅を有する遅延差が生じるように、Δτ≧Ts/2(Tsは光信号のシンボル間隔)とする。
(Second embodiment)
In the individual delay adding procedure shown in the first embodiment, the individual
112Gb/sの偏波多重四値位相変調(DP−QPSK)信号を分散シフトファイバでL帯伝送させた場合において、隣接する波長チャネルの間に付与する遅延差Δτと伝送品質との関係を実験により評価した結果を図3に示す。図3の結果より、波長チャネル間に付与する遅延差Δτは、光信号のシンボル間隔Ts=35.7psの半分である17.9ps以上とすることで信号品質の改善が図られることが分かる。したがって、隣接する波長チャネルの間に付与する遅延差Δτは、Δτ≧Ts/2(Tsは光信号のシンボル間隔)とする。Δτ≧Ts/2である場合、隣接する波長チャネルの同じシンボルから受ける非線形光学効果の影響を抑えることができ、信号品質の改善が可能となる。 When a 112 Gb / s polarization multiplexed quaternary phase modulation (DP-QPSK) signal is transmitted in the L band with a dispersion shifted fiber, the relationship between the delay difference Δτ imparted between adjacent wavelength channels and the transmission quality is tested. FIG. 3 shows the result evaluated by the above. From the result of FIG. 3, it can be seen that the signal quality can be improved by setting the delay difference Δτ added between the wavelength channels to 17.9 ps or more, which is a half of the symbol interval Ts of optical signal 35.7 ps. Therefore, the delay difference Δτ added between adjacent wavelength channels is Δτ ≧ Ts / 2 (Ts is the symbol interval of the optical signal). When Δτ ≧ Ts / 2, the influence of the nonlinear optical effect received from the same symbol of the adjacent wavelength channel can be suppressed, and the signal quality can be improved.
光学デバイスを用いて第一の実施形態で示す非線形光学効果抑圧器101を構成する場合において、隣接する波長チャネル間に遅延差Δτは、Δτ≧Ts/2(Tsは光信号のシンボル間隔)の範囲において、実現するデバイスの設計に拠るものとする。
When the nonlinear
(第三の実施形態)
第一の実施形態で示す非線形光学効果抑圧器101の個別遅延付与部11において波長チャネル間に付与する遅延差Δτの方向は、光ファイバ伝送路100で生じた群遅延と同じ方向でも逆方向でも構わない。128Gb/sの偏波多重四値位相変調信号において、波長チャネル間に付与する遅延量の方向と伝送品質の関係を計算機シミュレーションで評価した結果を図4に示す。
(Third embodiment)
The direction of the delay difference Δτ imparted between the wavelength channels in the individual
図4の各プロットに関しては、黒丸は群遅延と同じ方向に遅延差を付与した場合、白丸は群遅延と逆方向に遅延差を付与した場合の評価結果である。図4の結果より、光信号のシンボル間隔Ts=31.3psの半分である15.6psでは、遅延差を付与する方向による伝送品質の差は生じない。したがって、波長チャネル間に付与する波長チャネル間の遅延差ΔτをΔτ≧Ts/2(Tsは光信号のシンボル間隔)とする場合、遅延差を付与する方向による伝送品質の差は生じない。波長チャネル間の遅延差Δτを光ファイバ伝送路100で生じた群遅延と逆方向に付与する場合、波長分割多重光伝送システム全体の伝送遅延を抑えることが可能である。
Regarding each plot in FIG. 4, black circles are evaluation results when a delay difference is given in the same direction as the group delay, and white circles are evaluation results when a delay difference is given in the direction opposite to the group delay. From the result of FIG. 4, at 15.6 ps, which is half the symbol interval Ts = 31.3 ps of the optical signal, there is no difference in transmission quality depending on the direction in which the delay difference is given. Therefore, when the delay difference Δτ between wavelength channels given between wavelength channels is Δτ ≧ Ts / 2 (Ts is the symbol interval of the optical signal), there is no difference in transmission quality depending on the direction in which the delay difference is given. When the delay difference Δτ between the wavelength channels is given in the direction opposite to the group delay generated in the optical
(第四の実施形態)
光ファイバ伝送路において生じた各波長チャネルの波長分散は、第二の実施形態で示す非線形光学効果抑圧器において補償することが望ましい。この場合、共通波長分散補償手順を、第二の実施形態で示す個別遅延付与手順の前にさらに有する。共通波長分散補償手順では、光ファイバ伝送路100の群遅延特性と逆特性の群遅延特性を有する媒質を、波長多重信号光に通過させる。
(Fourth embodiment)
It is desirable to compensate the chromatic dispersion of each wavelength channel generated in the optical fiber transmission line by the nonlinear optical effect suppressor shown in the second embodiment. In this case, the common chromatic dispersion compensation procedure is further provided before the individual delay provision procedure shown in the second embodiment. In the common chromatic dispersion compensation procedure, a medium having a group delay characteristic opposite to the group delay characteristic of the optical
中継系にて光ファイバ伝送路で生じる波長分散を補償する場合において、波長分散の補償比率と伝送品質の関係を図5に示す。図5の通り、光ファイバ伝送路にて生じる波長分散の蓄積を完全に補償し、波長分散による信号歪を補償することで、光信号のピークパワーを抑圧し、非線形光学効果をさらに抑圧することが可能となる。 FIG. 5 shows the relationship between the chromatic dispersion compensation ratio and the transmission quality when compensating for the chromatic dispersion generated in the optical fiber transmission line in the relay system. As shown in FIG. 5, the chromatic dispersion accumulation generated in the optical fiber transmission line is completely compensated, and the signal distortion due to the chromatic dispersion is compensated, thereby suppressing the peak power of the optical signal and further suppressing the nonlinear optical effect. Is possible.
波長分散補償機能を備えた構成による非線形光学効果抑圧器の概要を図6に示す。図6で示す非線形光学効果抑圧器102は共通波長分散補償部14、分波部12、個別遅延付与部11、合波部13によって構成される。共通波長分散補償部14は光ファイバ伝送路100の群遅延特性と逆特性の群遅延特性を有する。これにより、共通波長分散補償部14において光ファイバ伝送路100にて生じる波長分散の蓄積を完全に補償する。
FIG. 6 shows an outline of a nonlinear optical effect suppressor having a configuration having a chromatic dispersion compensation function. The nonlinear
分波部12、個別遅延付与部11及び合波部13の機能及び動作は、第一の実施形態及び第二の実施形態において述べたとおりである。すなわち、分波部12では波長多重信号光を各波長チャネルの光信号に分岐させる。光信号の分岐数は、波長分割多重にて多重された波長チャネル数Nと等しくする。個別遅延付与部11においては、分岐した波長チャネル間に遅延差を付与し、合波部13では、遅延が付与された波長チャネルを合波し、再び元の波長多重信号光を出力する。
The functions and operations of the
図7に、本実施形態に係る非線形光学効果抑圧器102の群遅延特性の一例を示す。共通波長分散補償部14を備えるため、非線形光学効果抑圧器102の群遅延特性は、光ファイバ伝送路100にて生じる群遅延とは逆の群遅延特性を有する。図8に、本実施形態に係る非線形光学効果抑圧器102を適用後の各波長チャネルの群遅延特性の一例を示す。共通波長分散補償部14を備えるため、各チャネル内における波長分散も完全に補償することができる。これにより、非線形光学効果をさらに抑圧することが可能となる。
FIG. 7 shows an example of the group delay characteristic of the nonlinear
(第五の実施形態)
第四の実施形態で示す非線形光学効果抑圧器102のデバイス構成例を図9に示す。図9では、共通波長分散補償部14として導波路型分散補償器を用い、分波部12及び合波部13として回折格子を用いる。光信号が光ファイバ伝送路で受けた波長分散を導波路型分散補償器14において補償した後、分波部12としての回折格子でN本の波長チャネル毎に分岐する。分岐した波長チャネルに対して、各々が通過する導波路の光路長に応じて波長チャネル間にΔτの遅延差を与える。Δτは、Δτ≧Ts/2(Tsは光信号のシンボル間隔)とする。遅延差Δτを与えた波長チャネルを再び合波部13としての回折格子で合波し、出力ポートに波長多重信号光を出力する。
(Fifth embodiment)
FIG. 9 shows a device configuration example of the nonlinear
共通波長分散補償部14及び個別遅延付与部11をプレーナ光波回路にて構成することで、1枚の光波回路の基板に非線形光学効果抑圧器102の機能部を集積することが可能となる。共通波長分散補償部14は、図9にて示す導波路型分散補償器の構成の他、導波路の屈折率特性を調整することによる分散補償器の構成もありうる。
By configuring the common chromatic
(第六の実施形態)
第四の実施形態で示す非線形光学効果抑圧器102を用いた波長選択スイッチの構成を図10に示す。当該波長選択スイッチは、共通波長分散補償部14、分波部12、1×Nスイッチ15、個別遅延付与部11、合波部13によって構成される。ただし、Nは波長多重信号光の波長チャネル数とする。M、L、Kは各々の出力ポートに多重される波長チャネル数とする。
(Sixth embodiment)
A configuration of a wavelength selective switch using the nonlinear
波長選択スイッチに入力された光信号が光ファイバ伝送路100から受けた波長分散を共通波長分散補償部14にて補償し、分波部12にて波長多重信号光を各波長チャネルの光信号に分岐する。分岐した各々の波長チャネルに対して、1×Nスイッチ15によって各波長チャネルの出力ポートを選択した後、個別遅延付与部11にて同一のポートに出力される複数の波長チャネルの間に遅延差を付与する。合波部13は、遅延差を与えた光信号を、同一のポートに出力される複数の波長チャネルの光信号同士で合波し、各出力ポートに波長多重信号光を出力する。
The chromatic dispersion received from the optical
(第七の実施形態)
第六の実施形態において、個別遅延付与部11において各波長チャネルに付与する遅延差が固定値である場合、各波長チャネルに付与する遅延差Δτは波長分割多重グリッドの隣接チャネルとの間に対して遅延差Δτを付与するものとし、Δτ≧Ts/2(Tsは光信号のシンボル間隔)とする。個別遅延付与部11にて固定量の遅延を付与する構成において、各波長チャネルの群遅延特性を図11に示す。
(Seventh embodiment)
In the sixth embodiment, when the delay difference to be given to each wavelength channel in the individual
(第八の実施形態)
第六の実施形態において、個別遅延付与部11において各波長チャネルに付与する遅延差を可変に制御可能である場合、同一出力ポートへ出力される波長チャネルの間に対して遅延差Δτを付与するものとし、Δτ≧Ts/2(Tsは光信号のシンボル間隔)とする。各波長チャネルに付与する遅延量は1×Nスイッチ15の出力ポートを切り替えるたびに再設定される。波長分割多重グリッド上の隣接チャネルが同一出力ポートへ出力されない場合、次に近い波長チャネルとの間に対して遅延差Δτを付与する。
(Eighth embodiment)
In the sixth embodiment, when the delay difference imparted to each wavelength channel can be variably controlled in the individual
個別遅延付与部11にて可変量の遅延を付与する構成において、出力ポート数が2の場合における各波長チャネルの群遅延特性を図12に示す。図12(a)は出力ポート1における群遅延特性を示し、図12(b)は出力ポート2における群遅延特性を示す。出力ポート1からは波長チャネルCH1及びCH3の光信号を出力し、出力ポート2からは波長チャネルCH2及びCH4の光信号を出力する。この場合、波長チャネルCH1及びCH3は遅延差Δτを有し、波長チャネルCH2及びCH4は遅延差Δτを有する。図12の構成を採用することで、第七の実施形態で示した構成と比較し、各波長チャネルに付与する遅延量の絶対値を低く抑えることが可能となる。
FIG. 12 shows the group delay characteristics of each wavelength channel when the number of output ports is 2 in the configuration in which a variable amount of delay is applied by the individual
(第九の実施形態)
本実施形態に係る非線形光学効果抑圧方法は、個別波長分散補償手順を有する。本実施形態に係る非線形光学効果抑圧器の構成を図13に示す。本実施形態に係る非線形光学効果抑圧器201は、分波部22、個別波長分散補償部21、合波部23によって構成される。
(Ninth embodiment)
The nonlinear optical effect suppression method according to the present embodiment has an individual chromatic dispersion compensation procedure. FIG. 13 shows the configuration of the nonlinear optical effect suppressor according to this embodiment. The nonlinear
個別波長分散補償手順では、非線形光学効果抑圧器201が以下のように動作する。本実施形態に係る非線形光学効果抑圧器201は、波長チャネルごとに波長分散補償を行う。本実施形態に係る非線形光学効果抑圧器201は、分波部22、個別波長分散補償部21、合波部23によって構成される。
In the individual chromatic dispersion compensation procedure, the nonlinear
分波部22は、波長多重信号光を各波長チャネルの光信号に分岐する。個別波長分散補償部21は、分波された波長チャネル毎に備えられた個別波長分散補償部211〜21Nを備える。個別波長分散補償部211〜21Nは、分波部22からの各波長チャネルの光信号を、各波長チャネルの群遅延特性とは逆の特性となるような波長分散特性を有する媒質に通過させる。これにより、個別波長分散補償部21は、分岐した各波長チャネルに対して、個別波長分散補償部21にて光信号が光ファイバ伝送路100中で受けた波長分散を補償する。合波部23は、波長分散を補償された波長チャネルを合波し、再び元の波長多重信号光を出力する。
The
図14に、本実施形態に係る非線形光学効果抑圧器201の群遅延特性の一例を示す。
図15に、本実施形態に係る非線形光学効果抑圧器201を適用後の各波長チャネルの群遅延特性の一例を示す。当該本実施形態の構成においては、光ファイバ伝送路100中で各波長チャネルに生じた群遅延差が波長分散の補償を行った後も保存される。このため、光ファイバ伝送路100中で生じた群遅延差が十分大きければ、個別遅延付与部11を備えなくても同様の群遅延特性を得ることが可能である。
FIG. 14 shows an example of the group delay characteristic of the nonlinear
FIG. 15 shows an example of the group delay characteristic of each wavelength channel after applying the nonlinear
(第一〇の実施形態)
第九の実施形態で示す非線形光学効果抑圧器201を実現するデバイスの構成例を図16に示す。本実施形態に係る非線形光学効果抑圧器201は、サーキュレータ31と、回折格子32と、コリメータ33と、反射型液晶素子34と、を備える。回折格子32は合波部22及び分波部23として機能し、反射型液晶素子34が個別波長分散補償部21として機能する。
(Tenth embodiment)
FIG. 16 shows a configuration example of a device that realizes the nonlinear
サーキュレータ31は、入力ポートから入力された波長多重信号光を回折格子32に入射させる。回折格子32は、波長多重信号光を各波長チャネルの光信号に分岐する。コリメータ33は、空間にて分岐された波長チャネルの光信号を平行光にして反射型液晶素子34に入射させる。反射型液晶素子34は、各波長チャネルに位相変調を与えることによって、光ファイバ伝送路中で付加された波長分散の補償を行う。回折格子32は、反射型液晶素子34にて反射された波長チャネルの光信号を再び合波し、波長多重信号光として出力する。
The
図17に、反射型液晶素子34の位相変調量の一例を示す。図17では、波長チャネルCH1、波長チャネルCH2、波長チャネルCH3となるに従って、波長方向の位相変調量の変化が急峻となっている。反射型液晶素子34で与えられる位相変調量の波長方向の変化量は二次関数で表されるため、その比例定数を変えることで補償する分散量を変化させることができる。
FIG. 17 shows an example of the phase modulation amount of the reflective
図18に、非線形光学効果抑圧器201を適用後の各波長チャネルの群遅延特性の一例を示す。位相変調による波長分散補償では各波長チャネルに対して独立に波長分散補償を行うことが可能であるため、波長チャネル間の群遅延差を保存することができる。このため、各波長チャネルで異なる遅延量の遅延を付与し、非線形光学効果を抑圧することができる。
FIG. 18 shows an example of the group delay characteristic of each wavelength channel after the nonlinear
(第一一の実施形態)
図19に、本実施形態に係る波長選択スイッチの構成例を示す。本実施形態に係る波長選択スイッチ202は、第九の実施形態で示す非線形光学効果抑圧器201を用いる。波長選択スイッチ202は、分波部22、個別波長分散補償部21、1×Nスイッチ25、合波部23によって構成される。ただし、Nは波長多重信号光の波長チャネル数とする。分波部22は、波長多重信号光を各波長チャネルの光信号に分岐する。個別波長分散補償部21は、分岐した各波長チャネルに対して、光信号が光ファイバ伝送路100中で受けた波長分散を補償する。1×Nスイッチ25は、各波長チャネルの出力ポートを選択する。合波部23は、同一のポートに出力される波長チャネルを合波し、各出力ポートに波長多重信号光を出力する。
(First embodiment)
FIG. 19 shows a configuration example of the wavelength selective switch according to the present embodiment. The wavelength
(第一二の実施形態)
本実施形態に係る波長分割多重光伝送システムの構成を図20に示す。本実施形態に係る波長分割多重光伝送システムは、送信ノード110から受信ノード120に波長多重信号光を送信する際に、光中継装置である中継ノード130において波長チャネル間の非線形光学効果の抑圧を行う。中継ノード130は、局舎間などの中長距離伝送路に挿入されるノードである。
(First Embodiment)
The configuration of the wavelength division multiplexing optical transmission system according to this embodiment is shown in FIG. The wavelength division multiplexing optical transmission system according to the present embodiment suppresses nonlinear optical effects between wavelength channels at the
中継ノード130は、本実施形態に係る光中継方法を用いて波長多重信号光を中継する。例えば、中継ノード130は、第1光増幅器132と、本発明に係る非線形光学効果抑圧器131と、第2光増幅器133と、を備える。図20に示す光中継方法は、第1光増幅手順と、非線形光学効果抑圧手順と、第2光増幅手順と、を順に有する。非線形光学効果抑圧手順において、第四の実施形態ないし第九の実施形態で示す非線形光学効果抑圧器を用いることで、非線形光学効果を抑圧する。
The
第1光増幅手順では、第1光増幅器132は、複数の波長チャネルの光信号が多重化された波長多重信号光が光ファイバ伝送路100から入力され、入力された波長多重信号光を増幅する。これにより、第1光増幅器132は、光ファイバ伝送路100で累積した信号損失を第1光増幅器132で補償する。
In the first optical amplification procedure, the first
非線形光学効果抑圧手順では、非線形光学効果抑圧器131は、非線形光学効果抑圧器にて波長チャネル間の相互作用によって生じる非線形光学効果の抑圧を行う。非線形光学効果抑圧器131は第四の実施形態ないし第九の実施形態の構成を取り、光ファイバ伝送路100で累積した波長分散の補償を行う。その後、第四の実施形態を用いた構成においては、各波長チャネル間に遅延差Δτを付与する。延差Δτは、Δτ≧Ts/2(Tsは光信号のシンボル間隔)とする。
In the nonlinear optical effect suppression procedure, the nonlinear
第2光増幅手順では、第2光増幅器133は、非線形光学効果抑圧器131からの波長多重信号光を増幅する。
なお、本実施形態では、第1光増幅手順と、非線形光学効果抑圧手順と、第2光増幅手順と、を順に行ったが、これに限られない。例えば、第1光増幅手順と、非線形光学効果抑圧手順とを順に行ってもよいし、非線形光学効果抑圧手順と、第2光増幅手順とを順に行ってもよい。
In the second optical amplification procedure, the second
In the present embodiment, the first optical amplification procedure, the nonlinear optical effect suppression procedure, and the second optical amplification procedure are performed in order, but the present invention is not limited to this. For example, the first optical amplification procedure and the nonlinear optical effect suppression procedure may be sequentially performed, or the nonlinear optical effect suppression procedure and the second optical amplification procedure may be sequentially performed.
(第一三の実施形態)
第一二の実施形態において、隣接する波長チャネルで異なるシンボルレートの光信号が多重されている場合は、非線形光学効果抑圧手順において、非線形光学効果抑圧器131は、最もシンボル間隔が広い信号フォーマットの半シンボル分の遅延を付与する。例えば、10Gb/s、40Gb/s、100Gb/sの信号ビットレートが混在する波長分割多重光伝送システムにおいて、波長チャネル間に付与する遅延差Δτは、10Gb/sの光信号におけるシンボル間隔の半分である50psとなる。
(First Embodiment)
In the first embodiment, when optical signals having different symbol rates are multiplexed in adjacent wavelength channels, the nonlinear
(第一四の実施形態)
図21に、本実施形態に係る波長分割多重光伝送システムの構成例を示す。本実施形態に係る波長分割多重光伝送システムは、第六の実施形態ないし第一一の実施形態で示す波長選択スイッチ103又は202を用い、光アドドロップマルチプレクサにおいて波長チャネル間の非線形光学効果抑圧を行う。光ノード140においては、光ファイバ伝送路100で累積した信号損失を光増幅器141で補償し、光アドドロップマルチプレクサにおける波長パスの挿入・通過・分岐を行う波長選択スイッチ143に第六の実施形態ないし第一一の実施形態の波長選択スイッチ103又は202を用い、各光ノード140において、光ファイバ伝送路100を伝送中に波長パスに付加された波長分散の補償を行う。その後、第六の実施形態を用いた構成においては、当該光ノード140を通過する波長パスに対して、波長チャネル間に遅延差Δτを付与する。遅延差Δτは、Δτ≧Ts/2(Tsは光信号のシンボル間隔)とする。
(Fourth embodiment)
FIG. 21 shows a configuration example of the wavelength division multiplexing optical transmission system according to the present embodiment. The wavelength division multiplexing optical transmission system according to this embodiment uses the wavelength
(第一五の実施形態)
第一四の実施形態において、隣接する波長チャネルで異なるシンボルレートの光信号が多重されている場合は、最もシンボル間隔が広い信号フォーマットの半シンボル分の遅延を付与する。例えば、10Gb/s、40Gb/s、100Gb/sの信号ビットレートが混在する波長分割多重光伝送システムにおいて、波長チャネル間に付与する遅延差Δτは、10Gb/sの光信号におけるシンボル間隔の半分である50psとなる。
(Fifteenth embodiment)
In the first embodiment, when optical signals having different symbol rates are multiplexed in adjacent wavelength channels, a delay corresponding to a half symbol of a signal format having the widest symbol interval is given. For example, in a wavelength division multiplexing optical transmission system in which signal bit rates of 10 Gb / s, 40 Gb / s, and 100 Gb / s are mixed, the delay difference Δτ added between wavelength channels is half the symbol interval in a 10 Gb / s optical signal. That is 50 ps.
(第一六の実施形態)
図22に、本実施形態に係る波長分割多重光伝送システムの構成例を示す。本実施形態に係る波長分割多重光伝送システムは、第六の実施形態ないし第一一の実施形態で示す波長選択スイッチ103又は202を用い、光クロスコネクトにおいて波長チャネル間の非線形光学効果抑圧を行う。光ノード150においては、光ファイバ伝送路100で累積した信号損失を光増幅器155〜158で補償し、光クロスコネクトにおける波長パスの経路切替を行う波長選択スイッチ151〜154に第六の実施形態ないし第一一の実施形態の波長選択スイッチ103又は202を用い、各光ノード150において、光ファイバ伝送路100を伝送中に波長パスに付加された波長分散の補償を行う。その後、第六の実施形態を用いた構成においては、当該光ノード150を通過する波長パスに対して、波長チャネル間に遅延差Δτを付与する。遅延差Δτは、Δτ≧Ts/2(Tsは光信号のシンボル間隔)とする。
(Sixteenth embodiment)
FIG. 22 shows a configuration example of a wavelength division multiplexing optical transmission system according to this embodiment. The wavelength division multiplexing optical transmission system according to this embodiment uses the wavelength
(第一七の実施形態)
第一六の実施形態において、隣接する波長チャネルで異なるシンボルレートの光信号が多重されている場合は、最もシンボル間隔が広い信号フォーマットの半シンボル分の遅延を付与する。例えば、10Gb/s、40Gb/s、100Gb/sの信号ビットレートが混在する波長分割多重光伝送システムにおいて、波長チャネル間に付与する遅延差Δτは、10Gb/sの光信号におけるシンボル間隔の半分である50psとなる。
(Seventh embodiment)
In the sixteenth embodiment, when optical signals having different symbol rates are multiplexed in adjacent wavelength channels, a delay corresponding to a half symbol of a signal format having the widest symbol interval is given. For example, in a wavelength division multiplexing optical transmission system in which signal bit rates of 10 Gb / s, 40 Gb / s, and 100 Gb / s are mixed, the delay difference Δτ added between wavelength channels is half the symbol interval in a 10 Gb / s optical signal. That is 50 ps.
本発明は、情報通信産業に適用することができる。 The present invention can be applied to the information communication industry.
11、111、112、113、11N−1、11N:個別遅延付与部
12、22:分波部
13、131、132、13N、23:合波部
14:共通波長分散補償部
15、151、152、15N、25、251、252、25N:1×Nスイッチ
21、211、212、213、21N−1、21N:個別波長分散補償部
31:サーキュレータ
32:回折格子
33:コリメータ
34:反射型液晶素子
100:光ファイバ伝送路
101、102、121、131、201:非線形光学効果抑圧器
103、143、151、152、153、154、202:波長選択スイッチ
110:送信ノード
111:送信器
112:合波器
113、122、141、144、155、156、157、158:光増幅器
120:受信ノード
123:分波器
124:受信器
130:中継ノード
132:第1光増幅器
133:第2光増幅器
140、150:光ノード
11, 11 1 , 11 2 , 11 3 , 11 N−1 , 11 N : Individual
Claims (10)
前記分波部からの各波長チャネルの光信号に、各波長チャネルで異なる遅延量の遅延を付与する個別遅延付与部と、
前記個別遅延付与部からの各波長チャネルの光信号を合波する合波部と、
を備える非線形光学効果抑圧器。 A demultiplexing unit for branching the wavelength multiplexed signal light, in which the optical signals of a plurality of wavelength channels are multiplexed, into optical signals of each wavelength channel;
An individual delay applying unit that applies a delay of a different delay amount in each wavelength channel to the optical signal of each wavelength channel from the demultiplexing unit;
A multiplexing unit for multiplexing the optical signals of the respective wavelength channels from the individual delay adding unit;
A nonlinear optical effect suppressor.
前記分波部からの各波長チャネルの光信号を、前記波長多重信号光を伝搬した光ファイバ伝送路における各波長チャネルの群遅延特性と逆特性の群遅延特性を有する媒質に通過させる個別波長分散補償部と、
前記個別波長分散補償部からの各波長チャネルの光信号を合波する合波部と、
を備える非線形光学効果抑圧器。 A demultiplexing unit for branching the wavelength multiplexed signal light, in which the optical signals of a plurality of wavelength channels are multiplexed, into optical signals of each wavelength channel;
Individual wavelength dispersion for passing the optical signal of each wavelength channel from the demultiplexing unit through a medium having a group delay characteristic opposite to the group delay characteristic of each wavelength channel in the optical fiber transmission line that propagates the wavelength multiplexed signal light A compensation section;
A multiplexing unit for multiplexing the optical signals of the respective wavelength channels from the individual chromatic dispersion compensation unit;
A nonlinear optical effect suppressor.
前記第1光増幅器からの波長多重信号光が入力され、前記光ファイバ伝送路で発生した非線形光学効果を抑圧する、請求項1から4のいずれかに記載の非線形光学効果抑圧器と、
前記非線形光学効果抑圧器からの波長多重信号光を増幅する第2光増幅器と、
を備える光中継装置。 A first optical amplifier for amplifying the wavelength-division-multiplexed signal light that is input from a fiber-optic transmission line, and the wavelength-multiplexed signal light in which optical signals of a plurality of wavelength channels are multiplexed;
The nonlinear optical effect suppressor according to any one of claims 1 to 4, wherein wavelength-division multiplexed signal light from the first optical amplifier is input, and the nonlinear optical effect generated in the optical fiber transmission line is suppressed.
A second optical amplifier for amplifying the wavelength multiplexed signal light from the nonlinear optical effect suppressor;
An optical repeater.
前記第1光増幅手順で増幅後の波長多重信号光が入力され、請求項6から9のいずれかに記載の非線形光学効果抑圧方法を用いて、前記光ファイバ伝送路で発生した非線形光学効果を抑圧する非線形光学効果抑圧手順と、
前記非線形光学効果抑圧手順で非線形光学効果を抑圧した波長多重信号光を増幅する第2光増幅手順と、
を有する光中継方法。 A first optical amplification procedure for amplifying the wavelength-division multiplexed signal light that is input from the optical fiber transmission line, and the wavelength-division multiplexed signal light obtained by multiplexing the optical signals of a plurality of wavelength channels;
Wavelength multiplexed signal light amplified in the first optical amplification procedure is input, and the nonlinear optical effect generated in the optical fiber transmission line is reduced using the nonlinear optical effect suppression method according to claim 6. Non-linear optical effect suppression procedure to suppress,
A second optical amplification procedure for amplifying the wavelength multiplexed signal light in which the nonlinear optical effect is suppressed by the nonlinear optical effect suppression procedure;
An optical relay method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011089484A JP2012220893A (en) | 2011-04-13 | 2011-04-13 | Nonlinear optical effect suppressor and optical relay device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011089484A JP2012220893A (en) | 2011-04-13 | 2011-04-13 | Nonlinear optical effect suppressor and optical relay device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012220893A true JP2012220893A (en) | 2012-11-12 |
Family
ID=47272419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011089484A Pending JP2012220893A (en) | 2011-04-13 | 2011-04-13 | Nonlinear optical effect suppressor and optical relay device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012220893A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014107619A (en) * | 2012-11-26 | 2014-06-09 | Mitsubishi Electric Corp | Optical signal generating apparatus |
WO2014132305A1 (en) * | 2013-02-26 | 2014-09-04 | 日本電気株式会社 | Wavelength-division multiplexing optical transmission device and wavelength-division multiplexing optical transmission method |
JP2015012392A (en) * | 2013-06-27 | 2015-01-19 | 日本電信電話株式会社 | System and method for optical transmission |
JP2017034710A (en) * | 2016-10-11 | 2017-02-09 | 日本電信電話株式会社 | Optical transmission system and optical transmission method |
CN114039263A (en) * | 2021-11-01 | 2022-02-11 | 中国电子科技集团公司第十四研究所 | Temperature control-based dispersion delay light beam correction method |
WO2023223478A1 (en) * | 2022-05-18 | 2023-11-23 | 日本電信電話株式会社 | Optical signal processing device and optical signal transmission system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006129503A (en) * | 1993-08-10 | 2006-05-18 | Fujitsu Ltd | Optical network, optical transmitter, optical receiver, optical amplifier, dispersion compensator, method of selecting signal light wavelength in optical network, wavelength multiplexer and wavelength demultiplexer |
JP2009159054A (en) * | 2007-12-25 | 2009-07-16 | Nippon Telegr & Teleph Corp <Ntt> | Optical transmission method and apparatus |
JP2009213160A (en) * | 2009-06-15 | 2009-09-17 | Fujitsu Ltd | Optical transmission device |
-
2011
- 2011-04-13 JP JP2011089484A patent/JP2012220893A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006129503A (en) * | 1993-08-10 | 2006-05-18 | Fujitsu Ltd | Optical network, optical transmitter, optical receiver, optical amplifier, dispersion compensator, method of selecting signal light wavelength in optical network, wavelength multiplexer and wavelength demultiplexer |
JP2009159054A (en) * | 2007-12-25 | 2009-07-16 | Nippon Telegr & Teleph Corp <Ntt> | Optical transmission method and apparatus |
JP2009213160A (en) * | 2009-06-15 | 2009-09-17 | Fujitsu Ltd | Optical transmission device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014107619A (en) * | 2012-11-26 | 2014-06-09 | Mitsubishi Electric Corp | Optical signal generating apparatus |
WO2014132305A1 (en) * | 2013-02-26 | 2014-09-04 | 日本電気株式会社 | Wavelength-division multiplexing optical transmission device and wavelength-division multiplexing optical transmission method |
US9680598B2 (en) | 2013-02-26 | 2017-06-13 | Nec Corporation | Wavelength division multiplexing optical transmission apparatus and wavelength division multiplexing optical transmission method |
JP2015012392A (en) * | 2013-06-27 | 2015-01-19 | 日本電信電話株式会社 | System and method for optical transmission |
JP2017034710A (en) * | 2016-10-11 | 2017-02-09 | 日本電信電話株式会社 | Optical transmission system and optical transmission method |
CN114039263A (en) * | 2021-11-01 | 2022-02-11 | 中国电子科技集团公司第十四研究所 | Temperature control-based dispersion delay light beam correction method |
WO2023223478A1 (en) * | 2022-05-18 | 2023-11-23 | 日本電信電話株式会社 | Optical signal processing device and optical signal transmission system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8625996B2 (en) | Optical transmitter, optical transmission method, and wavelength-selective variable delayer | |
US7526204B2 (en) | Optical communication apparatus, optical communication system and method for transmitting optical signal | |
JP2012220893A (en) | Nonlinear optical effect suppressor and optical relay device | |
CN108496316B (en) | Mode division multiplexing passive optical network | |
US6626591B1 (en) | Method of reducing intensity distortion induced by cross phase modulation in a WDM optical fiber transmission system | |
Dewra et al. | Performance analysis of optical network based on optical add drop multiplexers with different MZI techniques | |
US8213798B2 (en) | Optical transmission apparatus, wavelength division multiplexing optical communication system and optical transmission method | |
US10567081B2 (en) | Transmission system and transmission method | |
Dewra et al. | Crosstalk analysis in an optical network based on optical cross connects with different MZI techniques | |
JP6339894B2 (en) | Optical transmission system and mode multiplexer | |
JP4879155B2 (en) | Optical transmission method and apparatus | |
JP2009213160A (en) | Optical transmission device | |
Ivaniga et al. | Mitigation of non-linear four-wave mixing phenomenon in a fully optical communication system | |
Liaw et al. | FBG-based reconfigurable bidirectional OXC for 8× 10 Gb/s DWDM transmission | |
Hu et al. | Polarization-insensitive 320-Gb/s in-line all-optical wavelength conversion in a 320-km transmission span | |
Shahi et al. | A multi-core or multi-fiber WDM system | |
JP2008042550A (en) | Optical communication system | |
JP5270741B2 (en) | Optical transmission equipment | |
JP6010000B2 (en) | Optical transmission system and optical transmission method | |
EP0880249A2 (en) | FWM Light suppressing system | |
JP4034798B2 (en) | Optical ADM apparatus, system, and method | |
JP7542808B2 (en) | Multimode Transmission System | |
JP5270742B2 (en) | Optical transmission equipment | |
JP5270740B2 (en) | Optical transmission equipment | |
Kuar et al. | Threshold based bit error rate optimization in four wave mixing optical WDM systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140717 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150106 |