JP2012080949A - Light source device for endoscope - Google Patents

Light source device for endoscope Download PDF

Info

Publication number
JP2012080949A
JP2012080949A JP2010227617A JP2010227617A JP2012080949A JP 2012080949 A JP2012080949 A JP 2012080949A JP 2010227617 A JP2010227617 A JP 2010227617A JP 2010227617 A JP2010227617 A JP 2010227617A JP 2012080949 A JP2012080949 A JP 2012080949A
Authority
JP
Japan
Prior art keywords
light
light source
endoscope
source device
white illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010227617A
Other languages
Japanese (ja)
Other versions
JP5450339B2 (en
Inventor
Osamu Kuroda
黒田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010227617A priority Critical patent/JP5450339B2/en
Publication of JP2012080949A publication Critical patent/JP2012080949A/en
Application granted granted Critical
Publication of JP5450339B2 publication Critical patent/JP5450339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Microscoopes, Condenser (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light source device for an endoscope which is capable of obtaining an image of high precision without reducing the quantity of light of a specific wavelength region of white illumination light during both of special light observation and usual observation, and capable of brightening the whole of the image to thereby enable high-degree diagnosis.SOLUTION: The light source device for the endoscope includes a first light source part for emitting the white illumination light, a second light source for emitting narrow band light of a narrower wavelength band, a shaping lens for changing at least one of the shape and size of the luminous flux of the narrow band light, a multiplexing member for multiplexing the white illumination light and the narrow band light, a condensing lens for condensing multiplexed light, an incident end face on which the multiplexed light is incident, a body for multiply reflecting the multiplexed light inside so as to uniformize in-plane light distribution, and an emitting end face for emitting the multiplexed light, and further has a rod integrator for emitting the multiplexed light so as to make the same enter onto a light guide of an endoscope apparatus, and a scattering part arranged on the side of the incident end face so as to scatter the condensed multiplexed light.

Description

本発明は、内視鏡診断において、内視鏡により、特定の狭い波長帯域光を生体の粘膜組織に照射し、所望の深さの組織情報を得る特殊光観察と、可視光を照射する通常観察との両方の観察を可能にする内視鏡用光源装置に関する。   The present invention relates to special light observation for irradiating a mucous tissue of a living body with specific narrow wavelength band light to obtain tissue information of a desired depth by an endoscope, and normal irradiation for visible light. The present invention relates to an endoscope light source device that enables both observation and observation.

従来、内視鏡診断においては、内視鏡の光源装置からの白色照明光等の可視光をライトガイドにより導光し、このライトガイドで導光された可視光を内視鏡挿入部の先端の照明窓から出射して検査対象部位を照明し、検査対象部位を観察する通常観察が行う内視鏡装置が用いられている。   Conventionally, in endoscopic diagnosis, visible light such as white illumination light from a light source device of an endoscope is guided by a light guide, and the visible light guided by the light guide is guided at the distal end of the endoscope insertion portion. An endoscope apparatus is used that performs normal observation that emits from the illumination window to illuminate the inspection target region and observes the inspection target region.

これに対して、近年、内視鏡診断においては、上記のような白色照明光による通常観察に加えて、白色照明光(白色光)より狭い特定の波長帯域の光(以下、狭帯域光ともいう)を体腔壁の粘膜組織等の生体組織に照射し、生体組織の所望の深さの組織情報を得る、特殊光観察を行うことができる内視鏡装置が活用されている。   On the other hand, in recent years, in endoscopic diagnosis, in addition to normal observation with white illumination light as described above, light in a specific wavelength band narrower than white illumination light (white light) (hereinafter also referred to as narrow-band light). Endoscope devices that can perform special light observation that irradiates a living tissue such as a mucosal tissue on the wall of the body cavity to obtain tissue information of a desired depth of the living tissue are used.

このような内視鏡装置では、例えば粘膜層あるいは粘膜下層に発生する新生血管の微細構造、病変部の強調等、通常の観察像では得られない生体情報を簡単に可視化できる。例えば、観察対象が癌病変部である場合、青色の狭帯域光を粘膜組織に照射すると組織表層の微細血管や微細構造の状態がより詳細に観察できるため、病変部をより正確に診断することができる。   Such an endoscope apparatus can easily visualize biological information that cannot be obtained by a normal observation image, such as a fine structure of a new blood vessel generated in a mucosal layer or a submucosal layer, enhancement of a lesioned part, and the like. For example, if the observation target is a cancerous lesion, irradiating the mucosal tissue with blue narrow-band light allows more detailed observation of the state of microvessels and microstructures on the surface of the tissue. Can do.

特殊光観察においては、上記のような狭帯域光を用いた狭帯域光観察の他に、体腔壁に励起光を照射し、生体組織を励起することによって発生する自家蛍光の強度の違いを利用して、癌病変部の早期発見を可能にする蛍光観察を行う内視鏡装置も活用されている。
上記のような特殊光観察を行う内視鏡装置に用いられる内視鏡用光源装置が、特許文献1及び2に開示されている。
In special light observation, in addition to narrow-band light observation using narrow-band light as described above, use of differences in the intensity of autofluorescence generated by irradiating body cavity walls with excitation light and exciting living tissue Endoscopic devices that perform fluorescence observation that enable early detection of cancerous lesions are also being used.
Patent Documents 1 and 2 disclose an endoscope light source device used in an endoscope apparatus that performs special light observation as described above.

特許文献1及び2に開示される内視鏡用光源装置は、可視光である白色照明光(以下、単に白色光ともいう)を発する白色光源と、他方、紫外域側の短波長の光である励起光を発する励起光源としての半導体レーザとを有し、白色光源から白色光を入射させるライトガイドまでの光路は直線的に配置され、他方、励起光の光路は、白色光の光路に対して垂直に交差するように配置され、この二つの光路を光路合成素子であるダイクロイックミラーで合成する。
この例では、ダイクロイックミラーは、特定の波長以上の光を透過させて特定の波長以下の光を反射させる特性を有し、これにより白色光の大部分を透過させ、励起光を反射させている。
The endoscope light source devices disclosed in Patent Documents 1 and 2 are a white light source that emits white illumination light (hereinafter also simply referred to as white light) that is visible light, and a short wavelength light on the ultraviolet region side. And a semiconductor laser as an excitation light source that emits a certain excitation light, and the optical path from the white light source to the light guide for entering the white light is linearly arranged, while the optical path of the excitation light is relative to the optical path of the white light The two optical paths are combined by a dichroic mirror that is an optical path combining element.
In this example, the dichroic mirror has a characteristic of transmitting light of a specific wavelength or more and reflecting light of a specific wavelength or less, thereby transmitting most of the white light and reflecting the excitation light. .

一方、上述した狭帯域光観察では、生体組織の内の組織表層の微細血管や微細構造を観察し易くするために、生体組織に照射する狭帯域光として、主として生体組織の中層及び深層組織の観察に適した赤色(R)の狭帯域光を用いずに、表層組織の観察に適した青色(B)の狭帯域光と中層組織及び表層組織の観察に適した緑色(G)の狭帯域光と2種類の狭帯域光のみを用い、B狭帯域光の照射によって撮像センサで得られる、主として表層組織の情報を含むB画像信号(B狭帯域データ)とG狭帯域光の照射によって撮像センサで得られる、主として中層組織及び表層組織の情報を含むG画像信号(G狭帯域データ)のみを用い、G画像信号(G狭帯域データ)をカラー画像のR画像データに割り付け、B画像信号をカラー画像のG画像データ及びB画像データに割り付け、3ch(チャンネル)のカラー画像データからなる疑似カラー画像を生成し、モニタ等に表示している(特許文献3参照)。   On the other hand, in the above-described narrowband light observation, in order to make it easy to observe the microvessels and microstructures on the tissue surface layer of the living tissue, the narrowband light irradiated to the living tissue is mainly used for the middle layer and deep tissue of the living tissue. Without using red (R) narrow band light suitable for observation, blue (B) narrow band light suitable for observation of surface layer tissue and green (G) narrow band suitable for observation of middle layer structure and surface layer structure Using only light and two types of narrowband light, the image sensor is obtained by irradiation with B narrowband light, and is imaged by irradiation with a B image signal (B narrowband data) mainly containing surface tissue information and G narrowband light. Using only the G image signal (G narrowband data) obtained mainly by the sensor and including information on the middle layer tissue and the surface layer tissue, the G image signal (G narrowband data) is allocated to the R image data of the color image, and the B image signal G image of color image Assigned to chromatography data and B image data, to generate a pseudo color image consisting of the color image data of 3ch (channels) are displayed on a monitor or the like (see Patent Document 3).

特許文献3に開示の技術では、狭帯域光観察に用いられるB狭帯域光とG狭帯域光との2種類の狭帯域光は、通常光観察に用いられる白色光源からの光をカラーフィルタによって時分割で切り替えることにより、面順次に発光されている。なお、通常光観察においても、白色光源からの光をカラーフィルタによって時分割で切り替えてRGB光を面順次に発光させている。   In the technology disclosed in Patent Document 3, two types of narrowband light, B narrowband light and G narrowband light used for narrowband light observation, are obtained by using a color filter to emit light from a white light source used for normal light observation. By switching in a time division manner, the light is emitted in a surface sequential manner. Even in normal light observation, light from a white light source is switched in a time-sharing manner by a color filter to emit RGB light in a frame sequential manner.

特開2005−342033号公報JP 2005-342033 A 特開2005−342034号公報JP 2005-342034 A 特許第4009626号公報Japanese Patent No. 4009626

ところで、特許文献1及び2に開示の内視鏡用光源装置では、特殊光観察として自家蛍光による蛍光観察を行うので、励起光として紫外域側の短波長の光を用いているため、白色光と励起光とをダイクロイックミラーで合波しても、白色光の可視波長領域の中の特定波長域の光成分が抜けることはない。しかしながら、特許文献1及び2に開示の技術を、可視波長領域内の狭帯域光を用いる特殊光観察を行うための内視鏡用光源装置に適用した場合、白色光と狭帯域光とをダイクロイックミラーで合波するため、狭帯域光の光源が点灯していない場合には、この内視鏡用光源装置から出射する白色光から狭帯域光の波長帯域の光が抜けてしまうという問題が生じる。
すなわち、このような内視鏡用光源装置では、通常観察を行う場合、白色光における狭帯域光の波長帯域(特定波長域)の光量が大幅に低減してしまう。そのため、このような内視鏡用光源装置を用いた内視鏡によって通常観察を行うと、通常よりも得られる被写体や被検体の画像の精度が大幅に低下し、さらに画像全体が暗くなり、病変部等を見落とす誤診等を引き起こす恐れがあるという問題がある。
By the way, in the endoscope light source device disclosed in Patent Documents 1 and 2, since fluorescence observation by autofluorescence is performed as special light observation, light having a short wavelength on the ultraviolet region side is used as excitation light. Even if the excitation light and the excitation light are combined by the dichroic mirror, the light component in the specific wavelength region in the visible wavelength region of the white light is not lost. However, when the techniques disclosed in Patent Documents 1 and 2 are applied to an endoscope light source device for performing special light observation using narrow-band light in the visible wavelength region, white light and narrow-band light are dichroic. When the narrow band light source is not turned on because the light is multiplexed by the mirror, there arises a problem that light in the wavelength band of the narrow band light is lost from the white light emitted from the endoscope light source device. .
That is, in such an endoscope light source device, when performing normal observation, the amount of light in the wavelength band (specific wavelength range) of narrowband light in white light is significantly reduced. Therefore, when performing normal observation with an endoscope using such an endoscope light source device, the accuracy of the image of the subject or subject obtained than usual is greatly reduced, and the entire image becomes darker. There is a problem in that there is a risk of causing a misdiagnosis or the like overlooking a lesion.

また、特許文献3に開示の技術では、特殊光観察に用いられる狭帯域光は、通常観察時に出射させる白色光(RGB)光に比べて狭帯域であるため、狭帯域光源の出射光量は、白色光源の出射光量に比して低下し、通常観察時に比較してモニタに表示される画像全体が暗くなるという問題がある。
そして、特許文献3に開示の内視鏡装置に特許文献1及び2に開示される技術を適用することにより、狭帯域光観察時の光源光量の低下は、ある程度解消することができるが、同時に通常観察時における特定波長域の光量低下は防ぐことはできなかった。
In addition, in the technique disclosed in Patent Document 3, narrowband light used for special light observation is narrower than white light (RGB) light emitted during normal observation. There is a problem that the amount of light emitted from the white light source decreases and the entire image displayed on the monitor becomes darker than during normal observation.
And by applying the technique disclosed in Patent Documents 1 and 2 to the endoscope apparatus disclosed in Patent Document 3, the decrease in the light source amount during narrowband light observation can be eliminated to some extent, A decrease in the amount of light in a specific wavelength region during normal observation could not be prevented.

そこで、本発明の目的は、特殊光観察及び通常観察の両方の観察の際に、白色照明光の特定波長域の光量が低減することなく、高精度な画像を得ることができ、かつ画像全体を明るくすることができ、これにより、高度な診断を可能にする内視鏡用光源装置を提供することにある。   Therefore, an object of the present invention is to obtain a high-accuracy image without reducing the amount of light in a specific wavelength region of white illumination light in both special light observation and normal observation, and the entire image. Therefore, it is possible to provide an endoscope light source device that enables advanced diagnosis.

上記課題を解決するために、本発明は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を前記白色照明光の進行方向と直交する方向に出射する第2の光源部と、該第2の光源部から出射された前記狭帯域光の光束の形状及びサイズの少なくとも一方を変化させる整形レンズと、前記白色照明光と前記狭帯域光とが交差する位置に前記白色照明光の進行方向に対して30°〜60°傾斜させて配置され、中心部分に少なくとも前記狭帯域光を反射する略楕円形の反射部及び該反射部の周辺部分に前記白色照明光を透過する透過部を備え、前記白色照明光と前記狭帯域光とを合波する合波部材と、該合波部材によって合波された合波光を集光する集光レンズと、該集光レンズで集光された前記合波光が入射される入射端面、該入射端面から入射された前記合波光を内部で多重反射して面内の光量分布を均一化する本体及び均一化された光量分布を持つ合波光を出射する出射端面を備え、前記本体の内部の多重反射により前記出射端面における光量分布が均一化された合波光を前記出射端面から出射して内視鏡装置のライトガイドへ入射させるロッドインテグレータと、該ロッドインテグレータの前記入射端面側に配置され、前記集光レンズで前記集光された合波光を散乱させる散乱部と、を有し、前記合波部材は、前記白色照明光を前記透過部により透過し、前記整形レンズで整形された前記狭帯域光を、その進行方向が前記白色照明光の進行方向と一致するように前記略楕円形の反射部により反射させて、前記狭帯域光の光束が前記白色照明光の光束の中央部分に位置するように前記白色照明光と前記狭帯域光とを合波し、前記整形レンズは、傾斜配置された前記合波部材に入射する前記狭帯域光の光束の形状及びサイズが、前記合波部材の略楕円形の前記反射部の形状及びサイズと略等しくなるように、前記狭帯域光の光束を所定の円形に整形し、前記集光レンズは、前記合波光を、その光束のサイズが前記ロッドインテグレータの入射端面のサイズと略一致するように、集光することを特徴とする内視鏡用光源装置を提供する。   In order to solve the above-described problems, the present invention provides a first light source unit that emits white illumination light and narrowband light having a narrower wavelength band than the white illumination light in a direction orthogonal to the traveling direction of the white illumination light. A second light source that emits light, a shaping lens that changes at least one of the shape and size of the light beam of the narrow-band light emitted from the second light source, the white illumination light, and the narrow-band light. At a crossing position, the white illumination light is disposed at an angle of 30 ° to 60 ° with respect to the traveling direction of the white illumination light, and at least a substantially elliptical reflection portion that reflects at least the narrowband light at a central portion and a peripheral portion of the reflection portion A transmission member that transmits the white illumination light; a multiplexing member that combines the white illumination light and the narrowband light; and a condensing lens that collects the combined light combined by the multiplexing member; The combined light collected by the condenser lens is incident. An incident end face, a main body that multi-reflects the combined light incident from the incident end face to uniformize the in-plane light quantity distribution, and an exit end face that emits the combined light having the uniform light quantity distribution, A rod integrator that emits combined light having a uniform light quantity distribution at the exit end face due to multiple reflection inside the main body from the exit end face and enters the light guide of the endoscope apparatus, and the entrance end face of the rod integrator And a scattering unit that scatters the combined light collected by the condensing lens, the combining member transmits the white illumination light through the transmission unit, and the shaping lens The shaped narrowband light is reflected by the substantially elliptical reflecting portion so that the traveling direction thereof coincides with the traveling direction of the white illumination light, and the luminous flux of the narrowband light is the light of the white illumination light. The white illumination light and the narrowband light are combined so as to be located in the central portion of the lens, and the shaping lens has a shape and size of a light beam of the narrowband light incident on the multiplexing member arranged in an inclined manner. The narrow-band light beam is shaped into a predetermined circular shape so as to be approximately equal to the shape and size of the substantially elliptical reflecting portion of the multiplexing member, and the condensing lens There is provided an endoscope light source device that collects light so that the size of a light beam substantially matches the size of an incident end face of the rod integrator.

前記整形レンズで整形された前記狭帯域光の前記所定の略円形状の光束の直径は、前記白色照明光の光束の中心に存在する、その光量分布の低下部分の直径と略同一であることが好ましい   The diameter of the predetermined substantially circular light beam of the narrow-band light shaped by the shaping lens is substantially the same as the diameter of the reduced portion of the light amount distribution existing at the center of the light beam of the white illumination light. Is preferred

前記合波部材の略楕円形の前記反射部の長径は、前記透過部を透過する前記白色照明光によって形成される略楕円形の透過面の長径の10%〜50%であることが好ましく、また、前記合波部材の略楕円形の前記反射部の短径は、前記透過部を透過する前記白色照明光の直径の10%〜50%であることが好ましく、更に、前記合波部材の前記反射部のサイズは、前記合波部材の前記合波光の全出射面のサイズの1%〜25%であることが好ましい。   The major axis of the substantially elliptical reflection part of the multiplexing member is preferably 10% to 50% of the major axis of the substantially elliptical transmission surface formed by the white illumination light transmitted through the transmission part, Moreover, it is preferable that the minor axis of the substantially elliptical reflecting portion of the multiplexing member is 10% to 50% of the diameter of the white illumination light transmitted through the transmitting portion, and further, It is preferable that the size of the reflection part is 1% to 25% of the size of the total emission surface of the combined light of the combining member.

前記第1の光源は、放電管であることが好ましく、また、前記第1の光源は、キセノンランプを含むことが好ましい。   The first light source is preferably a discharge tube, and the first light source preferably includes a xenon lamp.

前記第2の光源は、半導体光源であることが好ましく、また、前記第2の光源は、青色レーザ光源、青紫色レーザ光源、又は青色LEDのいずれかを含むことが好ましい。   The second light source is preferably a semiconductor light source, and the second light source preferably includes any one of a blue laser light source, a blue-violet laser light source, and a blue LED.

前記散乱部は、前記ロッドインテグレータの前記入射面に配置された散乱部材であることが好ましく、また、前記散乱部は、前記ロッドインテグレータの前記入射面を粗面化することによって形成された粗面であってもよい。   The scattering portion is preferably a scattering member disposed on the incident surface of the rod integrator, and the scattering portion is a rough surface formed by roughening the incident surface of the rod integrator. It may be.

前記合波部材の反射部が、反射ミラーであることが好ましく、また、前記合波部材の反射部が、ダイクロイックミラーであることが好ましい。   The reflection part of the multiplexing member is preferably a reflection mirror, and the reflection part of the multiplexing member is preferably a dichroic mirror.

また、本発明は、内視鏡と、前述のいずれかに記載の内視鏡用光源装置と、を有することを特徴とする内視鏡システムを提供する。   In addition, the present invention provides an endoscope system including an endoscope and the endoscope light source device described above.

本発明によれば、内視鏡用光源装置において、白色照明光と励起光との合波の際に白色照明光の特定波長域の大幅な光量の低減を防ぐとともに、狭帯域光を照射野全体に均一に照射することで、通常観察の際にも、白色照明光の特定波長域の光量を低減させることがなく、その結果、特殊光観察及び通常観察の両方の観察において、観察画像全体の精度が低下したり、観察画像全体が暗くなるということが無く、高度な診断を可能にする高精度な画像を得ることができる。   According to the present invention, in the endoscope light source device, when the white illumination light and the excitation light are combined, the light intensity in the specific wavelength range of the white illumination light is prevented from being significantly reduced, and the narrow-band light is irradiated. By irradiating the entire surface uniformly, even during normal observation, the amount of light in a specific wavelength range of white illumination light is not reduced, and as a result, the entire observation image is observed in both special light observation and normal observation. Therefore, it is possible to obtain a high-accuracy image that enables advanced diagnosis.

本発明の実施形態の内視鏡用光源装置を用いる内視鏡システムの全体構成の一実施例を模式的に示すブロック図である。It is a block diagram showing typically an example of the whole composition of the endoscope system using the endoscope light source device of the embodiment of the present invention. 図1に示す内視鏡用光源装置の一実施例の詳細構成を示す正面模式図である。It is a front schematic diagram which shows the detailed structure of one Example of the light source device for endoscopes shown in FIG. 図2に示す内視鏡用光源装置の回転フィルタの一実施例の構成を示す正面図である。It is a front view which shows the structure of one Example of the rotation filter of the light source device for endoscopes shown in FIG. (a)及び(b)は、それぞれ図3に示す回転フィルタの第1のフィルタ組及び第2のフィルタ組の分光特性の一例を示すグラフである。(A) And (b) is a graph which shows an example of the spectral characteristic of the 1st filter group of a rotation filter shown in Drawing 3, and the 2nd filter group, respectively. (a)及び(b)は、それぞれ図2に示す内視鏡用光源装置に用いる合波部材の一実施例の側面図及び正面図である。(A) And (b) is the side view and front view of one Example of the multiplexing member used for the light source device for endoscopes shown in FIG. 2, respectively. 本発明を説明するために用いる合波部材の正面図である。It is a front view of the multiplexing member used in order to explain the present invention. 図2に示す内視鏡用光源装置の特殊光光源から合波部材までの狭帯域光の光路を模式的に示す説明図である。It is explanatory drawing which shows typically the optical path of the narrow band light from the special light source of the endoscope light source device shown in FIG. 2 to the multiplexing member. 本発明に用いられる狭帯域光のガウス分布を示すグラフである。It is a graph which shows the Gaussian distribution of the narrowband light used for this invention.

以下、本発明に係る内視鏡用光源装置を、添付の図面に示す好適実施形態を参照して詳細に説明する。
図1は、本発明の内視鏡用光源装置を有する内視鏡システムの全体構成の一実施例を模式的に示すブロック図である。
同図に示すように、本実施形態の内視鏡システム10は、内視鏡12と、本発明の内視鏡用光源装置14と、プロセッサ16と、入出力部18とを有する。
ここで、内視鏡用光源装置(以下、単に光源装置ともいう)14及びプロセッサ16は、内視鏡12の制御装置を構成し、内視鏡12は、光源装置14と光学的に接続され、プロセッサ16と電気的に接続される。また、プロセッサ16は、入出力部18と電気的に接続される。そして、入出力部18は、画像情報等を出力表示する表示部(モニタ)20、画像情報等を出力する記録部(図示せず)、及び通常観察モード(通常光モードともいう)や特殊光観察モード(特殊光モードともいう)などのモード設定や機能設定等の入力操作を受け付けるUI(ユーザインタフェース)として機能する入力部22を有する。
Hereinafter, an endoscope light source device according to the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings.
FIG. 1 is a block diagram schematically showing an embodiment of an overall configuration of an endoscope system having an endoscope light source device according to the present invention.
As shown in the figure, the endoscope system 10 of the present embodiment includes an endoscope 12, an endoscope light source device 14, a processor 16, and an input / output unit 18 of the present invention.
Here, an endoscope light source device (hereinafter also simply referred to as a light source device) 14 and a processor 16 constitute a control device for the endoscope 12, and the endoscope 12 is optically connected to the light source device 14. , Electrically connected to the processor 16. The processor 16 is electrically connected to the input / output unit 18. The input / output unit 18 includes a display unit (monitor) 20 that outputs and displays image information and the like, a recording unit (not shown) that outputs image information and the like, and a normal observation mode (also referred to as a normal light mode) and special light. It has an input unit 22 that functions as a UI (user interface) that accepts input operations such as mode settings such as an observation mode (also referred to as a special light mode) and function settings.

内視鏡12は、その先端から照明光を出射するための光ファイバ32を含む照明光学系と、被観察領域を撮像する撮像素子(センサ)26及びスコープケーブル34を含む撮像光学系とを有する電子内視鏡である。なお、図示しないが、内視鏡12は、被検体内に挿入される内視鏡挿入部と、内視鏡挿入部の先端の湾曲操作や観察のための操作を行う操作部と、内視鏡12を制御装置の光源装置14及びプロセッサ16に着脱自在に接続するコネクタ部を備える。さらに、図示はしないが、操作部及び内視鏡挿入部の内部には、組織採取用処置具等を挿入する鉗子チャンネルや、送気・送水用のチャンネル等、各種のチャンネルが設けられる。   The endoscope 12 includes an illumination optical system that includes an optical fiber 32 for emitting illumination light from the distal end thereof, and an imaging optical system that includes an imaging element (sensor) 26 that captures an observation region and a scope cable 34. It is an electronic endoscope. Although not shown, the endoscope 12 includes an endoscope insertion portion that is inserted into the subject, an operation portion that performs an operation for bending and observing the distal end of the endoscope insertion portion, and an endoscope. A connector portion is provided for detachably connecting the mirror 12 to the light source device 14 and the processor 16 of the control device. Further, although not shown, various channels such as a forceps channel for inserting a tissue collection treatment instrument and the like and a channel for air supply / water supply are provided inside the operation unit and the endoscope insertion unit.

内視鏡12の先端部分には、図1に示すように、被観察領域へ光を照射する照射口24Aが設けられ、この照射口24Aに隣接する受光部24Bに被観察領域の画像情報を取得するモノクロのCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子(センサ)26が配置されている。内視鏡12の照射口24Aには、照明光学系を構成するカバーガラスやレンズ(図示せず)が配置され、受光部24Bの撮像素子26の受光面には撮像光学系を構成する対物レンズユニット(図示せず)が配置される。
内視鏡挿入部は、操作部の操作により湾曲自在にされ、内視鏡12が使用される被検体の部位等に応じて、任意の方向及び任意の角度に湾曲でき、照射口24A及び受光部24Bを、すなわち撮像素子26の観察方向を、所望の観察部位に向けることができる。
As shown in FIG. 1, the distal end portion of the endoscope 12 is provided with an irradiation port 24A for irradiating light to the observation region, and image information of the observation region is stored in the light receiving unit 24B adjacent to the irradiation port 24A. An image pickup device (sensor) 26 such as a monochrome CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor is arranged. A cover glass or a lens (not shown) constituting the illumination optical system is disposed at the irradiation port 24A of the endoscope 12, and an objective lens constituting the imaging optical system is provided on the light receiving surface of the imaging element 26 of the light receiving unit 24B. A unit (not shown) is arranged.
The endoscope insertion portion can be bent by the operation of the operation portion, and can be bent in any direction and any angle according to the part of the subject in which the endoscope 12 is used. The portion 24B, that is, the observation direction of the image sensor 26 can be directed to a desired observation site.

内視鏡12において、光源装置14から照射された光は、ライトガイド(光ファイバ32)を通って内視鏡の先端部まで伝播され、照射口24Aから所望の観察部位に向けて照射される。
ライトガイド32は、マルチモードファイバであり、一例として、NA(開口数)0.3〜0.6、直径30μmのものを1000〜2000本束ねて用いるものである。
そして、照明光が照射された被観察部位(被写体)からの戻り光が、受光部24Bを介して撮像素子26の受光面上に結像され、撮像素子26によって被観察部位が撮像される。
撮像後に撮像素子26から出力される撮像画像の画像信号は、スコープケーブル34を通じてプロセッサ16の画像処理システム36に入力される。
In the endoscope 12, the light emitted from the light source device 14 is propagated to the distal end portion of the endoscope through the light guide (optical fiber 32) and irradiated from the irradiation port 24 </ b> A toward a desired observation site. .
The light guide 32 is a multimode fiber. As an example, 1000 to 2000 bundles of NA (numerical aperture) of 0.3 to 0.6 and a diameter of 30 μm are used.
Then, the return light from the observed region (subject) irradiated with the illumination light is imaged on the light receiving surface of the image sensor 26 via the light receiving unit 24B, and the imaged region is imaged by the image sensor 26.
An image signal of a captured image output from the image sensor 26 after imaging is input to the image processing system 36 of the processor 16 through the scope cable 34.

次に、図1及び図2を参照して、本発明の実施形態に係る光源装置14を説明する。
なお、図2は、本発明の光源装置の構成の一実施例を模式的に示す正面模式図である。
本発明の光源装置14は、図2に示すように、第1の光源部28と、第2の光源部30と、合波部材42と、回転フィルタ47と、集光レンズ52と、散乱部材54と、ロッドインテグレータ56とで構成される。
第1の光源部28及び第2の光源部30からの発光は、プロセッサ16の光源制御部(図示省略)により個別に制御されており、第1の光源部28からの出射光と、第2の光源部30からの出射光の光量比は変更自在になっている。
これら各光源28、30からの出射光は、光源装置14内で合波され、ライトガイド(光ファイバ)32に入力される。
Next, with reference to FIG.1 and FIG.2, the light source device 14 which concerns on embodiment of this invention is demonstrated.
FIG. 2 is a schematic front view schematically showing an embodiment of the configuration of the light source device of the present invention.
As shown in FIG. 2, the light source device 14 of the present invention includes a first light source unit 28, a second light source unit 30, a multiplexing member 42, a rotary filter 47, a condensing lens 52, and a scattering member. 54 and a rod integrator 56.
Light emission from the first light source unit 28 and the second light source unit 30 is individually controlled by a light source control unit (not shown) of the processor 16, and the emitted light from the first light source unit 28 and the second light source unit 28. The light quantity ratio of the emitted light from the light source unit 30 is freely changeable.
Light emitted from each of the light sources 28 and 30 is multiplexed in the light source device 14 and input to a light guide (optical fiber) 32.

第1の光源部28は、通常光モード及び特殊光モードの両方に用いられる白色照明光(以下、単に白色光ともいう)を出射するキセノン光源(第1の光源)38と、キセノン光源38から出射した白色光をほぼ平行光束にする収斂光学系であるリフレクタ(放物面鏡)40とで構成される。
なお、本実施形態においては、白色光を出射する白色照明用光源としてキセノン光源を用いているが、本発明においては、白色光を出射する光源であれば特に限定はなく、キセノン光源の他、例えば、水銀ランプ、メタルハライドランプ等の放電型の高輝度ランプ光源等の放電管を用いることができる。なお、キセノン光源としては、パーキンエルマージャパン社製の300Wのキセノンランプが好ましく用いられる。
また、リフレクタ40は、キセノン光源38から放射される白色発光光を平行光束にして出射するためのもので、図示例では、キセノン光源38の電極間に発生するアーク(白色発光光)が焦点近傍に来るように配置された放物面ミラーからなるリフレクタを用いている。なお、リフレクタ40についても、キセノン光源38から放射される白色発光光を平行光束にできるものであれば、特に限定は無く、公知のものを用いればよい。
The first light source unit 28 includes a xenon light source (first light source) 38 that emits white illumination light (hereinafter also simply referred to as white light) used in both the normal light mode and the special light mode, and a xenon light source 38. The reflector (parabolic mirror) 40 is a converging optical system that converts the emitted white light into a substantially parallel light beam.
In the present embodiment, a xenon light source is used as a light source for white illumination that emits white light.However, in the present invention, there is no particular limitation as long as the light source emits white light. For example, a discharge tube such as a discharge-type high-intensity lamp light source such as a mercury lamp or a metal halide lamp can be used. As the xenon light source, a 300 W xenon lamp manufactured by PerkinElmer Japan is preferably used.
The reflector 40 is for emitting white light emitted from the xenon light source 38 as a parallel light beam. In the illustrated example, an arc (white light emitted) generated between the electrodes of the xenon light source 38 is near the focus. The reflector which consists of a parabolic mirror arrange | positioned so that it may come to is used. The reflector 40 is not particularly limited as long as the white light emitted from the xenon light source 38 can be converted into a parallel light flux, and a known one may be used.

他方、第2の光源部30は、特殊光モードに用いられる光源部であり、狭帯域光を出射するためのレーザ光源やLED光源であって、例えば、青色レーザ光を出射する青色レーザ光源(445LD)、青紫色レーザ光を出射する青紫色レーザ光源(405LD)等の青色系統のレーザ光を出射する半導体レーザ光源又は青色LED光を出射する青色LED等を用いる特殊光光源48と、特殊光光源48から出射された半導体レーザ光(レーザ光)やLED光(以下、単に狭帯域光という)の光束を平行光束にすると共に、詳細は後述するが、狭帯域光の光束が、白色光の進行方向に対して、例えば45°傾斜させて配置された合波部材42に入射する形状及びサイズ(大きさ)、すなわち略楕円形のサイズが、合波部材42の反射部材44の反射面の形状及びサイズ、すなわち略楕円形のサイズと略等しくなるように、狭帯域光の光束を所定の円形状又は略円形状に整形するコリメータレンズ50と、を有する。   On the other hand, the second light source unit 30 is a light source unit used in the special light mode, and is a laser light source or LED light source for emitting narrow-band light, for example, a blue laser light source (e.g., emitting blue laser light). 445LD), a special light source 48 using a semiconductor laser light source emitting blue laser light such as a blue-violet laser light source (405LD) emitting blue-violet laser light, or a blue LED emitting blue LED light, and special light. The light flux of the semiconductor laser light (laser light) and LED light (hereinafter simply referred to as narrowband light) emitted from the light source 48 is converted into a parallel light flux. For example, the shape and size (size) of light incident on the multiplexing member 42 disposed at an inclination of 45 ° with respect to the traveling direction, that is, the size of the substantially elliptical shape, is the reflection member 44 of the multiplexing member 42. The shape and size of the reflecting surface, i.e. to be substantially equal to the size of the substantially elliptical, having a collimator lens 50 for shaping the light flux of the narrow band light in a predetermined circular or substantially circular, the.

なお、特殊光光源48は、本発明においては、白色光より狭い波長帯域の狭帯域光を出射する光源であれば、特に限定はないが、青紫色レーザ光源(405LD、445)又は青色LED等の青色系統の半導体レーザ光源又はLED光源等以外のレーザ光源やLED光源等の半導体光源を用いてもよいが、表層組織を観察する場合には、青色系統のレーザ光源やLED光源等の半導体光源を用いるのが好ましい。
青色レーザ光源及び青紫色レーザ光源は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。
第2の光源部30は、特殊光光源48から出射され、コリメータレンズ50で所定の略円形状に整形された狭帯域光の光路が、第1の光源部28のキセノン光源38から出射された白色光の光路と直交し、狭帯域光が白色光に対して直交する方向から合波部材42に入射するように、白色光の光路の外側側方に配置される。
In the present invention, the special light source 48 is not particularly limited as long as it is a light source that emits narrowband light having a narrower wavelength band than white light, but a blue-violet laser light source (405LD, 445), a blue LED, or the like. However, when observing the surface layer structure, a semiconductor light source such as a blue laser light source or an LED light source may be used. Is preferably used.
As the blue laser light source and the blue-violet laser light source, a broad area type InGaN laser diode can be used, and an InGaNAs laser diode or a GaNAs laser diode can also be used.
The second light source unit 30 is emitted from the special light source 48, and the narrow-band light path shaped into a predetermined substantially circular shape by the collimator lens 50 is emitted from the xenon light source 38 of the first light source unit 28. It is arranged on the outer side of the optical path of the white light so that the narrow band light is incident on the multiplexing member 42 from a direction orthogonal to the optical path of the white light and perpendicular to the white light.

また、コリメータレンズ50は、特殊光光源48から出射された狭帯域光の光束が、白色光の進行方向に対して45°傾斜させて配置された合波部材42上に入射する際の光束の形状、例えば略楕円形及びサイズが、後述する、合波部材42の反射部材44の反射面の形状、例えば略楕円形及びサイズ(図5(b)参照)と略等しくなるように、狭帯域光の光束を所定の円形状又は略円形状に整形するものであり、狭帯域光の入射光束の略楕円形の長軸方向のサイズ(長径)を反射部材44の反射面の略楕円形の長軸方向のサイズ(長径)に整形するための短軸方向のみにパワー(倍率)を持つシリンドリカルレンズ及び狭帯域光の入射光束の略楕円形の短軸方向のサイズ(短径)を反射部材44の反射面の略楕円形の短軸方向のサイズ(短径)に整形するための長軸方向のみにパワー(倍率)を持つシリンドリカルレンズの2枚のシリンドリカルレンズを組み合わせたものや、このような2枚のシリンドリカルレンズの機能を合わせ持つ組レンズなどを用いることができる。
なお、本発明においては、コリメータレンズ50としては、上述のような、特殊光光源48から出射した狭帯域光の光束の形状及びサイズを、傾斜配置された合波部材42上で、その反射部材44の反射面の形状及びサイズと等しくなるように整形するものに限定されず、狭帯域光の光束を平行光束にすると共に、狭帯域光の全光束を合波部材42の反射部材44の反射面で反射するように所定の略円形状に整形することができるものであれば、特に限定はない。
また、本発明おいては、特殊光光源48から出射された狭帯域光の光束の形状を変化させて、所定の略円形状に整形するコリメータレンズ50を用いているが、本発明はこれに限定されず、特殊光光源48が、合波部材42の反射部材44の反射面に対応する略円形状に相似な略円形状な光束の狭帯域光を出射するものである場合には、特殊光光源48から出射された狭帯域光の形状を変化させずに、狭帯域光の略円形状の光束を合波部材42の反射部材44の反射面に対応するサイズにすると共に、平行光束に整形するコリメータレンズを用いてもよい。
Further, the collimator lens 50 emits a narrow-band light beam emitted from the special light source 48 when the light beam is incident on the multiplexing member 42 disposed at an inclination of 45 ° with respect to the traveling direction of the white light. The narrow band so that the shape, for example, an approximately oval shape and the size is substantially equal to the shape of the reflecting surface of the reflecting member 44 of the combining member 42, for example, an approximately oval shape and a size (see FIG. 5B), which will be described later. The light beam is shaped into a predetermined circular shape or a substantially circular shape, and the size (major axis) of the substantially elliptical long axis direction of the incident light beam of the narrow-band light is set to the substantially elliptical shape of the reflecting surface of the reflecting member 44. A cylindrical lens having power (magnification) only in the short axis direction to shape the size (major axis) in the long axis direction and a substantially elliptical short axis size (minor axis) of the incident light beam of narrowband light as a reflecting member The size of 44 reflecting surfaces in the direction of the minor axis of the substantially elliptical shape (short For example, a combination of two cylindrical lenses having a power (magnification) only in the major axis direction or a combination lens having the functions of the two cylindrical lenses is used. Can do.
In the present invention, as the collimator lens 50, the shape and size of the light beam of the narrow band light emitted from the special light source 48 as described above is reflected on the multiplexing member 42 arranged in an inclined manner. The shape of the reflecting surface 44 is not limited to the shape and size of the reflecting surface. The narrow-band light beam is converted into a parallel beam, and the entire narrow-band light beam is reflected by the reflecting member 44 of the multiplexing member 42. There is no particular limitation as long as it can be shaped into a predetermined substantially circular shape so as to reflect on the surface.
In the present invention, the collimator lens 50 that changes the shape of the light beam of the narrow-band light emitted from the special light source 48 and shapes it into a predetermined substantially circular shape is used. Without being limited thereto, when the special light source 48 emits narrow-band light of a substantially circular light beam similar to the substantially circular shape corresponding to the reflection surface of the reflection member 44 of the multiplexing member 42, a special light source 48 is used. Without changing the shape of the narrowband light emitted from the light source 48, the substantially circular light flux of the narrowband light is sized to correspond to the reflecting surface of the reflection member 44 of the multiplexing member 42, and is converted into a parallel light flux. A collimator lens to be shaped may be used.

合波部材42は、本発明の特徴部分であり、キセノン光源38から出射される白色光と特殊光源48から出射される狭帯域光とが交差する位置に白色光の進行方向に対して30°〜60°傾斜させて配置されるもので、通常光モードの際には、白色光を透過させ、特殊光モードの際には、白色光を透過させると共に狭帯域光を反射させることにより白色光と狭帯域光とを合波するものである。図示例では、合波部材42は、第1の光源部28の下流側の白色光の光路に略45°傾斜させて配置されると共に、第2の光源部30から出射される狭帯域光の光路に対しても略45°傾斜させて配置される。本明細書では、白色光の光路に沿って第1の光源部28の側を上流側、内視鏡12の光ファイバ32の側を下流側という。なお、合波部材42の詳細については、後に詳述する。   The multiplexing member 42 is a characteristic part of the present invention, and is 30 ° with respect to the traveling direction of the white light at a position where the white light emitted from the xenon light source 38 and the narrow band light emitted from the special light source 48 intersect. It is arranged at an inclination of -60 °, and white light is transmitted in the normal light mode and white light is transmitted in the special light mode by transmitting white light and reflecting narrowband light. And narrowband light. In the illustrated example, the multiplexing member 42 is disposed at an inclination of approximately 45 ° in the optical path of the white light downstream of the first light source unit 28, and the narrowband light emitted from the second light source unit 30. The optical path is also inclined at about 45 °. In the present specification, the side of the first light source unit 28 along the optical path of white light is referred to as an upstream side, and the side of the optical fiber 32 of the endoscope 12 is referred to as a downstream side. Details of the multiplexing member 42 will be described later.

合波部材42の下流側には、回転フィルタ47が配置される。
ここで、図3は、図2に示す内視鏡用光源装置の回転フィルタの一実施例の構成を示す正面図であり、図4(a)は、図3に示す回転フィルタの第1のフィルタ組の分光特性の一例を示すグラフであり、他方、図4(b)は、図3に示す回転フィルタの第2のフィルタ組の分光特性の一例を示すグラフである。
回転フィルタ47は、通常モードでは、キセノン光源38から出射され、合波部材42を透過した白色光を赤色(R)成分、緑色(G)成分及び青色(B)成分に分離するとともに、特殊光モードでは、キセノン光源38から出射された白色光と特殊光光源48から出射された狭帯域光との合波部材42による合波光を、G成分の波長域に含まれ、これより狭い波長域のG狭帯域成分、及びB成分の波長域に含まれ、これより狭い波長域のB狭帯域成分に分離するものである。
A rotary filter 47 is disposed on the downstream side of the multiplexing member 42.
Here, FIG. 3 is a front view showing the configuration of an embodiment of the rotary filter of the endoscope light source device shown in FIG. 2, and FIG. 4 (a) is a first view of the rotary filter shown in FIG. FIG. 4B is a graph showing an example of the spectral characteristics of the second filter set of the rotary filter shown in FIG. 3.
In the normal mode, the rotary filter 47 separates the white light emitted from the xenon light source 38 and transmitted through the multiplexing member 42 into red (R), green (G), and blue (B) components, and special light. In the mode, the combined light of the white light emitted from the xenon light source 38 and the narrow band light emitted from the special light source 48 is included in the wavelength band of the G component and in a narrower wavelength band. It is included in the wavelength band of the G narrow band component and the B component, and is separated into the B narrow band component of a narrower wavelength band.

回転フィルタ47は、図3に示すように、円盤状に構成され中心を回転軸とした2重構造となっている。この2重構造の外側の径部分には、図4(a)に示すような色再現に適したオーバーラップした分光特性の面順次光を出力するための第1のフィルタ組を構成するR1フィルタ部47r1、G1フィルタ部47g1、B1フィルタ部47b1が配置される。図4(a)に示すように、回転フィルタ47のR1フィルタ部47r1はR成分を分離し、G1フィルタ部47g1はG成分を分離し、B1フィルタ部47b1はB成分を分離する。他方、回転フィルタ47の2重構造の内側の径部分には、図4(b)に示すような所望の層組織情報が抽出可能な離散的な分光特性の2バンドの狭帯域な面順次光を出力するための第2のフィルタ組を構成するG2フィルタ部47g2、B2フィルタ部47b2、遮光フィルタ部47Cutが配置されている。図4(b)に示すように、回転フィルタ47のG2フィルタ部47g2はG狭帯域成分を分離し、B2フィルタ部47b2はB狭帯域成分を分離する。   As shown in FIG. 3, the rotary filter 47 is formed in a disc shape and has a double structure with the center as a rotation axis. In the outer diameter portion of the double structure, an R1 filter constituting a first filter set for outputting frame sequential light having overlapping spectral characteristics suitable for color reproduction as shown in FIG. The part 47r1, the G1 filter part 47g1, and the B1 filter part 47b1 are arranged. As shown in FIG. 4A, the R1 filter unit 47r1 of the rotary filter 47 separates the R component, the G1 filter unit 47g1 separates the G component, and the B1 filter unit 47b1 separates the B component. On the other hand, on the inner diameter portion of the double structure of the rotary filter 47, two-band narrow-band surface-sequential light with discrete spectral characteristics capable of extracting desired layer structure information as shown in FIG. The G2 filter unit 47g2, the B2 filter unit 47b2, and the light shielding filter unit 47Cut that constitute the second filter set for outputting the light are arranged. As shown in FIG. 4B, the G2 filter unit 47g2 of the rotary filter 47 separates the G narrowband component, and the B2 filter unit 47b2 separates the B narrowband component.

回転フィルタ47は、図示しない制御回路により回転フィルタモータ51の駆動制御がなされ回転する。さらに、径方向の移動が後述する通常光モードと特殊光モードとの切り替えの際に、入力部32又はプロセッサ16からの制御信号によりモード切替モータ(図示せず)によって行われる。   The rotary filter 47 is rotated by driving control of the rotary filter motor 51 by a control circuit (not shown). Further, the radial movement is performed by a mode switching motor (not shown) according to a control signal from the input unit 32 or the processor 16 when switching between a normal light mode and a special light mode, which will be described later.

集光レンズ52は、回転フィルタ47の下流側に配置され、合波部材42を透過した白色光又は合波部材42で合波された白色光と狭帯域光との合波光から、回転フィルタ47で分離された白色光又は合波光の各色成分(以下、面順次光ともいう)を、ライトガイドとなる光ファイバ32の入射端面に入射させるために、集光するものであり、そのために、後述するが、光ファイバ32の上流側に配置され、光ファイバ32のサイズと略等しいロッドインテグレータ56の一端に集光するものである。
したがって、集光レンズ52は、白色光または合波光の各色成分の光束がロッドインテグレータ56の入射端面全体に入射するように、すなわち、面順次光の光束サイズが、ロッドインテグレータ56の入射端面のサイズ、したがって光ファイバ32の入射端面のサイズと略等しくなるように集光する。なお、合波光の内の狭帯域光の色成分(面順次光)も、同様に集光レンズ52によって集光されるが、合波光の内の狭帯域光の色成分の光束のサイズは、光ファイバ32及びロッドインテグレータ56の入射端面のサイズに対して、白色光の光束のサイズに対するコリメータレンズ50で整形された狭帯域光の光束のサイズの比率と同じ比率となるサイズである。したがって、集光レンズ52は、合波光の内の狭帯域光の色成分(面順次光)を、光ファイバ32及びロッドインテグレータ56の入射端面の中心部分に入射させるように集光する。なお、集光レンズ52としては、集光光学系で用いられる公知の集光レンズを用いればよい。
The condensing lens 52 is disposed on the downstream side of the rotation filter 47, and the rotation filter 47 is obtained from the white light transmitted through the combining member 42 or the combined light of the white light combined with the combining member 42 and the narrowband light. The color components of the white light or combined light (hereinafter also referred to as plane-sequential light) separated in step 1 are collected so as to enter the incident end face of the optical fiber 32 serving as a light guide. However, it is arranged on the upstream side of the optical fiber 32 and collects light at one end of the rod integrator 56 that is substantially equal to the size of the optical fiber 32.
Therefore, the condenser lens 52 is configured so that the light beams of the respective color components of the white light or the combined light are incident on the entire incident end face of the rod integrator 56, that is, the light flux size of the surface sequential light is the size of the incident end face of the rod integrator 56. Therefore, the light is condensed so as to be approximately equal to the size of the incident end face of the optical fiber 32. In addition, the color component (surface sequential light) of the narrowband light in the combined light is similarly collected by the condenser lens 52, but the size of the light flux of the color component of the narrowband light in the combined light is The size of the optical fiber 32 and the rod integrator 56 is the same as the ratio of the size of the narrow-band light beam shaped by the collimator lens 50 to the size of the white light beam. Therefore, the condensing lens 52 condenses the narrowband light color component (plane sequential light) of the combined light so as to be incident on the central portions of the incident end faces of the optical fiber 32 and the rod integrator 56. As the condenser lens 52, a known condenser lens used in a condenser optical system may be used.

散乱部材54は、自身に入射する光を散乱させるものである。特に、狭帯域光がレーザ光のようなコヒーレント光の場合、NAが小さく、散乱部材54は、狭帯域光のNAを大きくするために役立つ。
本発明においては、ロッドインテグレータ56の入射端面56a直前に設置され、集光レンズ52によって集光された合波光を、白色光の成分はもちろん、特にNAが小さい、第2の光源30からの狭帯域光の成分を散乱させることで、その狭帯域光の成分のNAを大きくするものである。散乱部材によって、狭帯域光とが白色光とが等しく散乱され、大きなNAを持つようになる。
なお、散乱部材54の代わりに、ロッドインテグレータ56の入射端面56aを粗面化してもよい。散乱部材54と同様の効果が得られる。
The scattering member 54 scatters light incident on itself. In particular, when the narrowband light is coherent light such as laser light, the NA is small, and the scattering member 54 is useful for increasing the NA of the narrowband light.
In the present invention, the combined light, which is installed immediately before the incident end surface 56a of the rod integrator 56 and is collected by the condenser lens 52, is narrow from the second light source 30 having a particularly small NA as well as a white light component. By scattering the band light component, the NA of the narrow band light component is increased. By the scattering member, narrow band light and white light are equally scattered, and have a large NA.
Instead of the scattering member 54, the incident end face 56a of the rod integrator 56 may be roughened. The same effect as the scattering member 54 is obtained.

ロッドインテグレータ56は、集光レンズ52の下流側に配置され、合波部材42で合波され、回転フィルタ47で分離され、集光レンズ52で集光された各面順次光(白色光及び合波光の各色成分)を、面内光量分布を均一化した上で、内視鏡12の光ファイバ32の入射端面に入射させるためのものである。すなわち、ロッドインテグレータ56は、集光レンズ52で集光された面順次光が入射される入射端面56aと、入射端面56aから入射された面順次光を内部で多重反射して面内の光量分布を均一化する本体56bと、均一化された光量分布を持つ合波光を出射する出射端面56cとを備え、入射端面56aから入射され、本体56bの内部の多重反射により出射端面56cにおける光量分布が均一化された面順次光を出射端面56cから出射させ、出射された各面順次光の全光束を余すところなく、内視鏡12の光ファイバ32の入射端面に入射させる。
ここで、ロッドインテグレータ56のサイズ(直径)は、内視鏡12の光ファイバ32のサイズ(直径)と略等しく、ロッドインテグレータ56の出射端面56cのサイズは、光ファイバ32の入射端面のサイズと略等しい。
The rod integrator 56 is disposed on the downstream side of the condensing lens 52, combined by the combining member 42, separated by the rotary filter 47, and condensed by the condensing lens 52 (white light and combining light). Each color component of the wave light is made incident on the incident end face of the optical fiber 32 of the endoscope 12 after the in-plane light quantity distribution is made uniform. That is, the rod integrator 56 internally reflects the incident end face 56a on which the surface sequential light collected by the condensing lens 52 is incident, and the surface sequential light incident from the incident end face 56a, thereby internally reflecting the light quantity distribution in the surface. And an exit end face 56c that emits combined light having a uniform light quantity distribution. The light quantity distribution on the exit end face 56c is incident from the entrance end face 56a and is reflected by multiple reflections inside the body 56b. The uniformed surface sequential light is emitted from the emission end face 56c, and the entire light flux of each emitted surface sequential light is made incident on the incident end face of the optical fiber 32 of the endoscope 12.
Here, the size (diameter) of the rod integrator 56 is substantially equal to the size (diameter) of the optical fiber 32 of the endoscope 12, and the size of the exit end face 56c of the rod integrator 56 is equal to the size of the incident end face of the optical fiber 32. Almost equal.

なお、ロッドインテグレータ56は、その入射端面56aに入射した光を、本体56bの内部で多重反射(全反射)を繰り返させることにより、出射端面56cを出射する光の出射端面内の光量分布を均一にするものであり、入射端面56aに入射した光の光線角度が保存され、入射光の各光線は、自身の入射端面56aへの入射角度と同じ出射角度で出射端面56cから出射するものである。
特に、本発明において、特殊光モード時に、合波部材42で合波され、回転フィルタ47で分離され、集光レンズ52で集光された各面順次光(合波光の各色成分)がロッドインテグレータ56に入射する際には、合波光のうちの狭帯域光の各面順次光は、後に述べる合波部材42の反射部材44においては、白色光の各面順次光よりも細く、白色光の各面順次光より小さいNAで入射し、入射した各面順次光を出射端面56cから出射する際にも、各面順次光の、出射端面56c内の光量分布を均一にした上で、同じNAで出射する。
なお、本発明においては、ロッドインテグレータ50には、特に限定はなく、内視鏡装置の照明光学系に一般的に用いられている公知のロッドインテグレータを用いればよい。
The rod integrator 56 repeats multiple reflection (total reflection) of the light incident on the incident end surface 56a inside the main body 56b, thereby uniformizing the light quantity distribution in the output end surface of the light emitted from the output end surface 56c. The light ray angle of the light incident on the incident end face 56a is stored, and each light ray of the incident light is emitted from the output end face 56c at the same emission angle as the incident angle on the incident end face 56a. .
In particular, in the present invention, in the special light mode, each surface sequential light (each color component of the combined light) combined by the combining member 42, separated by the rotary filter 47, and condensed by the condenser lens 52 is the rod integrator. When entering the light source 56, each surface sequential light of the narrow-band light of the combined light is thinner than each surface sequential light of the white light in the reflecting member 44 of the combining member 42 described later, Even when each surface sequential light is incident with an NA smaller than that of the surface sequential light, and the surface sequential light that has entered is emitted from the output end surface 56c, the light quantity distribution in the output end surface 56c of each surface sequential light is made uniform and the same NA is obtained. Exit with
In the present invention, the rod integrator 50 is not particularly limited, and a known rod integrator generally used for an illumination optical system of an endoscope apparatus may be used.

ここで、図5を用いて、本発明の光源装置の特徴部分である合波部材の一実施形態について詳述する。
なお、図5(a)は、合波部材の側面図、図5(b)は、その正面図を示し、図5(a)の図面向かって左側の面が入射面(白色光の透過面)であり、他方、図5(a)の図面向かって右側及び図5(b)の正面が出射面(狭帯域光の反射面)である。
Here, with reference to FIG. 5, an embodiment of a multiplexing member that is a characteristic part of the light source device of the present invention will be described in detail.
5A is a side view of the multiplexing member, FIG. 5B is a front view thereof, and the left side of the drawing of FIG. 5A is the incident surface (transmission surface for white light). On the other hand, the right side of the drawing of FIG. 5A and the front of FIG. 5B are the emission surface (the reflection surface of the narrowband light).

合波部材42は、図2に示すように、白色光と狭帯域光とが交差する位置に、白色光の進行方向に対して45°傾斜させて配置されるもので、本実施形態においては、図5に示すように、円盤状の透過部材46と、透過部材46の片側中央部に設けられる反射部材44とで構成される。すなわち、合波部材42は、白色光を透過部材46により透過し、コリメータレンズ50で所定の略円形状に整形された狭帯域光を、その進行方向が白色光の進行方向と略一致し、狭帯域光の光束が白色光の光束の中央部分に位置するように、反射部材44により反射させて、白色光と狭帯域光とを合波する。   As shown in FIG. 2, the multiplexing member 42 is disposed at a position where the white light and the narrow band light intersect with each other at an angle of 45 ° with respect to the traveling direction of the white light. As shown in FIG. 5, the disk-shaped transmission member 46 and the reflection member 44 provided at the central portion on one side of the transmission member 46 are configured. That is, the multiplexing member 42 transmits the white light through the transmission member 46, and the traveling direction of the narrowband light shaped into a predetermined substantially circular shape by the collimator lens 50 substantially matches the traveling direction of the white light, The narrow band light is reflected by the reflecting member 44 so that the narrow band light beam is positioned at the center of the white light beam, and the white light and the narrow band light are combined.

透過部材46は、第1の光源部28から出射される白色光を透過する部材であり、白色光を透過することができればどのような部材を用いてもよい。
なお、本実施形態においては、キセノン光源38から出射される白色光の平行光束の太さに等しい短径を有し、その√2倍の長径を有する略楕円形の透過部材52を用いているが、白色光の光束を透過することができれば、どのような大きさの透過部材を用いてもよく、また、その形状も、正方形や長方形等のどのような形状の透過部材を用いてもよい。
例えば、キセノン光源38から出射される白色光の平行光束の太さの直径(2r)が、約25.4mmであれば、短径25.4mm(2r)、長径35.9mm(2(√2)r)の略楕円形状の透過部材を用いても良いし、これ以上の大きさの任意の形状の透過部材を用いてもよく、例えば、直径35.9mm以上の円形状の透過部材を用いてもよい。
The transmissive member 46 is a member that transmits white light emitted from the first light source unit 28, and any member may be used as long as it can transmit white light.
In the present embodiment, a substantially elliptical transmission member 52 having a minor axis equal to the thickness of the parallel luminous flux of white light emitted from the xenon light source 38 and having a major axis that is √2 times the major axis is used. However, any size transmitting member may be used as long as it can transmit a white light beam, and the shape of the transmitting member may be any shape such as a square or a rectangle. .
For example, if the diameter (2r) of the parallel light flux of white light emitted from the xenon light source 38 is about 25.4 mm, the minor axis is 25.4 mm (2r) and the major axis is 35.9 mm (2 (√2 ) The substantially elliptical transmission member of r) may be used, or a transmission member having an arbitrary shape larger than this may be used. For example, a circular transmission member having a diameter of 35.9 mm or more is used. May be.

また、本発明においては、透過部材52の入射面及び/又は出射面に、反射防止膜を設けるのが好ましい。反射防止膜としては、特に限定は無いが、公知の反射防止膜を用いることができる。このような反射防止膜を設けることにより、透明部材52の入射面及び/又は出射面で白色光が不要に反射することを防止し、白色光の透過効率を向上させることができる。このような反射防止膜によって、例えば、片面に付き、5%程度の表面反射を無くすことができる。   In the present invention, it is preferable to provide an antireflection film on the entrance surface and / or the exit surface of the transmission member 52. The antireflection film is not particularly limited, and a known antireflection film can be used. By providing such an antireflection film, it is possible to prevent white light from being unnecessarily reflected on the incident surface and / or the light exit surface of the transparent member 52, and to improve the white light transmission efficiency. With such an antireflection film, for example, surface reflection of about 5% can be eliminated on one surface.

他方、反射部材44は、透過部材46の出射面の中央部分を覆うように設けられ、第2の光源部30の特殊光光源48から出射され、コリメータレンズ50で略円形状に整形された狭帯域光を、白色光の光路の下流側に向けて反射する略楕円形の光反射部材である。
ここで、反射部材44の形状及びサイズは、コリメータレンズ56によって略円形状に整形された狭帯域光の光束が、白色光の進行方向に対して45°傾斜させて配置された合波部材42に入射する領域(反射領域)の形状及びサイズに略一致するのが好ましい。なお、本発明では、反射部材44の形状及びサイズは、狭帯域光の全光束を反射できるように、狭帯域光の光束が合波部材42に入射する反射領域の形状及びサイズに一致するのが最も好ましいが、厳密に一致していなくてもよく、略一致していれば良い。したがって、反射部材44の形状及びサイズは、狭帯域光の全光束を反射できるような形状及びサイズであるのが好ましい。
On the other hand, the reflection member 44 is provided so as to cover the central portion of the emission surface of the transmission member 46, is emitted from the special light source 48 of the second light source unit 30, and is narrowly shaped into a substantially circular shape by the collimator lens 50. It is a substantially elliptical light reflecting member that reflects the band light toward the downstream side of the optical path of white light.
Here, the shape and size of the reflecting member 44 is such that the light beam of the narrow band light shaped into a substantially circular shape by the collimator lens 56 is disposed so as to be inclined by 45 ° with respect to the traveling direction of the white light. It is preferable to substantially match the shape and size of the region (reflection region) incident on the surface. In the present invention, the shape and size of the reflection member 44 matches the shape and size of the reflection region where the narrow-band light beam is incident on the multiplexing member 42 so that the entire narrow-band light beam can be reflected. Is most preferable, but it does not have to be exactly the same and only needs to be substantially the same. Therefore, it is preferable that the shape and size of the reflecting member 44 be a shape and size that can reflect the total luminous flux of the narrow band light.

なお、反射部材44は、本発明において、第2の光源部30から出射された狭帯域光所定の略円形状の光束を反射して、主に第1の光源部28から出射された白色平行光の中央部分に、特にその光量低下部分に合波できるものであれば、特に限定的では無く、どのようなものを用いてもよく、上流側から合波部材42に入射する白色光を反射したり吸収したりすることにより、下流側に透過させず、狭帯域光を下流側に反射するものであっても良いし、白色光の一部の波長領域の成分、すなわち狭帯域光の波長領域を除く波長領域の成分を透過させることができるダイクロイックミラーを用いても良い。反射部材44として、ダイクロイックミラー用いることにより、反射部材44においても、反射する狭帯域光の波長領域を除く波長領域の白色光の成分を多少なりとも透過させることができるので、白色光を有効に利用することができ、合波光の光量をより向上させることができる。   In the present invention, the reflecting member 44 reflects the narrow-band light having a predetermined substantially circular shape emitted from the second light source unit 30 and mainly emits the white parallel light emitted from the first light source unit 28. There is no particular limitation as long as the light can be combined with the central portion of the light, particularly the light-reduced portion. Any light may be used, and the white light incident on the combining member 42 is reflected from the upstream side. It is also possible to reflect narrow band light to the downstream side without transmitting to the downstream side by absorbing or absorbing, or a component of a part of the wavelength region of white light, that is, the wavelength of the narrow band light You may use the dichroic mirror which can permeate | transmit the component of the wavelength range except an area | region. By using a dichroic mirror as the reflecting member 44, the reflecting member 44 can transmit the white light component in the wavelength region except the wavelength region of the reflected narrow band light to some extent, so that the white light is effectively used. It can be used, and the amount of combined light can be further improved.

ここで、本発明の発明者は、上述のように、特許文献1及び2の技術を可視領域の狭帯域光を用いる特殊光観察に適用する場合、狭帯域光光源が点灯していない通常光モードにおいて、内視鏡用光源装置から出射するキセノン光源からの白色光における特定波長域の光量が大幅に低減するのを極力さけるために、鋭意検討した結果、次のような形状の反射部材44を導きだした。   Here, as described above, the inventor of the present invention, when applying the techniques of Patent Documents 1 and 2 to special light observation using narrow band light in the visible region, normal light in which the narrow band light source is not lit. In the mode, as a result of intensive studies in order to minimize the amount of light in the specific wavelength region in the white light emitted from the xenon light source emitted from the endoscope light source device as much as possible, the reflection member 44 having the following shape is obtained. I started.

本発明の発明者は、例えば、白色光と狭帯域光とを合波するために、図6に示すような、自身の出射面に対して半分の面積を占める半円状の反射部材144と同様の面積を有する透過部材146とで成る合波部材142を用いた実験を行った。
この場合、上述の特許文献1及び2のように、白色光の光路全面を覆う大きさのダイクロイックミラーを用いた場合と比較すると、通常光モードにおける白色光における特定波長域の光量の低減を抑制することができた。
しかしながら、このような合波部材を用いた場合には、通常光モード及び特殊光モードのいずれの場合でも、キセノン光源からの白色光の特定波長域成分の光量の半分が失われてしまうため、内視鏡観察において得られる画像が暗くなり高度な診察ができないという問題があったのは上述した通りである。
The inventor of the present invention, for example, in order to multiplex white light and narrow band light, as shown in FIG. 6, a semicircular reflecting member 144 occupying a half area with respect to its exit surface; An experiment was conducted using a multiplexing member 142 composed of a transmissive member 146 having a similar area.
In this case, as in Patent Documents 1 and 2 described above, compared with the case where a dichroic mirror having a size covering the entire optical path of white light is used, the reduction in the amount of light in a specific wavelength region in white light in the normal light mode is suppressed. We were able to.
However, when such a multiplexing member is used, half of the light amount of the specific wavelength region component of the white light from the xenon light source is lost in both the normal light mode and the special light mode. As described above, there is a problem that an image obtained by endoscopic observation becomes dark and high-level examination cannot be performed.

そこで、本発明の発明者は、通常光モード及び特殊光モードのいずれの場合でも白色光における特定波長域の光量の大幅な低減を極限まで抑制して白色光と狭帯域光とを合波するために、鋭意検討した結果、白色光光源として用いられる一般的なキセノン光源等の放電管には、リフレクタ40の中央部分にはアノード及びカソードからなる電極が存在し、アノードが通っている約直径4.0mmの孔も開いているため、キセノン光源等の放電管から出射される白色平行光の光束の中央部分には前述の孔と略同径の平行光のない部分が存在し、この白色平行光が存在しない中央部分の略円形形状及びサイズに対応するように、白色光の進行方向に対して45°傾斜した合波部材42の反射部材44を略楕円形として、対応するサイズで合波部材42の出射面(透過面+反射面)の中央に載置すれば良いことを知見した。   Therefore, the inventor of the present invention combines the white light and the narrow-band light while suppressing a significant reduction in the amount of light in the specific wavelength region of the white light to the limit in both the normal light mode and the special light mode. Therefore, as a result of intensive studies, in a discharge tube such as a general xenon light source used as a white light source, an electrode composed of an anode and a cathode exists in the central portion of the reflector 40, and the diameter through which the anode passes is approximately. Since a 4.0 mm hole is also opened, a white parallel light beam emitted from a discharge tube such as a xenon light source has a portion with no parallel light having the same diameter as that of the above hole. The reflection member 44 of the multiplexing member 42 inclined by 45 ° with respect to the traveling direction of the white light is substantially elliptical so as to correspond to the substantially circular shape and size of the central portion where no parallel light exists, and is matched with the corresponding size. Wave member 2 of the exit surface was found that may be placed in the center of the (transmission surface + reflective surface).

すなわち、本発明においては、合波部材42の略楕円形の反射部材44の反射面の長径は、透過部材46を透過する白色光によって形成される略楕円形の透過面の長径の10%〜50%であるのが好ましい。
また、合波部材42の略楕円形の反射部材44の反射面のサイズは、合波部材42の合波光の全出射面(透過部材46の白色光の透過面+反射部材44の狭帯域光の反射面)のサイズの1%〜25%であるのが好ましい。
That is, in the present invention, the major axis of the reflecting surface of the substantially elliptical reflecting member 44 of the multiplexing member 42 is 10% to the major axis of the substantially elliptical transmitting surface formed by the white light transmitted through the transmitting member 46. Preferably it is 50%.
Further, the size of the reflecting surface of the substantially elliptical reflecting member 44 of the combining member 42 is the total emitting surface of the combined light of the combining member 42 (the white light transmitting surface of the transmitting member 46 + the narrow band light of the reflecting member 44). 1% to 25% of the size of the reflective surface).

本実施形態において、例えば、第1の光源部28に前述のパーキンエルマージャパン社製の300Wのキセノンランプを用いる場合、その照射窓の大きさから照射される平行光束は、直径25.4mmとなる。また、この300Wキセノンランプの中心には、アノード及びカソードからなる電極が存在し、また、リフレクタ40の中央部分には、アノードの通る約直径4.0mmの孔も開いているため、この中央部分から白色光を出射できない。したがって、キセノンランプから出射される白色光の光束の中央部分には、白色光の光束が存在しない領域、例えば、約直径4.0mmのキセノンランプの光の無い部分ができる。
この白色光の光束の中心における約直径4.0mmの白色光の無い部分に対して、第2の光源からの狭帯域光を合波すれば、白色光を低減させることなく、さらには、互いに損失させること無く、白色光と狭帯域光とを合波することができる。
この場合においては、反射部材44は、この白色光の存在しない部分に対応するように、長径約5.7mm、短径約4.0mmの楕円形状とすることができる。
このように、本発明においては、白色光と狭帯域光との合波光において、狭帯域光の光束を白色光の光束の中央部分に配置するので、内視鏡12の先端部分から合波光(面順次光)を被写体(生体)に向けて照射する際に、内視鏡12の撮像画像の観察視野の内の重要な中央部分にのみに、特殊光観察に必要な狭帯域光(面順次光)を照射することができるので、特殊光観察に必要な狭帯域光の光量を低減することができ、内視鏡12の先端部分に過大な熱負荷をかけたり、その結果、劣化を早めたりすることを無くすことができる。
In the present embodiment, for example, when the 300 W xenon lamp manufactured by PerkinElmer Japan is used as the first light source unit 28, the parallel light beam irradiated from the size of the irradiation window has a diameter of 25.4 mm. . In addition, an electrode composed of an anode and a cathode is present at the center of the 300 W xenon lamp, and a hole having a diameter of about 4.0 mm through which the anode passes is opened in the central portion of the reflector 40. Cannot emit white light. Therefore, in the central portion of the white light beam emitted from the xenon lamp, there is a region where no white light beam exists, for example, a non-light portion of a xenon lamp having a diameter of about 4.0 mm.
If the narrow-band light from the second light source is combined with the portion having no diameter of about 4.0 mm in the center of the light beam of the white light, the white light can be reduced without reducing the white light. White light and narrowband light can be combined without loss.
In this case, the reflecting member 44 can have an elliptical shape having a major axis of about 5.7 mm and a minor axis of about 4.0 mm so as to correspond to the portion where the white light does not exist.
As described above, in the present invention, in the combined light of the white light and the narrow band light, the light beam of the narrow band light is arranged at the central portion of the light beam of the white light, so that the combined light ( When irradiating (sequentially sequential light) toward a subject (living body), only the narrow band light (sequentially sequential) necessary for special light observation is applied only to an important central portion of the observation field of the captured image of the endoscope 12. Light), the amount of narrow-band light necessary for special light observation can be reduced, and an excessive heat load is applied to the distal end portion of the endoscope 12, resulting in accelerated deterioration. Can be eliminated.

さらに、本発明の発明者は、上記のような条件を満たす反射部材44の形状及びサイズ(大きさ)、さらにはこのような反射部材44の形状及びサイズ(大きさ)に応じて、狭帯域光の光束を整形するコリメータレンズ50を構成する2組のシリンドリカルレンズの焦点距離を具体的に導き出した。以下に、図7及び図8を用いて説明する。   Further, the inventor of the present invention narrows the band according to the shape and size (size) of the reflecting member 44 that satisfies the above conditions, and further according to the shape and size (size) of the reflecting member 44. The focal lengths of the two sets of cylindrical lenses constituting the collimator lens 50 for shaping the light beam were specifically derived. This will be described below with reference to FIGS.

ここでは、例えば、図7に示すように、狭帯域光源として半導体レーザからなる特殊光光源48を用いるとする。
この場合に、半導体レーザからなる特殊光光源48から出射される狭帯域光は、半導体レーザの活性層に平行な方向に対して約20°の広がり角を有し、半導体レーザの活性層に垂直な方向に対して約10°の広がり角を有するものとし、狭帯域光の広がり角が広い側を合波部材42の反射部材44の略楕円形状の長軸側(長径方向)、すなわち、特殊光光源48から合波部材42までの狭帯域光の光路に対して図7の上下方向(紙面に平行な方向)とし、狭帯域光の広がり角が狭い側を合波部材42の反射部材44の略楕円形状の短軸側(短径方向)、すなわち、特殊光光源48から合波部材42までの狭帯域光の光路に対して図7の紙面に垂直な方向とする。
また、狭帯域光をガウス分布で表した際のガウスビームの相対放射強度が等高線半径の中心で100%である時の50%である等高線半径間に含まれる分布、したがって、50%以上のガウスビーム、すなわち、図8の斜線で表す部分の光のみを用いるとする。
Here, for example, as shown in FIG. 7, a special light source 48 made of a semiconductor laser is used as a narrow-band light source.
In this case, the narrow-band light emitted from the special light source 48 made of a semiconductor laser has a divergence angle of about 20 ° with respect to the direction parallel to the active layer of the semiconductor laser and is perpendicular to the active layer of the semiconductor laser. The narrow-band light has a widening angle of about 10 ° with respect to the other direction, and the side where the narrow-band light has a wide spreading angle is the major axis side (major axis direction) of the reflecting member 44 of the multiplexing member 42, that is, special The vertical direction of FIG. 7 (the direction parallel to the paper surface) with respect to the optical path of the narrow band light from the light source 48 to the multiplexing member 42, and the side where the spread angle of the narrow band light is narrow is the reflecting member 44 of the multiplexing member 42. 7 in the direction of the short axis (minor direction) of the substantially elliptical shape, that is, the direction perpendicular to the paper surface of FIG.
Further, a distribution included in the contour radius that is 50% when the relative radiant intensity of the Gaussian beam is 100% at the center of the contour radius when the narrow-band light is represented by a Gaussian distribution, and therefore a Gauss of 50% or more. Assume that only the beam, that is, the portion of light represented by the diagonal lines in FIG. 8 is used.

さらに、キセノン光源38から出射される白色光の平行光束の太さの直径は、前述と同様、パーキンエルマージャパン社製の300Wのキセノンランプを用いると、25.4mmとなり、また、白色光の光束の中心の光の無い部分の直径は、4.0mmとなる。
その結果、合波部材42は白色光の進行方向に対して45°傾斜させて配置されるため、透過部材46は、略楕円形状であり、透過部材46の出射面(透過面)の短径は、白色光の平行光束の直径と等しい25.4mmとされ、長径は35.9mm(25.4×√2)とされる。
一方、反射部材44の形状は、白色光の光束の中心の光の無い部分に対応するように、短径は、4.0mmとされ、長径は、5.7mm(4.0×√2)とされる。したがって、特殊光光源48から出射される狭帯域光の光束を、コリメータレンズ50によって、直径4.0mmの平行光束に整形すればよいことが分かる。
Further, the diameter of the parallel light flux of white light emitted from the xenon light source 38 is 25.4 mm when a 300 W xenon lamp manufactured by PerkinElmer Japan is used, as described above. The diameter of the center without light is 4.0 mm.
As a result, since the multiplexing member 42 is disposed with an inclination of 45 ° with respect to the traveling direction of white light, the transmission member 46 has a substantially elliptical shape and the short diameter of the emission surface (transmission surface) of the transmission member 46. Is 25.4 mm, which is equal to the diameter of the parallel light beam of white light, and the major axis is 35.9 mm (25.4 × √2).
On the other hand, the shape of the reflecting member 44 is 4.0 mm and the major axis is 5.7 mm (4.0 × √2) so as to correspond to the centerless portion of the white light beam. It is said. Therefore, it is understood that the narrow-band light beam emitted from the special light source 48 may be shaped by the collimator lens 50 into a parallel light beam having a diameter of 4.0 mm.

上記のような条件で、反射部材を設計した場合、第2の光源部30からの狭帯域平行光の光束が合波部材42上に形成する反射領域の形状が、反射部材44の形状と同一になるように、つまり短径4.0mm、長径5.7mmの楕円形となるように、狭帯域光を直径4.0mmの円形状に整形するコリメータレンズ50が設計される。
次に、このような合波部材42を用いた場合の特殊光光源48の発光点とコリメータレンズ50の焦点距離との関係について説明する。
図7において、特殊光光源48から出射され、合波部材42の反射部材44に入射する狭帯域光の光束の、反射部材44上における形状及びサイズが、反射部材44の反射面の形状及びサイズと一致するように、コリメータレンズ50において狭帯域光の光束を円形に整形するものとする。
When the reflecting member is designed under the above conditions, the shape of the reflecting region formed on the multiplexing member 42 by the light beam of the narrow-band parallel light from the second light source unit 30 is the same as the shape of the reflecting member 44. In other words, the collimator lens 50 for shaping the narrow-band light into a circular shape having a diameter of 4.0 mm is designed so as to be an ellipse having a minor axis of 4.0 mm and a major axis of 5.7 mm.
Next, the relationship between the emission point of the special light source 48 and the focal length of the collimator lens 50 when such a multiplexing member 42 is used will be described.
In FIG. 7, the shape and size of the narrow-band light beam emitted from the special light source 48 and incident on the reflection member 44 of the multiplexing member 42 is the shape and size of the reflection surface of the reflection member 44. In the collimator lens 50, the narrow-band light beam is shaped into a circle so as to match.

ここで、図7において、コリメータレンズ50は、図7の紙面に平行な方向にパワーを持ち、この方向に関して結像するものとし、θは、特殊光光源48からのレーザ光等の狭帯域光の広がり角の半値角であり、fは、コリメータレンズ50の焦点距離であり、hは、コリメータレンズ50で整形された狭帯域光の光束の結像高さであるとすると、狭帯域光の広がり角の方向に関係なく、下記式(1)に示す結像公式が成り立つ。
h=f・sinθ…(1)
また、図7において、L1は、合波部材42の反射部材44の長さ(略楕円形状の長径)である。L2は、図示されないが、図7の紙面に垂直な方向における反射部材44の幅(略楕円形状の短径)であるとすると、下記式が成り立つ。ここで、L2はコリメータレンズ50で整形された狭帯域光の平行光束の直径であるということができる。
h=(L1/2)・sin45°…(2)
h=L2/2 …(3)
Here, in FIG. 7, the collimator lens 50 has power in a direction parallel to the paper surface of FIG. 7 and forms an image in this direction, and θ is a narrow-band light such as a laser beam from the special light source 48. The half-value angle of the divergence angle, f is the focal length of the collimator lens 50, and h is the imaging height of the light beam of the narrowband light shaped by the collimator lens 50. Regardless of the direction of the divergence angle, the imaging formula shown in the following formula (1) holds.
h = f · sin θ (1)
In FIG. 7, L1 is the length of the reflecting member 44 of the multiplexing member 42 (substantially elliptical long diameter). Although L2 is not shown in the drawing, the following equation is established if it is the width of the reflecting member 44 (substantially elliptical minor axis) in the direction perpendicular to the paper surface of FIG. Here, it can be said that L2 is the diameter of the parallel luminous flux of the narrowband light shaped by the collimator lens 50.
h = (L1 / 2) · sin45 ° (2)
h = L2 / 2 (3)

上述のとおり、図7の紙面に平行な方向においては、狭帯域光の広がり角が広い側の約20°であることから、θ=10°であり、L1=5.7mmであることから、この方向の焦点距離をfwとすると、以下のようになる。
fw・sin10°=(5.7/2)×sin45°
fw≒12(mm)
こうして、狭帯域光の光束を直径4.0mmの円形状にするためのコリメータレンズ50には、狭帯域光の広がり角の広い側、すなわち図7の紙面に平行な方向の径を整形するためにこの方向にのみパワーを持つ焦点距離約12mmのシリンドリカルレンズが必要である。
As described above, in the direction parallel to the paper surface of FIG. 7, the spread angle of the narrowband light is about 20 ° on the wide side, so θ = 10 ° and L1 = 5.7 mm. When the focal length in this direction is fw, the following is obtained.
fw · sin10 ° = (5.7 / 2) × sin45 °
fw ≒ 12 (mm)
Thus, the collimator lens 50 for making the light beam of the narrow band light into a circular shape having a diameter of 4.0 mm is for shaping the diameter in the direction parallel to the paper surface of FIG. In addition, a cylindrical lens having a focal length of about 12 mm having power only in this direction is required.

一方、図7の紙面に垂直な方向では、狭帯域光の広がり角が狭い側の約10°であることから、θ=5°であり、L1=4.0mmであることから、この方向の焦点距離をfnとすると、以下のようになる。
fn・sin5°=4/2
fn≒23(mm)
こうして、狭帯域光の光束を直径4.0mmの円形状にするためのコリメータレンズ50には、狭帯域光の広がり角の狭い側、すなわち図7の紙面に垂直な方向の径を整形するためにこの方向にのみパワーを持つ焦点距離約23mmのシリンドリカルレンズが必要である。
On the other hand, in the direction perpendicular to the paper surface of FIG. 7, the spread angle of narrowband light is about 10 ° on the narrow side, so θ = 5 ° and L1 = 4.0 mm. Assuming that the focal length is fn, the following is obtained.
fn · sin 5 ° = 4/2
fn ≒ 23 (mm)
In this way, the collimator lens 50 for making the narrow-band light beam into a circular shape having a diameter of 4.0 mm is provided for shaping the diameter of the narrow-band light on the side where the spread angle is narrow, that is, the direction perpendicular to the paper surface of FIG. In addition, a cylindrical lens having a focal length of about 23 mm having power only in this direction is required.

このようなそれぞれの方向のみに焦点距離を持つ2つのシリンドリカルレンズからなるコリメータレンズ50を用いることにより、狭帯域光の光束の形状を、上記のような合波部材42の反射部材44の形状及び大きさに応じた略円形状に整形することができ、略円形状に整形された狭帯域光の光束を反射部材44に入射させることができる。その結果、狭帯域光の光束を白色光の光束の中央部分に合波することができ、白色光における特定波長域の光量の低減を抑制し、これにより、特殊観察及び通常観察のいずれの観察においても、高精度かつ全体的に明るい画像を得ることができ、高度な内視鏡診断を可能にすることができる。   By using the collimator lens 50 composed of two cylindrical lenses having focal lengths only in the respective directions, the shape of the light beam of the narrow band light is changed to the shape of the reflection member 44 of the multiplexing member 42 as described above. It can be shaped into a substantially circular shape according to the size, and a light beam of narrow band light shaped into a substantially circular shape can be incident on the reflecting member 44. As a result, the light beam of narrow band light can be combined with the central part of the light beam of white light, and the reduction of the amount of light in a specific wavelength region in white light is suppressed, thereby making it possible to observe both special observation and normal observation In this case, a high-accuracy and overall bright image can be obtained, and advanced endoscopic diagnosis can be performed.

また、図1に示す内視鏡システム10において、本発明の内視鏡用光源装置14から照射された合波光の白色光及び狭帯域光(面順次光)は、内視鏡12の光ファイバ32内においても、内視鏡用光源装置14のロッドイングレータ56の出射端面56cから入射された時のそれぞれの開口数(NA)を維持しつつ伝播し、内視鏡12の照射口24Aから照射される。
本発明においては、合波部材42によって白色光の光束の光の少ない中央部分に、狭帯域光の光束が配置されるように合波し、中央が狭帯域光の光束、その周辺が白色光の光束からなる合波光(面順次光)の光束を、その関係を維持したまま集光レンズ52で集光するが、ロッドインテグレータ56の入射端面56a直前において、散乱部材54により、合波光を散乱させ、狭帯域光の成分の開口数(NA)大きくする。
散乱部材54により散乱させられた合波光は、狭帯域光の成分および白色光の成分のそれぞれが、NAが大きい光として、ロッドインテグレータ56に入射する。
入射された合波光は、ロッドイングレータ56に内において、それぞれのNAを維持したまま面内光量分布の均一化がなされつつ伝播されて出射され、内視鏡12の光ファイバ32に入射され、光ファイバ32においても、NAを維持したまま伝播されて、光ファイバ32の先端、すなわち内視鏡の12の照射口24Aから、光束全体のNAが大きい合波光が、被写体(生体)に照射される。
その結果、合波光が照射される被写体(生体)の照射範囲の全体に、狭帯域光と白色光とが均一に照射される。
Further, in the endoscope system 10 shown in FIG. 1, the combined white light and narrowband light (plane sequential light) emitted from the endoscope light source device 14 of the present invention are optical fibers of the endoscope 12. 32 also propagates while maintaining the respective numerical apertures (NA) when entering from the exit end face 56c of the rod inlator 56 of the endoscope light source device 14, and from the irradiation port 24A of the endoscope 12. Irradiated.
In the present invention, the combining member 42 combines the light beams of the narrow band light so that the light beam of the narrow band light is arranged in the central portion where the light beam of the white light is small, and the light beam of the narrow band light and the periphery thereof are the white light. The converging lens 52 condenses the light beam of the combined light (surface sequential light) consisting of the light beams of the above-mentioned light beams, while the relationship is maintained, but the light is scattered by the scattering member 54 immediately before the incident end surface 56a of the rod integrator 56. And the numerical aperture (NA) of the component of the narrow band light is increased.
The combined light scattered by the scattering member 54 enters the rod integrator 56 as light having a large NA in each of the narrowband light component and the white light component.
The incident combined light is propagated and emitted in the rod inlator 56 while the in-plane light quantity distribution is made uniform while maintaining the respective NAs, and is incident on the optical fiber 32 of the endoscope 12. Also in the optical fiber 32, it is propagated while maintaining the NA, and the subject (living body) is irradiated with the combined light having a large NA of the entire light flux from the tip of the optical fiber 32, that is, the irradiation port 24A of the endoscope 12. The
As a result, narrow-band light and white light are uniformly irradiated over the entire irradiation range of the subject (living body) irradiated with the combined light.

以下に、本発明の内視鏡用光源装置を有する内視鏡システムの作用について説明する。   Below, the effect | action of the endoscope system which has the light source device for endoscopes of this invention is demonstrated.

上述の通り、光源装置14は、通常光モード及び特殊光モードの両方に用いられるキセノン(Xe)光源(第1の光源部28)と、特殊光モードにおいて青紫色レーザ光源(405LD)又は青色LEDを用いる特殊光光源(第2の光源部30)とを発光源として備えている。これら各光源部28及び30からの発光(出射)は、光源制御部(図示せず)により個別に制御されており、第1の光源部28の出射光(白色光)と第2の光源部30の出射光(狭帯域光)との光量比は変更自在になっている。   As described above, the light source device 14 includes the xenon (Xe) light source (first light source unit 28) used in both the normal light mode and the special light mode, and the blue-violet laser light source (405LD) or the blue LED in the special light mode. And a special light source (second light source unit 30) using a light source. Light emission (emitted) from each of the light source units 28 and 30 is individually controlled by a light source control unit (not shown), and the emitted light (white light) of the first light source unit 28 and the second light source unit. The light quantity ratio with the 30 outgoing light (narrow band light) can be changed freely.

通常光モードの場合、キセノン光源38から出射される白色光は、リフレクタ40によって平行光とされ、合波部材42を透過し、回転式フィルタ47の第1のフィルタ組のいずれかのフィルタ(R1フィルタ部47r1、G1フィルタ部47g1、B1フィルタ部47b1)を順次透過し、R光、G光及びB光の面順次光とされて、順次、集光レンズ52において集光され、ロッドインテグレータ56の入射端面56a直前に設置された散乱部材54により散乱されて、ロッドインテグレータ56に入射する。   In the normal light mode, white light emitted from the xenon light source 38 is converted into parallel light by the reflector 40, passes through the multiplexing member 42, and is one of the filters (R 1) of the first filter set of the rotary filter 47. Filter section 47r1, G1 filter section 47g1, and B1 filter section 47b1) are sequentially transmitted to form a surface sequential light of R light, G light, and B light. The light is scattered by the scattering member 54 installed immediately before the incident end face 56 a and enters the rod integrator 56.

特殊光モードの場合、キセノン光源38から出射される白色光は、リフレクタ40で平行光となり、他方、特殊光光源48から出射される狭帯域光は、コリメータレンズ50によって、合波部材42の略楕円形の反射部材44の短径と略等しい略円形の光束を備えるよう整形された平行光となる。   In the special light mode, the white light emitted from the xenon light source 38 becomes parallel light by the reflector 40, while the narrow band light emitted from the special light source 48 is substantially shortened by the collimator lens 50. The parallel light is shaped so as to have a substantially circular light beam substantially equal to the minor axis of the elliptical reflecting member 44.

次いで、合波部材42において、白色平行光は、合波部材42を透過し、他方、上記のように略円形に整形された狭帯域平行光は、反射部材44に反射されて、透過した白色光の光路に合流し、中央部分に狭帯域光の光束が配置され、周辺部分に白色光の光束が配置された合波光となる。
次に、合波部材42で合波された合波光は、回転式フィルタ47の第2のフィルタ組の各フィルタ(G1フィルタ部47g2、B1フィルタ部47b2、遮光フィルタ部47cut)を順次透過し、G光及びB光の面順次光とされて、順次、集光レンズ52に入射し、集光レンズ52によって合波光(面順次光)内の狭帯域光と白色光との配置関係を維持したまま集光され、ロッドインテグレータ56の入射端面56a直前に設置された散乱部材54により散乱されて、中央部分に配置された狭帯域光のNAが周辺部分に配置された白色光のNAと同様に大きくされた、合波光として、ロッドインテグレータ56に入射する。
Next, in the multiplexing member 42, the white parallel light is transmitted through the multiplexing member 42, while the narrow-band parallel light shaped into a substantially circular shape as described above is reflected by the reflecting member 44 and transmitted through the white light. The light is combined into the optical path of the light, and the combined light is a narrow-band light beam arranged in the central part and a white light beam arranged in the peripheral part.
Next, the combined light combined by the combining member 42 sequentially passes through each filter (G1 filter unit 47g2, B1 filter unit 47b2, and light shielding filter unit 47cut) of the second filter set of the rotary filter 47, G light and B light are made into surface sequential light and sequentially enter the condensing lens 52, and the condensing lens 52 maintains the arrangement relationship between the narrowband light and the white light in the combined light (surface sequential light). The light is condensed and scattered by the scattering member 54 installed immediately before the incident end face 56a of the rod integrator 56, and the NA of the narrow band light arranged in the central portion is the same as the NA of the white light arranged in the peripheral portion. Incident light enters the rod integrator 56 as combined light.

通常光モード及び特殊光モードいずれの場合においても、ロッドインテグレータ56に入射した白色光又は合波光(面順次光)は、ロッドインテグレータ56内で反射を繰り返し、出射時には出射面内の光量分布が均一になる。なお、ロッドインテグレータ56内では、合波光内の狭帯域光のNA及び白色光のNAは維持され、ロッドインテグレータ56から合波光内の両光のNAが維持されたまま出射される。   In both the normal light mode and the special light mode, the white light or the combined light (plane sequential light) incident on the rod integrator 56 is repeatedly reflected in the rod integrator 56, and the light amount distribution in the exit surface is uniform at the time of emission. become. In the rod integrator 56, the NA of the narrow band light and the NA of the white light in the combined light are maintained, and the NA is emitted from the rod integrator 56 while maintaining the NA of both lights in the combined light.

すなわち、通常光モード及び特殊光モードのいずれの場合も、ロッドインテグレータ56を通過した光は光量分布が均一になり、光ファイバ(ライトガイド)32に入力され、コネクタ部に伝送される。コネクタ部まで伝送された光は、照明光学系を構成する光ファイバ32によって、それぞれ内視鏡12の先端部まで伝搬される。そして、特殊光モード時においては、合波光は、狭帯域光のNA及び白色光のNAを維持したまま、光ファイバ32内を伝播する。   That is, in both the normal light mode and the special light mode, the light passing through the rod integrator 56 has a uniform light amount distribution, is input to the optical fiber (light guide) 32, and is transmitted to the connector unit. The light transmitted to the connector part is propagated to the distal end part of the endoscope 12 by the optical fiber 32 constituting the illumination optical system. In the special light mode, the combined light propagates through the optical fiber 32 while maintaining the NA of the narrow band light and the NA of the white light.

上述したように、通常光モードの白色光の面順次光も、特殊光モードの白色光と狭帯域光との合波光の面順次光も、内視鏡12の先端部の照射口24Aから被検体の被観察領域に向けて照射される。なお、特殊光モードの合波光は、狭帯域光のNA及び白色光のNAを維持したまま、照射される。
そして、照明光として面順次光が照射された被観察領域からの戻り光が、順次、受光部24Bを介して撮像素子32の受光面上に結像され、撮像素子22によって被観察領域が面順次光の各色毎に撮像される。
撮像後に撮像素子26から出力される撮像画像の各色の画像信号は、スコープケーブル42を通じてプロセッサ16の画像処理システム36に入力される。
As described above, both the surface sequential light of the white light in the normal light mode and the surface sequential light of the combined light of the white light and the narrow band light in the special light mode are received from the irradiation port 24A at the distal end portion of the endoscope 12. Irradiation is directed toward the observation region of the specimen. The combined light in the special light mode is emitted while maintaining the NA of the narrow band light and the NA of the white light.
Then, the return light from the observation region irradiated with the surface sequential light as the illumination light is sequentially imaged on the light receiving surface of the image pickup device 32 via the light receiving unit 24B, and the image pickup device 22 makes the observation region a surface. Images are sequentially taken for each color of light.
Image signals of each color of the captured image output from the image sensor 26 after imaging are input to the image processing system 36 of the processor 16 through the scope cable 42.

次に、こうして撮像素子26によって撮像された撮像画像の各色の画像信号は、プロセッサ16の画像処理システム36を含む信号処理系によって画像処理され、モニタ20や記録装置(図示省略)にカラー画像として出力され、ユーザの観察に供される。
なお、特殊光モードにおいて、合波光内の狭帯域光が照射され、撮影された領域Aについては、その範囲が簡単に視認できるように、撮影画像上にその境界を表示してもよい。
Next, the image signals of the respective colors of the picked-up image picked up by the image pickup device 26 in this way are subjected to image processing by a signal processing system including the image processing system 36 of the processor 16, and as a color image on the monitor 20 or a recording device (not shown). It is output and used for user observation.
In the special light mode, the border of the captured area A may be displayed on the captured image so that the range of the captured area A can be easily visually recognized.

なお、上記実施形態においては、回転式フィルタ47を用いて白色光及び合波光の面順次光を生成し、生成された面順次光を撮影対象に照射し、撮影対象からの戻り光をモノクロの撮像素子(センサ)26で撮像する面順次方式の撮像を行う構成としているが、本発明はこれに限定されず、回転式フィルタ47を用いずに、カラー撮像素子を用いる同時方式の撮像を行う構成としてもよい。   In the above embodiment, the rotary filter 47 is used to generate the surface sequential light of the white light and the combined light, the generated surface sequential light is irradiated to the imaging target, and the return light from the imaging target is monochrome. Although the image pickup device (sensor) 26 is configured to perform frame sequential imaging, the present invention is not limited to this, and a simultaneous imaging using a color imaging device is performed without using the rotary filter 47. It is good also as a structure.

なお、上記実施形態においては、合波部材42が傾斜角度45°(白色光の進行方向と反射部材44の反射面のなす角度が45°)に傾斜されて配置された場合について説明したが、合波部材42は、白色光と狭帯域光とが交差する位置に、白色光の進行方向に対して30°〜60°傾斜させて配置されるものであってもよい。この場合、反射部材44による狭帯域光の反射方向が白色光の進行方向と合致する必要があるため、合波部材42の傾斜角度をψ°(白色光の進行方向と反射部材44の反射面のなす角度をψ°)とすると、狭帯域光が反射部材44の反射面への入射する入射角度もψ°とする必要がある。よって、狭帯域光の合波部材42への入射角度がψ°となるように特殊光光源(第2の光源部30)が設置される。
この場合も前述と同様に、合波部材42の傾斜角度ψ°に基づいて、白色光の光束の光の少ない中央部分に、狭帯域光の光束が配置されるように、反射部材44の形状およびサイズが設計され、コリメータレンズ50が設計される。
In the above-described embodiment, the case where the multiplexing member 42 is arranged at an inclination angle of 45 ° (the angle between the traveling direction of white light and the reflection surface of the reflection member 44 is 45 °) has been described. The combining member 42 may be disposed at a position where the white light and the narrow band light intersect with each other with an inclination of 30 ° to 60 ° with respect to the traveling direction of the white light. In this case, since the reflection direction of the narrow band light by the reflecting member 44 needs to match the traveling direction of the white light, the inclination angle of the multiplexing member 42 is set to ψ ° (the traveling direction of the white light and the reflecting surface of the reflecting member 44). Is an angle of incidence on which the narrow-band light is incident on the reflecting surface of the reflecting member 44 is also ψ °. Therefore, the special light source (second light source unit 30) is installed so that the incident angle of the narrowband light to the multiplexing member 42 is ψ °.
In this case as well, the shape of the reflection member 44 is set so that the narrow-band light beam is arranged in the central portion where the light beam of the white light is small, based on the inclination angle ψ ° of the multiplexing member 42 as described above. And the size is designed and the collimator lens 50 is designed.

以上、本発明の内視鏡用光源装置及びこれに係る内視鏡システムについての実施形態を詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。   As mentioned above, although the embodiment about the light source device for endoscopes and the endoscope system according to the present invention has been described in detail, the present invention is not limited to the above-described embodiments, and does not depart from the gist of the present invention. Of course, various improvements or changes may be made.

10 内視鏡システム
12 内視鏡
14 内視鏡用光源装置
16 プロセッサ
18 入出力部
20 表示部(モニタ)
22 入力部
24A 照射口
24B 受光部
26 撮像素子
28 第1の光源部
30 第2の光源部
32 ライトガイド(光ファイバ)
34 スコープケーブル
36 画像処理システム
38 キセノン光源(白色照明用光源)
40 リフレクタ(放物面鏡)
42 合波部材
44 反射部材
46 透過部材
47 回転フィルタ
48 特殊光光源
50 シリンドリカルレンズ(整形レンズ)
51 回転フィルタモータ
52 集光レンズ
54 散乱部材
56 ロッドインテグレータ
DESCRIPTION OF SYMBOLS 10 Endoscope system 12 Endoscope 14 Endoscope light source device 16 Processor 18 Input / output part 20 Display part (monitor)
22 Input Unit 24A Irradiation Port 24B Light Receiving Unit 26 Image Sensor 28 First Light Source Unit 30 Second Light Source Unit 32 Light Guide (Optical Fiber)
34 Scope cable 36 Image processing system 38 Xenon light source (light source for white illumination)
40 reflector (parabolic mirror)
42 Multiplexing member 44 Reflecting member 46 Transmitting member 47 Rotating filter 48 Special light source 50 Cylindrical lens (shaping lens)
51 Rotating filter motor 52 Condensing lens 54 Scattering member 56 Rod integrator

Claims (14)

白色照明光を出射する第1の光源部と、
前記白色照明光より狭い波長帯域の狭帯域光を前記白色照明光の進行方向と直交する方向に出射する第2の光源部と、
該第2の光源部から出射された前記狭帯域光の光束の形状及びサイズの少なくとも一方を変化させる整形レンズと、
前記白色照明光と前記狭帯域光とが交差する位置に前記白色照明光の進行方向に対して30°〜60°傾斜させて配置され、中心部分に少なくとも前記狭帯域光を反射する略楕円形の反射部及び該反射部の周辺部分に前記白色照明光を透過する透過部を備え、前記白色照明光と前記狭帯域光とを合波する合波部材と、
該合波部材によって合波された合波光を集光する集光レンズと、
該集光レンズで集光された前記合波光が入射される入射端面、該入射端面から入射された前記合波光を内部で多重反射して面内の光量分布を均一化する本体及び均一化された光量分布を持つ合波光を出射する出射端面を備え、前記本体の内部の多重反射により前記出射端面における光量分布が均一化された合波光を前記出射端面から出射して内視鏡装置のライトガイドへ入射させるロッドインテグレータと、
該ロッドインテグレータの前記入射端面側に配置され、前記集光レンズで前記集光された合波光を散乱させる散乱部と、を有し、
前記合波部材は、前記白色照明光を前記透過部により透過し、前記整形レンズで整形された前記狭帯域光を、その進行方向が前記白色照明光の進行方向と一致するように前記略楕円形の反射部により反射させて、前記狭帯域光の光束が前記白色照明光の光束の中央部分に位置するように前記白色照明光と前記狭帯域光とを合波し、
前記整形レンズは、傾斜配置された前記合波部材に入射する前記狭帯域光の光束の形状及びサイズが、前記合波部材の略楕円形の前記反射部の形状及びサイズと略等しくなるように、前記狭帯域光の光束を所定の円形に整形し、
前記集光レンズは、前記合波光を、その光束のサイズが前記ロッドインテグレータの入射端面のサイズと略一致するように、集光することを特徴とする内視鏡用光源装置。
A first light source that emits white illumination light;
A second light source unit that emits narrowband light having a narrower wavelength band than the white illumination light in a direction orthogonal to the traveling direction of the white illumination light;
A shaping lens that changes at least one of the shape and size of the light beam of the narrow-band light emitted from the second light source unit;
The white illumination light and the narrowband light are arranged at a position where the white illumination light and the narrowband light intersect with each other at an angle of 30 ° to 60 ° with respect to the traveling direction of the white illumination light, and reflect at least the narrowband light at a central portion. A reflection part and a transmission part that transmits the white illumination light in a peripheral part of the reflection part, and a multiplexing member that combines the white illumination light and the narrowband light,
A condensing lens that condenses the combined light combined by the combining member;
An incident end face on which the combined light collected by the condenser lens is incident, a main body for uniforming the in-plane light quantity distribution by multiple reflection of the combined light incident from the incident end face inside, and being uniformized An output end face that emits combined light having a uniform light quantity distribution, and outputs the combined light whose light quantity distribution at the output end face is uniformed by multiple reflection inside the main body from the output end face. A rod integrator that enters the guide;
A scattering part that is disposed on the incident end face side of the rod integrator and scatters the combined light collected by the condenser lens;
The multiplexing member transmits the white illumination light through the transmission unit, and the narrowband light shaped by the shaping lens is substantially elliptical so that a traveling direction thereof coincides with a traveling direction of the white illumination light. The white illumination light and the narrowband light are combined so that the light beam of the narrowband light is positioned at a central portion of the light beam of the white illumination light, reflected by the shape reflecting portion,
The shaping lens is configured such that the shape and size of the light beam of the narrow-band light incident on the multiplexing member arranged in an inclined manner is substantially equal to the shape and size of the substantially elliptical reflecting portion of the multiplexing member. , Shaping the light beam of the narrow-band light into a predetermined circle,
The light source device for an endoscope, wherein the condensing lens condenses the combined light so that a size of the light beam is substantially equal to a size of an incident end face of the rod integrator.
前記整形レンズで整形された前記狭帯域光の前記所定の略円形状の光束の直径は、前記白色照明光の光束の中心に存在する、その光量分布の低下部分の直径と略同一である請求項1に記載の内視鏡用光源装置。   The diameter of the predetermined substantially circular light beam of the narrow-band light shaped by the shaping lens is substantially the same as the diameter of the reduced portion of the light amount distribution existing at the center of the light beam of the white illumination light. Item 2. The endoscope light source device according to Item 1. 前記合波部材の略楕円形の前記反射部の長径は、前記透過部を透過する前記白色照明光によって形成される略楕円形の透過面の長径の10%〜50%である請求項1又は2に記載の内視鏡用光源装置。   The major axis of the substantially elliptical reflection part of the multiplexing member is 10% to 50% of the major axis of the substantially elliptical transmission surface formed by the white illumination light transmitted through the transmission part. The endoscope light source device according to 2. 前記合波部材の略楕円形の前記反射部の短径は、前記透過部を透過する前記白色照明光の直径の10%〜50%である請求項1〜3のいずれかに記載の内視鏡用光源装置。   The internal view according to any one of claims 1 to 3, wherein a minor axis of the substantially elliptical reflection part of the multiplexing member is 10% to 50% of a diameter of the white illumination light transmitted through the transmission part. Mirror light source device. 前記合波部材の前記反射部のサイズは、前記合波部材の前記合波光の全出射面のサイズの1%〜25%である請求項1〜4のいずれかに記載の内視鏡用光源装置。   The light source for an endoscope according to any one of claims 1 to 4, wherein a size of the reflection portion of the multiplexing member is 1% to 25% of a size of a total emission surface of the combined light of the multiplexing member. apparatus. 前記第1の光源は、放電管である請求項1〜5のいずれかに記載の内視鏡用光源装置。   The endoscope light source device according to claim 1, wherein the first light source is a discharge tube. 前記第1の光源は、キセノンランプを含む請求項1〜6のいずれかに記載の内視鏡用光源装置。   The endoscope light source device according to claim 1, wherein the first light source includes a xenon lamp. 前記第2の光源は、半導体光源である請求項1〜7のいずれかに記載の内視鏡用光源装置。   The endoscope light source device according to claim 1, wherein the second light source is a semiconductor light source. 前記第2の光源は、青色レーザ光源、青紫色レーザ光源、又は青色LEDのいずれかを含む請求項1〜8のいずれかに記載の内視鏡用光源装置。   The endoscope light source device according to claim 1, wherein the second light source includes any one of a blue laser light source, a blue-violet laser light source, and a blue LED. 前記散乱部は、前記ロッドインテグレータの前記入射面に配置された散乱部材である請求項1〜9のいずれかに記載の内視鏡用光源装置。   The light source device for endoscope according to any one of claims 1 to 9, wherein the scattering unit is a scattering member disposed on the incident surface of the rod integrator. 前記散乱部は、前記ロッドインテグレータの前記入射面を粗面化することによって形成された粗面である請求項1〜9のいずれかに記載の内視鏡用光源装置。   The endoscope light source device according to claim 1, wherein the scattering portion is a rough surface formed by roughening the incident surface of the rod integrator. 前記合波部材の反射部が、反射ミラーである請求項1〜11のいずれかに記載の内視鏡用光源装置。   The light source device for an endoscope according to claim 1, wherein the reflection portion of the multiplexing member is a reflection mirror. 前記合波部材の反射部が、ダイクロイックミラーである請求項1〜11のいずれかに記載の内視鏡用光源装置。   The light source device for an endoscope according to claim 1, wherein the reflection portion of the multiplexing member is a dichroic mirror. 内視鏡と、
請求項1〜13のいずれかに記載の内視鏡用光源装置と、を有することを特徴とする内視鏡システム。
An endoscope,
An endoscope system comprising: the endoscope light source device according to claim 1.
JP2010227617A 2010-10-07 2010-10-07 Endoscope light source device Expired - Fee Related JP5450339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227617A JP5450339B2 (en) 2010-10-07 2010-10-07 Endoscope light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227617A JP5450339B2 (en) 2010-10-07 2010-10-07 Endoscope light source device

Publications (2)

Publication Number Publication Date
JP2012080949A true JP2012080949A (en) 2012-04-26
JP5450339B2 JP5450339B2 (en) 2014-03-26

Family

ID=46240477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227617A Expired - Fee Related JP5450339B2 (en) 2010-10-07 2010-10-07 Endoscope light source device

Country Status (1)

Country Link
JP (1) JP5450339B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008316A (en) * 2012-07-02 2014-01-20 Fujifilm Corp Light source device and endoscope system
CN108371535A (en) * 2018-01-26 2018-08-07 重庆金山医疗器械有限公司 Endoscope multi-olored illumination system
CN110367916A (en) * 2019-08-23 2019-10-25 重庆金山医疗技术研究院有限公司 Multimode endoscope light source unit
WO2021145019A1 (en) 2020-05-20 2021-07-22 株式会社アルス Light source device
CN113795745A (en) * 2019-05-13 2021-12-14 河北光源解决方案株式会社 Light source device and optical device
CN115561891A (en) * 2022-11-29 2023-01-03 微创优通医疗科技(上海)有限公司 Endoscope light source device and endoscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219101A (en) * 2001-01-29 2002-08-06 Asahi Optical Co Ltd Light source system for endoscopic apparatus
JP2006087764A (en) * 2004-09-27 2006-04-06 Kyocera Corp Led fiber light source device and endoscope using the same
JP2007020920A (en) * 2005-07-19 2007-02-01 Pentax Corp Light source device for endoscope and operation method of light source device for endoscope
JP2009072213A (en) * 2007-09-18 2009-04-09 Hoya Corp Endoscope light source unit and endoscope system
JP2009201940A (en) * 2008-02-29 2009-09-10 Hoya Corp Endoscopic light source system, endoscopic light source equipment, endoscopic processor, and endoscopic unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219101A (en) * 2001-01-29 2002-08-06 Asahi Optical Co Ltd Light source system for endoscopic apparatus
JP2006087764A (en) * 2004-09-27 2006-04-06 Kyocera Corp Led fiber light source device and endoscope using the same
JP2007020920A (en) * 2005-07-19 2007-02-01 Pentax Corp Light source device for endoscope and operation method of light source device for endoscope
JP2009072213A (en) * 2007-09-18 2009-04-09 Hoya Corp Endoscope light source unit and endoscope system
JP2009201940A (en) * 2008-02-29 2009-09-10 Hoya Corp Endoscopic light source system, endoscopic light source equipment, endoscopic processor, and endoscopic unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008316A (en) * 2012-07-02 2014-01-20 Fujifilm Corp Light source device and endoscope system
CN108371535A (en) * 2018-01-26 2018-08-07 重庆金山医疗器械有限公司 Endoscope multi-olored illumination system
CN113795745A (en) * 2019-05-13 2021-12-14 河北光源解决方案株式会社 Light source device and optical device
US11927528B2 (en) 2019-05-13 2024-03-12 Kahoku Lighting Solutions Corporation Light source device and optical device
CN110367916A (en) * 2019-08-23 2019-10-25 重庆金山医疗技术研究院有限公司 Multimode endoscope light source unit
WO2021145019A1 (en) 2020-05-20 2021-07-22 株式会社アルス Light source device
KR20210144652A (en) 2020-05-20 2021-11-30 가부시키가이샤 아루스 light source device
CN115561891A (en) * 2022-11-29 2023-01-03 微创优通医疗科技(上海)有限公司 Endoscope light source device and endoscope
CN115561891B (en) * 2022-11-29 2023-03-24 微创优通医疗科技(上海)有限公司 Endoscope light source device and endoscope

Also Published As

Publication number Publication date
JP5450339B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5587120B2 (en) Endoscope light source device
JP5216429B2 (en) Light source device and endoscope device
JP6394374B2 (en) Illumination apparatus, illumination method, and observation apparatus
US20210124178A1 (en) Medical imaging system, illumination device, and method
JP5450339B2 (en) Endoscope light source device
JP2009297290A (en) Endoscope apparatus and image processing method thereof
JP5285967B2 (en) LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE USING THE SAME
CN109068968B (en) Light source device for endoscope
JP5485835B2 (en) Endoscope light source device and light amount control method thereof, endoscope system and control method thereof
JP6394373B2 (en) Illumination apparatus, illumination method, and observation apparatus
US20110164249A1 (en) Light spectrum detection method
JP2013198547A (en) Light source device and endoscopic system
JP2009291347A (en) Light source unit and endoscope system using it
JP2012070839A (en) Light source device and endoscopic diagnostic system
JP5841317B2 (en) Medical equipment
JP2012139435A (en) Electronic endoscope
JP5450342B2 (en) Endoscope light source device
JP6687071B2 (en) Illumination device, illumination method, and observation device
RU2290855C1 (en) Method and device for carrying out fluorescent endoscopy
JP4713922B2 (en) Endoscope device
JP2014023630A (en) Light source unit and electronic endoscope apparatus
JP2012070822A (en) Light source device and endoscopic diagnostic systen
JP2006122251A (en) Led fiber light source device and endoscopic apparatus using the same
JP6973549B2 (en) Observation system and control method of observation system
JP5934267B2 (en) Endoscope light source device and operating method thereof, and endoscope system and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5450339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees