JP2012067573A - Surface planted type diamond bit capable of adjusting projection height of diamond abrasive grains from matrix and strongly maintaining inner and outer diameters - Google Patents

Surface planted type diamond bit capable of adjusting projection height of diamond abrasive grains from matrix and strongly maintaining inner and outer diameters Download PDF

Info

Publication number
JP2012067573A
JP2012067573A JP2010230966A JP2010230966A JP2012067573A JP 2012067573 A JP2012067573 A JP 2012067573A JP 2010230966 A JP2010230966 A JP 2010230966A JP 2010230966 A JP2010230966 A JP 2010230966A JP 2012067573 A JP2012067573 A JP 2012067573A
Authority
JP
Japan
Prior art keywords
diamond
matrix
implantable
layer
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010230966A
Other languages
Japanese (ja)
Inventor
Hideo Hirano
英男 平野
Hiroyuki Ando
浩之 安藤
Tadao Ishikawa
唯夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURISUTENSEN MAIKAI KK
Original Assignee
KURISUTENSEN MAIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURISUTENSEN MAIKAI KK filed Critical KURISUTENSEN MAIKAI KK
Priority to JP2010230966A priority Critical patent/JP2012067573A/en
Publication of JP2012067573A publication Critical patent/JP2012067573A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Earth Drilling (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure a space for circulating cooling water for the purpose of cooling a bore hole and removing scraps by taking a large clearance between a matrix surface for holding the diamond of a surface planted type bit and a rock to be drilled.SOLUTION: The matrix 20 for holding diamond abrasive grains 10 to be a blade tip is turned to a two-story structure in a height direction, a second floor layer comprises a pedestal sufficiently larger than a diamond particle, and the pedestal of the second floor layer projected from the matrix is constructed. Manufacturing is performed by an impregnation method, and a female die made of graphite is processed and configured. For the second floor layer part, a diamond implanting hole is processed and molded on the graphite die by a drill, an end mill or a ball end mill. At the center of the pedestal of the first stage for mounting the diamond, processing is performed to a depth corresponding to a diamond size further.

Description

地下の地質調査や地下資源の探索のため加工をする。その地質調査用の加工技術とその加工工具の分野に属する。  Processing for underground geological surveys and exploration of underground resources. It belongs to the field of processing technology and processing tools for geological survey.

技術背景の一つとしてダイヤモンドビットにおいて、ビットのマトリックスからのダイヤの突出量を確保することは連続先行加工では非常に重要である。それはビットによる穿孔加工が連続的に遂行するためには、ダイヤが被削体(地盤の岩、岩盤)に常に深く食い込むことが重要になる。このため大きなダイヤ砥粒ほど粒径が大きいので、その突出量を大きくでき、穿孔には有利に作用する。粒径の大きい天然ダイヤや人工の細かいダイヤを高温高圧で焼成結合体(以下;焼結体)を刃先として構成することが多い。  As one of the technical backgrounds, in diamond bits, it is very important in continuous advance processing to ensure the amount of diamond protrusion from the bit matrix. In order for drilling with a bit to be carried out continuously, it is important that the diamond always penetrates deeply into the work piece (ground rock, bedrock). For this reason, the larger the diamond abrasive grains, the larger the particle diameter, so that the amount of protrusion can be increased, which has an advantageous effect on drilling. In many cases, a natural diamond having a large particle diameter or an artificial fine diamond is formed at a high temperature and high pressure using a fired bonded body (hereinafter referred to as a sintered body) as a cutting edge.

しかし、ダイヤモンド粒径や焼結体にはコストとのバランスでダイヤを保持するマトリックス面とのクレアランスを常に高くするには限度がある。しかも、天然ダイヤの天然としての性質再現性や品質幅の確保、輸入依存からの為替変動や1粒(二つとして同じダイヤはない)あたりのコスト要因が工具構成因子としてのリスクを高めることになる。しかも、これらの組み合わせ総合体として、かなり高額品な製品となることが多く、競争社会における不利な要素が多く現れることになる。
However, there is a limit to the diamond particle size and the sintered body to always increase the clearance with the matrix surface holding the diamond in balance with the cost. Moreover, the natural property reproducibility and quality range of natural diamonds, exchange fluctuations due to import dependence and cost factors per grain (no two same diamonds) will increase the risk as a tool component factor. Become. In addition, these combined products are often quite expensive products, and many disadvantageous elements in a competitive society appear.

特願1998−146771号公報Japanese Patent Application No. 1998-144771 特願2003−027037号公報Japanese Patent Application No. 2003-027037

実案文献1Model document 1

実願2008−002506号公報Japanese Patent Application No. 2008-002506

しかしながら、文献1、3は出願人の先願の実用新案・特許であるが、技術分野や技術的工法は同じである。したがって、原理・原則の理解の向上には効果的であるし、製品特許を願う出願人の意志が反映されている。特に、ダイヤを包含式にマトリックス中に混合分散させて、マトリックスの摩耗と共に、ダイヤ刃先を露出させる方式であるインプリ方式であるし、文献2も同じインプリ方式である。本願とは原則技術・加工方式  However, although References 1 and 3 are utility models and patents of the applicant's previous application, the technical field and the technical method are the same. Therefore, it is effective in improving the understanding of the principle and principle, and reflects the will of the applicant who wishes for a product patent. In particular, the implementation method is a method in which diamonds are mixed and dispersed in a matrix in an inclusive manner so that the diamond blade edge is exposed as the matrix wears, and Document 2 is also the same implementation method. What is this application?

が異なるが、ダイヤを含まない層をマトリックスとして構築するこの新技術は、新規性・先行技術が明白で、顕著な効果を発揮している。ちなみにこれらの方式ではダイヤの突出量は測定値ではあるが、数ミクロンの値である。しかしながら、文献3では数十ミクロンと10倍以上向上することができる。文献2の工具の効能は不明であるが、顕著な効果を業界として報道されていないことを鑑みるに不適であろうと推察される。  However, this new technology that constructs a layer that does not contain diamonds as a matrix is clear in terms of novelty and prior art and has a remarkable effect. Incidentally, in these methods, the protrusion amount of the diamond is a measured value, but a value of several microns. However, Document 3 can improve by several tens of microns, 10 times or more. Although the effectiveness of the tool in Document 2 is unknown, it is presumed that it will be inappropriate in view of the fact that no significant effect has been reported in the industry.

一般的に天然ダイヤの突出量を確保するためには粒径の大きなダイヤ又は人工の細かいダイヤを高温高圧で焼結体(以下;焼結体)として見掛け上大きな粒径とした焼結体(PDC(:多結晶ダイヤモンド)で突出量を大きく出していた。従来の表面植込み型ビットは掘削する岩と刃先のダイヤモンドを保持するマトリックス面とのクレアランスが大きく取れないため、穿孔の冷却と切り屑の除去を目的とした冷却水(以下;スライム水)が循環することで、土砂摩耗効果、ビット先端やマトリックス層をエロージョン(erosion)摩耗を生ずる。また、排出する流体を阻止し目詰まりの発生を起こし、工具の異常摩耗、穿孔加工率の低下を招いていた。  In general, in order to ensure the protruding amount of natural diamond, a sintered body having an apparently large particle diameter as a sintered body (hereinafter referred to as a sintered body) having a large particle diameter or an artificial fine diamond at high temperature and high pressure ( PDC (Polycrystalline diamond) has been used to increase the amount of protrusion, since conventional surface-implanted bits do not provide a large clearance between the rock to be drilled and the matrix surface that holds the diamond at the cutting edge. Circulation of cooling water (hereinafter referred to as slime water) for the purpose of removing debris causes sediment wear effect, erosion wear of bit tip and matrix layer, and prevents clogging by discharging fluid. Occurrence occurred, leading to abnormal wear of the tool and a decrease in the drilling rate.

問題の解決のために、刃先となるダイヤ砥粒を保持するマトリックスを高さ方向に二階建て構造とし、二階層はダイヤ粒子より十分大きい台座で構成させ、マトリックスより突出させた二階層の台座を構築する。原理的に階層をいくらでも増やせるが構造安定度である強度向上や型の加工には限度があり、2ないし3層以内が適している。その製造法の概略は含浸法であるからメス型であるグラファイト製の型(以下;型と略す)を加工して構成する。二階層部は刃先となるダイヤを突出させるための孔を型にドリル、  In order to solve the problem, the matrix that holds the diamond abrasive grains serving as the cutting edge has a two-story structure in the height direction, and the two layers are composed of a pedestal that is sufficiently larger than the diamond particles, and the two tiers that protrude from the matrix To construct. In principle, the number of layers can be increased as much as possible, but there is a limit to the improvement in strength, which is structural stability, and the processing of the mold, and two to three layers are suitable. Since the outline of the manufacturing method is an impregnation method, a graphite mold (hereinafter referred to as a mold) which is a female mold is processed and configured. The second layer is drilled with a hole to project the diamond that becomes the cutting edge,

エンドミルやボールエンドミルで、容易に加工成形できる。最近のNC機搭載工作機は加工精度、能率、時間も、それを容易にしている。ダイヤを乗せる一段目の台座の中心に、更にダイヤサイズに応じた深さに加工する。そうすることで、型には順次2階層となる、円筒状のメス型を構成できる。このメス型の中心にダイヤを天然・有機糊で設置して仮止めする。メス型の内面に仮止めした状態で、次に台金を中心決めの治具中心でセットして固定さす。  It can be easily processed and molded with an end mill or ball end mill. Recent machine tools equipped with NC machines make machining accuracy, efficiency and time easy. In the center of the first pedestal on which the diamond is placed, it is further processed to a depth corresponding to the diamond size. By doing so, it is possible to configure a cylindrical female die that sequentially becomes two layers. A diamond is placed in the center of this female mold with natural or organic glue and temporarily fixed. After temporarily fixing to the inner surface of the female mold, set the base metal at the center of the fixed jig and fix it.

更にメス型と台金の隙間に骨組みを構成するスケルトン材料を流し込み充填させる。そして、そのスケルトン充填状態の上に溶解してスケルトン隙間に、バインダーとなる粉末を乗せてスケルトン粉末とバインダーの濡れが向上するように、金属酸化物で構成されるガラス成分となるフラックスで覆う。この状態で型とフラックスを十分乾燥させる。そして、型を加熱炉に入れて加熱することで溶けたバインダーを含浸させることで本法を実施できる。  Further, a skeleton material constituting the framework is poured into the gap between the female die and the base metal and filled. And it melt | dissolves on the skeleton filling state, and it covers with the flux used as the glass component comprised by a metal oxide so that the powder used as a binder may be put in a skeleton gap | interval and wettability of a skeleton powder and a binder improves. In this state, the mold and the flux are sufficiently dried. And this method can be implemented by impregnating the melt | dissolved binder by putting a type | mold into a heating furnace and heating.

十分高い温度に加熱することで、バインダーはスケルトン層の空間に浸み込み、ダイヤをカシメ構造としている円筒状のスケルトンもバインダーで濡れて、ダイヤを固定することができる。こうすることで、従来不可能であったダイヤとマトリックスからの突出量を2倍以上に確保する事ができる。ダイヤが乗る部分をスケルトンとバインダーで押し上げた構造であるから、元々のマトリックス層から比較するとダイヤを物理的に表面に突出させたことになる。  By heating to a sufficiently high temperature, the binder soaks into the space of the skeleton layer, and the cylindrical skeleton having a crimped structure of the diamond can also be wetted with the binder to fix the diamond. By doing so, it is possible to secure the amount of protrusion from the diamond and matrix, which has been impossible in the past, more than twice. Since the structure on which the diamond is placed is pushed up by a skeleton and a binder, the diamond is physically protruded from the surface as compared with the original matrix layer.

一般的にダイヤモンドの突出量を確保するためには大きなダイヤモンド又は人工的に大きく造ったPDC(多結晶ダイヤモンド)で突出量を大きく出していた。二段形状にする事で、小さなダイヤモンドでも大きな突出量を確保する事が可能となる。小さなダイヤモンドで大きな突出量が出せるため、ダイヤ費が大きく軽減できる。  In general, in order to secure the amount of protrusion of diamond, the amount of protrusion is increased by using large diamond or artificially made PDC (polycrystalline diamond). By using a two-stage shape, it is possible to ensure a large amount of protrusion even with a small diamond. Because a large amount of protrusion can be produced with a small diamond, the diamond cost can be greatly reduced.

従来の表面植込み型ビットは掘削する岩と刃先のダイヤモンドを保持するマトリックス面とのクレアランスが大きく取れないため、スライム水を排出する流体を阻止し、目詰まりの発生を起こし掘削性能を低下させた。
二段形状の場合、従来の2倍以上のクレアランスを取ることができるため、流体の流れがよくスライムの排出が容易で掘削性を維持する事ができる。ダイヤ砥粒の場合、密に植え込まれているため、回転掘削で採取される採取コアの外形外観は滑らかな状態で、採取コア分析のために良好な状態でコアが採取できる。
Conventional surface-implanted bits do not have a large clearance between the rock to be drilled and the matrix surface that holds the diamond at the cutting edge, preventing the fluid that drains slime water, causing clogging, and reducing drilling performance. It was.
In the case of a two-stage shape, a clearance of more than twice that of the conventional one can be obtained, so that the flow of fluid is good and the slime can be easily discharged and the excavation performance can be maintained. In the case of diamond abrasive grains, the outer appearance of the sampling core collected by rotary excavation is smooth, and the core can be collected in a good state for the collected core analysis because it is densely implanted.

メタルビットでは軟硬岩の互層では刃先の摩耗が早く掘削性の低下が早い。
ダイヤモンドを使用しているため、軟岩から硬岩まで幅広く使用できる。
硬軟岩で使用できるため、ビットの交換が不要となり作業効率がよくなる。
In the metal bit, the wear of the cutting edge is quick and the fall of excavability is quick in the alternate layer of soft rock.
Since diamond is used, it can be used widely from soft rock to hard rock.
Since it can be used with hard and soft rocks, it is not necessary to replace the bit and work efficiency is improved.

実施例1  Example 1

実施形態は図を参照しながら説明する。図1は従来品の見取り図であるが、ダイヤ(10)はマトリックス(20)から突出する高さはダイヤ砥粒(10)の直径から30〜40%程度が限界である。図1の詳細部分がそれを示す。この突出の量を改善して、より大きく突出させようとするのが本願の基本である。 図2は埋め込型ダイヤ・ビット(1)の外径が66mmで、内径50mmの一般的なサイズの本発明実施事例のダイヤビット(1)である。  The embodiment will be described with reference to the drawings. FIG. 1 is a sketch of a conventional product. The height of the diamond (10) protruding from the matrix (20) is limited to about 30 to 40% from the diameter of the diamond abrasive grains (10). The details of FIG. 1 illustrate this. The basic principle of the present application is to improve the amount of protrusion and make it protrude larger. FIG. 2 shows a diamond bit (1) according to an embodiment of the present invention having a general size of an embedded diamond bit (1) having an outer diameter of 66 mm and an inner diameter of 50 mm.

従来品と同等な砥粒間隔とダイヤ植込み数が同じである。マトリックス(20)が直径約3mmで、円柱(22)で試作した実施例である。回転数180回転/毎分で回転させ、スライム水は10L/毎分で供給しながら泥岩、砂岩を試掘削した。性能としての掘進速度は15%増加し、加圧変動幅が100Kg〜130Kgの範囲で極めて安定した状態が維持できた。採取されたコア表面は従来品に比較すると明確な堆積状態が確認でき、非常に良好な植込み型ダイヤ・ビット(1)であることが確認できた。相対的な工法全体では時間Abrasive interval and diamond implantation number equivalent to the conventional products are the same. This is an example in which the matrix (20) has a diameter of about 3 mm and was prototyped with a cylinder (22). The mudstone and sandstone were excavated while rotating at a rotational speed of 180 rpm and supplying slime water at a rate of 10 L / min. The drilling speed as a performance increased by 15%, and a very stable state could be maintained within a pressure fluctuation range of 100 kg to 130 kg. Compared with the conventional product, the collected core surface was confirmed to have a clear accumulation state, and it was confirmed that it was a very good implantable diamond bit (1). Relative method overall time

短縮と油圧駆動安定化で、約30%の試掘能率の向上が確認された。使用後のビット表面を詳細に観察すると、破砕したダイヤ(10)は10%、脱落したダイヤ(10)は5%以内であった。マトリックス(20)は図2詳細図の上部円筒部(22)の摩耗が顕著であったが、ダイヤの保持に影響はなかった。これは工具損耗の相対評価で判断すると、全体で85%と低基準で非常に向上したことになる。By shortening and stabilizing the hydraulic drive, it was confirmed that the drilling efficiency was improved by about 30%. When the bit surface after use was observed in detail, the crushed diamond (10) was within 10% and the diamond (10) dropped out was within 5%. In the matrix (20), wear of the upper cylindrical portion (22) in the detailed view of FIG. 2 was remarkable, but there was no influence on the holding of the diamond. Judging from the relative evaluation of tool wear, this is a great improvement on the low standard of 85% overall.

円筒(22)の上部が片摩耗しやすいことが第1実施形態で判明したので、第2事例を図3に示した。ダイヤビット1の外径が66mmで、内径50mmと図2事例と同様で一般的なサイズのダイヤビット(1)である。従来品と同等な砥粒間隔とダイヤ植込み数である。マトリックス(20)の円柱(22)に対してダイヤ1を内径側は内接円弧(26)に沿うようにして、外径側が外接円弧(27)の沿うように形成しR面を大きくして高さ1.2mmで試  Since it became clear in the first embodiment that the upper part of the cylinder (22) is easily worn away, the second case is shown in FIG. The outer diameter of the diamond bit 1 is 66 mm and the inner diameter is 50 mm, which is a diamond bit (1) having a general size similar to the case of FIG. Abrasive interval and diamond implantation number equivalent to conventional products. The diamond 1 is formed so that the inner diameter side is along the inscribed arc (26) and the outer diameter side is along the circumscribed arc (27) with respect to the cylinder (22) of the matrix (20). Tested at a height of 1.2 mm

作した。全体的にはダイヤ突出量、約1.7倍突出させた形状となる。性能確認の試験条件は図1の実施形態と同一被削材で、ローム層岩(泥岩・砂岩)を試掘削した。その結果、掘進速度が20%増加し、加圧変動幅が90Kgから120Kgの範囲で安定した良好な状態が実現できた。採取されたコアは図1の従来品と図2、の実施形態試作品に比較しても、更に良好な堆積層が確認できた。摩耗した表面では土砂摩耗はほとんど生じなく平滑で、ダイヤ自体の破砕、脱落も生じることなく、同程度以上に改善されるMade. As a whole, the shape of the protrusion is approximately 1.7 times the protrusion of the diamond. The test conditions for confirming the performance were the same work materials as those in the embodiment of FIG. 1, and the loam layer rock (mudstone / sandstone) was excavated. As a result, the excavation speed was increased by 20%, and a stable and stable state was realized in the range of pressure fluctuation from 90 kg to 120 kg. Even when the collected core was compared with the conventional product of FIG. 1 and the prototype of the embodiment of FIG. 2, a better deposited layer could be confirmed. The worn surface is smooth with almost no earth and sand wear, and it is improved to the same level or more without crushing or dropping out of the diamond itself.

ことがわかった。試作条件の検討のなかで、円柱(22)にしてマトリックス(20)を底上げすると明確な改善が確認できた。ダイヤ(10)の大きさの1.5から4倍程度が適応でき、好ましくは2から3倍程度がさらに良い。円柱(22)の高さの検討値は1mmから5mm程度まで検討したが、1.5mmの場合はマトリックス(20)の土砂摩耗が全く生じないことが判明した。グラファイト型(30)の肉厚、強度などの点から大きな問題はなく変更できて、かつ著しい性能改善が実現できる。I understood it. In the examination of the trial production conditions, when the matrix (20) was raised to the cylinder (22), a clear improvement could be confirmed. About 1.5 to 4 times the size of the diamond (10) can be applied, preferably about 2 to 3 times better. The examination value of the height of the cylinder (22) was examined from about 1 mm to about 5 mm. However, in the case of 1.5 mm, it was found that no earth and sand wear of the matrix (20) occurred. The graphite mold (30) can be changed without significant problems in terms of the thickness and strength of the graphite mold (30), and a significant performance improvement can be realized.

図3はマトリックス(20)に対して、ダイヤ(10)の位置関係を内径側は内径円弧(26)に内接するように成形する。また、外径円弧(27)はコーナーに相当する部分は二次元空間から三次元空間での摩耗の形態差を比較して外径円弧(27)のように内径は中心側に外径側は外径に内接するようにダイヤ(10)を設置試作した。周辺部分の要素から円筒(22)の中心から円筒内面側(26)と外面側(27)では円筒(22)に埋没させた構造の実施事例を記載する。  In FIG. 3, the diamond (10) is shaped relative to the matrix (20) so that the inner diameter side is inscribed in the inner diameter arc (26). The outer diameter arc (27) corresponds to the corner of the portion corresponding to the corner. The outer diameter arc is compared with the outer diameter side of the outer diameter arc (27). A diamond (10) was installed and prototyped so as to be inscribed in the outer diameter. An example of a structure in which the cylinder is buried in the cylinder (22) from the center of the cylinder (22) to the cylinder inner surface (26) and the outer surface (27) from the center of the peripheral portion will be described.

ダイヤ(10)の位置は円筒状(22)であるから、内面側(26)と外面側(27)は土砂摩耗が顕著に生ずるので円筒(22)に内・外接する構成を試作した。円筒(22)が直径3mm高さ1mmで構成させた場合、円筒(22)の中心より、内径側(26)は内面側に、外径側(27)は外径側に極力内・外接させるのがよかった。逆に、ダイヤ(10)を各内・外径側に多くした場合はダイヤ(10)の脱落が多かった。これらの構成はグラファイト型(30)を加工することで比較的容易に構成できた。内・外径に近い程よい。いずれもしても細径エンドミルで型(30)は軸中心に並行で、ダイヤの設置が容易にできるように加工できる。  Since the position of the diamond (10) is cylindrical (22), the inner surface (26) and the outer surface (27) are markedly worn by earth and sand. When the cylinder (22) has a diameter of 3 mm and a height of 1 mm, the inner diameter side (26) is connected to the inner surface side and the outer diameter side (27) is connected to the outer diameter side as much as possible from the center of the cylinder (22). It was good. On the contrary, when the diamond (10) was increased on the inner and outer diameter sides, the diamond (10) was frequently dropped. These configurations could be configured relatively easily by processing the graphite mold (30). The closer to the inner and outer diameters, the better. In any case, the die (30) can be processed with a small-diameter end mill so that the diamond can be easily installed in parallel with the axis center.

その全体配置は図3に示したが、経験的ノウハウが多く一粒のダイヤ刃先1が回転した時に二重にオーバーラップしないように構成するのがポイントである。その結果、土砂摩耗軽減が顕著に実現できた。掘進速度は図3試作改良品よりさらに5%増加して、加圧変動幅は100Kg〜130Kgの範囲で安定した状態であった。採取されたコアは、図1の従来法とは明らかに向上しているのが観察された。  The overall arrangement is shown in FIG. 3, but it is important to configure so that there is a lot of empirical know-how and do not overlap twice when one diamond blade edge 1 rotates. As a result, earth and sand wear reduction was remarkably realized. The excavation speed was further increased by 5% from the prototype improved product of FIG. 3, and the pressure fluctuation range was stable in the range of 100 kg to 130 kg. It was observed that the collected core was clearly improved from the conventional method of FIG.

本発明の考え方は砥石の結合度合いを巧みに利用したもので、一般の鉄系粉末冶金製品や超硬合金製品にも応用できる。セラミックスなどの窯業関連製品に使える。  The idea of the present invention skillfully utilizes the bonding degree of the grindstone, and can be applied to general iron-based powder metallurgy products and cemented carbide products. Can be used for ceramics-related products such as ceramics.

従来工具の側面図および、部分断面図である。It is the side view and partial sectional view of a conventional tool. この発明の第1実施形態を示している。1 shows a first embodiment of the present invention. この発明の第2実施形態を示している。2 shows a second embodiment of the present invention.

(1)植込み型ダイヤモンドビット
(10)ダイヤモンド砥粒(ダイヤ)
(20)マトリックス
(22)円柱・マトリックス
(26)内接円弧
(27)外接円弧
(30)グラファイト型
(70)台金(母材)
(1) Implantable diamond bit (10) Diamond abrasive (diamond)
(20) Matrix (22) Cylinder / Matrix (26) Inscribed arc (27) circumscribed arc (30) Graphite mold (70) Base metal (base material)

Claims (6)

ダイヤモンド砥粒(以下;ダイヤと略す)を表面植込み型ダイヤモンド・ビット(以下;植込み型ダイヤ・ビットと略す)において、台金を構成する加工成形された金属台金とダイヤをカシメ固定させた金属溶浸合金(以下;含浸合金、マトリックスと略す)部分をマトリックスで台座を円筒状に盛り上げて構成された先端が、そのマトリックス表面より高い位置にダイヤを設置させた植込み型ダイヤ・ビット  A metal with a diamond abrasive grain (hereinafter abbreviated as diamond) surface-implanted diamond bit (hereinafter abbreviated as implantable diamond bit) and a metal base metal and a diamond that have been formed by caulking and fixing the diamond. Implanted diamond bit with the tip of the infiltrated alloy (hereinafter referred to as "impregnated alloy", abbreviated as "matrix") matrix and raised pedestal in a cylindrical shape with the diamond positioned higher than the matrix surface 台金を構成するマトリックスの台座は円筒状に盛り上げて構成された構造で、かつ植込み型ダイヤ・ビットの内・外径の直径を強力に維持できるようにダイヤを内・外径に内接するように埋没させてなる構造をしている、請求項1記載の植込み型ダイヤ・ビット。  The matrix pedestal that constitutes the base metal is structured to be raised in a cylindrical shape, and the diamond is inscribed in the inner and outer diameters so that the inner and outer diameters of the implantable diamond bit can be maintained strongly. The implantable diamond bit according to claim 1, wherein the implantable diamond bit has a structure embedded in a ring. マトリックス層を構成する複合金属合金は含浸法(Infiltration法)目的形状を構成できる成分スケルトン層(Skelton層)と自ら溶解してスケルトン層の空隙に含浸、表面張力での浸透などで隙間を埋めるバインダー層(Binder層)とからなる、請求項1記載の植込み型ダイヤ・ビット。  The composite metal alloy composing the matrix layer is an impregnation method (Infiltration method) A component skeleton layer (Skelton layer) that can form the desired shape and is self-dissolved to impregnate the voids of the skeleton layer and fill the gaps by penetration with surface tension, etc. The implantable diamond bit according to claim 1, comprising a layer (Binder layer). ダイヤ砥粒は天然に産出されるもの(以下;天然ダイヤ)、人工的に超高圧で形成された焼結体(以下;焼結体)であって、その組み合わせで使用することを含み、かつ単独でも使用される請求項1記載の植込み型ダイヤ・ビット。  Diamond abrasive grains are naturally produced (hereinafter referred to as “natural diamond”), artificially formed sintered bodies (hereinafter referred to as “sintered bodies”), and used in combination thereof, and 2. The implantable diamond bit according to claim 1, which is used alone. マトリックス層のスケルトン層を構成する金属はタングステン、タンタルの金属、炭化物、窒化物、ホウ素化物であって、この相状態の組み合わせ、あるいは単独でも合金状態でもスケルトン層を構成できる、請求項1記載の植込み型ダイヤ・ビット。  The metal constituting the skeleton layer of the matrix layer is tungsten, a metal of tantalum, carbide, nitride, or boride, and the skeleton layer can be constituted by a combination of these phase states or alone or in an alloy state. Implantable diamond bit. 自ら溶解してスケルトン層の空隙に含浸、あるいは表面張力を低下させて、スケルトン表面と濡れ易く、浸透効果などで隙間を完全にバインダー合金内部の空間を無くするような性質を保持して、銀、銅、錫、アンチモン、マンガンなどの金属、炭化物、窒化物、ホウ素化物の合金であって、これらの組み合わせで構成されるスケルトン部材の空間をなくして成形できる、請求項1記載の植込み型ダイヤ・ビット。  It dissolves itself and impregnates the voids in the skeleton layer, or lowers the surface tension, easily wets the skeleton surface, and maintains the property of completely eliminating the space inside the binder alloy due to the penetration effect etc. 2. An implantable diamond according to claim 1, which is an alloy of metal such as copper, tin, antimony, manganese, carbide, nitride, boride, and can be formed without a space of a skeleton member composed of a combination thereof. ·bit.
JP2010230966A 2010-09-24 2010-09-24 Surface planted type diamond bit capable of adjusting projection height of diamond abrasive grains from matrix and strongly maintaining inner and outer diameters Pending JP2012067573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010230966A JP2012067573A (en) 2010-09-24 2010-09-24 Surface planted type diamond bit capable of adjusting projection height of diamond abrasive grains from matrix and strongly maintaining inner and outer diameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230966A JP2012067573A (en) 2010-09-24 2010-09-24 Surface planted type diamond bit capable of adjusting projection height of diamond abrasive grains from matrix and strongly maintaining inner and outer diameters

Publications (1)

Publication Number Publication Date
JP2012067573A true JP2012067573A (en) 2012-04-05

Family

ID=46165143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230966A Pending JP2012067573A (en) 2010-09-24 2010-09-24 Surface planted type diamond bit capable of adjusting projection height of diamond abrasive grains from matrix and strongly maintaining inner and outer diameters

Country Status (1)

Country Link
JP (1) JP2012067573A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155946A (en) * 1994-11-30 1996-06-18 Tone Corp Inner and outer diameter part reinforced diamond bit and production thereof
JP2000233373A (en) * 1999-02-10 2000-08-29 Noritake Diamond Ind Co Ltd Grinding tool
JP2003533618A (en) * 2000-05-18 2003-11-11 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Cutting tool and its use
JP2007260886A (en) * 2006-03-30 2007-10-11 Mitsubishi Materials Corp Cmp conditioner and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155946A (en) * 1994-11-30 1996-06-18 Tone Corp Inner and outer diameter part reinforced diamond bit and production thereof
JP2000233373A (en) * 1999-02-10 2000-08-29 Noritake Diamond Ind Co Ltd Grinding tool
JP2003533618A (en) * 2000-05-18 2003-11-11 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Cutting tool and its use
JP2007260886A (en) * 2006-03-30 2007-10-11 Mitsubishi Materials Corp Cmp conditioner and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US7628228B2 (en) Core drill bit with extended crown height
AU2016201337B2 (en) Infiltrated diamond wear resistant bodies and tools
US8459381B2 (en) Drill bits with axially-tapered waterways
SA111320671B1 (en) Shaped cutting elements for earth boring tools, earth boring tools including such cutting elements, and related methods
US9500036B2 (en) Single-waterway drill bits and systems for using same
US10472898B2 (en) Earth-boring tools with extended cutting features and related methods
JP2012067573A (en) Surface planted type diamond bit capable of adjusting projection height of diamond abrasive grains from matrix and strongly maintaining inner and outer diameters
AU2015203268A1 (en) Core-sampling drill bit
AU2015244141B2 (en) Single-waterway drill bits and systems for using same
RU138676U1 (en) COMBINED HOUSING DRILLING VANE
Wang et al. Diamond Core Drill Bit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150512