JP2011201990A - Polyamide resin pellet reinforced with long glass fiber - Google Patents
Polyamide resin pellet reinforced with long glass fiber Download PDFInfo
- Publication number
- JP2011201990A JP2011201990A JP2010069492A JP2010069492A JP2011201990A JP 2011201990 A JP2011201990 A JP 2011201990A JP 2010069492 A JP2010069492 A JP 2010069492A JP 2010069492 A JP2010069492 A JP 2010069492A JP 2011201990 A JP2011201990 A JP 2011201990A
- Authority
- JP
- Japan
- Prior art keywords
- polyamide resin
- pellet
- mass
- glass fiber
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は強度、弾性率および衝撃強度等の機械的特性や耐熱特性に優れ、かつガラス長繊維へのポリアミド樹脂の含浸性が良好で、成形工程での取り扱い性が優れたガラス長繊維強化ポリアミド樹脂ペレットに関する。 The present invention is excellent in mechanical properties such as strength, elastic modulus and impact strength and heat resistance, and has a good impregnation property with a polyamide resin in glass long fibers, and has excellent handling properties in a molding process. It relates to resin pellets.
ガラスロービングを使ったガラス長繊維強化ポリアミド樹脂成形材料の開発は古くから検討されていたが、ガラス繊維束への樹脂の含浸性が悪く、また強化樹脂成形材料の生産性が悪いため、ガラス繊維のチョップドストランドをブレンド溶融混錬した短繊維強化ポリアミド樹脂成形材料が広く使用されている。しかしながら、近年になり、用途分野によっては、ガラス長繊維強化樹脂成形材料の方が潜在的に短繊維強化樹脂成形材料より、強度、弾性率や衝撃強度等の機械的特性や熱変形温度等の耐熱特性を向上させやすいことに着目して、ガラス長繊維強化樹脂成形材料の開発が進められている(特許文献1、2)。
特許文献1は、比較的に溶融流動性が高いポリアミド樹脂を用いて成形時のガラス繊維の破損を抑制してガラス繊維のアスペクト比の低下を抑制し、成形品の耐衝撃性と剛性を両立させようとするものである。しかしながら、ペレット製造時のガラス繊維束への樹脂の溶融含浸性は十分とは言えず、生産性が低く、ペレットからのガラス繊維抜けや割れが発生する可能性があり、成形時の取り扱い性が悪くなる場合がある。
また、特許文献2は、ポリアミド樹脂として、ポリアミド66にヘキサメチレンイソフタラミド単位を共重合させて結晶化温度、結晶化度を低下させたものを用いることによって成形品の物性などを改善させるものであり、ポリアミド6やポリアミド66などの汎用のポリアミド樹脂を用いるものではない。
ポリアミド6やポリアミド66などの汎用のポリアミド樹脂であっても、生産性が高く、成形時の取扱性に優れ、かつ高剛性のみならず高靱性を発現できるガラス長繊維強化ポリアミド樹脂成形材料が求められている。
Development of long glass fiber reinforced polyamide resin molding materials using glass roving has been studied for a long time, but glass impregnation into glass fiber bundles is poor and the productivity of reinforced resin molding materials is poor. A short fiber reinforced polyamide resin molding material obtained by blending and kneading the chopped strands is widely used. However, in recent years, depending on the field of application, glass long fiber reinforced resin molding materials are potentially better than short fiber reinforced resin molding materials, such as mechanical properties such as strength, elastic modulus and impact strength, and heat distortion temperature. Development of glass long fiber reinforced resin molding materials has been promoted, focusing on the fact that heat resistance characteristics can be easily improved (Patent Documents 1 and 2).
Patent Document 1 uses a polyamide resin having a relatively high melt fluidity to suppress breakage of glass fibers during molding to suppress a decrease in the aspect ratio of the glass fibers, thereby achieving both impact resistance and rigidity of the molded product. I will try to let you. However, the melt impregnation of the resin into the glass fiber bundle at the time of pellet production is not sufficient, the productivity is low, there is a possibility that the glass fiber comes off or cracks from the pellet, and the handling property at the time of molding is low. It may get worse.
In addition, Patent Document 2 improves the physical properties of a molded article by using a polyamide resin obtained by copolymerizing a hexamethyleneisophthalamide unit with polyamide 66 to reduce the crystallization temperature and the degree of crystallization. And general-purpose polyamide resins such as polyamide 6 and polyamide 66 are not used.
Even for general-purpose polyamide resins such as polyamide 6 and polyamide 66, there is a demand for a long glass fiber reinforced polyamide resin molding material that has high productivity, excellent handling during molding, and can exhibit not only high rigidity but also high toughness. It has been.
そこで、本発明は連続したガラス繊維束への結晶性ポリアミド樹脂の含浸性を向上させることによりペレット製造の生産性を低下させることなく、また、成形工程中で起こるガラス繊維の脱離やペレットの割れ等の不具合を防止すると共に、ガラス長繊維強化ポリアミド樹脂成形材料の優れた機械的強度、伸度(高靱性)を保持することにより、良好な成形品を提供することを課題とするものである。 Therefore, the present invention improves the impregnation of the crystalline polyamide resin into the continuous glass fiber bundle without reducing the productivity of the pellet production, and also the glass fiber detachment or the pellet that occurs in the molding process. It is an object to provide a good molded product by preventing defects such as cracks and maintaining the excellent mechanical strength and elongation (high toughness) of the long glass fiber reinforced polyamide resin molding material. is there.
本発明者等は、上記課題を解決するために鋭意研究した結果、結晶性ポリアミド樹脂の相対粘度を特定範囲にすることにより、結晶性ポリアミド樹脂の連続ガラス繊維間への含浸性が向上して極めて靭性の優れた成形品を得られることを見出し、本発明を完成するに至ったものである。 As a result of intensive studies to solve the above problems, the present inventors have improved the impregnation property between the continuous glass fibers of the crystalline polyamide resin by setting the relative viscosity of the crystalline polyamide resin to a specific range. The inventors have found that a molded article having extremely excellent toughness can be obtained, and have completed the present invention.
すなわち本発明は、
強化ガラス繊維がペレットの長さ方向に連続し、かつ実質的に平行に配列し、強化ガラス繊維の含有率が45〜60質量%であるガラス長繊維強化ポリアミド樹脂ペレットであって、ポリアミド樹脂が結晶性ポリアミド樹脂で、相対粘度(96質量%濃硫酸を溶媒とし、25℃、1g/dlで測定)が1.6以上2.1以下であり、ポリアミド樹脂ペレットの下記空隙率が1.5%以下であり、該ペレットをJIS K7113に従って厚さ4mmの1号形試験片を射出成形し、速度 2mm/minで引張試験を行ったときの引張破壊伸びが1.8%以上であることを特徴とするガラス長繊維強化ポリアミド樹脂ペレット。
空隙率:非イオン性界面活性剤1g/リットル水溶液100mlを入れたビーカー内に、樹脂ペレット2.0〜2.5gを浸漬させ(23℃)、次いで該ビーカーを超音波洗浄機に10分間かけた後、ビーカーから樹脂ペレットを取り出し、ペレット表面の水分を除去した後、質量測定を行い、以下の式で算出する。
空隙率(%)=(G1−G0)/G0 × 100
G1:浸漬後、水分を除去した後のペレット質量(g)
G0:浸漬前のペレット質量(g)
That is, the present invention
It is a glass long fiber reinforced polyamide resin pellet in which reinforced glass fibers are continuous in the length direction of the pellet and arranged substantially in parallel, and the content of the reinforced glass fiber is 45 to 60% by mass, A crystalline polyamide resin having a relative viscosity (measured at 25 ° C. and 1 g / dl using 96 mass% concentrated sulfuric acid as a solvent) of 1.6 or more and 2.1 or less, and the following porosity of the polyamide resin pellet is 1.5. The tensile fracture elongation when the No. 1 type test piece having a thickness of 4 mm is injection-molded according to JIS K7113 and the tensile test is performed at a speed of 2 mm / min is 1.8% or more. Characteristic long glass fiber reinforced polyamide resin pellets.
Porosity: 2.0 to 2.5 g of resin pellets were immersed in a beaker containing 100 ml of a 1 g / liter aqueous solution of a nonionic surfactant (23 ° C.), and then the beaker was placed on an ultrasonic cleaner for 10 minutes. After removing the resin pellet from the beaker and removing the moisture on the surface of the pellet, the mass is measured and calculated by the following formula.
Porosity (%) = (G1-G0) / G0 × 100
G1: Mass of pellet after immersion after removing water (g)
G0: pellet mass before immersion (g)
本発明のガラス長繊維強化ポリアミド樹脂ペレットは、マトリックス樹脂の結晶性ポリアミド樹脂自体は、重合度が低く機械的物性に劣り、しかも固化速度が速く含浸性にはマイナスに作用する樹脂でありながら、ガラス長繊維表面をよく被覆して樹脂ペレットの空隙を著しく減少させることができ、しかもガラス長繊維との接着性に優れるため、ガラス長繊維の補強効率が高く、強度、弾性率および衝撃強度等の機械的強度が優れた成形品を成形することができる。特に、ガラス繊維含有率が50質量%のような高含有率であっても安定して1.8%以上の引張伸度を発現できる靱性を示すことができる。
また、本発明のペレットは、衝撃、振動、摩擦等に対しガラス繊維の抜け落ちが少ないため、成形機のホッパードライヤー内の目詰まり等、成形上のトラブルを減少させることができる。
The long glass fiber reinforced polyamide resin pellet of the present invention is a matrix polyamide crystalline polyamide resin itself having a low degree of polymerization and inferior mechanical properties, and has a fast solidification rate and a negative effect on impregnation, The glass long fiber surface can be well covered to reduce the voids of the resin pellets, and because of its excellent adhesion to the glass long fiber, the glass long fiber has high reinforcement efficiency, strength, elastic modulus, impact strength, etc. A molded article having excellent mechanical strength can be formed. In particular, even if the glass fiber content is as high as 50% by mass, it can exhibit toughness that can stably exhibit a tensile elongation of 1.8% or more.
In addition, since the pellets of the present invention are less likely to fall out of glass fibers with respect to impact, vibration, friction, etc., it is possible to reduce molding problems such as clogging in the hopper dryer of the molding machine.
以下に本発明を具体的に説明する。
本発明の結晶性ポリアミド樹脂は脂肪族結晶性ポリアミド樹脂、または半芳香族ポリアミド樹脂で分子中に酸アミド結合(−CONH−)を有するものであり、具体的には、ε―カプロラクタム、6−アミノカプロン酸、ω―エナントラクタム、7−アミノヘプタン酸、11−アミノウンデカン酸、9−アミノノナン酸、α―ピロリドン、α―ピペリジンなどから得られる重合体または共重合体、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、メタキシリレンジアミン、ポリメタキシリレンアジパミドなどのジアミンとテレフタル酸、イソフタル酸、アジピン酸、セバシン酸などのジカルボン酸とを重縮合して得られる重合体または共重合体もしくはそれらのブレンド物等を例示することができるが、これらに限定されるものではない。
具体例としてナイロン6、ナイロン66、ナイロン46、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6T、ナイロン66T、ナイロン66/6T、MXD6等、およびそれらのブレンド物を挙げることができるが、これらに限定されるものではない。これらの結晶性ポリアミド樹脂は、96質量%濃硫酸を溶媒として25℃、1g/dlで測定した相対粘度が1.6以上2.1以下であることが必要である。また、これら結晶性ポリアミド樹脂の末端カルボキシルキ基濃度(CEG)が40meq/kg以上200meq/kg以下であることが好ましい。
The present invention will be specifically described below.
The crystalline polyamide resin of the present invention is an aliphatic crystalline polyamide resin or a semi-aromatic polyamide resin having an acid amide bond (—CONH—) in the molecule. Specifically, ε-caprolactam, 6- Polymers or copolymers obtained from aminocaproic acid, ω-enantolactam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, α-pyrrolidone, α-piperidine, hexamethylenediamine, nonamethylenediamine , Polymers obtained by polycondensation of diamines such as undecamethylenediamine, dodecamethylenediamine, metaxylylenediamine, polymetaxylylene adipamide and dicarboxylic acids such as terephthalic acid, isophthalic acid, adipic acid, and sebacic acid Or a copolymer or a blend thereof DOO but it can not be construed as being limited thereto.
Specific examples include nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6T, nylon 66T, nylon 66 / 6T, MXD6 and the like, and blends thereof. It is not limited to these. These crystalline polyamide resins are required to have a relative viscosity of 1.6 or more and 2.1 or less measured at 25 ° C. and 1 g / dl using 96 mass% concentrated sulfuric acid as a solvent. Further, the terminal carboxyl group concentration (CEG) of these crystalline polyamide resins is preferably 40 meq / kg or more and 200 meq / kg or less.
結晶性ポリアミド樹脂の相対粘度(96質量%濃硫酸を溶媒とし、25℃、1g/dlで測定)は、1.6以上2.1以下であり、好ましくは1.8以上2.1以下である。一般に連続ガラス繊維は数千本のガラス単繊維を1束に集束させてロービング形状で巻き取られている。機械的強度、伸度に優れ、かつ衝撃、振動、摩擦等に対しガラス繊維の抜け落ちが少ないペレットを得るにはガラス単繊維1本1本に樹脂を被覆させる必要がある。そのためには1本1本のガラス単繊維間に溶融樹脂を浸透させる必要があるが、ポリアミド樹脂の相対粘度が2.1を超えていた場合、溶融時の粘度が高くなってガラス単繊維間への樹脂が行き渡りにくく含浸性が不充分となる。一方、1.6未満では溶融時の粘度が低すぎて取り扱いしにくくなるとともに、成形材料としての機械的強度、衝撃強度も低下する。
結晶性ポリアミド樹脂の末端カルボキシルキ基濃度(CEG)は、40meq/kg以上200meq/kg以下であることが好ましく、より好ましくは40meq/kg以上120meg/以下である。末端カルボキシル基濃度が200meq/kgを超えると溶融時の取り扱いが困難となり、40meq/kg未満では強化ガラス長繊維と結晶性ポリアミド樹脂との濡れ性が低下し、カルボキシル基反応性シラン化合物で表面処理された強化ガラス長繊維であっても樹脂と強化ガラス長繊維表面との反応性が低下し、得られたペレットは、成形時などに強化ガラス長繊維が抜け落ちたりする不具合が発生しやすく、成形材料としての機械的強度、衝撃強度も低下する。
すなわち、ポリアミド樹脂を強化用連続ガラス繊維に含浸する工程中において、溶融状態のポリアミド樹脂の末端カルボキシル基は、強化用連続ガラス繊維に付着したカルボキシル基反応性のシラン化合物、あるいは連続ガラス繊維に付着させた集束剤に含まれるカルボキシル基反応性のシラン化合物と反応する。ポリアミド樹脂がシラン化合物と反応することでポリアミド樹脂と連続ガラス繊維が強固に結び付くことになる。
The relative viscosity of the crystalline polyamide resin (measured at 25 ° C. and 1 g / dl using 96 mass% concentrated sulfuric acid as a solvent) is 1.6 or more and 2.1 or less, preferably 1.8 or more and 2.1 or less. is there. In general, continuous glass fibers are wound in a roving shape by concentrating thousands of glass single fibers into one bundle. In order to obtain pellets that are excellent in mechanical strength and elongation and that have few glass fibers falling off due to impact, vibration, friction, etc., it is necessary to coat each single glass fiber with a resin. For that purpose, it is necessary to infiltrate the molten resin between each single glass fiber, but when the relative viscosity of the polyamide resin exceeds 2.1, the viscosity at the time of melting becomes high and the glass single fiber It is difficult for the resin to spread over and the impregnation property is insufficient. On the other hand, if it is less than 1.6, the viscosity at the time of melting is too low to be handled easily, and mechanical strength and impact strength as a molding material are also lowered.
The terminal carboxyl group concentration (CEG) of the crystalline polyamide resin is preferably 40 meq / kg or more and 200 meq / kg or less, more preferably 40 meq / kg or more and 120 meg / kg or less. When the terminal carboxyl group concentration exceeds 200 meq / kg, handling at the time of melting becomes difficult. When the terminal carboxyl group concentration is less than 40 meq / kg, the wettability between the reinforced glass long fiber and the crystalline polyamide resin decreases, and the surface treatment is performed with a carboxyl group-reactive silane compound. Even if it is a reinforced glass long fiber, the reactivity between the resin and the reinforced glass long fiber surface decreases, and the resulting pellet is prone to a problem that the reinforced glass long fiber falls off during molding, etc. Mechanical strength and impact strength as a material also decrease.
That is, in the process of impregnating the continuous glass fiber for reinforcement with the polyamide resin, the terminal carboxyl group of the polyamide resin in the molten state is attached to the carboxyl group-reactive silane compound attached to the continuous glass fiber for reinforcement or the continuous glass fiber. It reacts with a carboxyl group-reactive silane compound contained in the sizing agent. When the polyamide resin reacts with the silane compound, the polyamide resin and the continuous glass fiber are firmly bonded.
相対粘度が2.1以下の結晶性ポリアミド樹脂を得るには、特別に相対粘度が2.1以下の超低粘度の結晶性ポリアミド樹脂を重合するか、または相対粘度2.1超の相対粘度を持つ結晶性ポリアミド樹脂で減粘剤を用いてポリアミド分子鎖を切断する方法がある。減粘剤としては、脂肪族ジカルボン酸、芳香族ジカルボン酸等が有効であり、具体的には、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、フタル酸、テレフタル酸等を挙げることができる。その添加量は結晶性ポリアミド樹脂100質量部に対し0.1〜3質量部前後配合して溶融混錬すると本発明の相対粘度が2.1以下になるが、個々の脂肪族結晶性ポリアミド樹脂の種類によって相対粘度の値は異なるので、予め予備実験を行い、減粘剤の添加量を決めることが必要である。 In order to obtain a crystalline polyamide resin having a relative viscosity of 2.1 or less, an ultra-low viscosity crystalline polyamide resin having a relative viscosity of 2.1 or less is polymerized, or a relative viscosity of more than 2.1 is obtained. There is a method of cleaving a polyamide molecular chain using a thinning agent with a crystalline polyamide resin having a viscosity. As the viscosity reducer, aliphatic dicarboxylic acid, aromatic dicarboxylic acid, etc. are effective. Specifically, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, terephthalic acid, etc. Can be mentioned. When the amount of addition is about 0.1 to 3 parts by mass with respect to 100 parts by mass of the crystalline polyamide resin and melt kneading, the relative viscosity of the present invention becomes 2.1 or less. Since the value of the relative viscosity varies depending on the type, it is necessary to conduct a preliminary experiment in advance to determine the amount of the thickener added.
以上のように、本発明における結晶性ポリアミド樹脂は相対粘度が低く、高い機械的強度を目的とする成形材料には通常は好適でない樹脂であるが、本発明においては、末端カルボキシル基濃度(CEG)を特定範囲とすることにより、ガラス長繊維強化ポリアミド樹脂組成物用に好適に用いることができる。 As described above, the crystalline polyamide resin in the present invention has a low relative viscosity and is not usually suitable for molding materials intended for high mechanical strength. In the present invention, however, the terminal carboxyl group concentration (CEG) ) In a specific range, it can be suitably used for a long glass fiber reinforced polyamide resin composition.
以上のように、本発明では、結晶性ポリアミド樹脂が強化用連続ガラス繊維間によく浸透し、かつポリアミド樹脂と強化用連続ガラス繊維が強固に結び付いているため、ガラス長繊維強化成形材料では樹脂と繊維間の界面に形成されやすい空隙を著しく小さくすることができる。樹脂と繊維間の界面にある空隙は、空隙率という値で表すことができる。具体的には界面活性剤を含んだ水中に本発明のガラス長繊維強化ポリアミド樹脂ペレットを完全に浸漬させた後、超音波洗浄機などにかけてペレット表面の気泡を除去させる。その後、浸漬させたガラス長繊維強化ポリアミド樹脂ペレットを取り出し、表面の水を除去し浸漬前後の質量変化率を表したものである。
強化用連続ガラス繊維間への樹脂の含浸が不充分である場合、樹脂と繊維間の界面の空隙が大きくなり、その空隙に水が浸入するため、浸漬前後の質量変化、つまり空隙率は大きくなる。
空隙率が大きいガラス長繊維強化ポリアミド樹脂ペレットでは、樹脂と繊維との界面にある空隙が大きくなるため、取り扱い性が極めて悪くなり、また物性のバラツキも発生する可能性がある。空隙率が高いペレットでは輸送中等における衝撃や繰り返しの振動および摩擦によって、ペレットが割れたり、ペレット表面に連続ガラス繊維束が浮き出してきて繊維が脱落する等により、成形機にペレットを輸送する配管にガラス繊維が詰まったり、成形機のホッパードライヤーのフィルターの目詰まり等の問題が生ずる。
本発明のガラス長繊維強化ポリアミド樹脂ペレットの空隙率は1.5%以下であり、好ましくは1.0%以下である。
As described above, in the present invention, the crystalline polyamide resin penetrates well between the continuous glass fibers for reinforcement, and the polyamide resin and the continuous glass fibers for reinforcement are firmly bonded. And voids that are likely to be formed at the interface between the fibers can be remarkably reduced. The void at the interface between the resin and the fiber can be represented by a value called porosity. Specifically, after the long glass fiber reinforced polyamide resin pellet of the present invention is completely immersed in water containing a surfactant, bubbles on the surface of the pellet are removed using an ultrasonic cleaner or the like. Then, the immersed long glass fiber reinforced polyamide resin pellets are taken out, the surface water is removed, and the mass change rate before and after the immersion is expressed.
When the resin is not sufficiently impregnated between the continuous glass fibers for strengthening, the void at the interface between the resin and the fiber becomes large, and water penetrates into the void, so the mass change before and after immersion, that is, the porosity is large. Become.
In a long glass fiber reinforced polyamide resin pellet having a large porosity, since the void at the interface between the resin and the fiber becomes large, the handleability is extremely deteriorated, and there is a possibility that variations in physical properties may occur. For pellets with a high porosity, pipes that transport pellets to the molding machine due to impacts during transportation or repeated vibration and friction, cracking of the pellets, and continuous glass fiber bundles coming up on the surface of the pellets causing the fibers to fall off. Problems such as clogging of glass fibers and clogging of a filter of a hopper dryer of a molding machine occur.
The porosity of the long glass fiber reinforced polyamide resin pellets of the present invention is 1.5% or less, preferably 1.0% or less.
本発明におけるガラス長繊維としては特に限定されるものではないが、Eガラス、Cガラス、Aガラス、Sガラスおよび耐アルカリガラス等のガラスを溶融紡糸してフィラメント状の繊維にしたものを挙げることができ、繊維径は、3〜25μm程度のものを使用でき、取扱性の点で8〜20μmのものが好ましい。
ガラス長繊維強化樹脂ペレット中のガラス長繊維の含有率は45〜60質量%、好ましくは45〜54質量%である。この範囲であれば、高剛性と引張伸度2.0%以上の高靱性を両立させることができる。ガラス長繊維の含有率が45質量%未満では、ガラス長繊維の補強効果が乏しいため機械的強度が向上しにくく、60質量%を超えると、ガラス長繊維の間に含浸するポリアミド樹脂が減少するようになるため、製造時のガラス単繊維間への溶融樹脂の浸透が不充分となり機械的強度が向上しにくくなるとともにペレットからのガラス繊維の抜け落ちが多くなる。
Although it does not specifically limit as a glass long fiber in this invention, The thing which melt-spun glass, such as E glass, C glass, A glass, S glass, and alkali-resistant glass, is made into the filament-like fiber. A fiber diameter of about 3 to 25 μm can be used, and a fiber diameter of 8 to 20 μm is preferable in terms of handleability.
The content rate of the glass long fiber in a glass long fiber reinforced resin pellet is 45-60 mass%, Preferably it is 45-54 mass%. Within this range, both high rigidity and high toughness with a tensile elongation of 2.0% or more can be achieved. If the content of the long glass fiber is less than 45% by mass, the reinforcing effect of the long glass fiber is poor, so that the mechanical strength is difficult to improve. If the content exceeds 60% by mass, the polyamide resin impregnated between the long glass fibers decreases. As a result, the penetration of the molten resin between the glass single fibers at the time of production becomes insufficient, making it difficult to improve the mechanical strength and increasing the dropout of the glass fibers from the pellets.
本発明のガラス長繊維強化ポリアミド樹脂は高強度、高剛性であると同時に引張伸度が2.0%以上の高靭性であるため、成形された製品は瞬間的な衝撃が加わっても破壊されることなく衝撃を吸収し、かつ長期的、継続的な負荷が加わっても塑性変形量が小さくなる。 The long glass fiber reinforced polyamide resin of the present invention has high strength and rigidity, and at the same time has a high toughness with a tensile elongation of 2.0% or more. Therefore, the molded product is destroyed even if an instantaneous impact is applied. The amount of plastic deformation is reduced even if a long-term and continuous load is applied without absorbing the impact.
本発明における強化用連続ガラス繊維は、ガラス繊維の表面はカルボキシル基反応性のシラン化合物で処理されているものが好ましい。カルボキシル基反応性のシラン化合物としては、シラン系カップリング剤、エポキシ系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等、いずれも使用できるが、アミノシラン系カップリング剤、エポキシ系カップリング剤が好ましい。
カップリング剤の付着率は、0.1〜3.0質量%が好ましく、より好ましくは0.1〜1.0質量%である。付着率が0.1質量%未満ではカップリング剤の効果が発揮されず、3.0質量%を超える場合は経済性の観点から好ましくないうえに成形時のガス発生量の増加につながる。
The continuous glass fiber for reinforcement in the present invention is preferably one in which the surface of the glass fiber is treated with a carboxyl group-reactive silane compound. As the carboxyl group-reactive silane compound, any of a silane coupling agent, an epoxy coupling agent, a titanate coupling agent, an aluminum coupling agent, etc. can be used. A ring agent is preferred.
As for the adhesion rate of a coupling agent, 0.1-3.0 mass% is preferable, More preferably, it is 0.1-1.0 mass%. If the adhesion rate is less than 0.1% by mass, the effect of the coupling agent is not exhibited, and if it exceeds 3.0% by mass, it is not preferable from the viewpoint of economy and leads to an increase in the amount of gas generated during molding.
本発明において、カップリング剤は強化用連続ガラス長繊維の表面に付着させるだけではなく、ポリアミド樹脂溶融時に添加することもできる。添加方法はポリアミド樹脂ペレット表面に付着させても良いし、押出機のサイドフィード口から注入しても構わない。 In the present invention, the coupling agent is not only adhered to the surface of the continuous continuous glass fiber for reinforcement, but can also be added when the polyamide resin is melted. The addition method may be adhered to the surface of the polyamide resin pellets, or may be injected from the side feed port of the extruder.
本発明のガラス長繊維強化ポリアミド樹脂組成物のペレットの製造法は公知の引抜き成形法(特開昭53−50279公報他)を基本製造法としている。この引抜き法とは数千本のフィラメントからなる強化用連続ガラス繊維を引き抜きながら、マトリックス樹脂であるポリアミド樹脂を強化用連続ガラス繊維に含浸した後、強化連続ガラス繊維を引き抜く方向と直角方向に切断することによってペレットが得られる。
本発明において強化用連続ガラス繊維の束に結晶性ポリアミド樹脂を含浸する方法は、いかなる方法を用いても良いが、二軸押出機等で加熱溶融したポリアミド樹脂をバー、ロール、ダイス等の上でガラス繊維の束を開繊させながら含浸させる方法が最も好ましい。
The method for producing pellets of the long glass fiber reinforced polyamide resin composition of the present invention is based on a known pultrusion molding method (Japanese Patent Laid-Open No. 53-50279). With this drawing method, continuous glass fibers for reinforcement consisting of thousands of filaments are drawn, and the continuous glass fibers for reinforcement are impregnated into the continuous glass fibers for reinforcement, and then cut in a direction perpendicular to the direction in which the continuous glass fibers are drawn. To obtain pellets.
In the present invention, any method may be used for impregnating the bundle of continuous glass fibers for reinforcement with the crystalline polyamide resin. However, the polyamide resin heated and melted by a twin screw extruder or the like may be used on a bar, roll, die or the like. The most preferred method is to impregnate while opening a bundle of glass fibers.
こうして得られたガラス長繊維強化ポリアミド樹脂のペレットは、ガラス繊維が切断されたペレットの長さと同一の長さで、長さ方向に対して実質的に平行に配列した状態で存在する。このときのペレットの長さは3〜20mmであり、より好ましくは5〜10mmである。ペレットの長さが3mmより短いとペレット中の繊維方向に沿ってペレットが割れやすくなり、20mmより長くなると成形工程でのホッパー詰まり等が発生し易くなり可塑化が困難なものとなる。ペレットの形状で長さ以外は特に制限されるものではなく、例えばペレットの断面形状が円形、楕円形、四角形、扁平状等でも良いが、一般的には、ペレット断面形状は円形から楕円形に近い形状になる。 The glass long fiber reinforced polyamide resin pellets thus obtained have the same length as the pellets from which the glass fibers have been cut, and are present in a state of being arranged substantially parallel to the length direction. The length of the pellet at this time is 3 to 20 mm, more preferably 5 to 10 mm. When the length of the pellet is shorter than 3 mm, the pellet is easily broken along the fiber direction in the pellet, and when it is longer than 20 mm, hopper clogging or the like in the molding process is likely to occur and plasticization becomes difficult. The shape of the pellet is not particularly limited except for the length. For example, the cross-sectional shape of the pellet may be a circle, an ellipse, a quadrangle, a flat shape, etc. Close shape.
本発明のガラス長繊維強化ポリアミド樹脂ペレットは、必要に応じて他の配合剤、添加剤等を配合することが出来る。例えば、通常のポリアミド樹脂に用いられる熱安定剤、紫外線安定剤、耐候性改良剤、酸化防止剤、難燃剤、帯電防止剤、顔料、染料、離型剤、滑材等の配合剤および添加剤であるが、これらに限定されるものではない。 The glass long fiber reinforced polyamide resin pellets of the present invention can be blended with other compounding agents, additives, and the like as necessary. For example, heat stabilizers, UV stabilizers, weather resistance improvers, antioxidants, flame retardants, antistatic agents, pigments, dyes, mold release agents, lubricants and other compounding agents and additives used in ordinary polyamide resins However, it is not limited to these.
以下に実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
本発明の結晶性ポリアミド樹脂として以下のポリアミド6(PA6)及びポリアミド66(PA66)を使用した。
PA6として
(1)東洋紡績社製 T−860(相対粘度 1.9)
(2)東洋紡績社製 T−800(相対粘度 2.5)
PA66として
(1)BASF社製 A27(相対粘度 2.8)
(2)A27にアジピン酸を添加したもの(相対粘度 2.0)
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
The following polyamide 6 (PA6) and polyamide 66 (PA66) were used as the crystalline polyamide resin of the present invention.
As PA6 (1) Toyobo Co., Ltd. T-860 (relative viscosity 1.9)
(2) T-800 manufactured by Toyobo Co., Ltd. (relative viscosity 2.5)
As PA66 (1) A27 manufactured by BASF (relative viscosity 2.8)
(2) A27 added with adipic acid (relative viscosity 2.0)
強化繊維として以下を使用した。
連続ガラス長繊維:日本電気硝子社製 ER2400T−448N/S(エポシキ系カップリング剤、付着率0.3質量%)
ガラス短繊維:オーウェンスコーニング社製 CS03MA411
カップリング剤は以下を使用した。
信越化学工業社製 オルガノシラン KBE903
The following were used as reinforcing fibers.
Continuous continuous glass fiber: ER2400T-448N / S manufactured by Nippon Electric Glass Co., Ltd. (epoxy coupling agent, adhesion rate 0.3 mass%)
Short glass fiber: CS03MA411 manufactured by Owens Corning
The following coupling agents were used.
Organosilane KBE903 manufactured by Shin-Etsu Chemical Co., Ltd.
各物性値は下記の試験方法で測定した。
(1)相対粘度の測定
結晶性ポリアミド樹脂0.25gを96.3%の硫酸25mlに溶解し、この溶液10mlをオストワルド粘度管にいれ、25℃で測定し以下の式より算出した。
RV=t/t0
RV:相対粘度
t:サンプル溶液の落下時間
t0:溶媒の落下時間
(2)空隙率
ガラス長繊維強化ポリミアド樹脂ペレットを2.0〜2.5gの範囲でサンプリングした。23℃、100mlの純水と界面活性剤(花王 エマゾールL120V)を0.1g滴下したビーカー内にサンプリングしたガラス長繊維強化ポリアミド樹脂ペレットを入れて完全に浸漬するようした。そのビーカーを超音波洗浄機に10分間かけた後、ビーカーからガラス長繊維強化ポリアミド樹脂ペレットを取り出し、ペレット表面の水分を除去したあと質量測定を行い、以下の式で算出した。
空隙率(%)=(G1−G0)/G0×100
G1:浸漬後、水分を除去した後のペレット質量(g)
G0:浸漬前のペレット質量(g)
なお非強化のポリアミド樹脂ペレット(T−800)で空隙率を測定した結果は0.06%であった。
Each physical property value was measured by the following test method.
(1) Measurement of relative viscosity 0.25 g of crystalline polyamide resin was dissolved in 25 ml of 96.3% sulfuric acid, 10 ml of this solution was placed in an Ostwald viscosity tube, measured at 25 ° C., and calculated from the following formula.
RV = t / t0
RV: Relative viscosity t: Fall time of sample solution t0: Fall time of solvent (2) Porosity Glass long fiber reinforced polymiad resin pellets were sampled in the range of 2.0 to 2.5 g. The sampled long glass fiber reinforced polyamide resin pellets were placed in a beaker into which 0.1 g of 100 ml of pure water and a surfactant (Kao Emazole L120V) was dropped, and the sample was completely immersed. The beaker was placed in an ultrasonic cleaner for 10 minutes, and then the long glass fiber reinforced polyamide resin pellets were taken out of the beaker, the moisture on the pellet surface was removed, mass measurement was performed, and the following formula was calculated.
Porosity (%) = (G1-G0) / G0 × 100
G1: Mass of pellet after immersion after removing water (g)
G0: pellet mass before immersion (g)
The porosity measured with non-reinforced polyamide resin pellets (T-800) was 0.06%.
樹脂成分については表1、2に示した各原料を押出機に投入、溶融混錬し被覆ダイに送った。押出機、被覆ダイの温度は240〜300℃であり、ストランドの引取速度は10m/minであった。
なお、比較例4は二軸押出機を用いてT−860を溶融混練し、ガラス短繊維をサイドフィードして作成した。
Regarding the resin component, each raw material shown in Tables 1 and 2 was put into an extruder, melted and kneaded, and sent to a coating die. The temperature of the extruder and the coating die was 240 to 300 ° C., and the strand take-up speed was 10 m / min.
Comparative Example 4 was prepared by melt-kneading T-860 using a twin screw extruder and side-feeding short glass fibers.
実施例、比較例のペレットはISO 294−1に従い、試験片を射出成形し物性評価を行った。物性評価の方法は以下の通りである。
引張強度、伸度 ISO 527
曲げ強度、曲げ弾性率 : ISO 178
シャルピー衝撃強度 : ISO 179/le A
The pellets of Examples and Comparative Examples were subjected to physical property evaluation by injection molding of test pieces in accordance with ISO 294-1. The physical property evaluation method is as follows.
Tensile strength, elongation ISO 527
Flexural strength, flexural modulus: ISO 178
Charpy impact strength: ISO 179 / le A
本発明の各実施例、各比較例を水準毎でペレット5Kgを射出成形機のホッパーに投入して、投入ペレットすべてを成形し、成形終了後のホッパーの状態を確認して、以下のように判定した。
○ : ホッパー表面にガラス繊維がほとんど見られない状態
△ : ホッパー表面にガラス繊維が数本散見される状態
× : ホッパー表面にガラス繊維が数十本以上残った状態。
Each example of the present invention and each comparative example were charged with 5Kg of pellets for each level into the hopper of the injection molding machine, all of the input pellets were molded, and the state of the hopper after completion of molding was confirmed. Judged.
○: State in which almost no glass fiber is seen on the hopper surface. Δ: State in which several glass fibers are scattered on the hopper surface. ×: State in which several tens or more glass fibers remain on the hopper surface.
実施例1、及び実施例2ではガラス繊維への樹脂の含浸度が高く、かつ物性が高いものが得られた。一方、相対粘度が高く末端カルボキシル基濃度が低いPA6、及びPA66を使用した比較例1、及び比較例2では空隙率が高くなってガラス繊維が抜け落ちやすくなり、成形終了後、成形機のホッパー表面に強化繊維が残って強化繊維がペレットから抜け落ちた跡が見られた。強化繊維の含有量が高い比較例3でも空隙率が高すぎてガラス繊維が抜け落ちやすくなり、成形終了後のホッパーには多数の強化繊維が残っていた。
一方、比較例2と同じポリアミド66にアジピン酸を添加して粘度を下げた実施例3では樹脂の含浸性が増して空隙率が低くなり、成形終了後、ホッパーにガラス繊維が多数抜け落ちることもなく、かつ高い物性のものが得られた。
ガラス短繊維で強化した比較例4は、空隙率は低くなったが、物性がガラス長繊維強化材料に及ばなかった。
In Examples 1 and 2, glass fibers having a high degree of resin impregnation and high physical properties were obtained. On the other hand, in Comparative Example 1 and Comparative Example 2 using PA6 and PA66 having a high relative viscosity and a low terminal carboxyl group concentration, the porosity is high and the glass fiber is easily dropped, and after molding, the hopper surface of the molding machine There were traces of reinforcing fibers remaining in the pellets and falling off the pellets. Even in Comparative Example 3 in which the content of the reinforcing fibers was high, the porosity was too high, and the glass fibers were likely to fall out, and a large number of reinforcing fibers remained in the hopper after completion of molding.
On the other hand, in Example 3 in which adipic acid was added to the same polyamide 66 as in Comparative Example 2 to lower the viscosity, the resin impregnation property increased and the porosity decreased, and many glass fibers dropped out into the hopper after molding. None and high physical properties were obtained.
In Comparative Example 4 reinforced with short glass fibers, the porosity was low, but the physical properties did not reach the glass long fiber reinforced material.
本発明ではペレットへの衝撃、振動、摩擦等に対しガラス繊維の抜け落ちが少ないため、成形機のホッパードライヤー内の目詰まり等、成形上のトラブルを減少させ、かつ高強度で耐衝撃性が高い材料を提供するものである。よって材料の強度が要求される自動車外装材料、ブレーカーカバー材料、また薄い肉厚で高い強度が要求されるパソコン筐体など、金属代替を中心とした分野に展開することができ、産業界に寄与すること大である。
In the present invention, glass fibers are less likely to fall off due to impact, vibration, friction, etc. on the pellets, thus reducing molding problems such as clogging in the hopper dryer of the molding machine, and high strength and high impact resistance. The material is provided. Therefore, it can be developed in fields centering on metal replacement, such as automobile exterior materials, breaker cover materials that require high material strength, and PC casings that require high strength due to its thin wall thickness, contributing to the industry. It is great to do.
Claims (2)
空隙率:非イオン性界面活性剤1g/リットル水溶液100mlを入れたビーカー内に、樹脂ペレット2.0〜2.5gを浸漬させ(23℃)、次いで該ビーカーを超音波洗浄機に10分間かけた後、ビーカーから樹脂ペレットを取り出し、ペレット表面の水分を除去した後、質量測定を行い、以下の式で算出する。
空隙率(%)=(G1−G0)/G0 × 100
G1:浸漬後、水分を除去した後のペレット質量(g)
G0:浸漬前のペレット質量(g) It is a glass long fiber reinforced polyamide resin pellet in which reinforced glass fibers are continuous in the length direction of the pellet and arranged substantially in parallel, and the content of the reinforced glass fiber is 45 to 60% by mass, A crystalline polyamide resin having a relative viscosity (measured at 25 ° C. and 1 g / dl using 96 mass% concentrated sulfuric acid as a solvent) of 1.6 or more and 2.1 or less, and the following porosity of the polyamide resin pellet is 1.5. The tensile fracture elongation when the No. 1 type test piece having a thickness of 4 mm is injection-molded according to JIS K7113 and the tensile test is performed at a speed of 2 mm / min is 1.8% or more. Characteristic long glass fiber reinforced polyamide resin pellets.
Porosity: 2.0 to 2.5 g of resin pellets were immersed in a beaker containing 100 ml of a 1 g / liter aqueous solution of a nonionic surfactant (23 ° C.), and then the beaker was placed on an ultrasonic cleaner for 10 minutes. After removing the resin pellet from the beaker and removing the moisture on the surface of the pellet, the mass is measured and calculated by the following formula.
Porosity (%) = (G1-G0) / G0 × 100
G1: Mass of pellet after immersion after removing water (g)
G0: pellet mass before immersion (g)
The glass fiber reinforced polyamide resin pellet according to claim 1, wherein the reinforced glass fiber is treated with a carboxyl group-reactive silane compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010069492A JP2011201990A (en) | 2010-03-25 | 2010-03-25 | Polyamide resin pellet reinforced with long glass fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010069492A JP2011201990A (en) | 2010-03-25 | 2010-03-25 | Polyamide resin pellet reinforced with long glass fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011201990A true JP2011201990A (en) | 2011-10-13 |
Family
ID=44878982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010069492A Withdrawn JP2011201990A (en) | 2010-03-25 | 2010-03-25 | Polyamide resin pellet reinforced with long glass fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011201990A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012131918A (en) * | 2010-12-22 | 2012-07-12 | Daicel Polymer Ltd | Resin composition for abrasion-resistant molding |
CN109971167A (en) * | 2019-04-09 | 2019-07-05 | 苏州旭光聚合物有限公司 | High-performance long glass fiber reinforced modified Pa 6 |
JP2022097501A (en) * | 2018-04-23 | 2022-06-30 | 日亜化学工業株式会社 | Lead frame with resin, and method for manufacturing the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01299838A (en) * | 1988-04-05 | 1989-12-04 | Stamicarbon Bv | Production of molded product, polyamide molded product and completed molded product |
JP2005290138A (en) * | 2004-03-31 | 2005-10-20 | Asahi Fiber Glass Co Ltd | Continuous fiber-reinforced polyamide resin molding material, its production method and moldings |
JP2005324733A (en) * | 2004-05-17 | 2005-11-24 | Mitsubishi Engineering Plastics Corp | Vehicle body front structure made of long fiber reinforced polyamide resin |
JP2005349697A (en) * | 2004-06-10 | 2005-12-22 | Idemitsu Kosan Co Ltd | Method for producing fiber-reinforced resin pellet |
JP2006016463A (en) * | 2004-06-30 | 2006-01-19 | Asahi Fiber Glass Co Ltd | Filament-reinforced polyamide resin molding material and method for producing the same |
WO2008120703A1 (en) * | 2007-04-03 | 2008-10-09 | Unitika Ltd. | Glass fiber reinforced polyamide resin composition |
JP2008260229A (en) * | 2007-04-12 | 2008-10-30 | Asahi Kasei Chemicals Corp | Glass long fiber-reinforced polyamide resin pellet and its molded form |
JP2009051885A (en) * | 2007-08-24 | 2009-03-12 | Toyobo Co Ltd | Long fiber-reinforced polyamide resin composition |
JP2010013571A (en) * | 2008-07-04 | 2010-01-21 | Toyobo Co Ltd | Fiber-reinforced polyamide resin composition |
-
2010
- 2010-03-25 JP JP2010069492A patent/JP2011201990A/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01299838A (en) * | 1988-04-05 | 1989-12-04 | Stamicarbon Bv | Production of molded product, polyamide molded product and completed molded product |
JP2005290138A (en) * | 2004-03-31 | 2005-10-20 | Asahi Fiber Glass Co Ltd | Continuous fiber-reinforced polyamide resin molding material, its production method and moldings |
JP2005324733A (en) * | 2004-05-17 | 2005-11-24 | Mitsubishi Engineering Plastics Corp | Vehicle body front structure made of long fiber reinforced polyamide resin |
JP2005349697A (en) * | 2004-06-10 | 2005-12-22 | Idemitsu Kosan Co Ltd | Method for producing fiber-reinforced resin pellet |
JP2006016463A (en) * | 2004-06-30 | 2006-01-19 | Asahi Fiber Glass Co Ltd | Filament-reinforced polyamide resin molding material and method for producing the same |
WO2008120703A1 (en) * | 2007-04-03 | 2008-10-09 | Unitika Ltd. | Glass fiber reinforced polyamide resin composition |
JP2008260229A (en) * | 2007-04-12 | 2008-10-30 | Asahi Kasei Chemicals Corp | Glass long fiber-reinforced polyamide resin pellet and its molded form |
JP2009051885A (en) * | 2007-08-24 | 2009-03-12 | Toyobo Co Ltd | Long fiber-reinforced polyamide resin composition |
JP2010013571A (en) * | 2008-07-04 | 2010-01-21 | Toyobo Co Ltd | Fiber-reinforced polyamide resin composition |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012131918A (en) * | 2010-12-22 | 2012-07-12 | Daicel Polymer Ltd | Resin composition for abrasion-resistant molding |
JP2022097501A (en) * | 2018-04-23 | 2022-06-30 | 日亜化学工業株式会社 | Lead frame with resin, and method for manufacturing the same |
JP7425350B2 (en) | 2018-04-23 | 2024-01-31 | 日亜化学工業株式会社 | Lead frame with resin and its manufacturing method |
CN109971167A (en) * | 2019-04-09 | 2019-07-05 | 苏州旭光聚合物有限公司 | High-performance long glass fiber reinforced modified Pa 6 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8993670B2 (en) | Glass-fiber reinforced thermoplastic resin composition and molded article thereof | |
JP3343381B2 (en) | Molded product made of long fiber reinforced polyolefin resin structure | |
JP5640746B2 (en) | Glass fiber reinforced polyamide resin composition | |
JP5748479B2 (en) | Filled polyamide molding composition | |
JP5328079B2 (en) | Long glass fiber reinforced polyamide pellets and molded products | |
TWI544029B (en) | Resin composition, pellet thereof and molded article thereof | |
JP6081687B2 (en) | Glass fiber reinforced polyamide resin composition | |
JPWO2015046290A1 (en) | Unidirectional fiber reinforced tape and method for producing the same, molded product using the same, and method for producing the same | |
JP6453575B2 (en) | Fiber reinforced resin composition | |
JP5292744B2 (en) | Long fiber reinforced polyamide resin composition | |
JP2011201990A (en) | Polyamide resin pellet reinforced with long glass fiber | |
JP5374228B2 (en) | Long fiber reinforced polyamide resin composition and conductive shaft-shaped product formed by molding the same | |
JP2015017248A (en) | Glass fiber-reinforced polyamide resin composition, and molding | |
JP4878512B2 (en) | Fiber reinforced thermoplastic resin gear | |
JP2005532934A (en) | Glass fiber reinforced thermoplastics | |
JP2005298663A (en) | Automobile interior part made of resin | |
JP2018123180A (en) | Method for producing prepreg | |
JP2023106452A (en) | Thermoplastic resin composition and molding thereof, resin pellet and method for producing the same, and injection molding using resin pellet | |
KR102538322B1 (en) | polyamide resin composition | |
CN113853285B (en) | Process for producing pellets | |
JP2005297338A (en) | Resin automotive mechanism component | |
JP5451522B2 (en) | Method for producing long fiber reinforced polyamide resin composition | |
KR20140087913A (en) | Long fiber reinforced polyamide resin compositions and molded products including the same | |
JP2007112041A (en) | Carbon filament reinforced resin molded article and its manufacturing method | |
JP6259760B2 (en) | Thermoplastic resin molded product manufacturing method and thermoplastic resin molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20140214 |