JP2011191324A - Flaw detection probe - Google Patents

Flaw detection probe Download PDF

Info

Publication number
JP2011191324A
JP2011191324A JP2011148375A JP2011148375A JP2011191324A JP 2011191324 A JP2011191324 A JP 2011191324A JP 2011148375 A JP2011148375 A JP 2011148375A JP 2011148375 A JP2011148375 A JP 2011148375A JP 2011191324 A JP2011191324 A JP 2011191324A
Authority
JP
Japan
Prior art keywords
coil
flaw
flaw detection
detection
detection probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011148375A
Other languages
Japanese (ja)
Inventor
Tatsuo Hiroshima
龍夫 廣島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011148375A priority Critical patent/JP2011191324A/en
Publication of JP2011191324A publication Critical patent/JP2011191324A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw detection probe estimating easily the depth of a flaw based on an output, without worsening detection precision of the flaw. <P>SOLUTION: A conductor is wound in an angled barrel shape having a polygon of a cross section perpendicular to the center axis to form an excitation coil 11, and an annular detection coil 12 is arranged to surround one side face of the angled barrel shape of excitation coil 11 to constitute the flaw detection probe 1. The one side face of the excitation coil 11 surrounded by the detection coil 12 is made to serve as a flaw detection surface of the flaw detection probe 1. A part with a parallel component being maximum with respect to a surface of a flaw detection object in a magnetic field generated by the excitation coil 11 and a part with a perpendicular component being maximum therewith are positioned together inside the detection coil 12 to obtain a simple increase relation between the depth of the flaw and the output from the flaw detection probe 1. The depth of the flaw is easily estimated based on the output from the flaw detection probe 1, without worsening the detection precision of the flaw, since an S/N ratio is enhanced compared with the case of a small diameter of the detection coil 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、渦流探傷法により探傷を行う際に用いる探傷プローブに関する。   The present invention relates to a flaw detection probe used when flaw detection is performed by an eddy current flaw detection method.

従来、金属材料、加工部品又は製品に存在する傷の有無を検査するための非破壊試験法の一つとして、試験対象の表面に渦電流を誘起させ、傷の存在による渦電流の変化を検出することによって傷を検出することができる渦流探傷法がある。渦流探傷法には、渦電流を誘起させるソレノイドコイルの中に長尺の試験対象を挿入させることによって探傷を行う貫通コイル法と、渦電流を誘起させるコイルを含んでなる探傷プローブを試験対象の表面に近づけることによって探傷を行うプローブコイル法とがある。貫通コイル法では、断面が円又は六角等に形成された長尺の材料のみが試験対象となる。これに対して、プローブコイル法は、小型に形成した探傷プローブを試験対象の表面に近づけることによって探傷を行うので、試験対象がどのような形状であっても対応が可能であるというメリットがある。   Conventionally, as one of the non-destructive testing methods for inspecting the presence of scratches on metal materials, processed parts or products, eddy currents are induced on the surface of the test object, and changes in eddy currents due to the presence of scratches are detected. There are eddy current flaw detection methods that can detect flaws. In the eddy current flaw detection method, a penetrating coil method that performs flaw detection by inserting a long test object into a solenoid coil that induces eddy current, and a flaw detection probe including a coil that induces eddy current are used as test objects. There is a probe coil method in which flaw detection is performed by approaching the surface. In the penetration coil method, only a long material whose cross section is formed in a circle, hexagon or the like is a test object. On the other hand, the probe coil method performs a flaw detection by bringing a small-sized flaw detection probe close to the surface of the test object, and therefore has the merit that it can cope with any shape of the test object. .

図11は、従来の探傷プローブの構成例を示す模式図である。探傷プローブは、円環状の励磁コイル51と同径の円環状の検出コイル52とを互いに平行に配して備え、検出コイル52の励磁コイル51に対抗した面とは逆の面を探傷面としている。探傷プローブを用いて渦流探傷を行う際には、試験対象の表面と探傷面とを適宜離隔させて対向させ、試験対象の表面に対して励磁コイル51の中心軸が略直交するように探傷プローブを配し、励磁コイル51に交流電流を通流する。交流電流によって励磁コイル51を貫く交流磁界が発生し、この交流磁界によって試験対象の表面に渦電流が誘起される。検出コイル52の両端子間には、励磁コイル51に流れる交流電流による交流磁界と渦電流による交流磁界とによって電圧が発生する。   FIG. 11 is a schematic diagram showing a configuration example of a conventional flaw detection probe. The flaw detection probe includes an annular excitation coil 51 and an annular detection coil 52 having the same diameter arranged in parallel to each other, and a surface opposite to the surface of the detection coil 52 facing the excitation coil 51 is used as a flaw detection surface. Yes. When performing eddy current flaw detection using a flaw detection probe, the surface of the test object and the flaw detection surface are appropriately spaced apart from each other, and the flaw detection probe is arranged so that the central axis of the excitation coil 51 is substantially orthogonal to the surface of the test object. And an alternating current is passed through the exciting coil 51. An alternating current generates an alternating magnetic field that penetrates the exciting coil 51, and an eddy current is induced on the surface of the test object by the alternating magnetic field. A voltage is generated between both terminals of the detection coil 52 by an alternating magnetic field caused by an alternating current flowing through the exciting coil 51 and an alternating magnetic field caused by an eddy current.

試験対象の表面に傷が存在する場合、渦電流が傷に沿って流れるので、傷が存在しない場合とは渦電流の流路が変化する。従って、傷が存在しない部分から傷が存在する部分へ探傷プローブが移動した場合は、渦電流によって生じる交流磁界の強さ及び方向が変化し、この交流磁界によって検出コイル52の両端子間に誘起される電圧が変化する。故に、検出コイル52の両端子間に発生する電圧を測定することにより、傷の有無を検出することができる。   When there is a flaw on the surface of the test object, eddy current flows along the flaw, so the flow path of the eddy current changes from that when there is no flaw. Therefore, when the flaw detection probe moves from a portion where no flaw exists to a portion where a flaw exists, the strength and direction of the alternating magnetic field generated by the eddy current changes, and this alternating magnetic field induces between both terminals of the detection coil 52. The applied voltage changes. Therefore, the presence or absence of a flaw can be detected by measuring the voltage generated between both terminals of the detection coil 52.

しかし、図11に示した探傷プローブでは、検出コイル52の両端子間に発生する電圧の出力には、励磁コイル51と試験対象の表面との距離、所謂リフトオフの値に依存する成分が含まれているので、リフトオフの変化に起因するノイズが出力結果に混在することとなる。出力結果から傷の存在に起因する成分のみを抽出することは困難であるので、傷の種類及び深さ等の傷の性質を詳しく解析することが困難であるという問題がある。   However, in the flaw detection probe shown in FIG. 11, the output of the voltage generated between both terminals of the detection coil 52 includes a component that depends on the distance between the excitation coil 51 and the surface of the test object, the so-called lift-off value. Therefore, noise resulting from the change in lift-off is mixed in the output result. Since it is difficult to extract only the component resulting from the presence of a flaw from the output result, there is a problem that it is difficult to analyze in detail the nature of the flaw such as the type and depth of the flaw.

この問題を解決するために、リフトオフの変化に起因するノイズが発生しない探傷プローブの開発が行われている。非特許文献1には、リフトオフの変化に起因するノイズが発生しない探傷プローブが開示されている。図12は、非特許文献1で開示された探傷プローブの構造を示す模式的斜視図である。直方体の対向する2面に垂直な方向を中心軸の方向とし、底面及び上面を含む他の4面に巻線を巻回した四角筒形状のコイルを励磁コイル53とする。励磁コイル53の底面の中央には、中心軸が励磁コイル53の底面に直交する円環状の検出コイル54を配置してある。探傷時には、励磁コイル53の底面が試験対象の表面に略平行になるように探傷プローブを配する。   In order to solve this problem, a flaw detection probe that does not generate noise due to a change in lift-off has been developed. Non-Patent Document 1 discloses a flaw detection probe that does not generate noise due to a change in lift-off. FIG. 12 is a schematic perspective view showing the structure of the flaw detection probe disclosed in Non-Patent Document 1. A rectangular cylinder-shaped coil in which windings are wound around the other four surfaces including the bottom surface and the top surface is defined as the exciting coil 53, with the direction perpendicular to the two opposing surfaces of the rectangular parallelepiped as the center axis direction. In the center of the bottom surface of the excitation coil 53, an annular detection coil 54 whose central axis is orthogonal to the bottom surface of the excitation coil 53 is disposed. During flaw detection, the flaw detection probe is arranged so that the bottom surface of the excitation coil 53 is substantially parallel to the surface of the test object.

励磁コイル53の底面では、巻線が略平行に均等の間隔で並んでいる。この励磁コイル53に交流電流を通流することにより、励磁コイル53の底面の直下では、巻線に平行な渦電流が試験対象の表面に発生する。この渦電流は、流れる方向が略平行で電流密度が一様な渦電流となる。励磁コイル53に流れる交流電流による交流磁界と渦電流による交流磁界とが円環状の検出コイル54には殆ど鎖交しないので、試験対象の表面に傷が存在しない場合は検出コイル54の両端子間の出力は略0である。従って、リフトオフが変化した場合であっても、検出コイル54の両端子間の出力にはノイズが含まれることは殆どない。試験対象の表面に傷が存在する場合は、渦電流が傷に沿って流れることによって渦電流の流路が変化するので、流路が変化した渦電流によって検出コイル54に鎖交する交流磁界が発生し、検出コイル54の両端子間に電圧が発生する。このように、図12に示す如き非特許文献1に開示された探傷プローブを用いることによって、リフトオフの変化に起因するノイズに影響されることなく探傷試験を行うことができる。従って、図12に示した探傷プローブを用いることによって、探傷試験での傷の検出感度が向上するので、この探傷プローブを用いた探傷試験の実用化が図られている。   On the bottom surface of the exciting coil 53, the windings are arranged in parallel at substantially equal intervals. By passing an alternating current through the exciting coil 53, an eddy current parallel to the winding is generated on the surface of the test object immediately below the bottom surface of the exciting coil 53. This eddy current is an eddy current in which the flowing direction is substantially parallel and the current density is uniform. Since the AC magnetic field due to the AC current flowing through the exciting coil 53 and the AC magnetic field due to the eddy current are hardly linked to the annular detection coil 54, when there is no flaw on the surface of the test object, between the two terminals of the detection coil 54 Is substantially zero. Therefore, even when the lift-off changes, the output between both terminals of the detection coil 54 hardly includes noise. If there is a scratch on the surface of the test object, the flow path of the eddy current changes due to the eddy current flowing along the scratch, so that an alternating magnetic field linked to the detection coil 54 due to the eddy current that has changed the flow path is generated. And a voltage is generated between both terminals of the detection coil 54. As described above, by using the flaw detection probe disclosed in Non-Patent Document 1 as shown in FIG. 12, a flaw detection test can be performed without being affected by noise caused by a change in lift-off. Therefore, by using the flaw detection probe shown in FIG. 12, the flaw detection sensitivity in the flaw detection test is improved, so that the flaw detection test using this flaw detection probe has been put to practical use.

小山潔、星川洋「渦流探傷試験における一様渦電流プローブの基礎的特性に関する研究」、非破壊検査、日本非破壊検査協会、平成12年11月、第49巻、第11号、p.775−781Koyama Kiyoshi and Hoshikawa Hiroshi “Study on Fundamental Characteristics of Uniform Eddy Current Probes in Eddy Current Testing”, Nondestructive Inspection, Japan Nondestructive Inspection Association, November 2000, Vol. 49, No. 11, p. 775-781

本発明者は、図12に示す如き構成の探傷プローブの実用性を確認するために、探傷実験を行った。金属製の試験片に人工傷を生成し、図12に示す如き構成の探傷プローブを用いて試験片に対する探傷試験を行った。図13は、試験片の表面上の人工傷の深さに対する探傷プローブの出力を示す特性図である。横軸は試験片上の所定の位置から傷までの距離を示す。縦軸は、励磁コイル53に流れる交流電流に対応して位相検波を行った検出コイル54の出力電圧を示し、これが探傷プローブの出力である。探傷プローブの励磁コイル53は、12mm角の立方体形状とし、検出コイル54は直径5mmとした。試験片は炭素鋼SS400を用いた。また励磁コイル53に流れる交流電流の周波数は50kHzとし、リフトオフは1mmとした。図13には、傷の深さが0.6mm〜8.0mmである人工傷に対して探傷試験を行った試験結果を示す。   The present inventor conducted a flaw detection experiment in order to confirm the practicality of the flaw detection probe configured as shown in FIG. Artificial flaws were generated on a metal test piece, and a flaw detection test was performed on the test piece using a flaw detection probe having the structure shown in FIG. FIG. 13 is a characteristic diagram showing the output of the flaw detection probe with respect to the depth of the artificial flaw on the surface of the test piece. The horizontal axis indicates the distance from a predetermined position on the test piece to the scratch. The vertical axis represents the output voltage of the detection coil 54 that has undergone phase detection in response to the alternating current flowing in the excitation coil 53, and this is the output of the flaw detection probe. The excitation coil 53 of the flaw detection probe had a 12 mm square cube shape, and the detection coil 54 had a diameter of 5 mm. Carbon steel SS400 was used for the test piece. The frequency of the alternating current flowing through the exciting coil 53 was 50 kHz, and the lift-off was 1 mm. In FIG. 13, the test result which performed the flaw detection test with respect to the artificial wound whose depth of a wound is 0.6 mm-8.0 mm is shown.

図13に示す如く、人工傷の深さが0.6mm、1.2mm、1.8mm、2.0mmと大きくなるに従って、人工傷に対して得られた探傷プローブの出力の振幅がより小さくなっていく。また傷の深さが2.0mm以上である人工傷に対しては、傷の深さが大きくなるに従って探傷プローブの出力の振幅が大きくなっていく。更に図中には示していないが、傷の深さが0.6mmよりも小さい人工傷では、傷の深さが大きくなるに従って探傷プローブの出力の振幅が大きくなることが観測されている。即ち、傷の深さによっては、傷の深さが大きくなるに従って探傷プローブの出力が大きくなる場合と逆に探傷プローブの出力が小さくなる場合とがあることが判明した。この状態は、傷の深さの変化と探傷プローブの出力の変化とが単純に対応していないので、探傷プローブの出力が得られた場合に傷の深さを推定することが困難である。この現象は、非磁性であるアルミニウム試験片を用いた場合の探傷実験でも同様に観測されており、材質にかかわらず生じることが確認されている。また図13が示す各人工傷に対する探傷プローブの出力の出力波形の内、傷の深さが1.2mm、1.8mm、2.0mm、2.4mmである人工傷に対して得られた出力波形は二つの信号波形が重ね合わされた波形となっており、2種類の現象が発生していることが推測される。   As shown in FIG. 13, as the depth of the artificial wound increases to 0.6 mm, 1.2 mm, 1.8 mm, and 2.0 mm, the amplitude of the output of the flaw detection probe obtained for the artificial wound becomes smaller. To go. For an artificial flaw having a flaw depth of 2.0 mm or more, the amplitude of the output of the flaw detection probe increases as the flaw depth increases. Further, although not shown in the drawing, it has been observed that in the case of an artificial flaw having a flaw depth of less than 0.6 mm, the output amplitude of the flaw detection probe increases as the flaw depth increases. That is, it has been found that depending on the depth of the flaw, the output of the flaw detection probe may increase as the flaw depth increases, and conversely, the output of the flaw detection probe may decrease. In this state, since the change in the flaw depth does not simply correspond to the change in the flaw detection probe output, it is difficult to estimate the flaw depth when the flaw detection probe output is obtained. This phenomenon is also observed in a flaw detection experiment using a nonmagnetic aluminum test piece, and it has been confirmed that this phenomenon occurs regardless of the material. Further, among the output waveforms of the flaw detection probe output for each artificial flaw shown in FIG. 13, the output obtained for the artificial flaw having a flaw depth of 1.2 mm, 1.8 mm, 2.0 mm, and 2.4 mm. The waveform is a waveform in which two signal waveforms are superimposed, and it is estimated that two types of phenomena occur.

本発明者は、次に、励磁コイル53によって試験片表面に生成される磁界の試験片表面に対する垂直成分を測定した。図14は、励磁コイル53によって生成される磁界の試験片表面に対する垂直成分の測定結果を示す特性図である。直径5mmのプレーナ型コイルを用いて、12mm角の立方体形状の励磁コイル53の周囲に生成される磁界の試験片表面に対する垂直成分を試験片表面で測定した。励磁コイル53に流れる交流電流の周波数は50kHzとし、リフトオフは1mmとした。横軸は、励磁コイル53の中心軸に平行な方向に沿った励磁コイル53の中心の真下の位置からの相対距離を示し、縦軸は、プレーナ型コイルの出力電圧を示し、磁界の強さに対応する。また縦軸が示す符号は、磁界の垂直成分の向きに対応する。図中に示す磁界の垂直成分は、励磁コイル53の端部で磁界強度が最大となり、励磁コイル53の中心部で磁界強度が最小になるように分布している。これに対応して、磁界の試験片表面に平行な成分は、励磁コイル53の端部で磁界強度が最小となり、励磁コイル53の中心部で磁界強度が最大となるように分布する。これら磁界の垂直成分及び平行成分の夫々によって渦電流が発生するので、試験片表面には2種類の渦電流が発生していることになる。従って、図13に示す如く、探傷プローブの出力は二つの信号波形が重ね合わされた波形となる。また、試験片の表面に発生する渦電流は、位置によって強度が異なる磁界の垂直成分及び平行成分に応じて発生するので、方向及び強度が位置によって変化し、図12に示した探傷プローブでは非特許文献1に開示されているような略平行で一様な渦電流を実際に得ることは困難であることが判明した。このことが、傷の深さの変化と探傷プローブの出力の変化とが単純に対応しない原因である。   Next, the inventor measured the perpendicular component of the magnetic field generated on the surface of the test piece by the exciting coil 53 with respect to the test piece surface. FIG. 14 is a characteristic diagram showing the measurement result of the vertical component of the magnetic field generated by the excitation coil 53 with respect to the test piece surface. Using a planar coil having a diameter of 5 mm, the perpendicular component of the magnetic field generated around a 12 mm square cubic excitation coil 53 with respect to the test piece surface was measured on the test piece surface. The frequency of the alternating current flowing through the exciting coil 53 was 50 kHz, and the lift-off was 1 mm. The horizontal axis indicates the relative distance from the position directly below the center of the exciting coil 53 along the direction parallel to the central axis of the exciting coil 53, the vertical axis indicates the output voltage of the planar coil, and the strength of the magnetic field. Corresponding to The sign indicated by the vertical axis corresponds to the direction of the vertical component of the magnetic field. The vertical component of the magnetic field shown in the figure is distributed so that the magnetic field strength is maximized at the end of the exciting coil 53 and the magnetic field strength is minimized at the central portion of the exciting coil 53. Correspondingly, the component of the magnetic field parallel to the surface of the test piece is distributed so that the magnetic field strength is minimized at the end of the exciting coil 53 and the magnetic field strength is maximized at the central portion of the exciting coil 53. Since eddy currents are generated by the vertical and parallel components of these magnetic fields, two types of eddy currents are generated on the surface of the test piece. Therefore, as shown in FIG. 13, the output of the flaw detection probe has a waveform in which two signal waveforms are superimposed. Further, since the eddy current generated on the surface of the test piece is generated according to the vertical component and the parallel component of the magnetic field having different strengths depending on the position, the direction and the strength change depending on the position. In the flaw detection probe shown in FIG. It has been found that it is difficult to actually obtain a substantially parallel and uniform eddy current as disclosed in Patent Document 1. This is the reason why the change in the flaw depth does not simply correspond to the change in the output of the flaw detection probe.

本発明者は、次に、励磁コイル53の長さを変化させながら、励磁コイル53によって試験片表面に生成される磁界の試験片表面に対する平行成分を測定した。図15は、励磁コイル53によって生成される磁界の試験片表面に対する平行成分の測定結果を示す特性図である。横軸は、励磁コイル53の中心軸に平行な方向に沿った励磁コイル53の中心の真下の位置からの相対距離を示し、縦軸は、プレーナコイルの出力電圧を示し、磁界の強さに対応する。励磁コイル53の幅及び高さは12mmとし、中心軸方向の長さが夫々12mm、24mm、36mmである励磁コイル53について磁界を測定した。図中には、励磁コイル53の長さが夫々12mm、24mm、36mmである場合について、夫々実線、破線、一点鎖線で測定結果を示している。励磁コイル53の長さが長くなるほど、磁界の平行成分の強度が最大で位置によらずに均一になる領域が広くなることがわかる。この領域では、磁界の平行成分の強度が均一であると同時に磁界の垂直成分の強度が最小であるので、試験片表面に対して略平行で均一な磁界により、試験片表面に略平行で一様な渦電流が発生する。   Next, the inventor measured the parallel component of the magnetic field generated by the exciting coil 53 on the surface of the test piece while changing the length of the exciting coil 53. FIG. 15 is a characteristic diagram showing the measurement result of the parallel component of the magnetic field generated by the exciting coil 53 with respect to the test piece surface. The horizontal axis indicates the relative distance from the position directly below the center of the exciting coil 53 along the direction parallel to the central axis of the exciting coil 53, and the vertical axis indicates the output voltage of the planar coil, and the magnetic field strength. Correspond. The excitation coil 53 had a width and height of 12 mm, and the magnetic field was measured for the excitation coil 53 whose length in the central axis direction was 12 mm, 24 mm, and 36 mm, respectively. In the figure, when the length of the exciting coil 53 is 12 mm, 24 mm, and 36 mm, the measurement results are shown by a solid line, a broken line, and a one-dot chain line, respectively. It can be seen that the longer the length of the exciting coil 53, the wider the region where the intensity of the parallel component of the magnetic field is maximum and becomes uniform regardless of the position. In this region, since the strength of the parallel component of the magnetic field is uniform and the strength of the vertical component of the magnetic field is minimal, the magnetic field is substantially parallel to the test piece surface and is substantially parallel to the test piece surface. Various eddy currents are generated.

以上の結果により、試験対象の表面に略平行で一様な渦電流を発生させ、傷の深さの変化と傷を検出する検出コイル54の出力の振幅の変化との間に単純増加の関係を得るためには、励磁コイル53の幅に比べて長さを3倍程度に長くする必要があることがわかる。しかし、通常の探傷試験では、作業員が探傷プローブを手で持って探傷を行う手探傷作業も行われるので、作業員が手で持つ探傷プローブは、手で持ちやすいように外形寸法が直径18mm程度以下であることが望ましい。探傷プローブの外形寸法を直径18mm程度以下にするためには、励磁コイル53の長さは高々12mm以下の寸法にする必要があるので、試験対象上で渦電流が略一様になる領域が狭くなり、傷の深さの変化と探傷プローブの出力の変化との間に単純増加の関係を得ることが困難である。従って、手探傷作業が可能な探傷プローブでは、探傷プローブの出力から傷の深さを推定することが困難であるという問題がある。   Based on the above results, a substantially parallel and uniform eddy current is generated on the surface of the test object, and there is a simple increase between the change in the depth of the flaw and the change in the amplitude of the output of the detection coil 54 that detects the flaw. It can be seen that it is necessary to make the length about three times longer than the width of the exciting coil 53 in order to obtain the above. However, in a normal flaw detection test, a worker performs a flaw detection operation in which a flaw detection probe is held by hand, so that a flaw detection probe held by a worker by hand has an outer diameter of 18 mm in diameter so that it can be easily held by hand. Desirably less than or equal to. In order to reduce the outer dimension of the flaw detection probe to a diameter of about 18 mm or less, the length of the exciting coil 53 needs to be 12 mm or less at most. Therefore, the region where the eddy current becomes substantially uniform on the test object is narrow. Thus, it is difficult to obtain a simple increase relationship between the change in the flaw depth and the change in the output of the flaw detection probe. Therefore, a flaw detection probe capable of manual flaw detection has a problem that it is difficult to estimate the flaw depth from the output of the flaw detection probe.

12mm以下の寸法の励磁コイル53を用いて傷の深さの変化と探傷プローブの出力の変化との間に単純増加の関係を得る方法としては、検出コイル54の径を小さくし、磁界の垂直成分が最小で平行成分が最大となる励磁コイル53の中心の微小部分で検出コイル54の出力信号を測定する方法が考えられる。しかし、検出コイル54の径を小さくして面積を小さくした場合は、検出コイル54の出力電圧が低くなり、出力信号の信号対雑音(S/N)比が悪化することによって、傷の検出精度が低下するという問題がある。   As a method for obtaining a simple increase relationship between the change in the depth of the flaw and the change in the output of the flaw detection probe using the excitation coil 53 having a dimension of 12 mm or less, the diameter of the detection coil 54 is reduced and the vertical direction of the magnetic field is reduced. A method is conceivable in which the output signal of the detection coil 54 is measured at a very small portion at the center of the exciting coil 53 where the component is the smallest and the parallel component is the largest. However, when the area of the detection coil 54 is reduced by reducing the diameter of the detection coil 54, the output voltage of the detection coil 54 is lowered, and the signal-to-noise (S / N) ratio of the output signal is deteriorated. There is a problem that decreases.

本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、傷の検出精度を悪化させることなく、出力から傷の深さを容易に推定することが可能となる探傷プローブを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to easily estimate the depth of the scratch from the output without deteriorating the detection accuracy of the scratch. It is to provide a flaw detection probe.

本発明に係る探傷プローブは、探傷対象に渦電流を誘起させる励磁コイルと、該励磁コイルに誘起された渦電流の状態に応じた信号を出力する検出コイルとを備える探傷プローブにおいて、前記励磁コイルは、中心軸に垂直な断面が多角形である角筒状に導体を巻回してなり、前記検出コイルは、角筒状の前記励磁コイルが有する一側面に中心軸が交差するように、前記一側面を囲繞して導体を巻回してなることを特徴とする。   The flaw detection probe according to the present invention is a flaw detection probe comprising: an excitation coil that induces eddy current in a flaw detection target; and a detection coil that outputs a signal corresponding to the state of the eddy current induced in the excitation coil. Is formed by winding a conductor in a rectangular tube having a polygonal cross section perpendicular to the central axis, and the detection coil is arranged so that the central axis intersects one side surface of the rectangular cylindrical excitation coil. A conductor is wound around one side surface.

本発明においては、角筒状に導体を巻回した励磁コイルの一側面を囲繞するように検出コイルを配置して探傷プローブを構成し、検出コイルが囲繞する励磁コイルの一側面を探傷プローブの探傷面とする。これにより、励磁コイルが発生させる磁界の試験対象の表面に対する平行な成分が最大になる部分及び垂直な成分が最大になる部分が共に検出コイルの内側に位置し、探傷対象の表面での傷の存在に起因する渦電流の変化が検出コイルの内側で発生するようになる。   In the present invention, a flaw detection probe is configured by arranging a detection coil so as to surround one side surface of an excitation coil in which a conductor is wound in a rectangular tube shape, and one side surface of the excitation coil surrounded by the detection coil is connected to the flaw detection probe. The flaw detection surface. As a result, the portion where the parallel component of the magnetic field generated by the exciting coil is maximum and the portion where the vertical component is maximum are both located inside the detection coil, and the scratch on the surface of the flaw detection target is detected. Changes in eddy current due to the presence occur inside the detection coil.

本発明に係る探傷プローブは、探傷対象に渦電流を誘起させる励磁コイルと、該励磁コイルに誘起された渦電流の状態に応じた信号を出力する環状の検出コイルとを備える探傷プローブにおいて、前記励磁コイルは、中心軸に垂直な断面が多角形である角筒状に導体を巻回してなり、前記検出コイルは、少なくとも一方向の径の長さを前記励磁コイルの中心軸方向の長さ以上になしてあり、角筒状の前記励磁コイルが有する一側面の外側に、前記検出コイルの前記一方向の径が前記励磁コイルの中心軸に実質的に平行になり、しかも前記検出コイルの中心軸が前記一側面に交差するように前記検出コイルを配置してあることを特徴とする。   A flaw detection probe according to the present invention is a flaw detection probe comprising an exciting coil that induces eddy current in a flaw detection target, and an annular detection coil that outputs a signal corresponding to the state of the eddy current induced in the exciting coil. The excitation coil is formed by winding a conductor in a rectangular tube shape having a polygonal cross section perpendicular to the central axis, and the detection coil has a length in at least one direction in the central axis direction of the excitation coil. The one side diameter of the detection coil is substantially parallel to the central axis of the excitation coil on the outside of one side surface of the exciting coil having a rectangular tube shape, and the detection coil The detection coil is arranged so that a central axis intersects the one side surface.

本発明においては、角筒状に導体を巻回した励磁コイルの一側面の外側に、少なくとも一方向の径の長さが励磁コイルの中心軸方向の長さ以上であるように形成してある環状の検出コイルを、励磁コイルの長さ以上である径の方向が励磁コイルの中心軸方向に平行になるように配置して探傷プローブを構成する。外側に検出コイルを配置してある励磁コイルの一側面を探傷プローブの探傷面とする。   In the present invention, the outer side of one side of the exciting coil in which a conductor is wound in a rectangular tube shape is formed such that the length of the diameter in at least one direction is equal to or longer than the length in the central axis direction of the exciting coil. The flaw detection probe is configured by arranging the annular detection coil so that the diameter direction equal to or longer than the length of the exciting coil is parallel to the central axis direction of the exciting coil. One side surface of the excitation coil in which the detection coil is arranged outside is defined as a flaw detection surface of the flaw detection probe.

本発明にあっては、角筒状に導体を巻回した励磁コイルの探傷面を囲繞するように検出コイルを配置することによって、傷の存在による渦電流の変化を検出コイルの内側で発生させ、傷の深さの変化と探傷プローブの出力の変化との間に単純増加の関係を得ることができる。従って、探傷試験の際には、探傷プローブの出力から傷の深さを容易に推定することが可能になる。また、検出コイルの径は励磁コイルの探傷面を囲繞するように大きく形成してあるので、検出コイルの径を小さくして励磁コイルによる磁界の垂直成分が最小である微小部分で検出コイルの出力電圧を得る方法に比べて、検出コイルの出力電圧が大きくなってS/N比が向上する。従って、傷の検出精度を悪化させることなく、出力から傷の深さを容易に推定することが可能となる。   In the present invention, by arranging the detection coil so as to surround the flaw detection surface of the exciting coil in which a conductor is wound in a rectangular tube shape, a change in eddy current due to the presence of a flaw is generated inside the detection coil. A simple increasing relationship can be obtained between the change in the flaw depth and the change in the output of the flaw detection probe. Therefore, in the flaw detection test, the depth of the flaw can be easily estimated from the output of the flaw detection probe. In addition, since the detection coil diameter is large so as to surround the flaw detection surface of the excitation coil, the detection coil output is reduced at a minute portion where the vertical component of the magnetic field by the excitation coil is minimized by reducing the detection coil diameter. Compared with the method of obtaining the voltage, the output voltage of the detection coil is increased and the S / N ratio is improved. Therefore, the depth of the scratch can be easily estimated from the output without deteriorating the detection accuracy of the scratch.

本発明にあっては、径の長さが励磁コイルの中心軸方向の長さ以上であるので、励磁コイルの探傷面を囲繞するように検出コイルを配置した場合と同様に、傷の存在による渦電流の変化を検出コイルの内側で発生させ、傷の深さの変化と探傷プローブの出力の変化との間に単純増加の関係を得ることができる。従って、出力から傷の深さを容易に推定することが可能となる。また励磁コイルの探傷面を囲繞するように検出コイルを配置した場合に比べて、探傷プローブの外径をより小さくすることができるので、作業員がより使用し易い探傷プローブを実現することができる。   In the present invention, since the length of the diameter is equal to or greater than the length of the excitation coil in the central axis direction, it is caused by the presence of a flaw as in the case where the detection coil is arranged so as to surround the flaw detection surface of the excitation coil. A change in eddy current is generated inside the detection coil, and a simple increase relationship can be obtained between the change in the flaw depth and the change in the output of the flaw detection probe. Therefore, the depth of the scratch can be easily estimated from the output. In addition, since the outer diameter of the flaw detection probe can be made smaller than when the detection coil is arranged so as to surround the flaw detection surface of the excitation coil, it is possible to realize a flaw detection probe that is easier for an operator to use. .

実施の形態1に係る本発明の探傷プローブの主な構成を示す斜視図である。It is a perspective view which shows the main structures of the flaw detection probe of this invention which concerns on Embodiment 1. FIG. 実施の形態1に係る探傷プローブを用いた探傷装置の構成を示すブロック図である。It is a block diagram which shows the structure of the flaw detection apparatus using the flaw detection probe which concerns on Embodiment 1. FIG. 探傷実験の方法を模式的に示す平面図である。It is a top view which shows typically the method of a flaw detection experiment. 炭素鋼の試験片に生成した人工傷の深さに対する探傷プローブの出力を示す特性図である。It is a characteristic view which shows the output of a flaw detection probe with respect to the depth of the artificial flaw produced | generated to the test piece of carbon steel. アルミニウムの試験片に生成した人工傷の深さに対する探傷プローブの出力を示す特性図である。It is a characteristic view which shows the output of a flaw detection probe with respect to the depth of the artificial flaw produced | generated to the test piece of aluminum. 三角筒形状に励磁コイルを形成した探傷プローブを示す斜視図である。It is a perspective view which shows the flaw detection probe which formed the exciting coil in the triangular cylinder shape. 励磁コイルの探傷面の外側に検出コイルを配置した探傷プローブを示す斜視図である。It is a perspective view which shows the flaw detection probe which has arrange | positioned the detection coil to the outer side of the flaw detection surface of an exciting coil. 励磁コイルの探傷面の内側に検出コイルを配置した探傷プローブを示す斜視図である。It is a perspective view which shows the flaw detection probe which has arrange | positioned the detection coil inside the flaw detection surface of an exciting coil. 実施の形態2に係る本発明の探傷プローブの主な構成を示す斜視図である。It is a perspective view which shows the main structures of the flaw detection probe of this invention which concerns on Embodiment 2. FIG. 実施の形態2に係る探傷プローブを用いた本発明の探傷装置の構成を示すブロック図である。It is a block diagram which shows the structure of the flaw detection apparatus of this invention using the flaw detection probe which concerns on Embodiment 2. FIG. 従来の探傷プローブの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the conventional flaw detection probe. 非特許文献1で開示された探傷プローブの構造を示す模式的斜視図である。It is a typical perspective view which shows the structure of the flaw detection probe disclosed by the nonpatent literature 1. 試験片の表面上の人工傷の深さに対する探傷プローブの出力を示す特性図である。It is a characteristic view which shows the output of a flaw detection probe with respect to the depth of the artificial flaw on the surface of a test piece. 励磁コイルによって生成される磁界の試験片表面に対する垂直成分の測定結果を示す特性図である。It is a characteristic view which shows the measurement result of the perpendicular | vertical component with respect to the test piece surface of the magnetic field produced | generated by an exciting coil. 励磁コイルによって生成される磁界の試験片表面に対する平行成分の測定結果を示す特性図である。It is a characteristic view which shows the measurement result of the parallel component with respect to the test piece surface of the magnetic field produced | generated by an exciting coil.

(実施の形態1)
以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
図1は、実施の形態1に係る本発明の探傷プローブの主な構成を示す斜視図である。探傷プローブ1は、探傷試験の試験対象(探傷対象)に渦電流を誘起させる励磁コイル11と、渦電流の状態に応じた信号を出力する検出コイル12とを備える。励磁コイル11は、励磁コイル11の中心軸に垂直な断面が長方形である空芯の四角筒状に導体を巻回してなる。検出コイル12は、平面視で円環形状をなし、四角筒状の励磁コイル11の一側面を囲繞して導体を巻回してなる。なお、検出コイル12の平面視での形状は円環形状に限るものではなく、励磁コイル11の一側面を囲繞する形状であれば、四角環状又は六角環状等のその他の形状であってもよい。また検出コイル12は、中心軸が励磁コイル11の前記一側面に交差するように、好ましくは中心軸が前記一側面に略直交するように配置してある。
(Embodiment 1)
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
FIG. 1 is a perspective view showing the main configuration of the flaw detection probe according to the first embodiment of the present invention. The flaw detection probe 1 includes an excitation coil 11 that induces an eddy current in a test target (flaw detection target) of a flaw detection test, and a detection coil 12 that outputs a signal corresponding to the state of the eddy current. The exciting coil 11 is formed by winding a conductor in a square tube with an air core having a rectangular cross section perpendicular to the central axis of the exciting coil 11. The detection coil 12 has an annular shape in plan view, and is formed by winding a conductor so as to surround one side surface of the rectangular cylindrical excitation coil 11. Note that the shape of the detection coil 12 in plan view is not limited to an annular shape, and may be other shapes such as a quadrangular ring or a hexagonal ring as long as it surrounds one side surface of the excitation coil 11. . The detection coil 12 is arranged so that the central axis intersects the one side surface of the exciting coil 11, and preferably the central axis is substantially orthogonal to the one side surface.

以上の如く構成された探傷プローブ1は、検出コイル12が囲繞している励磁コイル11の一側面を探傷面とし、試験対象の表面に探傷面が対向する状態で試験対象から適宜離隔され、この状態で試験対象の表面を操作することによって使用される。   The flaw detection probe 1 configured as described above is appropriately separated from the test object with one side surface of the excitation coil 11 surrounded by the detection coil 12 as a flaw detection surface, with the flaw detection surface facing the surface of the test object. Used by manipulating the surface of the test object in the state.

図2は、実施の形態1に係る探傷プローブ1を用いた探傷装置の構成を示すブロック図である。探傷装置は、探傷プローブ1を備え、励磁コイル11には発振器21が接続されている。発振器21は、所定周波数の交流電流を発生し、発生した交流電流を励磁コイル11に供給する構成となっている。検出コイル12には、増幅器22が接続されている。増幅器22は、検出コイル12の両端に発生する電圧の出力を受け付け、受け付けた検出コイル12からの出力を適宜増幅し、増幅した信号を出力する構成となっている。また発振器21及び増幅器22には、位相検波器23が接続されている。位相検波器23は、増幅器22が出力する信号を入力信号として受け付け、発振器21が発生する交流電流を基準信号として受け付け、入力信号から基準信号と同じ周波数の信号を検出し、検出した信号の振幅、及び基準信号と検出した信号との位相差に比例した信号を出力する構成となっている。位相検波器23には、位相検波器23が出力した信号が示す電圧を測定する電圧計24が接続されている。電圧計24は、測定した電圧を示すデジタルデータを出力する構成となっている。電圧計24には、電圧計23が出力したデジタルデータを受け付けて記録するパーソナルコンピュータ(PC)等の記録部25が接続されている。なお、電圧計24は、電圧を示すアナログデータを出力する構成であってもよく、また記録部25は、電圧計24が出力したデータの値を記録用紙に記録するペンレコーダ等の記録装置であってもよい。   FIG. 2 is a block diagram illustrating a configuration of a flaw detection apparatus using the flaw detection probe 1 according to the first embodiment. The flaw detection apparatus includes a flaw detection probe 1, and an oscillator 21 is connected to the excitation coil 11. The oscillator 21 is configured to generate an alternating current having a predetermined frequency and supply the generated alternating current to the exciting coil 11. An amplifier 22 is connected to the detection coil 12. The amplifier 22 is configured to receive an output of a voltage generated at both ends of the detection coil 12, appropriately amplify the output from the received detection coil 12, and output an amplified signal. A phase detector 23 is connected to the oscillator 21 and the amplifier 22. The phase detector 23 receives a signal output from the amplifier 22 as an input signal, receives an alternating current generated by the oscillator 21 as a reference signal, detects a signal having the same frequency as the reference signal from the input signal, and detects the amplitude of the detected signal. And a signal proportional to the phase difference between the reference signal and the detected signal. The phase detector 23 is connected to a voltmeter 24 that measures the voltage indicated by the signal output from the phase detector 23. The voltmeter 24 is configured to output digital data indicating the measured voltage. The voltmeter 24 is connected to a recording unit 25 such as a personal computer (PC) that receives and records the digital data output from the voltmeter 23. The voltmeter 24 may be configured to output analog data indicating a voltage, and the recording unit 25 is a recording device such as a pen recorder that records the value of the data output from the voltmeter 24 on a recording sheet. There may be.

図2に示した探傷装置では、発振器21が交流電流を発生させることによって、発生した交流電流が励磁コイル11を流れ、試験対象の表面に渦電流が発生する。試験対象の表面に傷が存在している場合は、試験対象の表面の渦電流が変化することによって検出コイル12の両端に電圧が発生し、増幅器22は、検出コイル12の両端に発生する電圧の出力を受け付け、受け付けた出力を適宜増幅した信号を位相検波器23へ出力する。位相検波器23は、増幅器22からの信号を入力信号として受け付け、発振器21からの交流電流を基準信号として受け付け、基準信号と同じ周波数の信号の振幅、及び基準信号との位相差に比例した信号を出力する。電圧計24は、位相検波器23からの信号を受け付け、受け付けた信号が示す電圧を測定し、測定した電圧を示すデジタルデータを出力し、記録部25は電圧計24が出力したデジタルデータを記録する。   In the flaw detection apparatus shown in FIG. 2, when the oscillator 21 generates an alternating current, the generated alternating current flows through the exciting coil 11, and an eddy current is generated on the surface of the test object. When there is a scratch on the surface of the test object, a voltage is generated at both ends of the detection coil 12 due to a change in the eddy current on the surface of the test object, and the amplifier 22 generates a voltage generated at both ends of the detection coil 12. And outputs a signal obtained by appropriately amplifying the received output to the phase detector 23. The phase detector 23 receives the signal from the amplifier 22 as an input signal, receives the alternating current from the oscillator 21 as a reference signal, and is a signal proportional to the amplitude of the signal having the same frequency as the reference signal and the phase difference from the reference signal. Is output. The voltmeter 24 receives the signal from the phase detector 23, measures the voltage indicated by the received signal, outputs digital data indicating the measured voltage, and the recording unit 25 records the digital data output by the voltmeter 24. To do.

以上の如き構成の探傷装置を用いて、探傷実験を行った。励磁コイル11は、線形0.2mmのポリイミド線を160回巻回して作成し、全体として一辺12mmの立方体形状とした。励磁コイル11の探傷面を囲繞する内径16mmの円環状ボビンを配置し、検出コイル12は、この円環状ボビンに線形70μmのポリイミド線を120回巻回して作成した。試験片として炭素鋼SS400とアルミニウムA1050とを使用した。各試験片は、幅60mm、長さ550mmとした。人工傷は幅を0.3mm、試験片の幅方向の長さを50mmとし、機械加工で生成した。   A flaw detection experiment was performed using the flaw detection apparatus having the above configuration. The exciting coil 11 was formed by winding a linear 0.2 mm polyimide wire 160 times, and made a cubic shape with a side of 12 mm as a whole. An annular bobbin having an inner diameter of 16 mm surrounding the flaw detection surface of the exciting coil 11 was arranged, and the detection coil 12 was formed by winding a linear 70 μm polyimide wire around the annular bobbin 120 times. Carbon steel SS400 and aluminum A1050 were used as test pieces. Each test piece had a width of 60 mm and a length of 550 mm. The artificial flaw was generated by machining with a width of 0.3 mm and a test piece width of 50 mm.

図3は、探傷実験の方法を模式的に示す平面図である。探傷試験では、探傷プローブ1の探傷面を試験片の表面に対向させた上で励磁コイル11の巻回方向が人工傷の長さ方向と略平行になるように探傷プローブ1を配置し、図中に白矢印で示す如く、人工傷の長さ方向に直交する方向へ探傷プローブ1を移動させ、試験片上の各位置での検出コイル12の出力信号を電圧計24で計測して記録部25で記録した。   FIG. 3 is a plan view schematically showing a flaw detection test method. In the flaw detection test, the flaw detection probe 1 is arranged so that the flaw detection surface of the flaw detection probe 1 faces the surface of the test piece and the winding direction of the excitation coil 11 is substantially parallel to the length direction of the artificial flaw. As indicated by the white arrow inside, the flaw detection probe 1 is moved in a direction perpendicular to the length direction of the artificial flaw, and the output signal of the detection coil 12 at each position on the test piece is measured by the voltmeter 24 and recorded. Recorded in.

図4は、炭素鋼の試験片に生成した人工傷の深さに対する探傷プローブ1の出力を示す特性図である。横軸は試験片上の所定の位置から傷までの距離を示す。縦軸は、位相検波器23が出力した信号の電圧を電圧計24が測定した電圧の値を示し、これが探傷プローブ1の出力である。励磁コイル11に流れる交流電流の周波数は50kHzとし、リフトオフは1mmとした。図中には、傷深さが0.5mmから10mmまでの各人工傷に対する探傷結果を示している。図中に示す如く、傷の深さが増加するに従って、探傷プローブ1の出力の振幅がほぼ比例して単純増加している。即ち、図13に示した従来の場合とは異なって、本発明によって傷の深さの変化と探傷プローブ1の出力の変化との間に単純増加の関係を得ることができた。   FIG. 4 is a characteristic diagram showing the output of the flaw detection probe 1 with respect to the depth of the artificial flaw generated on the test piece of carbon steel. The horizontal axis indicates the distance from a predetermined position on the test piece to the scratch. The vertical axis represents the voltage value obtained by measuring the voltage of the signal output from the phase detector 23 by the voltmeter 24, and this is the output of the flaw detection probe 1. The frequency of the alternating current flowing through the exciting coil 11 was 50 kHz, and the lift-off was 1 mm. In the figure, the flaw detection result for each artificial flaw having a flaw depth of 0.5 mm to 10 mm is shown. As shown in the figure, the amplitude of the output of the flaw detection probe 1 simply increases in proportion to the depth of the scratch. That is, unlike the conventional case shown in FIG. 13, a simple increase relationship can be obtained between the change in the flaw depth and the change in the output of the flaw detection probe 1 according to the present invention.

従来の場合では、励磁コイルが発生させる磁界の試験対象の表面に対する平行な成分が最大になる部分が検出コイルの内側に位置し、磁界の試験対象の表面に対する垂直な成分が最大になる部分が検出コイルの外側に位置していた。これに対して、本発明では、励磁コイル11が発生させる磁界の試験対象の表面に対する平行な成分が最大になる部分及び垂直な成分が最大になる部分が共に検出コイル12の内側に位置する。即ち、従来の場合では、励磁コイルが発生させる磁界の試験対象の表面に対する平行な成分と垂直な成分とに起因する渦電流が検出コイルの内側と外側とに位置していることに対して、本発明では両種類の渦電流が検出コイル11の内側に位置している。従って、傷の存在に起因する渦電流の変化が全て検出コイル11の内側で発生するので、傷の深さの変化と探傷プローブ1の出力の変化との間に単純増加の関係を得ることができると推測される。   In the conventional case, the portion where the parallel component of the magnetic field generated by the exciting coil with respect to the surface of the test object is maximum is located inside the detection coil, and the portion of the magnetic field perpendicular to the surface of the test object is maximum. It was located outside the detection coil. On the other hand, in the present invention, the portion where the parallel component of the magnetic field generated by the exciting coil 11 is maximum and the portion where the vertical component is maximum are both located inside the detection coil 12. That is, in the conventional case, eddy currents caused by the parallel component and the perpendicular component of the magnetic field generated by the excitation coil with respect to the surface of the test object are located inside and outside the detection coil. In the present invention, both types of eddy currents are located inside the detection coil 11. Therefore, since all changes in eddy current due to the presence of flaws occur inside the detection coil 11, a simple increase relationship can be obtained between the flaw depth change and the flaw detection probe 1 output change. Presumed to be possible.

図5は、アルミニウムの試験片に生成した人工傷の深さに対する探傷プローブ1の出力を示す特性図である。この場合は、励磁コイル11に流れる交流電流の周波数は25kHzとした。図中には、傷深さが0.1mmから10mmまでの各人工傷に対する探傷結果を示している。図中に示す如く、試験片が炭素鋼である場合と同様に、傷の深さが増加するに従って、探傷プローブ1の出力の振幅がほぼ比例して単純増加している。即ち、本発明では、試験対象での磁性の有無に関係なく、傷の深さの変化と探傷プローブ1の出力の変化との間に単純増加の関係を得ることができることが判明した。   FIG. 5 is a characteristic diagram showing the output of the flaw detection probe 1 with respect to the depth of the artificial flaw generated on the aluminum test piece. In this case, the frequency of the alternating current flowing through the exciting coil 11 was 25 kHz. In the figure, the flaw detection result for each artificial flaw having a flaw depth of 0.1 mm to 10 mm is shown. As shown in the figure, as in the case where the test piece is made of carbon steel, the amplitude of the output of the flaw detection probe 1 simply increases in proportion to the depth of the flaw. That is, in the present invention, it has been found that a simple increase relationship can be obtained between the change in the depth of the flaw and the change in the output of the flaw detection probe 1 regardless of the presence or absence of magnetism in the test object.

以上の如く、本発明においては、角筒状に導体を巻回した励磁コイル11の探傷面を囲繞するように検出コイル12を配置することによって、傷の存在による渦電流の変化を検出コイル12の内側で発生させ、傷の深さの変化と探傷プローブ1の出力の変化との間に単純増加の関係を得ることができる。従って、探傷試験の際には、探傷プローブ1の出力から傷の深さを容易に推定することが可能になる。また、検出コイル12の径は励磁コイル11の探傷面を囲繞するように大きく形成してあるので、検出コイルの径を小さくして励磁コイル11による磁界の垂直成分が最小である微小部分で検出コイルの出力電圧を得る方法に比べて、検出コイル12の出力電圧が大きくなってS/N比が向上する。従って、傷の検出精度を悪化させることなく、出力から傷の深さを容易に推定することが可能となる。   As described above, in the present invention, by arranging the detection coil 12 so as to surround the flaw detection surface of the exciting coil 11 in which a conductor is wound in a rectangular tube shape, a change in eddy current due to the presence of a flaw is detected by the detection coil 12. And a simple increase relationship can be obtained between the change in the depth of the flaw and the change in the output of the flaw detection probe 1. Therefore, in the flaw detection test, the depth of the flaw can be easily estimated from the output of the flaw detection probe 1. Further, since the diameter of the detection coil 12 is formed so as to surround the flaw detection surface of the exciting coil 11, the diameter of the detecting coil is reduced to detect a minute portion where the vertical component of the magnetic field by the exciting coil 11 is minimum. Compared with the method of obtaining the output voltage of the coil, the output voltage of the detection coil 12 is increased and the S / N ratio is improved. Therefore, the depth of the scratch can be easily estimated from the output without deteriorating the detection accuracy of the scratch.

以上に示した探傷プローブ1の構成例では、励磁コイル11を四角筒形状に形成した形態を示したが、励磁コイル11の形状はこれに限るものではなく、励磁コイル11の中心軸に垂直な断面は四角以外の多角形状であってもよい。図6は、三角筒形状に励磁コイル11を形成した探傷プローブ1を示す斜視図である。励磁コイル11は、励磁コイル11の中心軸に垂直な断面が三角形である三角筒形状に導体を巻回してなり、検出コイル12は、三角筒形状の励磁コイル11の一側面を囲繞して配置されている。探傷プローブ1は、検出コイル12が囲繞している励磁コイル11の一側面を探傷面とする。励磁コイル11の中心軸に垂直な断面は、探傷面に含まれる一辺を底辺とした二等辺三角形状に形成されていることが望ましい。励磁コイル11の探傷面以外の他の面に流れる電流は、試験対象に渦電流を発生させることに寄与しない無駄な電流なので、励磁コイル11を三角筒形状に形成することにより、四角筒形状の励磁コイルに比べて無駄な電流が減少し、探傷試験を行う際の電力を削減することができる。また励磁コイル11は、励磁コイル11の中心軸に垂直な断面が台形状又は六角形状等のその他の多角形状であってもよい。   In the configuration example of the flaw detection probe 1 shown above, the form in which the excitation coil 11 is formed in a rectangular tube shape is shown, but the shape of the excitation coil 11 is not limited to this, and is perpendicular to the central axis of the excitation coil 11. The cross section may be a polygon other than a square. FIG. 6 is a perspective view showing the flaw detection probe 1 in which the exciting coil 11 is formed in a triangular tube shape. The exciting coil 11 is formed by winding a conductor in a triangular cylindrical shape whose cross section perpendicular to the central axis of the exciting coil 11 is a triangle, and the detection coil 12 is arranged so as to surround one side of the exciting coil 11 having a triangular cylindrical shape. Has been. The flaw detection probe 1 uses one side surface of the excitation coil 11 surrounded by the detection coil 12 as a flaw detection surface. The cross section perpendicular to the central axis of the exciting coil 11 is preferably formed in an isosceles triangle shape with one side included in the flaw detection surface as the base. Since the current flowing through the surface other than the flaw detection surface of the exciting coil 11 is a useless current that does not contribute to the generation of eddy currents in the test object, forming the exciting coil 11 into a triangular cylindrical shape results in a rectangular cylindrical shape. As compared with the exciting coil, useless current is reduced, and electric power for performing a flaw detection test can be reduced. Further, the exciting coil 11 may have a cross section perpendicular to the central axis of the exciting coil 11 in other polygonal shapes such as a trapezoidal shape or a hexagonal shape.

また、以上に示した探傷プローブ1の構成例では、励磁コイル11の探傷面を囲繞するように検出コイル12を配置する形態を示したが、検出コイル12の配置はこれに限るものではなく、角筒形状の励磁コイル11の探傷面の外側に検出コイル12を配置した形態であってもよい。図7は、励磁コイル11の探傷面の外側に検出コイル12を配置した探傷プローブ1を示す斜視図である。探傷プローブ1は、四角筒形状の励磁コイル11の一側面の外側に、この側面に中心軸が鎖交するように検出コイル12を配置してあり、検出コイル12を配置してある励磁コイル11の一側面を探傷面とする。検出コイル12は、中心軸が励磁コイル11の前記一側面に略直交していることが望ましい。検出コイル12は、励磁コイル12の探傷面と試験対象との間に位置することとなる。検出コイル12は、少なくとも一方向の径の長さが励磁コイル11の中心軸方向の長さ以上であるように形成してあり、励磁コイル11の長さ以上である径の方向が励磁コイル11の中心軸方向に略平行になるように配置してある。   In the configuration example of the flaw detection probe 1 described above, the detection coil 12 is arranged so as to surround the flaw detection surface of the excitation coil 11. However, the arrangement of the detection coil 12 is not limited to this. The form which has arrange | positioned the detection coil 12 to the outer side of the flaw detection surface of the exciting coil 11 of a rectangular tube shape may be sufficient. FIG. 7 is a perspective view showing the flaw detection probe 1 in which the detection coil 12 is arranged outside the flaw detection surface of the excitation coil 11. In the flaw detection probe 1, a detection coil 12 is disposed outside one side surface of the exciting coil 11 having a rectangular tube shape so that the central axis is linked to the side surface, and the excitation coil 11 in which the detection coil 12 is disposed. One side is used as a flaw detection surface. The detection coil 12 preferably has a central axis substantially orthogonal to the one side surface of the excitation coil 11. The detection coil 12 is located between the flaw detection surface of the excitation coil 12 and the test object. The detection coil 12 is formed so that the length of the diameter in at least one direction is equal to or larger than the length of the central axis direction of the excitation coil 11, and the direction of the diameter larger than the length of the excitation coil 11 is the excitation coil 11. It is arrange | positioned so that it may become substantially parallel to the center axis direction.

図7に示した探傷プローブ1は、径の長さが励磁コイル11の中心軸方向の長さ以上であるので、励磁コイル11が発生させる磁界の試験対象の表面に対する平行な成分が最大になる部分及び垂直な成分が最大になる部分が共に検出コイル12の内側に位置する。従って、励磁コイル11の探傷面を囲繞するように検出コイル12を配置した場合と同様に、傷の深さの変化と探傷プローブ1の出力の変化との間に単純増加の関係を得ることができる。また励磁コイル11の探傷面の外側に検出コイル12を配置した形態は、励磁コイル11の探傷面を囲繞するように検出コイル12を配置した形態に比べて、探傷プローブ1の外径をより小さくすることができるので、手探傷作業を行う際に作業員がより使用し易い探傷プローブ1を実現することができる。   Since the flaw detection probe 1 shown in FIG. 7 has a diameter greater than or equal to the length of the exciting coil 11 in the central axis direction, the parallel component of the magnetic field generated by the exciting coil 11 with respect to the surface of the test object is maximized. Both the part and the part where the vertical component is maximum are located inside the detection coil 12. Therefore, as in the case where the detection coil 12 is arranged so as to surround the flaw detection surface of the excitation coil 11, a simple increase relationship can be obtained between the change in the flaw depth and the change in the output of the flaw detection probe 1. it can. Further, the configuration in which the detection coil 12 is disposed outside the flaw detection surface of the excitation coil 11 has a smaller outer diameter of the flaw detection probe 1 than the configuration in which the detection coil 12 is disposed so as to surround the flaw detection surface of the excitation coil 11. Therefore, it is possible to realize the flaw detection probe 1 that is easier for an operator to use when performing a manual flaw detection operation.

また、探傷プローブ1は、角筒形状の励磁コイル11の探傷面の内側に検出コイル12を配置した形態であってもよい。図8は、励磁コイル11の探傷面の内側に検出コイル12を配置した探傷プローブ1を示す斜視図である。四角筒形状の励磁コイル11の一側面の内側に、中心軸が前記一側面に鎖交するように検出コイル12を配置してある。検出コイル12は、中心軸が前記一側面に略直交していることが望ましい。探傷プローブ1は、検出コイル12を配置してある励磁コイル11の一側面を探傷面とする。励磁コイル11の探傷面は、検出コイル12と試験対象との間に位置することとなる。励磁コイル11の探傷面の内側に検出コイル12を配置することにより、励磁コイル11の探傷面を試験対象の表面により接近させることができる。従って、渦電流の密度をより密にして感度のよい探傷試験を可能とする。   Further, the flaw detection probe 1 may have a configuration in which the detection coil 12 is arranged inside the flaw detection surface of the rectangular tube-shaped excitation coil 11. FIG. 8 is a perspective view showing the flaw detection probe 1 in which the detection coil 12 is arranged inside the flaw detection surface of the excitation coil 11. A detection coil 12 is arranged inside one side surface of the exciting coil 11 having a rectangular tube shape so that the central axis is linked to the one side surface. The detection coil 12 preferably has a central axis substantially orthogonal to the one side surface. The flaw detection probe 1 uses one side surface of the excitation coil 11 on which the detection coil 12 is disposed as a flaw detection surface. The flaw detection surface of the excitation coil 11 is located between the detection coil 12 and the test object. By arranging the detection coil 12 inside the flaw detection surface of the excitation coil 11, the flaw detection surface of the excitation coil 11 can be brought closer to the surface of the test object. Therefore, the density of eddy current is made denser and a sensitive flaw detection test is possible.

(実施の形態2)
図9は、実施の形態2に係る本発明の探傷プローブの主な構成を示す斜視図である。探傷プローブ3は、励磁コイル31と、第1検出コイル32及び第2検出コイル33とを備える。励磁コイル31は、中心軸に垂直な断面が長方形である空芯の四角筒状に導体を巻回してなる。第1検出コイル32は、励磁コイル31の中心軸方向の長さよりも径が小さい円環状に形成され、励磁コイル31の一側面の外側に配置されている。第2検出コイル33は、平面視で円環形状をなし、第1検出コイル32が外側に配置されている励磁コイル31の一側面を囲繞して導体を巻回してなる。第1検出コイル32及び第2検出コイル33は、各中心軸が励磁コイル31の前記一側面に交差するように、好ましくは各中心軸が前記一側面に略直交するように配置してある。探傷プローブ3は、第1検出コイル32が配置されている励磁コイル31の一側面を探傷面とする。
(Embodiment 2)
FIG. 9 is a perspective view showing a main configuration of the flaw detection probe according to the second embodiment of the present invention. The flaw detection probe 3 includes an excitation coil 31, a first detection coil 32, and a second detection coil 33. The exciting coil 31 is formed by winding a conductor in an air-core square cylinder whose cross section perpendicular to the central axis is rectangular. The first detection coil 32 is formed in an annular shape having a diameter smaller than the length of the excitation coil 31 in the central axis direction, and is disposed outside one side surface of the excitation coil 31. The second detection coil 33 has an annular shape in plan view, and is formed by winding a conductor so as to surround one side surface of the excitation coil 31 in which the first detection coil 32 is disposed on the outside. The first detection coil 32 and the second detection coil 33 are arranged so that each central axis intersects the one side surface of the exciting coil 31, and preferably, each central axis is substantially orthogonal to the one side surface. The flaw detection probe 3 uses one side surface of the excitation coil 31 on which the first detection coil 32 is disposed as a flaw detection surface.

図10は、実施の形態2に係る探傷プローブ3を用いた本発明の探傷装置の構成を示すブロック図である。探傷装置は、探傷プローブ3を備え、励磁コイル31には発振器41が接続されている。発振器41は、所定周波数の交流電流を発生し、発生した交流電流を励磁コイル31に供給する構成となっている。また第1検出コイル32は第1増幅器42に接続され、第2検出コイル33は第2増幅器43に接続されている。第1増幅器42,第2増幅器43は、第1検出コイル32,第2検出コイル33の両端に発生する電圧の出力を夫々受け付け、受け付けた第1検出コイル32,第2検出コイル33からの出力を適宜増幅し、増幅した信号を出力する構成となっている。また第1増幅器42,第2増幅器43は、夫々に第1位相検波器44,第2位相検波器45に接続され、第1位相検波器44及び第2位相検波器45には発振器41が接続されている。第1位相検波器44,第2位相検波器45は、夫々に第1増幅器42,第2増幅器43が出力する信号を入力信号として受け付け、発振器41が発生する交流電流を基準信号として受け付け、入力信号から基準信号と同じ周波数の信号を検出し、検出した信号の振幅、及び基準信号と検出した信号との位相差に比例した信号を出力する構成となっている。   FIG. 10 is a block diagram showing a configuration of a flaw detection apparatus of the present invention using the flaw detection probe 3 according to the second embodiment. The flaw detection apparatus includes a flaw detection probe 3, and an oscillator 41 is connected to the excitation coil 31. The oscillator 41 is configured to generate an alternating current having a predetermined frequency and supply the generated alternating current to the exciting coil 31. The first detection coil 32 is connected to the first amplifier 42, and the second detection coil 33 is connected to the second amplifier 43. The first amplifier 42 and the second amplifier 43 receive outputs of voltages generated at both ends of the first detection coil 32 and the second detection coil 33, respectively, and outputs from the received first detection coil 32 and second detection coil 33. Is appropriately amplified, and an amplified signal is output. The first amplifier 42 and the second amplifier 43 are connected to a first phase detector 44 and a second phase detector 45, respectively, and an oscillator 41 is connected to the first phase detector 44 and the second phase detector 45. Has been. The first phase detector 44 and the second phase detector 45 accept the signals output from the first amplifier 42 and the second amplifier 43 as input signals, respectively, and accept the alternating current generated by the oscillator 41 as a reference signal. A signal having the same frequency as the reference signal is detected from the signal, and a signal proportional to the detected signal amplitude and the phase difference between the reference signal and the detected signal is output.

第1位相検波器44,第2位相検波器45の夫々には、出力した信号が示す電圧を測定する第1電圧計46,第2電圧計47が接続されている。第1電圧計46は、測定した電圧を示すデジタルデータ(第1信号)を出力し、第2電圧計47は、測定した電圧を示すデジタルデータ(第2信号)を出力する構成となっている。第1電圧計46及び第2電圧計47には、第1電圧計46及び第2電圧計47が出力したデジタルデータを受け付け、受け付けたデジタルデータに基づいた演算を行う演算部48が接続されている。   A first voltmeter 46 and a second voltmeter 47 that measure the voltage indicated by the output signal are connected to the first phase detector 44 and the second phase detector 45, respectively. The first voltmeter 46 outputs digital data (first signal) indicating the measured voltage, and the second voltmeter 47 is configured to output digital data (second signal) indicating the measured voltage. . The first voltmeter 46 and the second voltmeter 47 are connected to a calculation unit 48 that receives the digital data output from the first voltmeter 46 and the second voltmeter 47 and performs a calculation based on the received digital data. Yes.

本実施の携帯に係る本発明の探傷装置では、発振器41が交流電流を発生させることによって、発生した交流電流が励磁コイル31を流れ、試験対象の表面に渦電流が発生する。試験対象の表面に傷が存在している場合は、試験対象の表面の渦電流が変化することによって第1検出コイル32,第2検出コイル33の両端に電圧が発生し、第1増幅器42,第2増幅器43は、夫々に第1検出コイル32,第2検出コイル33の両端に発生する電圧の出力を受け付け、受け付けた出力を適宜増幅した信号を夫々に第1位相検波器44,第2位相検波器45へ出力する。第1位相検波器44,第2位相検波器45は、夫々に第1増幅器42,第2増幅器43からの信号を入力信号として受け付け、発振器41からの交流電流を基準信号として受け付け、基準信号と同じ周波数の信号の振幅及び基準信号との位相差に比例した信号を出力する。第1電圧計46,第2電圧計47は、夫々に第1位相検波器44,第2位相検波器45からの信号を受け付け、受け付けた信号が示す電圧を測定し、測定した電圧を示すデジタルデータを演算部48へ出力する。   In the flaw detector of the present invention according to the present embodiment, when the oscillator 41 generates an alternating current, the generated alternating current flows through the exciting coil 31, and an eddy current is generated on the surface of the test object. When a flaw exists on the surface of the test object, a voltage is generated at both ends of the first detection coil 32 and the second detection coil 33 due to a change in eddy current on the surface of the test object, and the first amplifier 42, The second amplifier 43 receives the output of the voltage generated at both ends of the first detection coil 32 and the second detection coil 33, respectively, and the first phase detector 44 and the second signal respectively obtained by appropriately amplifying the received output. Output to the phase detector 45. The first phase detector 44 and the second phase detector 45 accept the signals from the first amplifier 42 and the second amplifier 43 as input signals, respectively, accept the alternating current from the oscillator 41 as a reference signal, A signal proportional to the amplitude of the signal of the same frequency and the phase difference from the reference signal is output. The first voltmeter 46 and the second voltmeter 47 receive signals from the first phase detector 44 and the second phase detector 45, respectively, measure the voltage indicated by the received signals, and indicate the measured voltage. The data is output to the calculation unit 48.

演算部48は、第1電圧計46,第2電圧計47の夫々から出力されたデジタルデータに対して四則演算を行い、励磁コイルが発生させる磁界の試験対象の表面に対する平行成分による傷の検出信号と、磁界の試験対象の表面に対する垂直成分による傷の検出信号とを分離する処理を行う。第1検出コイル32では、磁界の平行成分が最大になる部分が内側に位置し、磁界の垂直成分が最大になる部分が外側に位置するので、磁界の平行成分に起因する傷の検出信号と磁界の垂直成分に起因する傷の検出信号とが逆位相で重なって出力される。これに対して、第2検出コイル33では、磁界の平行成分が最大になる部分及び垂直成分が最大になる部分が共に内側に位置するので、磁界の平行成分に起因する傷の検出信号と磁界の垂直成分に起因する傷の検出信号とが同位相で重なって出力される。従って、第1電圧計46,第2電圧計47の夫々から出力されたデジタルデータに対して、夫々を適宜増幅した後で互いに加算又は減算することによって、磁界の平行成分に起因する傷の検出信号と磁界の垂直成分に起因する傷の検出信号とを分離することが可能となる。   The computing unit 48 performs four arithmetic operations on the digital data output from each of the first voltmeter 46 and the second voltmeter 47, and detects flaws due to the parallel component of the magnetic field generated by the exciting coil with respect to the surface of the test object. A process for separating the signal and the detection signal of the flaw due to the vertical component of the magnetic field on the surface of the test object is performed. In the first detection coil 32, the portion where the parallel component of the magnetic field is maximum is located on the inner side, and the portion where the vertical component of the magnetic field is maximum is located on the outer side. The detection signal of the scratch caused by the vertical component of the magnetic field is output in the opposite phase. On the other hand, in the second detection coil 33, the part where the parallel component of the magnetic field is maximum and the part where the vertical component is maximum are both located on the inner side. The detection signal of the flaw caused by the vertical component of is overlapped in the same phase and output. Therefore, the digital data output from each of the first voltmeter 46 and the second voltmeter 47 is appropriately amplified and then added to or subtracted from each other, thereby detecting flaws caused by the parallel component of the magnetic field. It is possible to separate the signal and the detection signal of the scratch caused by the vertical component of the magnetic field.

以上詳述した如く、本実施の形態においては、励磁コイル31の中心軸方向の長さよりも径が小さい第1検出コイル32を励磁コイル31の一側面の外側に配置し、この側面を囲繞する第2検出コイル33を更に配置することによって、励磁コイルが発生させる磁界の試験対象の表面に対する平行成分に起因する傷の検出信号と磁界の垂直成分に起因する傷の検出信号とを分離することが可能となる。従って、探傷試験において、試験対象の表面での傷の有無をより詳細に調べることが可能となる。   As described above in detail, in the present embodiment, the first detection coil 32 having a diameter smaller than the length of the excitation coil 31 in the central axis direction is disposed outside one side surface of the excitation coil 31 and surrounds this side surface. By further disposing the second detection coil 33, the detection signal of the scratch caused by the parallel component of the magnetic field generated by the excitation coil with respect to the surface of the test object is separated from the detection signal of the scratch caused by the vertical component of the magnetic field. Is possible. Therefore, in the flaw detection test, it is possible to examine in detail whether or not there is a scratch on the surface of the test object.

なお、本実施の形態においては、励磁コイル31の探傷面を囲繞するように第2検出コイル33を配置する形態を示したが、これに限るものではなく、少なくとも一方向の径の長さが励磁コイル31の中心軸方向の長さ以上であるように形成した第2検出コイル33を、励磁コイル31の長さ以上である径の方向が励磁コイル31の中心軸方向に平行になり、第2検出コイル33の中心軸が励磁コイル31の探傷面に交差するように励磁コイル31の探傷面の外側に配置した形態であってもよい。   In the present embodiment, the second detection coil 33 is disposed so as to surround the flaw detection surface of the excitation coil 31. However, the present invention is not limited to this, and the length of the diameter in at least one direction is not limited to this. The second detection coil 33 formed to have a length equal to or greater than the length of the excitation coil 31 in the central axis direction has a diameter direction equal to or greater than the length of the excitation coil 31 parallel to the central axis direction of the excitation coil 31. 2 The form arrange | positioned on the outer side of the flaw detection surface of the excitation coil 31 so that the center axis | shaft of the detection coil 33 may cross | intersect the flaw detection surface of the excitation coil 31 may be sufficient.

1、3 探傷プローブ
11、31 励磁コイル
12 検出コイル
32 第1検出コイル
33 第2検出コイル
21、41 発振器
23 位相検波器
44 第1位相検波器
45 第2位相検波器
DESCRIPTION OF SYMBOLS 1, 3 Flaw detection probe 11, 31 Excitation coil 12 Detection coil 32 1st detection coil 33 2nd detection coil 21, 41 Oscillator 23 Phase detector 44 1st phase detector 45 2nd phase detector

Claims (2)

探傷対象に渦電流を誘起させる励磁コイルと、該励磁コイルに誘起された渦電流の状態に応じた信号を出力する検出コイルとを備える探傷プローブにおいて、
前記励磁コイルは、中心軸に垂直な断面が多角形である角筒状に導体を巻回してなり、
前記検出コイルは、角筒状の前記励磁コイルが有する一側面に中心軸が交差するように、前記一側面を囲繞して導体を巻回してなる
ことを特徴とする探傷プローブ。
In a flaw detection probe comprising an exciting coil that induces eddy current in a flaw detection target, and a detection coil that outputs a signal according to the state of the eddy current induced in the exciting coil.
The exciting coil is formed by winding a conductor in a rectangular tube shape having a polygonal cross section perpendicular to the central axis,
The flaw detection probe according to claim 1, wherein the detection coil is formed by winding a conductor so as to surround the one side surface so that a central axis intersects one side surface of the exciting coil having a rectangular tube shape.
探傷対象に渦電流を誘起させる励磁コイルと、該励磁コイルに誘起された渦電流の状態に応じた信号を出力する環状の検出コイルとを備える探傷プローブにおいて、
前記励磁コイルは、中心軸に垂直な断面が多角形である角筒状に導体を巻回してなり、
前記検出コイルは、少なくとも一方向の径の長さを前記励磁コイルの中心軸方向の長さ以上になしてあり、
角筒状の前記励磁コイルが有する一側面の外側に、前記検出コイルの前記一方向の径が前記励磁コイルの中心軸に実質的に平行になり、しかも前記検出コイルの中心軸が前記一側面に交差するように前記検出コイルを配置してあること
を特徴とする探傷プローブ。
In a flaw detection probe comprising an exciting coil that induces eddy current in a flaw detection target and an annular detection coil that outputs a signal corresponding to the state of the eddy current induced in the exciting coil,
The exciting coil is formed by winding a conductor in a rectangular tube shape having a polygonal cross section perpendicular to the central axis,
The detection coil has a length of a diameter in at least one direction equal to or greater than a length in a central axis direction of the excitation coil,
Outside the one side surface of the exciting coil having a rectangular tube shape, the one-way diameter of the detection coil is substantially parallel to the central axis of the excitation coil, and the central axis of the detection coil is the one side surface. The flaw detection probe is characterized in that the detection coil is arranged so as to intersect.
JP2011148375A 2011-07-04 2011-07-04 Flaw detection probe Pending JP2011191324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148375A JP2011191324A (en) 2011-07-04 2011-07-04 Flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148375A JP2011191324A (en) 2011-07-04 2011-07-04 Flaw detection probe

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005001930A Division JP4804006B2 (en) 2005-01-06 2005-01-06 Flaw detection probe and flaw detection apparatus

Publications (1)

Publication Number Publication Date
JP2011191324A true JP2011191324A (en) 2011-09-29

Family

ID=44796374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148375A Pending JP2011191324A (en) 2011-07-04 2011-07-04 Flaw detection probe

Country Status (1)

Country Link
JP (1) JP2011191324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484807A (en) * 2021-06-30 2021-10-08 杭州电子科技大学 Nested annular three-axis fluxgate sensor detection probe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875502A (en) * 1973-05-24 1975-04-01 Foerster Inst Dr Friedrich Coil arrangement and circuit for eddy current testing
JPS51113687A (en) * 1975-03-07 1976-10-06 Foerster Inst Dr Friedrich Eddy current probing coil device
JPS612065A (en) * 1984-06-14 1986-01-08 Kubota Ltd Flaw detector using eddy current
JPH05149923A (en) * 1991-11-29 1993-06-15 Kaisei Enjinia Kk Apparatus and method for electromagnetic induction inspection by use of change in frequency phase
JP2714386B2 (en) * 1987-02-19 1998-02-16 アトミック エナジー オブ カナダ リミテッド Circumferentially compensated eddy current probe
JPH11248685A (en) * 1997-12-22 1999-09-17 United Technol Corp <Utc> Method and device for nondestructive inspection
WO2000008458A1 (en) * 1998-08-06 2000-02-17 Mitsubishi Heavy Industries, Ltd. Eddy-current flaw detector probe
JP2001264299A (en) * 2000-03-16 2001-09-26 Nippon Hihakai Kensa Kk Metal plate flaw detecting probe
JP2004205212A (en) * 2002-12-20 2004-07-22 Univ Nihon Eddy current flaw detecting probe for magnetic material and eddy current flaw detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875502A (en) * 1973-05-24 1975-04-01 Foerster Inst Dr Friedrich Coil arrangement and circuit for eddy current testing
JPS51113687A (en) * 1975-03-07 1976-10-06 Foerster Inst Dr Friedrich Eddy current probing coil device
JPS612065A (en) * 1984-06-14 1986-01-08 Kubota Ltd Flaw detector using eddy current
JP2714386B2 (en) * 1987-02-19 1998-02-16 アトミック エナジー オブ カナダ リミテッド Circumferentially compensated eddy current probe
JPH05149923A (en) * 1991-11-29 1993-06-15 Kaisei Enjinia Kk Apparatus and method for electromagnetic induction inspection by use of change in frequency phase
JPH11248685A (en) * 1997-12-22 1999-09-17 United Technol Corp <Utc> Method and device for nondestructive inspection
WO2000008458A1 (en) * 1998-08-06 2000-02-17 Mitsubishi Heavy Industries, Ltd. Eddy-current flaw detector probe
JP2001264299A (en) * 2000-03-16 2001-09-26 Nippon Hihakai Kensa Kk Metal plate flaw detecting probe
JP2004205212A (en) * 2002-12-20 2004-07-22 Univ Nihon Eddy current flaw detecting probe for magnetic material and eddy current flaw detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484807A (en) * 2021-06-30 2021-10-08 杭州电子科技大学 Nested annular three-axis fluxgate sensor detection probe
CN113484807B (en) * 2021-06-30 2023-09-22 杭州电子科技大学 Nested annular triaxial fluxgate sensor detection probe

Similar Documents

Publication Publication Date Title
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
Jomdecha et al. Design of modified electromagnetic main-flux for steel wire rope inspection
JP4487082B1 (en) Magnetic flux leakage flaw detection method and apparatus
Sun et al. A new NDT method based on permanent magnetic field perturbation
JP2011047736A (en) Method of inspecting austenite-based stainless steel welding section
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
JP2013072667A (en) Probe for eddy current flaw detection
Wang et al. A novel AC-MFL probe based on the parallel cables magnetizing technique
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
Wei et al. A transducer made up of fluxgate sensors for testing wire rope defects
JP2841153B2 (en) Weak magnetism measurement method and device, and nondestructive inspection method using the same
JP2016057225A (en) Eddy current flaw detection sensor device
US2758276A (en) Apparatus for the non-destructive testing of magnetizable objects
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
JP3572452B2 (en) Eddy current probe
RU2566416C1 (en) Device for eddy-current magnetic examination of ferromagnetic objects
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JPH0335624B2 (en)
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
JP2011191324A (en) Flaw detection probe
Yusa et al. An eddy current probe suitable to gain information about the depth of near-side flaws much deeper than the depth of penetration
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
WO2006113504A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
Gotoh et al. Evaluation of electromagnetic inspection of outer side defect on small diameter and thick steel tube with steel support using 3-d nonlinear fem
Ma et al. Complexed shape micro defects inspection by high sensitivity flexible TRT eddy current array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709