JP2011019401A - Method of manufacturing permanent magnet segment for permanent magnet rotating machine - Google Patents
Method of manufacturing permanent magnet segment for permanent magnet rotating machine Download PDFInfo
- Publication number
- JP2011019401A JP2011019401A JP2010242127A JP2010242127A JP2011019401A JP 2011019401 A JP2011019401 A JP 2011019401A JP 2010242127 A JP2010242127 A JP 2010242127A JP 2010242127 A JP2010242127 A JP 2010242127A JP 2011019401 A JP2011019401 A JP 2011019401A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnet
- powder
- fluoride
- magnet body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
本発明は、焼結磁石体の残留磁束密度の低減を抑制しながら保磁力を増大させたR−Fe−B系永久磁石からなる永久磁石回転機用永久磁石セグメントの製造方法に関し、特に、コギングトルク低減を目的として磁石端部の厚さが薄い磁石からなり、FAモータや電動パワステアリングモータ等に最適な永久磁石回転機用永久磁石セグメントの製造方法に関する。 The present invention relates to a method of manufacturing a permanent magnet segment for a permanent magnet rotating machine made of an R-Fe-B permanent magnet having an increased coercive force while suppressing a reduction in residual magnetic flux density of a sintered magnet body, and in particular, cogging. The present invention relates to a method for manufacturing a permanent magnet segment for a permanent magnet rotating machine, which is composed of a magnet having a thin magnet end for the purpose of torque reduction and is optimal for an FA motor, an electric power steering motor, or the like.
Nd−Fe−B系永久磁石は、その優れた磁気特性のために、ますます用途が広がってきている。近年、モータや発電機などの回転機の分野においても機器の軽薄短小化、高性能化、省エネルギー化に伴いNd−Fe−B系永久磁石を利用した永久磁石回転機が開発されている。回転機中の永久磁石は、巻き線や鉄心の発熱により高温に曝され、更に巻き線からの反磁界により極めて減磁しやすい状況下にある。このため、耐熱性、耐減磁性の指標となる保磁力が一定以上あり、磁力の大きさの指標となる残留磁束密度ができるだけ高いNd−Fe−B系焼結磁石が要求されている。 Nd-Fe-B permanent magnets are increasingly used because of their excellent magnetic properties. In recent years, in the field of rotating machines such as motors and generators, permanent magnet rotating machines using Nd-Fe-B based permanent magnets have been developed as devices become lighter, shorter, more powerful, and save energy. The permanent magnet in the rotating machine is exposed to a high temperature due to the heat generated by the winding and the iron core, and is in a state where it is very easily demagnetized by the demagnetizing field from the winding. For this reason, there is a demand for Nd—Fe—B sintered magnets that have a coercive force that is an index of heat resistance and demagnetization resistance at a certain level or higher and that has as high a residual magnetic flux density as an index of the magnitude of magnetic force.
Nd−Fe−B系焼結磁石の残留磁束密度増大は、Nd2Fe14B化合物の体積率増大と結晶配向度向上により達成され、これまでに種々のプロセスの改善が行われてきている。保磁力の増大に関しては、結晶粒の微細化を図る、Nd量を増やした組成合金を用いる、あるいは効果のある元素を添加する等、様々なアプローチがある中で、現在最も一般的な手法はDyやTbでNdの一部を置換した組成合金を用いることである。Nd2Fe14B化合物のNdをこれらの元素で置換することで、化合物の異方性磁界が増大し、保磁力も増大する。一方で、DyやTbによる置換は化合物の飽和磁気分極を減少させる。従って、上記手法で保磁力の増大を図る限りでは残留磁束密度の低下は避けられない。 The increase in the residual magnetic flux density of the Nd—Fe—B based sintered magnet has been achieved by increasing the volume fraction of the Nd 2 Fe 14 B compound and improving the degree of crystal orientation, and various processes have been improved so far. Regarding the increase in coercive force, among the various approaches such as refinement of crystal grains, use of a composition alloy with an increased Nd amount, or addition of an effective element, the most common method at present is A composition alloy in which a part of Nd is substituted with Dy or Tb is used. By substituting Nd of the Nd 2 Fe 14 B compound with these elements, the anisotropic magnetic field of the compound increases and the coercive force also increases. On the other hand, substitution with Dy or Tb reduces the saturation magnetic polarization of the compound. Therefore, as long as the coercive force is increased by the above method, a decrease in residual magnetic flux density is inevitable.
Nd−Fe−B磁石は、結晶粒界面で逆磁区の核が生成する外部磁界の大きさが保磁力となる。逆磁区の核生成には結晶粒界面の構造が強く影響しており、界面近傍における結晶構造の乱れが磁気的な構造の乱れを招き、逆磁区の生成を助長する。一般的には、結晶界面から5nm程度の深さまでの磁気的構造が保磁力の増大に寄与していると考えられている(非特許文献1:K. −D. Durst and H. Kronmuller, “THE COERCIVE FIELD OF SINTERED AND MELT−SPUN NdFeB MAGNETS”, Journal of Magnetism and Magnetic Materials 68 (1987) 63−75)。本発明者らは、結晶粒の界面近傍のみにわずかなDyやTbを濃化させ、界面近傍のみの異方性磁界を増大させることで、残留磁束密度の低下を抑制しつつ保磁力を増大できることを見出している(特許文献1:特公平5−31807号公報)。更に、Nd2Fe14B化合物組成合金と、DyあるいはTbに富む合金を別に作製した後に混合して焼結する製造方法を確立している(特許文献2:特開平5−21218号公報)。この方法では、DyあるいはTbに富む合金は焼結時に液相となり、Nd2Fe14B化合物を取り囲むように分布する。その結果、化合物の粒界近傍でのみNdとDyあるいはTbが置換され、残留磁束密度の低下を抑制しつつ効果的に保磁力を増大できる。 In the Nd-Fe-B magnet, the coercive force is the magnitude of the external magnetic field generated by the nucleus of the reverse magnetic domain at the crystal grain interface. The structure of the crystal grain interface strongly influences the nucleation of the reverse magnetic domain, and the disorder of the crystal structure in the vicinity of the interface causes the disorder of the magnetic structure and promotes the generation of the reverse magnetic domain. In general, it is considered that a magnetic structure from a crystal interface to a depth of about 5 nm contributes to an increase in coercive force (Non-Patent Document 1: K.-D. Durst and H. Kronmuller, “ THE COERCIVE FIELD OF SINTERED AND MELT-SPUN NdFeB MAGNETS ", Journal of Magnetics and Magnetic Materials 68 (1987) 63-75). The present inventors concentrated a small amount of Dy and Tb only in the vicinity of the crystal grain interface, and increased the anisotropy magnetic field only in the vicinity of the interface, thereby increasing the coercive force while suppressing the decrease in the residual magnetic flux density. (Patent Document 1: Japanese Patent Publication No. 5-31807). Furthermore, a manufacturing method has been established in which an Nd 2 Fe 14 B compound composition alloy and an alloy rich in Dy or Tb are separately manufactured and then mixed and sintered (Patent Document 2: JP-A-5-21218). In this method, an alloy rich in Dy or Tb becomes a liquid phase during sintering and is distributed so as to surround the Nd 2 Fe 14 B compound. As a result, Nd and Dy or Tb are replaced only near the grain boundary of the compound, and the coercive force can be effectively increased while suppressing a decrease in the residual magnetic flux density.
しかし、上記方法では2種の合金微粉末を混合した状態で1,000〜1,100℃という高温で焼結するために、DyあるいはTbがNd2Fe14B結晶粒の界面のみでなく内部まで拡散しやすい。実際に得られる磁石の組織観察からは結晶粒界表層部で界面から深さ1〜2μm程度まで拡散しており、拡散した領域を体積分率に換算すると60%以上となる。また、結晶粒内への拡散距離が長くなるほど界面近傍におけるDyあるいはTbの濃度は低下してしまう。結晶粒内への過度な拡散を極力抑えるには焼結温度を低下させることが有効であるが、これは同時に焼結による緻密化を阻害するため現実的な手法となり得ない。ホットプレスなどで応力を印加しながら低温で焼結する方法では、緻密化は可能であるが生産性が極端に低くなるという問題がある。 However, in the above method, since two kinds of alloy fine powders are mixed and sintered at a high temperature of 1,000 to 1,100 ° C., Dy or Tb is not only the interface of Nd 2 Fe 14 B crystal grains but also the inside. Easy to diffuse. From the observation of the structure of the actually obtained magnet, it is diffused from the interface to a depth of about 1 to 2 μm at the grain boundary surface layer portion, and when the diffused region is converted into a volume fraction, it becomes 60% or more. Further, the longer the diffusion distance into the crystal grain, the lower the concentration of Dy or Tb in the vicinity of the interface. Although it is effective to lower the sintering temperature in order to suppress excessive diffusion into the crystal grains as much as possible, this cannot be a practical method because it simultaneously inhibits densification by sintering. The method of sintering at a low temperature while applying stress by hot pressing or the like has a problem that the densification is possible but the productivity is extremely lowered.
一方、焼結磁石を小型に加工した後、磁石表面にDyやTbをスパッタによって被着させ、磁石を焼結温度より低い温度で熱処理することにより粒界部にのみDyやTbを拡散させて保磁力を増大させる方法が報告されている(非特許文献2:K. T. Park, K. Hiraga and M. Sagawa, “Effect of Metal−Coating and Consecutive Heat Treatment on Coercivity of Thin Nd−Fe−B Sintered Magnets”, Proceedings of the Sixteen International Workshop on Rare−Earth Magnets and Their Applications, Sendai, p.257 (2000)、非特許文献3:町田憲一、川嵜尚志、鈴木俊治、伊東正浩、堀川高志、“Nd−Fe−B系焼結磁石の粒界改質と磁気特性”、粉体粉末冶金協会講演概要集、平成16年度春季大会、p.202参照)。この方法では、更に効率的にDyやTbを粒界に濃化できるため、残留磁束密度の低下をほとんど伴わずに保磁力を増大させることが可能である。また、磁石の比表面積が大きい、即ち磁石体が小さいほど供給されるDyやTbの量が多くなるので、この方法は小型あるいは薄型の磁石へのみ適用可能である。しかし、スパッタ等による金属膜の被着には生産性が悪いという問題があった。 On the other hand, after processing the sintered magnet to a small size, Dy and Tb are deposited on the magnet surface by sputtering, and the magnet is heat-treated at a temperature lower than the sintering temperature to diffuse Dy and Tb only at the grain boundary part. A method for increasing the coercive force has been reported (Non-Patent Document 2: K. T. Park, K. Hiraga and M. Sagawa, "Effect of Metal-Coating and Conscientious Heat Treatment on Co-Circency of T Sintered Magnets ", Proceedings of the Sixteen International Works on Rare-Earth Magnets and Ther Application , Sendai, p. 257 (2000), Non-Patent Document 3: Kenichi Machida, Naoshi Kawamata, Toshiharu Suzuki, Masahiro Ito, Takashi Horikawa, “Granular boundary modification and magnetic properties of Nd—Fe—B based sintered magnet”, (Powder Metallurgy Association Abstracts, 2004 Spring Meeting, p. 202). In this method, since Dy and Tb can be concentrated more efficiently at the grain boundary, the coercive force can be increased with almost no decrease in the residual magnetic flux density. Moreover, since the amount of Dy and Tb supplied increases as the specific surface area of the magnet increases, that is, the magnet body decreases, this method is applicable only to small or thin magnets. However, there has been a problem that the productivity is poor when depositing a metal film by sputtering or the like.
例えば、ACサーボモータには、図1に示すようなラジアルエアギャップ形の永久磁石回転機が用いられている。この永久磁石回転機は、ロータコア(回転子コア)1の表面に、磁石(永久磁石セグメント)2を貼り付けた回転子3と、空隙(ギャップ)を介して配置された複数のスロットを有するステータコア(固定子コア)11とティースに巻かれたコイル12からなる固定子13とで構成されている。図1に示す永久磁石回転機の場合、永久磁石の極数は6、ティースの数は9であり、永久磁石内の矢印は永久磁石の磁化の方向を示している。永久磁石は平行な磁場中で配向が成され、容易磁化方向は磁石の中心線に平行となっている。また、コイルはティースに集中巻きで巻かれ、U相V相W相の3相のY結線がなされている。コイルの黒丸印はコイルの巻き方向が手前、×印はコイルの巻き方向が奥であることを意味している。
For example, a radial air gap type permanent magnet rotating machine as shown in FIG. 1 is used for the AC servo motor. The permanent magnet rotating machine includes a
高精度のトルク制御を必要とするACサーボモータ等のトルクは、脈動の小さなものでなければならない。従って、永久磁石が回転したときに固定子のスロットと永久磁石との位置関係から、空隙の磁束分布が変化することに起因するコギングトルク(コイルに電流を流さない状態でのトルク)やコイルの電流を流して駆動した時のトルクリップルが発生することは好ましくない。トルクリップルは、制御性を悪くする他に騒音の原因にもなる。コギングトルクを低減する方法として、図1に示すような永久磁石の端部形状が中央部より薄くなるようにする。この方法により、磁束分布の変化が大きな磁極の切り替わり部分である永久磁石端部での磁束分布が滑らかになり、コギングトルクを低減することができる。 The torque of an AC servo motor or the like that requires high-accuracy torque control must have a small pulsation. Therefore, when the permanent magnet rotates, the cogging torque (torque in a state where no current flows through the coil) or the coil due to the change in the magnetic flux distribution of the air gap is determined based on the positional relationship between the stator slot and the permanent magnet. It is not preferable that torque ripple occurs when driven by passing an electric current. Torque ripple causes noise as well as poor controllability. As a method of reducing the cogging torque, the end shape of the permanent magnet as shown in FIG. 1 is made thinner than the center portion. According to this method, the magnetic flux distribution at the end of the permanent magnet, which is the switching portion of the magnetic pole where the change of the magnetic flux distribution is large, becomes smooth, and the cogging torque can be reduced.
コイルに電流を流すと、ステータコア部分に書いた矢印の方向に界磁され、回転子を反時計回りに回転させる。このとき、永久磁石セグメントの回転方向の後方(図1の○で囲った部分)は界磁が永久磁石の磁化と逆方向になるので減磁しやすい状況になっている。減磁すると駆動トルクを下げるばかりか、部分的な磁場不均一によってコギングトルクを増大させるという問題が生ずる。 When a current is passed through the coil, it is magnetized in the direction of the arrow written on the stator core portion, causing the rotor to rotate counterclockwise. At this time, the field behind the rotation direction of the permanent magnet segment (the portion surrounded by a circle in FIG. 1) is in a situation where it is easy to demagnetize because the field is in the opposite direction to the magnetization of the permanent magnet. Demagnetization not only lowers the drive torque, but also raises the problem of increasing the cogging torque due to partial magnetic field inhomogeneity.
特に偏心された永久磁石の端部の厚さは非常に薄く減磁しやすい。ここで磁石厚さが薄いと減磁しやすい理由を説明する。減磁の大きさは、永久磁石の使用温度での保磁力の大きさと反磁界の大きさで決まる。保磁力が小さく、反磁界の大きさが大きいほど減磁しやすい。反磁界は永久磁石の磁化で生ずる自己反磁界と外部からの逆磁界の和で、自己反磁界は永久磁石の磁化方向厚さが薄いほど大きい。 In particular, the thickness of the end portion of the eccentric permanent magnet is very thin and is easily demagnetized. Here, the reason why demagnetization is easy when the magnet thickness is thin will be described. The magnitude of demagnetization is determined by the magnitude of the coercive force and the demagnetizing field at the operating temperature of the permanent magnet. The smaller the coercivity and the larger the demagnetizing field, the easier it is to demagnetize. The demagnetizing field is the sum of the self-demagnetizing field generated by the magnetization of the permanent magnet and the reverse magnetic field from the outside, and the self-demagnetizing field is larger as the magnetization direction thickness of the permanent magnet is thinner.
このため、減磁しない部分を保磁力は低いが高い残留磁束密度の永久磁石、減磁されやすい部分を残留磁束密度は低いが保磁力の高い永久磁石で一体成型した複合磁石を用いる方法がある(特許文献3:特開昭61−139252号公報)。しかし、この方法では、保磁力を高めた永久磁石の残留磁束密度の低下は避けられないのでモータの出力が減少してしまう。 For this reason, there is a method of using a permanent magnet with a low coercive force but a high residual magnetic flux density for a portion that is not demagnetized, and a composite magnet integrally molded with a permanent magnet with a low residual magnetic flux density but a high coercive force that is easily demagnetized. (Patent Document 3: Japanese Patent Application Laid-Open No. 61-139252). However, in this method, since the reduction of the residual magnetic flux density of the permanent magnet with increased coercive force is inevitable, the output of the motor is reduced.
本発明は、上述した従来の問題点に鑑みなされたもので、永久磁石回転機に適した永久磁石の残留磁束密度の低下がなく保磁力の大きな、特に永久磁石端部の保磁力が大きなR−Fe−B系焼結磁石(RはY及びScを含む希土類元素から選ばれる1種又は2種以上の元素)からなる永久磁石回転機用永久磁石セグメントの製造方法を提供することを目的とするものである。 The present invention has been made in view of the above-described conventional problems, and has a large coercive force without lowering the residual magnetic flux density of a permanent magnet suitable for a permanent magnet rotating machine, and particularly a large coercive force at the end of the permanent magnet. An object of the present invention is to provide a method for producing a permanent magnet segment for a permanent magnet rotating machine composed of a Fe-B sintered magnet (R is one or more elements selected from rare earth elements including Y and Sc). To do.
本発明者らは、Nd−Fe−B系焼結磁石に代表されるR1−Fe−B系焼結磁石に対し、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末(なお、R1〜R4はそれぞれY及びScを含む希土類元素から選ばれる1種又は2種以上の元素)を磁石表面に存在させた状態で加熱することで、粉末に含まれていたR2、R3又はR4が磁石体に吸収され、残留磁束密度の減少を著しく抑制しながら保磁力を増大し得ることを見出した。この場合、特にR3のフッ化物又はR4の酸フッ化物を用いた場合、R3又はR4がフッ素と共に磁石体に高効率に吸収され、残留磁束密度が高く、保磁力の大きな焼結磁石が得られることを知見した。 The inventors of the present invention have compared R 1 -Fe-B sintered magnets represented by Nd—Fe—B based sintered magnets with respect to R 2 oxides, R 3 fluorides, and R 4 oxyfluorides. A state in which a powder containing one or more selected from the above (wherein R 1 to R 4 are one or more selected from rare earth elements including Y and Sc, respectively) is present on the magnet surface It was found that R 2 , R 3, or R 4 contained in the powder was absorbed by the magnet body by heating at 1, and the coercive force could be increased while significantly suppressing the decrease in residual magnetic flux density. In this case, in particular, when R 3 fluoride or R 4 oxyfluoride is used, R 3 or R 4 is absorbed into the magnet body together with fluorine with high efficiency, the residual magnetic flux density is high, and the coercive force is large. It has been found that a magnet can be obtained.
即ち、本発明は、以下の永久磁石回転機用永久磁石セグメントの製造方法を提供する。
請求項1:
複数個の永久磁石セグメントがロータコア側面に張り付けられた回転子と、複数のスロットを有するステータコアに巻線を巻いた固定子とを空隙を介して配置した永久磁石回転機において、前記永久磁石セグメントの幅方向両端部は中央部より薄い形状で、前記永久磁石セグメントは、R1−Fe−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体である永久磁石回転機用永久磁石セグメントを製造する方法であって、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はそれぞれY及びScを含む希土類元素から選ばれる1種又は2種以上の元素)を含有する粉末を当該磁石体の表面に存在させた状態で、当該磁石体及び粉体を当該磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより、幅方向両端部の保磁力が中央部より高く、中央部と端部の保磁力の差HcJが30kAm-1以上である偏心焼結磁石体を得ることを特徴とする永久磁石回転機用永久磁石セグメントの製造方法。
請求項2:
中央部と端部の保磁力の差HcJが30〜500kAm-1である偏心焼結磁石体を得る請求項1記載の永久磁石セグメントの製造方法。
請求項3:
熱処理される磁石体が、最大部の寸法が100mm以下で、かつ磁気異方性化した方向の最小寸法が10mm以下の形状を有する請求項1又は2記載の永久磁石セグメントの製造方法。
請求項4:
磁石体が断面C字状又はD字状の形状になっていることを特徴とする請求項1,2又は3記載の永久磁石セグメントの製造方法。
請求項5:
永久磁石セグメントが、磁石の幅方向両端部の表面にR2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる粉末を部分的に存在させて熱処理を行うことによって得られたものであることを特徴とする請求項1乃至4のいずれか1項記載の永久磁石セグメントの製造方法。
請求項6:
R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末の磁石体表面に対する存在量が、この磁石体の表面から距離1mm以内の当該磁石体を取り囲む空間内に平均的な占有率で10容積%以上である請求項1乃至5のいずれか1項記載の永久磁石セグメントの製造方法。
請求項7:
R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末の平均粒子径が100μm以下である請求項1乃至6のいずれか1項記載の永久磁石セグメントの製造方法。
請求項8:
R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末を水あるいは有機溶剤に分散させ、得られたスラリーに磁石体を浸した後に乾燥させることにより、上記粉末を磁石体表面に存在させるようにした請求項1乃至7のいずれか1項記載の永久磁石セグメントの製造方法。
That is, the present invention provides the following method for producing a permanent magnet segment for a permanent magnet rotating machine.
Claim 1:
A permanent magnet rotating machine in which a rotor in which a plurality of permanent magnet segments are attached to a side surface of a rotor core and a stator in which a winding is wound around a stator core having a plurality of slots are arranged with a gap therebetween. Both end portions in the width direction are thinner than the central portion, and the permanent magnet segment is made of a fired R 1 —Fe—B composition (R 1 is one or more selected from rare earth elements including Y and Sc). A method for producing a permanent magnet segment for a permanent magnet rotating machine, which is a magnetized body, comprising one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride (R 2 , R 3 , and R 4 are each one or two or more elements selected from rare earth elements including Y and Sc), and the magnet body and the powder The body of the magnet body By performing heat treatment in vacuum or inert gas at a temperature lower than the sintering temperature, the coercive force at both ends in the width direction is higher than the central part, and the difference HcJ between the central part and the end part is 30 kAm −1 or more. A method for producing a permanent magnet segment for a permanent magnet rotating machine, wherein an eccentric sintered magnet body is obtained.
Claim 2:
The manufacturing method of the permanent magnet segment of
Claim 3:
The method of manufacturing a permanent magnet segment according to
Claim 4:
4. The method of manufacturing a permanent magnet segment according to
Claim 5:
A permanent magnet segment is obtained by performing heat treatment in such a manner that a powder selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride is partially present on the surfaces of both ends in the width direction of the magnet. The method of manufacturing a permanent magnet segment according to any one of
Claim 6:
The abundance of the powder containing one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride with respect to the surface of the magnet body is within a distance of 1 mm from the surface of the magnet body. The method for manufacturing a permanent magnet segment according to any one of
Claim 7:
Oxide of R 2, fluoride of R 3, any one of
Claim 8:
A powder containing one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride was dispersed in water or an organic solvent, and the magnet body was immersed in the resulting slurry. The method for producing a permanent magnet segment according to any one of
本発明は、永久磁石回転機に適した永久磁石の残留磁束密度の低下がなく、保磁力が大きく、特に永久磁石端部の保磁力が大きくなり高温でも減磁しにくい永久磁石回転機を提供することができる。 The present invention provides a permanent magnet rotating machine suitable for a permanent magnet rotating machine, having no reduction in the residual magnetic flux density of the permanent magnet, having a large coercive force, particularly a large coercive force at the end of the permanent magnet, and being difficult to demagnetize even at high temperatures. can do.
以下、本発明を更に詳細に説明する。
本発明は、永久磁石回転機に適した永久磁石の保磁力の大きな、特に永久磁石端部の保磁力が大きな磁石を用いた永久磁石回転機用永久磁石セグメントの製造方法に関するものである。
Hereinafter, the present invention will be described in more detail.
The present invention relates to a method of manufacturing a permanent magnet segment for a permanent magnet rotating machine using a magnet having a large coercive force of a permanent magnet suitable for a permanent magnet rotating machine, particularly a magnet having a large coercive force at the end of the permanent magnet.
本発明で用いる希土類永久磁石セグメントは、R1−Fe−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる柱状の焼結磁石体に対し、幅方向の中央部より両端部の厚さを薄くした偏心磁石の形状に加工したものを、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はそれぞれY及びScを含む希土類元素から選ばれる1種又は2種以上の元素)を含有する粉末を当該磁石体の表面に存在させた状態で、当該磁石体及び粉体を当該磁石の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことにより得られたもので、永久磁石セグメント端部の保磁力が中央部より高いものである。 The rare earth permanent magnet segment used in the present invention is a columnar sintered magnet body having an R 1 —Fe—B series composition (R 1 is one or more selected from rare earth elements including Y and Sc), One or two types selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride, which are processed into the shape of an eccentric magnet whose thickness at both ends is thinner than the central portion in the width direction. In the state where the powder containing the above (R 2 , R 3 , R 4 is one or more elements selected from rare earth elements including Y and Sc, respectively) is present on the surface of the magnet body, It is obtained by subjecting the body and powder to heat treatment in a vacuum or an inert gas at a temperature not higher than the sintering temperature of the magnet, and the coercive force at the end of the permanent magnet segment is higher than that at the center.
ここで、R−Fe−B系焼結磁石体は、常法に従い、母合金を粗粉砕、微粉砕、成形、焼結させることにより得ることができる。 Here, the R—Fe—B based sintered magnet body can be obtained by roughly pulverizing, finely pulverizing, forming, and sintering the mother alloy according to a conventional method.
なお、本発明において、R及びR1はいずれもY及びScを含む希土類元素から選ばれるものであるが、Rは主に得られた磁石体に関して使用し、R1は主に出発原料に関して用いる。 In the present invention, R and R 1 are both selected from rare earth elements including Y and Sc. R is mainly used for the obtained magnet body, and R 1 is mainly used for the starting material. .
母合金は、R1、Fe、Bを含有する。R1はY及びScを含む希土類元素から選ばれる1種又は2種以上で、具体的にはY、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが挙げられ、好ましくはNd、Pr、Dyを主体とする。これらY及びScを含む希土類元素は合金全体の10〜15原子%、特に12〜15原子%であることが好ましく、更に好ましくはR1中にNdとPrあるいはそのいずれか1種を10原子%以上、特に50原子%以上含有することが好適である。Bは3〜15原子%、特に4〜8原子%含有することが好ましい。その他、Al、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの中から選ばれる1種又は2種以上を0〜11原子%、特に0.1〜5原子%含有してもよい。残部はFe及びC、N、O等の不可避的な不純物であるが、Feは50原子%以上、特に65原子%以上含有することが好ましい。また、Feの一部、例えばFeの0〜40原子%、特に0〜15原子%をCoで置換しても差しつかえない。 The mother alloy contains R 1 , Fe, and B. R 1 is one or more selected from rare earth elements including Y and Sc, specifically, Y, Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , Yb, and Lu, preferably Nd, Pr, and Dy. These rare earth elements including Y and Sc are preferably 10 to 15 atomic%, particularly 12 to 15 atomic% of the whole alloy, more preferably 10% by atom of Nd and Pr or any one of them in R 1. As mentioned above, it is suitable to contain especially 50 atomic% or more. B is preferably contained in an amount of 3 to 15 atomic%, particularly 4 to 8 atomic%. In addition, Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, One or two or more kinds selected from W may be contained in an amount of 0 to 11 atomic%, particularly 0.1 to 5 atomic%. The balance is inevitable impurities such as Fe and C, N, and O, but Fe is preferably contained in an amount of 50 atomic% or more, particularly 65 atomic% or more. Further, a part of Fe, for example, 0 to 40 atomic%, particularly 0 to 15 atomic% of Fe may be substituted with Co.
母合金は原料金属あるいは合金を真空あるいは不活性ガス、好ましくはAr雰囲気中で溶解したのち、平型やブックモールドに鋳込む、あるいはストリップキャストにより鋳造することで得られる。また、本系合金の主相であるR2Fe14B化合物組成に近い合金と焼結温度で液相助剤となるRリッチな合金とを別々に作製し、粗粉砕後に秤量混合する、いわゆる2合金法も本発明には適用可能である。この場合、主相組成に近い合金は、例えばストリップキャスト法により得ることができる。但し、主相組成に近い合金に対して、鋳造時の冷却速度や合金組成に依存してα−Feが残存しやすく、R2Fe14B化合物相の量を増やす目的で必要に応じて均質化処理を施す。その条件は真空あるいはAr雰囲気中で700〜1,200℃で1時間以上熱処理する。液相助剤となるRリッチな合金については上記鋳造法のほかに、いわゆる液体急冷法やストリップキャスト法も適用できる。 The mother alloy can be obtained by melting a raw metal or alloy in a vacuum or an inert gas, preferably in an Ar atmosphere, and then casting it in a flat mold or a book mold, or by strip casting. Also, an alloy close to the R 2 Fe 14 B compound composition that is the main phase of this alloy and an R-rich alloy that becomes a liquid phase aid at the sintering temperature are separately prepared, and are weighed and mixed after coarse pulverization. A two alloy method is also applicable to the present invention. In this case, an alloy close to the main phase composition can be obtained by, for example, strip casting. However, for alloys close to the main phase composition, α-Fe is likely to remain depending on the cooling rate during casting and the alloy composition, and it is homogeneous as necessary for the purpose of increasing the amount of R 2 Fe 14 B compound phase. The process is applied. The conditions are heat treatment at 700 to 1,200 ° C. for 1 hour or more in vacuum or Ar atmosphere. In addition to the above casting method, a so-called liquid quenching method or strip casting method can be applied to the R-rich alloy serving as the liquid phase aid.
更に、以下に述べる粉砕工程において、R1の炭化物、窒化物、酸化物、水酸化物のうち少なくとも1種あるいはこれらの混合物又は複合物を0.005〜5質量%の範囲で合金粉末と混合することも可能である。 Further, in the pulverization step described below, at least one of R 1 carbide, nitride, oxide and hydroxide, or a mixture or composite thereof is mixed with the alloy powder in the range of 0.005 to 5% by mass. It is also possible to do.
上記合金は、通常0.05〜3mm、特に0.05〜1.5mmに粗粉砕される。粗粉砕工程にはブラウンミルあるいは水素粉砕が用いられ、ストリップキャストにより作製された合金の場合は水素粉砕が好ましい。粗粉は、例えば高圧窒素を用いたジェットミルにより通常0.2〜30μm、特に0.5〜20μmに微粉砕される。微粉末は磁界中圧縮成形機で成形され、焼結炉に投入される。焼結は真空あるいは不活性ガス雰囲気中、通常900〜1,250℃、特に1,000〜1,100℃で行われる。 The alloy is generally coarsely pulverized to 0.05 to 3 mm, particularly 0.05 to 1.5 mm. Brown mill or hydrogen pulverization is used for the coarse pulverization process, and hydrogen pulverization is preferable in the case of an alloy produced by strip casting. The coarse powder is usually finely pulverized to 0.2 to 30 μm, particularly 0.5 to 20 μm, for example, by a jet mill using high-pressure nitrogen. The fine powder is formed by a compression molding machine in a magnetic field and put into a sintering furnace. Sintering is usually performed at 900 to 1,250 ° C, particularly 1,000 to 1,100 ° C in a vacuum or an inert gas atmosphere.
ここで得られた焼結磁石体は、正方晶R2Fe14B化合物を主相として60〜99体積%、特に好ましくは80〜98体積%含有し、残部は0.5〜20体積%のRリッチ相、0〜10体積%のBリッチ相及び不可避的不純物により生成した、あるいは添加による炭化物、窒化物、酸化物、水酸化物のうち少なくとも1種あるいはこれらの混合物又は複合物からなる。 The sintered magnet body obtained here contains 60 to 99% by volume, particularly preferably 80 to 98% by volume of a tetragonal R 2 Fe 14 B compound as a main phase, and the balance is 0.5 to 20% by volume. It consists of R-rich phase, 0 to 10% by volume of B-rich phase and unavoidable impurities, or at least one of carbides, nitrides, oxides and hydroxides by addition, or a mixture or composite thereof.
永久磁石の製造方法は、上記に挙げたように合金粉末を磁場中成形、焼結して得ることができ、又は得られた焼結ブロックを永久磁石電動機に合うように砥石、切削刃、ワイヤーソー等を用いて研削加工して、更に中央部よりも幅方向両端部が薄い形状に研削して得られる。その形状は特には円弧を有するC字状又はD字状の磁石形状が好ましく、図2(a)〜(c)や図3に示すように永久磁石の幅方向両端部形状が薄くなるようにして、コギングトルクを低減する。永久磁石中央部の厚さTcと端部の厚さTeは特に限定されるものではないが、コギングトルクを低減するにはTe/Tcを0.8以下にすることが好ましく、より好ましくは0.1〜0.5、更に好ましくは0.1〜0.4である。 The manufacturing method of the permanent magnet can be obtained by molding and sintering the alloy powder in a magnetic field as described above, or a grindstone, a cutting blade, a wire so that the obtained sintered block fits the permanent magnet motor. It is obtained by grinding using a saw or the like and further grinding in a shape where both ends in the width direction are thinner than the center. The shape is particularly preferably a C-shaped or D-shaped magnet shape having an arc, and the widthwise end portions of the permanent magnet are made thin as shown in FIGS. 2 (a) to 2 (c) and FIG. Reduce cogging torque. The thickness Tc of the central portion of the permanent magnet and the thickness Te of the end portion are not particularly limited, but Te / Tc is preferably 0.8 or less, more preferably 0 in order to reduce the cogging torque. 0.1 to 0.5, more preferably 0.1 to 0.4.
その大きさは特に限定されないが、本発明において、磁石表面に存在させたR2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末から磁石体に吸収されるR2、R3又はR4の量は、磁石体の比表面積が大きい、即ち寸法が小さいほど多くなるので、上記形状の最大部の寸法(図3においてL又はW)は100mm以下、好ましくは50mm以下、特に好ましくは20mm以下で、かつ磁気異方性化した方向の最小寸法(図3のTe)が10mm以下、好ましくは5mm以下、特に好ましくは2mm以下であることが好ましい。より好ましくは磁気異方性化した方向の寸法が1mm以下である。 The size of the powder is not particularly limited. In the present invention, the powder contains one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride present on the magnet surface. The amount of R 2 , R 3, or R 4 absorbed by the magnet body increases as the specific surface area of the magnet body increases, that is, as the size decreases, so the dimension of the maximum portion of the above shape (L or W in FIG. 3). ) Is 100 mm or less, preferably 50 mm or less, particularly preferably 20 mm or less, and the minimum dimension in the direction of magnetic anisotropy (Te in FIG. 3) is 10 mm or less, preferably 5 mm or less, particularly preferably 2 mm or less. It is preferable. More preferably, the dimension in the direction of magnetic anisotropy is 1 mm or less.
なお、上記最大部の寸法及び磁気異方性化した方向の寸法の下限は特に制限されず、適宜選定されるが、上記形状の最大部の寸法は0.1mm以上であり、磁気異方性化した方向の寸法は0.05mm以上である。 The lower limit of the dimension of the maximum part and the dimension in the direction of magnetic anisotropy is not particularly limited and is appropriately selected, but the dimension of the maximum part of the shape is 0.1 mm or more, and the magnetic anisotropy The dimension in the converted direction is 0.05 mm or more.
図4に示すように、研削加工された磁石体20表面にはR2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末22を存在させる。なお、R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上で、それぞれR2、R3、R4中10原子%以上、より好ましくは20原子%以上、特に40原子%以上のDy又はTbを含むことが好ましい。この場合、前記R3のフッ化物及び/又はR4の酸フッ化物を含有する粉末において、R3及び/又はR4に10原子%以上のDy及び/又はTbが含まれ、かつR3及び/又はR4におけるNdとPrの合計濃度が前記R1におけるNdとPrの合計濃度より低いことが本発明の目的から好ましい。 As shown in FIG. 4, powder 22 containing one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride is provided on the surface of the ground magnet body 20. To exist. R 2 , R 3 , and R 4 are one or more selected from rare earth elements including Y and Sc, and each of R 2 , R 3 , and R 4 is 10 atom% or more, more preferably 20 atom%. As described above, it is particularly preferable to contain 40 atomic% or more of Dy or Tb. In this case, the powder containing fluoride and / or oxyfluoride of R 4 of the R 3, R 3 and / or R 4 to 10 atomic% or more Dy and / or Tb is included, and R 3 and It is preferable from the object of the present invention that the total concentration of Nd and Pr in R 4 is lower than the total concentration of Nd and Pr in R 1 .
この場合、図4は磁石体20の全面に対し、上記粉末22を存在させて以下の吸収処理を行うようにしたものであるが、図5に示したように、少なくとも片方、好ましくは両方の幅方向端部上縁部を含む表面に部分的に粉末22を存在させて以下の吸収処理を行ってもよい。また、磁石体20の全面に粉末22を存在させて吸収処理を行った後に、少なくとも一方の端部、好ましくは両方の端部のみに粉末22を部分的に存在させて再度の吸収処理を行ってもよい。 In this case, FIG. 4 is the one in which the powder 22 is present and the following absorption treatment is performed on the entire surface of the magnet body 20, but as shown in FIG. 5, at least one, preferably both The following absorption treatment may be performed with the powder 22 partially present on the surface including the upper edge of the width direction end. In addition, after the powder 22 is present on the entire surface of the magnet body 20 and the absorption treatment is performed, the powder 22 is partially present at least at one end, preferably only at both ends, and the absorption treatment is performed again. May be.
磁石表面空間における粉末の存在率は高いほど吸収されるR2、R3又はR4量が多くなるので、本発明における効果を達成させるために、上記粉末の存在率は、磁石表面から距離1mm以内の磁石を取り囲む空間内での平均的な値で10容積%以上が好ましく、更に好ましくは40容積%以上である。 The higher the abundance ratio of the powder in the magnet surface space, the more R 2 , R 3, or R 4 is absorbed. Therefore, in order to achieve the effect of the present invention, the abundance ratio of the powder is 1 mm from the magnet surface. The average value in the space surrounding the inner magnet is preferably 10% by volume or more, and more preferably 40% by volume or more.
粉末を存在させる方法(粉末処理方法)としては、例えば、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する微粉末を水あるいは有機溶剤に分散させ、このスラリーに磁石体を浸した後に熱風や真空により乾燥させる、あるいは自然乾燥させる方法が挙げられる。この他にスプレーによる塗布等も可能である。いずれの具体的手法にせよ、非常に簡便にかつ大量に処理できることが特徴といえる。上記微粉末の粒子径は粉末のR2、R3又はR4成分が磁石に吸収される際の反応性に影響を与え、粒子が小さいほど反応にあずかる接触面積が増大する。本発明における効果を達成させるためには、存在させる粉末の平均粒子径は100μm以下、好ましくは10μm以下が望ましい。その下限は特に制限されないが1nm以上が好ましい。なお、この平均粒子径は、例えばレーザー回折法などによる粒度分布測定装置等を用いて質量平均値D50(即ち、累積質量が50%となるときの粒子径又はメジアン径)として求めることができる。 As a method for making the powder exist (powder processing method), for example, a fine powder containing one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride is used as water or Examples include a method of dispersing in an organic solvent and immersing the magnet body in this slurry, followed by drying with hot air or vacuum, or natural drying. In addition, application by spraying is also possible. Whatever the specific method, it can be said that it can be processed very easily and in large quantities. The particle size of the fine powder affects the reactivity when the R 2 , R 3 or R 4 component of the powder is absorbed by the magnet, and the smaller the particle, the greater the contact area involved in the reaction. In order to achieve the effect of the present invention, the average particle size of the existing powder is 100 μm or less, preferably 10 μm or less. The lower limit is not particularly limited, but is preferably 1 nm or more. The average particle diameter can be obtained as a mass average value D 50 (that is, a particle diameter or a median diameter when the cumulative mass becomes 50%) using a particle size distribution measuring apparatus by a laser diffraction method, for example. .
本発明におけるR2の酸化物、R3のフッ化物、R4の酸フッ化物とは、好ましくはそれぞれR2 2O3、R3F3、R4OFであるが、これ以外のR2On、R3Fn、R4OmFn(m、nは任意の正数)や、金属元素によりR2、R3、R4の一部を置換したあるいは安定化されたもの等、本発明の効果を達成することができるR2と酸素を含む酸化物、R3とフッ素を含むフッ化物、R4と酸素とフッ素を含む酸フッ化物を指す。
Oxide of R 2 in the present invention, fluoride of R 3, and oxyfluoride of R 4, preferably each R 2 2 O 3, R 3
この場合、磁石表面に存在させる粉末は、R2の酸化物、R3のフッ化物、R4の酸フッ化物、あるいはこれらの混合物を含有し、この他にR5(R5はY及びScを含む希土類元素から選ばれる1種又は2種以上)の、炭化物、窒化物、水酸化物、水素化物のうち少なくとも1種あるいはこれらの混合物又は複合物を含んでもよく、またR3のフッ化物及び/又はR4の酸フッ化物を用いる場合、R5の酸化物を含んでもよい。更に、粉末の分散性や化学的・物理的吸着を促進するために、ホウ素、窒化ホウ素、シリコン、炭素などの微粉末やステアリン酸(脂肪酸)などの有機化合物を含むこともできる。本発明の効果を高効率に達成するには、R2の酸化物、R3のフッ化物、R4の酸フッ化物、あるいはこれらの混合物が粉末全体に対して10質量%以上、好ましくは20質量%以上含まれる。特には、主成分として、R2の酸化物、R3のフッ化物、R4の酸フッ化物が、粉末全体に対して50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上含有することが推奨される。 In this case, the powder to be present on the magnet surface contains an oxide of R 2 , a fluoride of R 3, an oxyfluoride of R 4 , or a mixture thereof, in addition to R 5 (R 5 is Y and Sc). 1 type or 2 types or more selected from rare earth elements containing), carbides, nitrides, hydroxides, hydrides, or a mixture or composite thereof, and a fluoride of R 3 And / or when R 4 oxyfluoride is used, it may contain an oxide of R 5 . Furthermore, in order to promote the dispersibility of the powder and chemical / physical adsorption, fine powders such as boron, boron nitride, silicon, and carbon, and organic compounds such as stearic acid (fatty acid) can also be included. In order to achieve the effect of the present invention with high efficiency, the oxide of R 2 , the fluoride of R 3 , the oxyfluoride of R 4 , or a mixture thereof is 10 mass% or more, preferably 20 More than mass% is contained. In particular, R 2 oxide, R 3 fluoride, and R 4 oxyfluoride as main components are 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass with respect to the whole powder. % Or more is recommended.
R2の酸化物、R3のフッ化物、R4の酸フッ化物、あるいはこれらの混合物からなる粉末を磁石表面に存在させた状態で、磁石と粉末は真空あるいはアルゴン(Ar)、ヘリウム(He)等の不活性ガス雰囲気中で熱処理される(以後、この処理を吸収処理と称する)。吸収処理温度は磁石体の焼結温度以下である。処理温度の限定理由は以下のとおりである。 In a state where a powder composed of an oxide of R 2 , a fluoride of R 3, an oxyfluoride of R 4 , or a mixture thereof is present on the surface of the magnet, the magnet and the powder may be vacuum, argon (Ar), helium (He And the like (hereinafter, this treatment is referred to as absorption treatment). The absorption treatment temperature is lower than the sintering temperature of the magnet body. The reasons for limiting the treatment temperature are as follows.
即ち、当該焼結磁石の焼結温度(TS℃と称する)より高い温度で処理すると、(1)焼結磁石の組織が変質し、高い磁気特性が得られなくなる、(2)熱変形により加工寸法が維持できなくなる、(3)拡散させたRが磁石の結晶粒界面だけでなく内部にまで拡散してしまい残留磁束密度が低下する、等の問題が生じるために、処理温度は焼結温度以下、好ましくは(TS−10)℃以下とする。なお、温度の下限は適宜選定されるが、通常350℃以上である。吸収処理時間は1分〜100時間である。1分未満では吸収処理が完了せず、100時間を超えると、焼結磁石の組織が変質する、不可避的な酸化や成分の蒸発が磁気特性に悪い影響を与えるといった問題が生じやすい。より好ましくは5分〜8時間、特に10分〜6時間である。 That is, if the sintered magnet is processed at a temperature higher than the sintering temperature (referred to as T S ° C), (1) the structure of the sintered magnet is altered and high magnetic properties cannot be obtained. The processing temperature cannot be maintained. (3) The diffused R diffuses not only into the crystal grain interface of the magnet but also into the interior, resulting in a decrease in residual magnetic flux density. Temperature or lower, preferably (T S −10) ° C. or lower. In addition, although the minimum of temperature is selected suitably, it is 350 degreeC or more normally. Absorption treatment time is 1 minute to 100 hours. If it is less than 1 minute, the absorption treatment is not completed, and if it exceeds 100 hours, the structure of the sintered magnet is altered, and problems such as inevitable oxidation and evaporation of components adversely affect the magnetic properties. More preferably, it is 5 minutes to 8 hours, particularly 10 minutes to 6 hours.
以上のような吸収処理により、磁石内の希土類に富む粒界相成分に、磁石表面に存在させた粉末に含まれていたR2、R3又はR4が濃化し、このR2、R3又はR4がR2Fe14B主相粒子の表層部付近で置換される。また、粉末にR3のフッ化物又はR4の酸フッ化物が含まれている場合、この粉末に含まれているフッ素は、その一部がR3又はR4と共に磁石内に吸収されることにより、R3又はR4の粉末からの供給と磁石の結晶粒界における拡散を著しく高める。 By the absorption treatment as described above, R 2 , R 3 or R 4 contained in the powder present on the magnet surface is concentrated in the rare earth-rich grain boundary phase component in the magnet, and this R 2 , R 3 is concentrated. Alternatively, R 4 is substituted in the vicinity of the surface layer portion of the R 2 Fe 14 B main phase particle. In addition, when the powder contains R 3 fluoride or R 4 oxyfluoride, a part of the fluorine contained in the powder is absorbed in the magnet together with R 3 or R 4. Significantly increases the supply from the R 3 or R 4 powder and the diffusion at the grain boundaries of the magnet.
R2の酸化物、R3のフッ化物及びR4の酸フッ化物に含まれる希土類元素は、Y及びScを含む希土類元素から選ばれる1種又は2種以上であるが、上記表層部に濃化して結晶磁気異方性を高める効果の特に大きい元素はDy、Tbであるので、粉末に含まれている希土類元素としてはDy及びTbの割合が合計で10原子%以上であることが好適である。更に好ましくは20原子%以上である。また、R2、R3、R4におけるNdとPrの合計濃度が、R1のNdとPrの合計濃度より低いことが好ましい。 The rare earth element contained in the oxide of R 2 , the fluoride of R 3 and the oxyfluoride of R 4 is one or more selected from the rare earth elements including Y and Sc. Since elements that have a particularly large effect of increasing crystal magnetic anisotropy are Dy and Tb, the rare earth elements contained in the powder preferably have a total ratio of Dy and Tb of 10 atomic% or more. is there. More preferably, it is 20 atomic% or more. Further, the total concentration of Nd and Pr in R 2 , R 3 and R 4 is preferably lower than the total concentration of Nd and Pr in R 1 .
この吸収処理の結果、残留磁束密度の低減をほとんど伴わずにR−Fe−B系焼結磁石の保磁力が効率的に増大される。 As a result of this absorption treatment, the coercive force of the R—Fe—B based sintered magnet is efficiently increased with little reduction in residual magnetic flux density.
上記吸収処理は、例えば上記粉末を水や有機溶剤に分散させたスラリーに焼結磁石体を投入するなどして、該焼結磁石体表面に上記粉末を付着させた状態で熱処理させることによって行うことができ、この場合、上記吸収処理において、磁石は粉末に覆われ、磁石同士は離れて存在するので、高温での熱処理であるにもかかわらず吸収処理後に磁石同士が溶着することがない。更に、粉末も熱処理後に磁石に固着することもないため、熱処理用容器に大量に磁石を投入して処理することが可能であり、本発明による製造方法は生産性にも優れている。 The absorption treatment is performed by, for example, putting a sintered magnet body into a slurry in which the powder is dispersed in water or an organic solvent, and performing a heat treatment with the powder adhered to the surface of the sintered magnet body. In this case, in the above-described absorption treatment, the magnets are covered with powder and the magnets are separated from each other, so that the magnets are not welded after the absorption treatment despite the heat treatment at a high temperature. Furthermore, since the powder does not adhere to the magnet after the heat treatment, it can be processed by putting a large amount of magnets in the heat treatment container, and the production method according to the present invention is excellent in productivity.
また、吸収処理後、時効処理を施すことが好ましい。この時効処理としては、吸収処理温度未満、好ましくは200℃以上で吸収処理温度より10℃低い温度以下、更に好ましくは350℃以上で吸収処理温度より10℃低い温度以下であることが望ましい。また、その雰囲気は真空あるいはAr、He等の不活性ガス中であることが好ましい。時効処理の時間は1分〜10時間、好ましくは10分〜5時間、特に30分〜2時間である。 Moreover, it is preferable to perform an aging treatment after the absorption treatment. The aging treatment is desirably less than the absorption treatment temperature, preferably 200 ° C. or more and 10 ° C. or less, more preferably 350 ° C. or more and 10 ° C. or less. The atmosphere is preferably in a vacuum or an inert gas such as Ar or He. The time for aging treatment is 1 minute to 10 hours, preferably 10 minutes to 5 hours, particularly 30 minutes to 2 hours.
なお、上記粉末を焼結磁石体に存在させる前の上述した焼結磁石体の研削加工時において、研削加工機の冷却液に水系のものを用いる、あるいは加工時に研削面が高温に曝される場合、被研削面に酸化膜が生じやすく、この酸化膜が粉末から磁石体へのR2、R3又はR4成分の吸収反応を妨げることがある。このような場合には、アルカリ、酸あるいは有機溶剤のいずれか1種以上を用いて洗浄する、あるいはショットブラストを施して、その酸化膜を除去することで適切な吸収処理ができる。 In addition, at the time of grinding of the above-described sintered magnet body before the powder is present in the sintered magnet body, a water-based one is used as the coolant of the grinding machine, or the grinding surface is exposed to a high temperature during processing. In this case, an oxide film is likely to be formed on the surface to be ground, and this oxide film may hinder the absorption reaction of the R 2 , R 3 or R 4 component from the powder to the magnet body. In such a case, an appropriate absorption treatment can be carried out by removing the oxide film by washing with one or more of alkali, acid or organic solvent, or by performing shot blasting.
アルカリとしては、ピロリン酸カリウム、ピロリン酸ナトリウム、クエン酸カリウム、クエン酸ナトリウム、酢酸カリウム、酢酸ナトリウム、シュウ酸カリウム、シュウ酸ナトリウム等、酸としては、塩酸、硝酸、硫酸、酢酸、クエン酸、酒石酸等、有機溶剤としては、アセトン、メタノール、エタノール、イソプロピルアルコール等を使用することができる。この場合、上記アルカリや酸は、磁石体を浸食しない適宜濃度の水溶液として使用することができる。 As alkali, potassium pyrophosphate, sodium pyrophosphate, potassium citrate, sodium citrate, potassium acetate, sodium acetate, potassium oxalate, sodium oxalate, etc., acids include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, citric acid, As the organic solvent such as tartaric acid, acetone, methanol, ethanol, isopropyl alcohol and the like can be used. In this case, the alkali or acid can be used as an aqueous solution having an appropriate concentration that does not erode the magnet body.
更には、上記焼結磁石体の表面層を上記粉末を焼結磁石体に存在させる前にショットブラストで除去することもできる。 Furthermore, the surface layer of the sintered magnet body can be removed by shot blasting before the powder is present in the sintered magnet body.
また、上記吸収処理あるいはそれに続く時効処理を施した磁石に対して、アルカリ、酸あるいは有機溶剤のいずれか1種以上により洗浄したり、実用形状に研削することもできる。更には、かかる吸収処理、時効処理、洗浄又は研削後にメッキ又は塗装を施すこともできる。 Further, the magnet subjected to the above-described absorption treatment or subsequent aging treatment can be washed with one or more of alkali, acid or organic solvent, or ground into a practical shape. Furthermore, plating or coating can be applied after such absorption treatment, aging treatment, washing or grinding.
焼結磁石体の表面から結晶磁気異方性を高める効果の特に大きい元素であるDy、Tbなどの吸収処理の結果、残留磁束密度の低減をほとんど伴わずにR−Fe−B系焼結磁石の保磁力が効率的に増大されるので、焼結磁石体の厚さによって保磁力の増加量は異なる。即ち、端部形状が薄くなるようにした焼結磁石体においては端部の保磁力がより効果的に高められる。 R-Fe-B sintered magnet with almost no reduction in residual magnetic flux density as a result of absorption treatment of Dy, Tb, etc., which are elements that are particularly effective in increasing the magnetocrystalline anisotropy from the surface of the sintered magnet body Since the coercive force is effectively increased, the amount of increase in the coercive force differs depending on the thickness of the sintered magnet body. That is, the coercive force of the end portion is more effectively enhanced in the sintered magnet body whose end portion shape is thinned.
以上のようにして得られた永久磁石材料は、低コギングトルクに適した端部の厚みが薄い形状でありながら、端部厚みが薄いために減磁しやすいといった問題点を、特に端部の保磁力が増大することで減磁の問題をなくし、更に高い残留磁束密度を有する永久磁石として永久磁石回転機用に利用でき、複数個の永久磁石セグメントがロータコア側面に張り付けられた回転子と、複数のスロットを有するステータコアに巻線を巻いた固定子とを空隙を介して配置した永久磁石回転機を得ることができる。この場合、永久磁石回転機は、上記の吸収処理を施された永久磁石を用いる以外は公知の態様とすることができ、公知の方法で製造することができる。 The permanent magnet material obtained as described above has a problem that it is easy to demagnetize because the end thickness is thin while the end thickness is suitable for low cogging torque. An increase in coercive force eliminates the problem of demagnetization, and it can be used for a permanent magnet rotating machine as a permanent magnet having a higher residual magnetic flux density, and a rotor in which a plurality of permanent magnet segments are attached to the side surface of the rotor core; It is possible to obtain a permanent magnet rotating machine in which a stator having a plurality of slots and a winding wound around a stator core are arranged with a gap. In this case, the permanent magnet rotating machine can be in a known manner except that the permanent magnet subjected to the above-described absorption treatment is used, and can be manufactured by a known method.
例えば、ロータコアヨークと、該ロータコアヨークの側面上に、所定の間隔で、極性がロータコアヨークの周方向に交互に異なるように配置された複数の永久磁石とを含んでなる回転子と、該回転子と空間を隔てて配置されたステータコアヨークと、上記永久磁石と対向し、周方向に関して等間隔で該ステータコアヨーク上に配置された突極磁極と、該突極磁極に集中巻され三相結線された電機子巻き線とを含んでなる固定子とを含んでなる永久磁石回転機として得ることができる。
なお、本発明に用いる磁石個数は、特に限定されるものではないが、偶数個最大100個まで、好ましくは4〜36個の磁石を配置し、周方向に交互に極性が異なるように配置されている。
For example, a rotor including a rotor core yoke and a plurality of permanent magnets arranged on a side surface of the rotor core yoke at predetermined intervals so that polarities are alternately different in the circumferential direction of the rotor core yoke, and the rotation A stator core yoke arranged at a distance from the child, a salient pole magnetic pole opposed to the permanent magnet and arranged on the stator core yoke at equal intervals in the circumferential direction, and a three-phase connection concentratedly wound around the salient pole pole It can be obtained as a permanent magnet rotating machine including a stator including the armature winding that has been made.
The number of magnets used in the present invention is not particularly limited, but an even number of up to 100 magnets, preferably 4 to 36 magnets, are arranged so that the polarities are alternately different in the circumferential direction. ing.
以下、本発明の具体的態様について実施例をもって詳述するが、本発明の内容はこれに限定されるものではない。なお、下記例で、酸化Dy又はフッ化Dyによる磁石表面空間の占有率(存在率)は、粉末処理後の磁石質量増と粉末物質の真密度より算出した。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to examples, but the content of the present invention is not limited thereto. In the following examples, the occupation ratio (existence ratio) of the magnet surface space by oxidation Dy or fluoride Dy was calculated from the increase in magnet mass after powder treatment and the true density of the powder substance.
[実施例1〜4及び比較例1〜3]
<実施例及び比較例の磁気特性>
純度99質量%以上のNd、Co、Al、Feメタルとフェロボロンを所定量秤量してAr雰囲気中で高周波溶解し、この合金溶湯をAr雰囲気中で銅製単ロールに注湯するいわゆるストリップキャスト法により薄板状の合金とした。得られた合金の組成はNdが13.5原子%、Coが1.0原子%、Alが0.5原子%、Bが5.8原子%、Feが残部であり、これを合金Aと称する。合金Aに水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させる、いわゆる水素粉砕により30メッシュ以下の粗粉とした。更に純度99質量%以上のNd、Tb、Fe、Co、Al、Cuメタルとフェロボロンを所定量秤量し、Ar雰囲気中で高周波溶解した後、鋳造した。得られた合金の組成はNdが20原子%、Tbが10原子%、Feが24原子%、Bが6原子%、Alが1原子%、Cuが2原子%、Coが残部であり、これを合金Bと称する。合金Bは窒素雰囲気中、ブラウンミルを用いて30メッシュ以下に粗粉砕された。
[Examples 1-4 and Comparative Examples 1-3]
<Magnetic characteristics of examples and comparative examples>
Nd, Co, Al, Fe metal having a purity of 99% by mass or more and ferroboron are weighed in predetermined amounts and melted at high frequency in an Ar atmosphere, and this molten alloy is poured into a single copper roll in an Ar atmosphere by a so-called strip casting method. A thin plate-like alloy was used. The composition of the obtained alloy is 13.5 atomic% Nd, 1.0 atomic% Co, 0.5 atomic% Al, 5.8 atomic% B, and the balance Fe. Called. The alloy A was occluded with hydrogen and then heated to 500 ° C. while being evacuated to partially release hydrogen, so that a coarse powder of 30 mesh or less was obtained by so-called hydrogen pulverization. Further, Nd, Tb, Fe, Co, Al, Cu metal having a purity of 99% by mass or more and ferroboron were weighed in predetermined amounts, melted by high frequency in an Ar atmosphere, and then cast. The composition of the resulting alloy is Nd 20 atom%, Tb 10 atom%, Fe 24 atom%, B 6 atom%,
続いて、合金A粉末を90質量%、合金B粉末を10質量%秤量して、窒素置換したVブレンダー中で30分間混合した。この混合粉末は高圧窒素ガスを用いたジェットミルにて、粉末の質量中位粒径4μmに微粉砕された。得られた混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結し、71mm×45mm×厚み10mm(磁気異方性化した方向)の永久磁石ブロックを作製した。永久磁石ブロックをダイヤモンド砥石により図4に示すような断面D形に全面研削加工した。その寸法はL=70mm、W=45mm、Tc=9mm、Te=3mm(形状1)と、L=70mm、W=15mm、Tc=3mm、Te=1mm(形状2)(TcとTeが磁気異方性化した方向)である。形状1の寸法は形状2に対し、L方向が同じでWとT方向が3倍になったものである。研削加工された磁石体をアルカリ溶液で洗浄した後、酸洗浄して乾燥させた。各洗浄の前後には純水による洗浄工程が含まれている。
Subsequently, 90% by mass of the alloy A powder and 10% by mass of the alloy B powder were weighed and mixed for 30 minutes in a nitrogen-substituted V blender. This mixed powder was finely pulverized to a mass median particle size of 4 μm by a jet mill using high-pressure nitrogen gas. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into a sintering furnace in an Ar atmosphere and sintered at 1,060 ° C. for 2 hours to produce a permanent magnet block of 71 mm × 45 mm × thickness 10 mm (magnetic anisotropy direction). . The permanent magnet block was ground to a D-shaped section as shown in FIG. The dimensions are L = 70 mm, W = 45 mm, Tc = 9 mm, Te = 3 mm (shape 1), L = 70 mm, W = 15 mm, Tc = 3 mm, Te = 1 mm (shape 2) (Tc and Te are magnetically different. Direction). The dimension of
次に、平均粉末粒径が5μmのフッ化ディスプロシウムを質量分率50%でエタノールと混合し、これに超音波を印加しながら磁石体を1分間浸した。引き上げた磁石は直ちに熱風により乾燥させた。この時のフッ化ディスプロシウムによる磁石表面空間の占有率は45%であった。これにAr雰囲気中900℃で1時間という条件で吸収処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。形状1に対しこの処理をしたものを磁石体M1、形状2に対しこの処理をしたものを磁石体M2と称する。比較のために形状1に対し熱処理のみ施したものを磁石体P1、形状2に対しこの処理をしたものを磁石体P2と称する。
Next, dysprosium fluoride having an average powder particle size of 5 μm was mixed with ethanol at a mass fraction of 50%, and the magnet body was immersed for 1 minute while applying ultrasonic waves thereto. The magnet pulled up was immediately dried with hot air. The occupation ratio of the magnet surface space by dysprosium fluoride at this time was 45%. This was subjected to an absorption treatment at 900 ° C. for 1 hour in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body. What performed this process with respect to the
M2、P2と同じ形状の磁石体に対し、平均粉末粒径が5μmのフッ化テルビウムを質量分率50%でエタノールと混合し、これに超音波を印加しながら磁石体を1分間浸した。引き上げた磁石は直ちに熱風により乾燥させた。この時のフッ化テルビウムによる磁石表面空間の占有率は45%であった。これにAr雰囲気中900℃で1時間という条件で吸収処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M3と称する。 To a magnet body having the same shape as M2 and P2, terbium fluoride having an average powder particle size of 5 μm was mixed with ethanol at a mass fraction of 50%, and the magnet body was immersed for 1 minute while applying ultrasonic waves thereto. The magnet pulled up was immediately dried with hot air. At this time, the occupation ratio of the magnet surface space by terbium fluoride was 45%. This was subjected to an absorption treatment at 900 ° C. for 1 hour in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body. This is referred to as a magnet body M3.
M2、M3、P2と同じ形状の磁石体に対し、平均粉末粒径が5μmのフッ化テルビウムを質量分率50%でエタノールと混合し、これに超音波を印加しながら磁石体の両端部4mmをそれぞれ1分間浸した。引き上げた磁石は直ちに熱風により乾燥させた。この時のフッ化テルビウムによる磁石表面空間の占有率は磁石両端の浸漬された部分で45%であり、浸漬のない中央部では0%であった。本実施例のR酸化物、Rフッ化物、R酸フッ化物から選ばれる1種又は2種以上を含有する粉末を磁石端部表面に塗布した磁石体を説明する図を図5に示す。これにAr雰囲気中900℃で1時間という条件で吸収処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M4と称する。 For the magnet body having the same shape as M2, M3, and P2, terbium fluoride having an average powder particle size of 5 μm is mixed with ethanol at a mass fraction of 50%, and ultrasonic waves are applied to this, and both ends of the magnet body are 4 mm. Each was soaked for 1 minute. The magnet pulled up was immediately dried with hot air. At this time, the occupation ratio of the magnet surface space by terbium fluoride was 45% in the immersed part at both ends of the magnet, and 0% in the central part without immersion. FIG. 5 shows a diagram illustrating a magnet body in which a powder containing one or more selected from R oxide, R fluoride, and R oxyfluoride of this example is applied to the surface of the magnet end. This was subjected to an absorption treatment at 900 ° C. for 1 hour in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body. This is referred to as a magnet body M4.
磁石体M1、M2、M3、M4、P1、P2の磁気特性を表1に示した。ディスプロシウムの吸収処理を施していない磁石(P1とP2)の保磁力に対して本発明による永久磁石は端部で480〜500kAm-1の保磁力増大が認められ、中央部でも300〜450kAm-1の保磁力増大が認められた。保磁力は厚みの厚い形状1の方が小さく、特に中央部の差が大きくなっている。このように厚みが増えると保磁力の増加は鈍くなる。また、テルビウムの吸収処理を施した磁石(M3)は、施していない磁石(P2)の保磁力に対して800kAm-1の保磁力増大が認められる。本発明の永久磁石の残留磁束密度の低下は5mTであった。
Table 1 shows the magnetic characteristics of the magnet bodies M1, M2, M3, M4, P1, and P2. The permanent magnet according to the present invention has an increase in coercive force of 480 to 500 kAm −1 at the end and 300 to 450 kAm at the center with respect to the coercive force of the magnets (P1 and P2) not subjected to dysprosium absorption treatment. A coercivity increase of -1 was observed. The coercive force of the
比較のために、合金AのNd一部をDyで置換した組成合金を用いて永久磁石を作製し、500kAm-1の保磁力増大を図ったところ、残留磁束密度は50mT低下した。この磁石体をP3とし、磁気特性を表1に併記した。なお、P3の形状は形状2である。 For comparison, a permanent magnet was prepared using a composition alloy in which Nd part of alloy A was replaced with Dy, and the coercive force was increased by 500 kAm −1 . As a result, the residual magnetic flux density was reduced by 50 mT. This magnet body was designated as P3, and the magnetic characteristics are also shown in Table 1. The shape of P3 is shape 2.
磁石体M1とM2のSEMによる反射電子像とEPMAにより、磁石にはDy及びFが観察された。処理前の磁石にはDy及びFは含まれていないので、磁性体M1とM2におけるDy及びFの存在は、本発明の吸収処理によるものである。吸収されたDyは結晶粒界近傍にのみ濃化している。一方、フッ素(F)も粒界部に存在し、処理前から磁石内に含まれている不可避的不純物である酸化物と結合して酸フッ化物を形成している。このDyの分布により、残留磁束密度の低下を最小限に抑えながら保磁力を増大させることが可能となった。 Dy and F were observed in the magnets by the reflected electron images of the magnet bodies M1 and M2 by SEM and EPMA. Since the magnet before processing does not contain Dy and F, the presence of Dy and F in the magnetic bodies M1 and M2 is due to the absorption processing of the present invention. The absorbed Dy is concentrated only in the vicinity of the crystal grain boundary. On the other hand, fluorine (F) is also present in the grain boundary part, and forms an oxyfluoride by being combined with an oxide that is an inevitable impurity contained in the magnet before the treatment. This Dy distribution makes it possible to increase the coercive force while minimizing the decrease in residual magnetic flux density.
<実施例及び比較例のモータ特性>
本発明の磁石M1、M2、M3、M4及び比較例の磁石P1、P2、P3を永久磁石モータに組み込んだ時のモータ特性について説明する。永久磁石モータは図1に示す表面磁石型モータである。ロータは、0.5mmの電磁鋼板を積層したものの表面に永久磁石がはりつけられており6極構造となっている。形状1の磁石M1とP1を用いたロータの外径寸法(隣接する永久磁石の輪郭の頂点を通る外径)は90mm、長さ70mmとなっている。ステータは、0.5mmの電磁鋼板を積層した9スロット構造で、各ティースには集中巻きでコイルが15ターン巻かれており、コイルはU相,V相,W相の3相Y結線となっている。ロータとステータの空隙は1mmである。図1に示すコイルの黒丸印はコイルの巻き方向が手前、×印はコイルの巻き方向が奥であることを意味している。コイルに電流を流すと、ステータコア部分に書いた矢印の方向に界磁され、回転子を反時計回りに回転させる。このとき、永久磁石セグメントの回転方向の後方(図1の磁石において○で囲った部分)は界磁が永久磁石の磁化と逆方向になるので減磁しやすい状況になっている。
<Motor characteristics of examples and comparative examples>
The motor characteristics when the magnets M1, M2, M3, and M4 of the present invention and the magnets P1, P2, and P3 of the comparative example are incorporated in a permanent magnet motor will be described. The permanent magnet motor is a surface magnet type motor shown in FIG. The rotor has a hexapole structure in which a permanent magnet is attached to the surface of a laminate of 0.5 mm electromagnetic steel plates. The outer diameter of the
同様に形状2の磁石M2、M3、P2、P3を用いたロータの外径寸法は45mm、長さ70mmとなっている。ロータとステータの空隙は1mmである。 Similarly, the outer diameter of the rotor using the magnets M2, M3, P2, and P3 having the shape 2 is 45 mm and the length is 70 mm. The gap between the rotor and the stator is 1 mm.
減磁の程度を評価するために、モータを100℃と120℃の温度に曝した前後の駆動トルクの差を測定した。まず、室温で各コイルあたり実効値50Aの三相電流で回転させた時の駆動トルクを測定し、次にモータをオーブンに入れて同じく50Aの電流で回転させた。これを、オーブンから出して室温に戻して同じく50Aで回転させたときの駆動トルクを測定した。減磁によるトルク減少率=(オーブンに入れた後の室温の駆動トルク−オーブンに入れる前の室温の駆動トルク)/(オーブンに入れる前の室温の駆動トルク)とした。 In order to evaluate the degree of demagnetization, the difference in driving torque before and after the motor was exposed to temperatures of 100 ° C. and 120 ° C. was measured. First, the driving torque when rotating at room temperature with a three-phase current having an effective value of 50A per coil was measured, and then the motor was placed in an oven and rotated at the same current of 50A. When this was taken out of the oven, returned to room temperature, and rotated at 50 A, the driving torque was measured. Torque reduction rate due to demagnetization = (drive torque at room temperature after being put in oven−drive torque at room temperature before being put in oven) / (drive torque at room temperature before being put in oven).
減磁による駆動トルク減少率の値を表2に示す。比較例1,2の保磁力が小さな磁石を用いたモータは100℃で減磁が観測され、120℃では更に大きな減磁を示した。100℃の環境では使えないことが分かった。これに対し、実施例1,2で本発明の処理により保磁力を増加させた磁石を用いたモータは100℃で減磁が観測されず、100℃での環境で使える。120℃では実施例1,2とも約2%の減磁が見られる。本発明の処理による保磁力の増加量は、磁石端部は磁石表面からの距離が近いのでディスプロシウムの吸収が十分に行われて磁石M1磁石M2とも同程度であり、中央部は磁石M1の寸法が厚いためにディスプロシウムの吸収が十分に行われず、170kAm-1の保磁力差がある。磁石中央部の保磁力には差があるが、モータの減磁によるトルクの減少量は同程度であった。これは、永久磁石モータで減磁しやすい部分が磁石端部であって、本発明の処理は磁石端部の保磁力をより増大できるために、減磁しにくいモータとなった。 Table 2 shows the values of the drive torque reduction rate due to demagnetization. In the motors using the magnets having a small coercive force in Comparative Examples 1 and 2, demagnetization was observed at 100 ° C., and even greater demagnetization was observed at 120 ° C. It turned out that it cannot be used in an environment of 100 ° C. On the other hand, the motors using the magnets whose coercive force is increased by the processing of the present invention in Examples 1 and 2 are not observed at 100 ° C., and can be used in an environment at 100 ° C. At 120 ° C., about 2% demagnetization is observed in both Examples 1 and 2. The amount of increase in coercive force by the treatment of the present invention is the same as that of the magnet M1 and the magnet M2 because the dysprosium is sufficiently absorbed because the end of the magnet is close to the magnet surface, and the center is the magnet M1. Therefore, dysprosium is not sufficiently absorbed, and there is a coercive force difference of 170 kAm −1 . Although there is a difference in the coercive force at the center of the magnet, the amount of torque reduction due to the demagnetization of the motor was similar. This is because the portion of the permanent magnet motor that is easily demagnetized is the magnet end, and the processing of the present invention can further increase the coercive force of the magnet end, so that the motor is difficult to demagnetize.
実施例3は、テルビウムを吸収処理させてより保磁力を増加させた磁石を用いたモータであり、120℃でも減磁が観測されない。 Example 3 is a motor using a magnet in which terbium is absorbed to increase the coercive force, and no demagnetization is observed even at 120 ° C.
実施例4は、図5のように実施例1において磁石端部にテルビウムを吸収処理させてより保磁力を増加させた磁石を用いたモータであり、100℃では減磁がなく、120℃でわずかに減磁が観測された。ディスプロシウムやテルビウムは高価な元素であるので使用量を削減したい。本発明は保磁力の必要な箇所に集中的に吸収処理できるので、ディスプロシウムやテルビウムの使用量を削減できる。 Example 4 is a motor using a magnet in which the coercive force is increased by absorbing terbium at the end of the magnet in Example 1 as shown in FIG. 5, and there is no demagnetization at 100 ° C., and at 120 ° C. Slight demagnetization was observed. Since dysprosium and terbium are expensive elements, we want to reduce the amount used. Since the present invention can intensively absorb and absorb the coercive force, the amount of dysprosium and terbium used can be reduced.
比較例3は、合金AのNd一部をDyで置換した組成合金を用いて実施例2と同等の保磁力を得た永久磁石であり、減磁によるモータのトルク減少量は同程度であったが、残留磁束密度が3.3%小さいので駆動トルクが小さくなってしまった。 Comparative Example 3 is a permanent magnet having a coercive force equivalent to that of Example 2 using a composition alloy in which a part of Nd of alloy A is replaced with Dy, and the amount of torque reduction of the motor due to demagnetization is about the same. However, since the residual magnetic flux density is 3.3% smaller, the driving torque is smaller.
実施例は永久磁石モータであるが、永久磁石発電機も同じ構造であり、本発明の効果は同様である。 Although the embodiment is a permanent magnet motor, the permanent magnet generator has the same structure, and the effect of the present invention is the same.
1 ロータコア(回転子コア)
2 磁石
3 回転子
11 ステータコア
12 コイル
13 固定子
20 磁石体
22 粉末
Tc 永久磁石中央部の厚さ
Te 端部の厚さ
1 Rotor core (rotor core)
2
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010242127A JP2011019401A (en) | 2010-10-28 | 2010-10-28 | Method of manufacturing permanent magnet segment for permanent magnet rotating machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010242127A JP2011019401A (en) | 2010-10-28 | 2010-10-28 | Method of manufacturing permanent magnet segment for permanent magnet rotating machine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006233442A Division JP4737431B2 (en) | 2006-08-30 | 2006-08-30 | Permanent magnet rotating machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011019401A true JP2011019401A (en) | 2011-01-27 |
Family
ID=43596741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010242127A Pending JP2011019401A (en) | 2010-10-28 | 2010-10-28 | Method of manufacturing permanent magnet segment for permanent magnet rotating machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011019401A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016165185A (en) * | 2015-03-06 | 2016-09-08 | アイシン精機株式会社 | Electric motor |
US10020098B2 (en) | 2012-09-06 | 2018-07-10 | Mitsubishi Electric Corporation | Production method for permanent magnet, and production device for permanent magnet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08340651A (en) * | 1995-06-12 | 1996-12-24 | Toshiba Corp | Permanent magnet, and permanent magnet rotating machine |
JP2000350393A (en) * | 1999-03-29 | 2000-12-15 | Shin Etsu Chem Co Ltd | Permanent-magnet motor |
JP2004208341A (en) * | 2002-11-05 | 2004-07-22 | Hitachi Ltd | Permanent magnet rotating electric machine |
WO2006064848A1 (en) * | 2004-12-16 | 2006-06-22 | Japan Science And Technology Agency | Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME |
JP4737431B2 (en) * | 2006-08-30 | 2011-08-03 | 信越化学工業株式会社 | Permanent magnet rotating machine |
-
2010
- 2010-10-28 JP JP2010242127A patent/JP2011019401A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08340651A (en) * | 1995-06-12 | 1996-12-24 | Toshiba Corp | Permanent magnet, and permanent magnet rotating machine |
JP2000350393A (en) * | 1999-03-29 | 2000-12-15 | Shin Etsu Chem Co Ltd | Permanent-magnet motor |
JP2004208341A (en) * | 2002-11-05 | 2004-07-22 | Hitachi Ltd | Permanent magnet rotating electric machine |
WO2006064848A1 (en) * | 2004-12-16 | 2006-06-22 | Japan Science And Technology Agency | Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME |
JP4737431B2 (en) * | 2006-08-30 | 2011-08-03 | 信越化学工業株式会社 | Permanent magnet rotating machine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10020098B2 (en) | 2012-09-06 | 2018-07-10 | Mitsubishi Electric Corporation | Production method for permanent magnet, and production device for permanent magnet |
JP2016165185A (en) * | 2015-03-06 | 2016-09-08 | アイシン精機株式会社 | Electric motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4737431B2 (en) | Permanent magnet rotating machine | |
JP4656325B2 (en) | Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine | |
JP5262643B2 (en) | Nd-based sintered magnet and manufacturing method thereof | |
US7559996B2 (en) | Rare earth permanent magnet, making method, and permanent magnet rotary machine | |
JP5251219B2 (en) | Rotor for permanent magnet rotating machine | |
KR101678221B1 (en) | Assembling method of rotor for ipm type permanent magnet rotating machine | |
US8638017B2 (en) | Rotor for permanent magnet rotating machine | |
JP4919109B2 (en) | Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine | |
JP6107545B2 (en) | Rare earth permanent magnet manufacturing method | |
JP2015154051A (en) | Method for manufacturing rare earth permanent magnet | |
EP2477312B1 (en) | Method for manufacturing a rotor for a permanent magnet type rotary machine | |
JP2011019401A (en) | Method of manufacturing permanent magnet segment for permanent magnet rotating machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121114 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130319 |