JP2009268269A - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP2009268269A
JP2009268269A JP2008115227A JP2008115227A JP2009268269A JP 2009268269 A JP2009268269 A JP 2009268269A JP 2008115227 A JP2008115227 A JP 2008115227A JP 2008115227 A JP2008115227 A JP 2008115227A JP 2009268269 A JP2009268269 A JP 2009268269A
Authority
JP
Japan
Prior art keywords
electric motor
fluid
rotors
phase
seal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008115227A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ito
智之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008115227A priority Critical patent/JP2009268269A/en
Publication of JP2009268269A publication Critical patent/JP2009268269A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller of a motor which relatively rotates first and second rotors magnetized to each other to change a phase expressing a relative rotation angle between both rotors, and allows the phase to be fixable at a predetermined position. <P>SOLUTION: The motor 10 includes: first and second operating chambers 54d, 54e which are demarcated by six partition walls 54a fixed to one of the first and second rotors 42a, 42b and protruded in the radial direction, and vanes 52a fixed to the other of the rotors and protruded in the radial direction, and are sealed by abutting sealing members 54c mounted on the tips of the partition walls 54a on the opposing circumferential surface 52c; and a phase change mechanism which supplies and discharges the actuating fluid (working oil) to and from the operating chambers 54d, 54e, and relatively rotates the first and second rotors to change the phase expressing the relative rotation angle between both rotors. In this motor, springs 54f for energizing the sealing members 54c toward the circumferential surface, and recesses 52d opened to the circumferential surface are provided, and the sealing members 54c are engaged with the recesses 52d and made fixable at the positions thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は電動機に関し、より具体的には着磁された第1、第2の回転子を相対回転させて両者の相対回転角を示す位相を変更すると共に、位相を所定の位置で固定自在とした電動機の制御装置に関する。   The present invention relates to an electric motor. More specifically, the first and second magnetized rotors are rotated relative to each other to change the phase indicating the relative rotation angle between the two, and the phase can be fixed at a predetermined position. The present invention relates to a motor control device.

着磁された第1、第2の回転子を相対回転させて両者の相対回転角を示す位相を変更するようにした電動機の例としては、下記の特許文献1記載の技術を挙げることができる。特許文献1記載の技術にあっては、第1、第2の回転子の一方に固定されて径方向に延びる複数個の仕切壁と、他方に固定されつつ複数個の内の隣接する2個の仕切壁の間で径方向に延びるベーンとで画成されると共に、ベーンの先端に取着されたシール部材を対向する円周面に当接させてシールされる第1、第2の作動室に作動流体を給排して第1、第2の回転子を相対回転させることで、両者の相対回転角を示す位相を変更するように構成している。
特開2007−244040号公報
As an example of an electric motor in which the magnetized first and second rotors are relatively rotated to change the phase indicating the relative rotation angle between them, the technique described in Patent Document 1 below can be cited. . In the technique described in Patent Document 1, a plurality of partition walls that are fixed to one of the first and second rotors and extend in the radial direction, and two adjacent ones that are fixed to the other while being fixed to the other. The first and second operations are defined by a vane extending in the radial direction between the partition walls and sealed by bringing a seal member attached to the tip of the vane into contact with the opposing circumferential surface The working fluid is supplied to and discharged from the chamber, and the first and second rotors are rotated relative to each other, thereby changing the phase indicating the relative rotation angle between them.
JP 2007-244040 A

ところで、この種の電動機にあっては、第1、第2回転子の着磁状態によって安定する位相位置が変化し、表面磁束が最も小さい位置で安定する特性となることがある。そのような電動機では始動時などに大きな負荷が加わるとき、安定点では必要なトルクを出力できないことから、出力可能な位相位置まで移動(回転)させる必要があるが、作動流体の温度条件によっては移動に時間を要して必要なトルクを迅速に出力できないことがある。   By the way, in this type of electric motor, the stable phase position may change depending on the magnetization state of the first and second rotors, and the characteristic may be stable at the position where the surface magnetic flux is the smallest. In such an electric motor, when a large load is applied at the time of starting, etc., it is necessary to move (rotate) to a phase position where it can be output because necessary torque cannot be output at a stable point, but depending on the temperature condition of the working fluid It may take time to move and the required torque cannot be output quickly.

また、表面磁束が最も大きい位置で安定する特性を備えるときも、始動時などにそれほど大きなトルクが必要ではない場合、安定点から中間位置あるいは弱め位相側に移動させる必要が生じることも考えられる。   Further, even when a characteristic that stabilizes at the position where the surface magnetic flux is the largest is provided, it may be necessary to move from a stable point to an intermediate position or a weaker phase side when a large torque is not required at the time of starting.

従って、この発明の目的は上記した課題を解消することにあり、着磁された第1、第2の回転子を相対回転させて両者の相対回転角を示す位相を変更すると共に、位相を所定の位置で固定自在とした電動機を提供することにある。   Accordingly, an object of the present invention is to eliminate the above-mentioned problems, and the first and second magnetized rotors are rotated relative to each other to change the phase indicating the relative rotation angle between them, and the phase is set to a predetermined value. It is to provide an electric motor that can be fixed at a position.

上記の目的を達成するために、請求項1にあっては、それぞれ着磁されると共に、同一の軸線を中心に回転する第1、第2の回転子と、前記第1、第2の回転子の一方に固定されて径方向に突出する複数個の仕切壁と、前記第1、第2の回転子の他方に固定されつつ前記複数個の内の隣接する2個の仕切壁の間で前記径方向に突出するベーンとで画成されると共に、前記仕切壁とベーンの少なくともいずれかの先端に取着されたシール部材を対抗する円周面に当接させてシールされる第1、第2の作動室と、前記第1、第2の作動室に連通される第1、第2の流体路を介して流体源から作動流体を給排して前記第1、第2の回転子を前記軸線を中心として相対回転させて両者の相対回転角を示す位相を変更する位相変更機構とを備えた電動機において、前記シール部材を前記円周面に向けて付勢する付勢手段と、前記円周面に開口された凹部とを備え、よって前記シール部材を前記凹部に係合させて前記位相をその位置で固定自在とする如く構成した。   In order to achieve the above object, according to claim 1, the first and second rotors which are respectively magnetized and rotate about the same axis, and the first and second rotations. Between a plurality of partition walls fixed to one of the cores and projecting in the radial direction, and two adjacent partition walls among the plurality of partition walls fixed to the other of the first and second rotors The first and second seals are defined by the radially projecting vanes and sealed against a circumferential surface facing a sealing member attached to at least one of the partition walls and the vanes. The working fluid is supplied and discharged from a fluid source via a second working chamber and first and second fluid paths communicating with the first and second working chambers, and the first and second rotors. And a phase change mechanism that changes the phase indicating the relative rotation angle of the two by rotating relative to each other about the axis. And a biasing means for biasing the seal member toward the circumferential surface, and a recess opened in the circumferential surface, so that the seal member is engaged with the recess and the phase is adjusted. It was configured to be fixed at that position.

請求項2に係る電動機にあっては、前記凹部の底部と前記流体源とを連通する凹部流体路と、前記凹部流体路と前記第1、第2の流体路のいずれかを介して前記作動流体を給排する作動流体給排手段とを備え、よって前記凹部流体路から前記作動流体を供給して前記シール部材を前記底部側から押圧すると共に、前記第1、第2の作動室に前記作動流体を給排して前記シール部材を前記凹部から離脱自在とする如く構成した。   In the electric motor according to claim 2, the operation is performed via the recessed fluid path that communicates the bottom of the recessed portion and the fluid source, and the recessed fluid path and the first and second fluid paths. Working fluid supply / discharge means for supplying and discharging fluid, and thus supplying the working fluid from the recessed fluid path to press the seal member from the bottom side, and to the first and second working chambers, The working fluid is supplied and discharged so that the seal member can be freely detached from the recess.

請求項3に係る電動機にあっては、前記作動流体給排手段は、前記電動機が停止されるとき、前記第1、第2の作動室に前記作動流体を給排して前記シール部材を前記凹部に係合させる如く構成した。   In the electric motor according to claim 3, the working fluid supply / discharge means supplies and discharges the working fluid to and from the first and second working chambers when the electric motor is stopped. It was comprised so that it might engage with a recessed part.

請求項1にあっては、それぞれ着磁されると共に、同一の軸線を中心に回転する第1、第2の回転子の一方に固定される仕切壁と、他方に固定されるベーンとで画成されると共に、仕切壁とベーンの少なくともいずれかの先端に取着されたシール部材を対向する円周面に当接させてシールされる第1、第2の作動室と、それらに連通される第1、第2の流体路を介して流体源から作動流体を給排して第1、第2の回転子を軸線を中心として相対回転させて相対回転角を示す位相を変更する位相変更機構とを備えた電動機において、シール部材を円周面に向けて付勢する付勢手段と、円周面に開口された凹部とを備え、よってシール部材を凹部に係合させて位相をその位置で固定自在とする如く構成したので、凹部を所望の位置に形成しておくことで始動時などに第1、第2の回転子をその位置に固定することが可能となり、よって始動時などに必要なトルクを迅速に出力することができる。   According to the first aspect of the present invention, the partition wall is fixed to one of the first and second rotors that are magnetized and rotated about the same axis, and the vane is fixed to the other. And a first working chamber and a second working chamber which are sealed by bringing a sealing member attached to at least one of the partition wall and the vane into contact with the opposing circumferential surfaces, and communicated with them. Phase change for changing the phase indicating the relative rotation angle by supplying and discharging the working fluid from the fluid source via the first and second fluid paths and rotating the first and second rotors relative to each other about the axis. An electric motor including a mechanism, and an urging means for urging the seal member toward the circumferential surface, and a concave portion opened in the circumferential surface. Since it is configured so that it can be fixed at a position, a recess is formed at a desired position. The first, second rotor, such as during start-up it is possible to fix its position, thus it is possible to output a torque required quickly, such as during start-up with the.

即ち、電動機が表面磁束が最も小さい位相位置で安定する特性を備えると共に、ハイブリッド車両などに搭載される場合、車両の発進時など始動時などに大きな負荷が加わるとき、安定点では必要なトルクを出力できないことから、出力可能な位相位置まで移動する必要がある。また作動油の温度条件によっては移動に時間を要して必要なトルクを迅速に出力できないことがある。しかしながら、上記の如く構成することで、始動時などに必要なトルクを迅速に出力することができる。また、構造としても簡易である。   In other words, when the electric motor has the characteristic that the surface magnetic flux is stabilized at the phase position where the surface magnetic flux is the smallest, and when it is mounted on a hybrid vehicle or the like, when a large load is applied at the start such as when starting the vehicle, the necessary torque is obtained at the stable point. Since it cannot be output, it is necessary to move to a phase position where output is possible. Also, depending on the temperature conditions of the hydraulic oil, it may take time to move and the required torque cannot be output quickly. However, by configuring as described above, it is possible to quickly output a torque necessary at the time of starting. Also, the structure is simple.

また、電動機によっては表面磁束が最も大きい位置で安定する特性を備えると共に、始動時などにそれほど大きなトルクが必要ではない場合、安定点から中間位置あるいは弱め位相側に移動させる必要が生じることも考えられるが、そのような場合にも同様の効果を得ることができる。   In addition, some motors have the characteristic of being stable at the position where the surface magnetic flux is the largest, and if not so much torque is required at the time of starting, it may be necessary to move from the stable point to the intermediate position or weaker phase side. However, the same effect can be obtained in such a case.

請求項2に係る電動機にあっては、凹部の底部と流体源とを連通する凹部流体路と、凹部流体路と第1、第2の流体路のいずれかを介して作動流体を給排する作動流体給排手段とを備え、よって凹部流体路から作動流体を供給してシール部材を底部側から押圧すると共に、第1、第2の作動室に作動流体を給排してシール部材を凹部から離脱自在とする如く構成したので、上記した効果に加え、固定が不要となったとき、シール部材を凹部から離脱させて第1、第2の回転子を速やかに相対回転させることができる。   In the electric motor according to claim 2, the working fluid is supplied and discharged through the concave fluid path that communicates the bottom of the concave part and the fluid source, and the concave fluid path and the first and second fluid paths. Working fluid supply / discharge means, and thus, supply the working fluid from the recessed fluid path to press the seal member from the bottom side, and supply and discharge the working fluid to the first and second working chambers to recess the seal member. In addition to the above-described effects, the first and second rotors can be quickly rotated relative to each other by removing the seal member from the recess when the fixing becomes unnecessary.

請求項3に係る電動機にあっては、作動流体給排手段は、電動機が停止されるとき、第1、第2の作動室に作動流体を給排してシール部材を凹部に係合させる如く構成したので、上記した効果に加え、始動時に必要なトルクを確実に出力することができる。   In the electric motor according to claim 3, when the electric motor is stopped, the working fluid supply / discharge means supplies and discharges the working fluid to and from the first and second working chambers and engages the seal member with the recess. Since it comprised, in addition to the above-mentioned effect, the torque required at the time of starting can be output reliably.

以下、添付図面に即してこの発明に係る電動機を実施するための最良の形態について説明する。   The best mode for carrying out the electric motor according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の実施例に係る電動機をハイブリッド車両に組み込んだときの構成を全体的に示す模式図、図2は図1に示す電動機の制御装置を示す概略図である。   FIG. 1 is a schematic diagram showing an overall configuration when an electric motor according to an embodiment of the present invention is incorporated in a hybrid vehicle, and FIG. 2 is a schematic diagram showing a control device for the electric motor shown in FIG.

図1において符号1はハイブリッド車両(以下「車両」という)を示し、車両1には電動機(モータ)10と内燃機関(以下「エンジン」という)12が搭載される。電動機10は、具体的にはブラシレスあるいは交流同期電動機からなる。エンジン12はガソリン噴射式火花点火式で4気筒を備え、電動機10と駆動軸14(図2に示す)で連結される。電動機10とエンジン12の出力は、変速機16に入力される。変速機16はエンジン12などの出力を変速し、車輪(駆動輪)20に伝達して車両1を走行させる。   In FIG. 1, reference numeral 1 denotes a hybrid vehicle (hereinafter referred to as “vehicle”), and an electric motor (motor) 10 and an internal combustion engine (hereinafter referred to as “engine”) 12 are mounted on the vehicle 1. The electric motor 10 is specifically a brushless or AC synchronous motor. The engine 12 is a gasoline injection spark ignition type, has four cylinders, and is connected to the electric motor 10 by a drive shaft 14 (shown in FIG. 2). Outputs of the electric motor 10 and the engine 12 are input to the transmission 16. The transmission 16 shifts the output of the engine 12 and the like, and transmits it to the wheels (drive wheels) 20 to drive the vehicle 1.

電動機10はエンジン12が回転するとき常に回転し、始動時には通電されてエンジン12をクランキングして始動させると共に、加速時などにも通電されてエンジン12の回転をアシスト(増速)する。電動機10は、通電されないときはエンジン12の回転に伴って空転すると共に、エンジン12への燃料供給が停止される減速時には駆動軸14の回転によって生じた運動エネルギを電気エネルギに変換して出力する回生機能を有する発電機(ジェネレータ)として機能する。   The electric motor 10 always rotates when the engine 12 rotates, and is energized at the time of starting to crank and start the engine 12, and is also energized at the time of acceleration or the like to assist the rotation of the engine 12 (acceleration). When the electric motor 10 is not energized, the motor 10 idles as the engine 12 rotates, and converts the kinetic energy generated by the rotation of the drive shaft 14 into electric energy and outputs it during deceleration when the fuel supply to the engine 12 is stopped. It functions as a generator with a regenerative function.

図2に示す如く、電動機10は、パワードライブユニット(「PDU」という)22を介してバッテリ24に接続される。PDU22はインバータを備え、バッテリ24から供給される直流電力を交流電力に変換して電動機10に供給すると共に、電動機10の回生動作によって発電された交流電力を直流電力に変換してバッテリ24に供給する。   As shown in FIG. 2, the electric motor 10 is connected to a battery 24 via a power drive unit (referred to as “PDU”) 22. The PDU 22 includes an inverter, converts the DC power supplied from the battery 24 into AC power and supplies it to the motor 10, and converts AC power generated by the regenerative operation of the motor 10 into DC power and supplies it to the battery 24. To do.

さらに、エンジン12の動作を制御するエンジン制御ユニット(ENGECU)26、電動機10の動作を制御するモータ制御ユニット(MOTECU)30、およびバッテリ24の充電状態SOC(State Of Charge)を算出して充放電の管理などを行うバッテリ制御ユニット(BATECU)32、ならびに変速機16の動作を制御する変速制御ユニット(T/MECU)34が設けられる。上記したENGECU26などのECU(電子制御ユニット)は全てマイクロコンピュータからなり、通信バス36を介して相互に通信自在に接続される。   Further, an engine control unit (ENGECU) 26 that controls the operation of the engine 12, a motor control unit (MOTECU) 30 that controls the operation of the electric motor 10, and a state of charge (SOC) of the battery 24 are calculated and charged / discharged. A battery control unit (BATECU) 32 that manages the above and a transmission control unit (T / MECU) 34 that controls the operation of the transmission 16 are provided. All the ECUs (electronic control units) such as the above-described ENGECU 26 are composed of a microcomputer, and are connected to each other via a communication bus 36 so as to be able to communicate with each other.

ここで、電動機10について詳細に説明する。   Here, the electric motor 10 will be described in detail.

図3は図1などに示す電動機10の要部断面図、図4は図2などに示す電動機の位相変更機構を示す分解斜視図、図5は図2に示す回転子の磁石片の磁極の向きを示す模式図、図6は図3に示す電動機10の回転子の側面図、図7は図6と同様の回転子の側面図である。   3 is a cross-sectional view of the main part of the electric motor 10 shown in FIG. 1 and the like, FIG. 4 is an exploded perspective view showing the phase changing mechanism of the electric motor shown in FIG. 2 and the like, and FIG. FIG. 6 is a side view of the rotor of the electric motor 10 shown in FIG. 3, and FIG. 7 is a side view of the rotor similar to FIG.

図示の如く、電動機10は、円環状の固定子(ステータ)40と、その内側に収容される、同様に円環状の回転子(ロータ)42と、回転軸(回転軸線)44を備える。固定子40は鉄系材料から製作される薄板が積層(あるいは鉄系材料を鋳造)されてなると共に、3相(U,V,W相)の固定子巻線40aが配置されてなる。   As shown in the figure, the electric motor 10 includes an annular stator (stator) 40, a similarly annular rotor (rotor) 42 accommodated inside, and a rotating shaft (rotating axis) 44. The stator 40 is formed by laminating thin plates manufactured from iron-based materials (or casting iron-based materials), and is arranged with three-phase (U, V, W-phase) stator windings 40a.

回転子42は、外周側(第1)の回転子42aと、回転軸44を中心として相対回転自在な内周側(第2)の回転子42bからなる。回転子42a,42bは例えば焼結金属から製作される鉄心からなると共に、円周側にはそれぞれ複数組、正確には16組の細長い形状の磁石片(永久磁石)46a,46bが相互に僅かな間隔をおいて配置される。   The rotor 42 includes an outer peripheral side (first) rotor 42 a and an inner peripheral side (second) rotor 42 b that is relatively rotatable about the rotation shaft 44. The rotors 42a and 42b are made of, for example, an iron core made of sintered metal, and a plurality of, more specifically 16 sets of elongated magnet pieces (permanent magnets) 46a and 46b are slightly connected to each other on the circumferential side. Are arranged at a certain interval.

より具体的には、図6あるいは図7に示す如く、外周側の回転子42aには16個の磁石片46aが磁石片46aの長手方向が回転子42aの径方向を向くように配置される一方、内周側の回転子42bには16組の磁石片46bが、磁石片46bの長手方向が回転子42aの円周方向を向き、よって磁石片46aと平面視においてコ字あるいはC字状を呈するように配置される。   More specifically, as shown in FIG. 6 or FIG. 7, 16 magnet pieces 46a are arranged on the outer rotor 42a so that the longitudinal direction of the magnet pieces 46a faces the radial direction of the rotor 42a. On the other hand, 16 sets of magnet pieces 46b are arranged on the rotor 42b on the inner circumferential side, and the longitudinal direction of the magnet pieces 46b faces the circumferential direction of the rotor 42a. It arrange | positions so that it may exhibit.

外周側の16個の磁石片46bはそれぞれ周(円周)方向に磁化された磁石片からなると共に、隣接する組との間では磁化方向が異なるように配置される。即ち、周方向においてN極、S極と磁化された磁石片46aの周方向における隣には、S極、N極と磁化された磁石片46aが配置され、以後も同様とされる。   The 16 magnet pieces 46b on the outer peripheral side are each composed of magnet pieces magnetized in the circumferential (circumferential) direction, and are arranged so that the magnetization directions are different between adjacent pairs. That is, the magnet piece 46a magnetized with the S pole and the N pole is arranged next to the magnet piece 46a magnetized with the N pole and the S pole in the circumferential direction, and so on.

内周側の16組の磁石片46bはそれぞれ厚み(半径)方向において同様に磁化された2個の磁石片からなると共に、隣接する組との間では磁化方向が異なるように配置される。即ち、外周側がN極とされた2個1組の磁石片46bの周方向における隣には、外周側がS極とされた1組2個の磁石片46bが配置され、以後も同様とされる。   The 16 sets of magnet pieces 46b on the inner peripheral side are each composed of two magnet pieces that are similarly magnetized in the thickness (radius) direction, and are arranged so that the magnetization directions differ between adjacent sets. That is, a set of two magnet pieces 46b whose outer peripheral side is an S pole are arranged next to each other in the circumferential direction of a pair of magnet pieces 46b whose outer peripheral side is an N pole, and so on. .

図4に示す如く、回転子42には位相変更機構50が設けられる。位相変更機構50は、回転軸44にスプライン(図示せず)を介して固定されるベーンロータ52と、内周側の回転子42bの内周面に嵌合されて固定される環状ハウジング54と、ベーンロータ52を外周側の回転子42aにピン56aで固定する、一対のドライブプレート56と、それらに作動油(作動流体、より具体的には油圧)を供給する油圧機構(作動流体給排機構。後述)60からなる。   As shown in FIG. 4, the rotor 42 is provided with a phase changing mechanism 50. The phase changing mechanism 50 includes a vane rotor 52 that is fixed to the rotating shaft 44 via a spline (not shown), an annular housing 54 that is fitted and fixed to the inner peripheral surface of the rotor 42b on the inner peripheral side, A pair of drive plates 56 that fix the vane rotor 52 to the rotor 42a on the outer peripheral side with pins 56a, and a hydraulic mechanism (working fluid supply / discharge mechanism that supplies working oil (working fluid, more specifically, hydraulic pressure) to them. 60 which will be described later.

ベーンロータ52には中央のボス部から径方向に等間隔をおいて突出する複数個(6個)のベーン52aが形成されると共に、環状ハウジング54の内部には中心側に等間隔をおいて同様に径方向に突出する複数個(6個)の仕切壁54aが形成される。   The vane rotor 52 is formed with a plurality of (six) vanes 52a protruding from the central boss portion at equal intervals in the radial direction, and the annular housing 54 has the same intervals at the center side. A plurality of (six) partition walls 54a projecting in the radial direction are formed.

ベーン52aの先端にはシール部材52bが取着され、ベーン52aに対抗すると環状ハウジング54の内壁面(円周面)54bに当接して液密にシールすると共に、仕切壁54aの先端にもシール部材54cが取着され、仕切壁54aに対向するベーンロータ52のボス部の外周面(円周面)52cに当接して液密にシールする。シール部材52b,54cは、図4に示す如く、ベーン52aあるいは仕切壁54aと同程度の軸方向長さを備える。   A seal member 52b is attached to the tip of the vane 52a. When facing the vane 52a, the seal member 52b comes into contact with the inner wall surface (circumferential surface) 54b of the annular housing 54 and seals liquid-tightly, and also seals the tip of the partition wall 54a. The member 54c is attached, and comes into contact with the outer peripheral surface (circumferential surface) 52c of the boss portion of the vane rotor 52 facing the partition wall 54a to seal the fluid tightly. As shown in FIG. 4, the seal members 52 b and 54 c have an axial length similar to that of the vane 52 a or the partition wall 54 a.

環状ハウジング54は、図3に示す如く、軸方向長さ(幅)が内周側の回転子42bよりも大きく形成され、2枚のドライブプレート56に穿設された環状の溝56b(図4で図示省略)に移動自在に収容され、よって環状ハウジング54(仕切壁54a)と内周側の回転子42bは、回転軸44に回転自在に支持される。   As shown in FIG. 3, the annular housing 54 has an axial length (width) that is larger than that of the rotor 42b on the inner peripheral side, and an annular groove 56b (FIG. 4) formed in the two drive plates 56. The annular housing 54 (partition wall 54a) and the inner peripheral rotor 42b are rotatably supported by the rotating shaft 44.

2枚のドライブプレート56は環状ハウジング54の両側面に摺動自在に密接させられ、環状ハウジング54の仕切壁54aとベーンロータ52のボス部の外周面との間に密閉空間を6個形成する。この密閉空間は環状ハウジング54の仕切壁54aによって二分され、進角側作動室(第1の作動室)54dと遅角側作動室(第2の作動室)54eとを形成する。ここで、「進角」(ADV)とは内周側の回転子42bを外周側の回転子42aに対して矢印ADV(図6あるいは図7)で示す電動機10の回転方向と同一の方向に、「遅角」(RTD)とはその逆方向に回転させることを意味する。   The two drive plates 56 are slidably brought into close contact with both side surfaces of the annular housing 54, and six sealed spaces are formed between the partition wall 54 a of the annular housing 54 and the outer peripheral surface of the boss portion of the vane rotor 52. This sealed space is divided into two by a partition wall 54a of the annular housing 54, and forms an advance side working chamber (first working chamber) 54d and a retard side working chamber (second working chamber) 54e. Here, the “advance angle” (ADV) means that the rotor 42b on the inner circumference side is in the same direction as the rotation direction of the electric motor 10 indicated by the arrow ADV (FIG. 6 or FIG. 7) with respect to the rotor 42a on the outer circumference side. The “retard angle” (RTD) means rotating in the opposite direction.

進角側作動室54dと遅角側作動室54eには作動流体、具体的には非圧縮性の流体、より具体的には変速機16のATF(Automatic Transmission Fluid)あるいはエンジン12の潤滑油などの作動油(オイル)が供給される。作動油は、回転軸44からベーンロータ52に形成される2本の油路62,64を介して進角側作動室54dと遅角側作動室54eに供給される。   In the advance side working chamber 54d and the retard side working chamber 54e, working fluid, specifically incompressible fluid, more specifically ATF (Automatic Transmission Fluid) of the transmission 16 or lubricating oil of the engine 12 or the like. Hydraulic oil (oil) is supplied. The hydraulic oil is supplied from the rotating shaft 44 to the advance side working chamber 54d and the retard side working chamber 54e through two oil passages 62 and 64 formed in the vane rotor 52.

油路62,64はほぼ平行しており、図3と図6に示す如く、回転軸44の軸方向に穿設された油路62a,64aと、それに連続して回転軸44の外周面に穿設された油路62b,64bと、それに連続してベーンロータ52のボス部に放射状に穿設された62c,64cからなる。油路62は進角側作動室54dに、油路64は遅角側作動室54eに接続され、後述するリザーバ(流体源)との間で作動油を給排される。   The oil passages 62 and 64 are substantially parallel to each other, and as shown in FIGS. 3 and 6, the oil passages 62 a and 64 a drilled in the axial direction of the rotating shaft 44 and the outer peripheral surface of the rotating shaft 44 continuously therewith. The oil passages 62b and 64b are formed, and 62c and 64c are formed radially in the boss portion of the vane rotor 52 continuously. The oil passage 62 is connected to the advance side working chamber 54d, and the oil passage 64 is connected to the retard side working chamber 54e, and hydraulic oil is supplied to and discharged from a reservoir (fluid source) described later.

進角側作動室54dと遅角側作動室54eは作動油を給排されて伸縮し、よって外周側の回転子42aに固定されたベーン52aに対して仕切壁54aと一体にされた内周側の回転子42bが回転軸(回転軸線)44を中心として相対回転させられることで、外周側の回転子42aと内周側の回転子42bの間の相対回転角を示す位相が0度から180度の間で変更され、それに応じて電動機10の誘起電圧が変更される。   The advance-side working chamber 54d and the retard-side working chamber 54e expand and contract as hydraulic oil is supplied and discharged, so that the inner periphery integrated with the partition wall 54a with respect to the vane 52a fixed to the outer rotor 42a. The phase of the relative rotation angle between the outer peripheral rotor 42a and the inner peripheral rotor 42b is reduced from 0 degrees by the relative rotation of the side rotor 42b about the rotation axis (rotation axis) 44. It is changed between 180 degrees, and the induced voltage of the electric motor 10 is changed accordingly.

図6に最遅角位置にあるときの、また図7に最進角位置にあるときの進角側作動室54dと遅角側作動室54eを示す。遅角位置にあるとき、遅角側作動室54eは作動油が供給される一方、進角側作動室54dからは作動油が排出され、図6に示す如く、最遅角位置では遅角側作動室54eは最大限度まで膨張する一方、進角側作動室54dは最大限度まで収縮する。また、進角位置にあるとき、進角側作動室54dは作動油が供給される一方、遅角側作動室54eからは作動油が排出され、図7に示す如く、最進角位置では進角側作動室54dは最大限度まで膨張する一方、遅角側作動室54eは最大限度まで収縮する。   FIG. 6 shows the advance side working chamber 54d and the retard side working chamber 54e when in the most retarded position, and FIG. 7 shows the advance side working chamber 54e. When in the retard position, the retard side working chamber 54e is supplied with hydraulic fluid, while the hydraulic fluid is discharged from the advance side working chamber 54d, and as shown in FIG. The working chamber 54e expands to the maximum limit, while the advance side working chamber 54d contracts to the maximum limit. In the advanced position, the hydraulic fluid is supplied to the advanced working chamber 54d, while the hydraulic fluid is discharged from the retarded working chamber 54e. As shown in FIG. The angle-side working chamber 54d expands to the maximum limit, while the retard-side working chamber 54e contracts to the maximum limit.

この実施例に係る電動機10にあっては、図5(a)に示すように、外周側の回転子42aの磁石片46aと内周側の回転子42bの磁石片46bは同極同士が対向する同極配置となる位相にあるとき、両者の合成磁束が強められる強め界磁(界磁が増加)となる(換言すれば、強め位相位置にある)。他方、図5(b)に示すように、外周側の回転子42aの磁石片46aと内周側の回転子42bの磁石片46bは異極同士が対向する対極配置となる位相にあるとき、両者の合成磁束が弱められる弱め界磁(界磁が減少)となる(換言すれば、弱め位相位置にある)。   In the electric motor 10 according to this embodiment, as shown in FIG. 5A, the magnet pieces 46a of the outer rotor 42a and the magnet pieces 46b of the inner rotor 42b have the same polarity. When the phase is in the same polarity arrangement, the combined magnetic flux of both is strengthened field (field increases) (in other words, in the strengthened phase position). On the other hand, as shown in FIG. 5 (b), when the magnet piece 46a of the rotor 42a on the outer peripheral side and the magnet piece 46b of the rotor 42b on the inner peripheral side are in a phase where the different poles are opposed to each other, The resulting magnetic field is weakened (the field is reduced) (in other words, at the weakening phase position).

外周側の回転子42aと内周側の回転子42bの位相は、所望の合成磁束が得られるように電気角において0度から180度の間において変更可能であり、そのうち0度側を遅角側、180度側を進角側とする。図5(a)は0度のとき(最遅角位置)の磁石片46aと46bの同極配置を示し、このとき界磁が最も強められる。図5(b)は180度のとき(最進角位置)の磁石片46aと46bの対極配置を示し、このとき界磁が最も弱められる。   The phase of the outer rotor 42a and the inner rotor 42b can be changed between 0 degrees and 180 degrees in electrical angle so that a desired combined magnetic flux can be obtained. The 180 degree side is the advance side. FIG. 5A shows the same-pole arrangement of the magnet pieces 46a and 46b at 0 degree (most retarded angle position), and at this time, the field is strengthened most. FIG. 5B shows a counter electrode arrangement of the magnet pieces 46a and 46b at 180 degrees (most advanced angle position), and at this time, the field is weakened most.

それにより電動機10の誘起電圧定数Keが変更され、電動機10の特性が変更される。即ち、強め界磁によって誘起電圧定数Keが増加すると、電動機10の運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に弱め界磁によって誘起電圧定数Keが減少すると、出力可能な最大トルクは減少し、許容回転速度は上昇する。   Thereby, the induced voltage constant Ke of the electric motor 10 is changed, and the characteristics of the electric motor 10 are changed. That is, when the induced voltage constant Ke increases due to the strong field, the allowable rotational speed at which the motor 10 can operate decreases, but the maximum torque that can be output increases, and conversely, when the induced voltage constant Ke decreases due to the weak field. The maximum torque that can be output decreases, and the allowable rotational speed increases.

尚、この実施例に係る電動機10は、内周側の回転子42bが外周側の回転子42aに対して最進角位置(位相180度)にあるとき、換言すれば弱め位相にあるときに安定する特性を備える。即ち、油圧を供給されないとき、回転子42は最進角位置に向けて自ら相対回転し、その位置で停止する。   In the electric motor 10 according to this embodiment, when the inner circumferential side rotor 42b is at the most advanced angle position (phase 180 degrees) with respect to the outer circumferential side rotor 42a, in other words, when it is in a weaker phase. Has stable characteristics. That is, when no hydraulic pressure is supplied, the rotor 42 rotates relative to the most advanced position and stops at that position.

図8は、油路62,64を介して進角側作動室54dと遅角側作動室54eに作動油を供給する、前記した油圧機構60の油圧回路図である。   FIG. 8 is a hydraulic circuit diagram of the hydraulic mechanism 60 described above that supplies hydraulic oil to the advance side working chamber 54d and the retard side working chamber 54e via the oil passages 62 and 64.

図示の如く、油圧機構60は、リザーバ(タンク。流体源)60aからフィルタ60bを介して作動油を汲み上げて高圧化して油路60cに出力する油圧ポンプ60dと、油路60cを前記した油路62,64を介して進角側作動室54dと遅角側作動室54eのいずれかに切り換え自在に接続する切換弁60eと、油路60cに介挿され、切換弁60eを介して進角側作動室54dと遅角側作動室54eに供給される作動油の流量を調整する流量調整弁60fとを備える。それらの動作は前記したMOTECU(モータ制御ユニット)30で制御される。   As shown in the figure, the hydraulic mechanism 60 includes a hydraulic pump 60d that pumps hydraulic oil from a reservoir (tank, fluid source) 60a through a filter 60b, increases the pressure thereof, and outputs the hydraulic pressure to the oil path 60c. A switching valve 60e that is switchably connected to either the advance side working chamber 54d or the retard side working chamber 54e through 62, 64, and an oil passage 60c, and is advanced through the switching valve 60e. A flow rate adjusting valve 60f that adjusts the flow rate of the working oil supplied to the working chamber 54d and the retard side working chamber 54e is provided. These operations are controlled by the MOTECU (motor control unit) 30 described above.

切換弁60eは4ポート弁(方向切換弁)からなる。切換弁60eには、そのポートを切り換えるリニアソレノイド弁60gが接続される。リニアソレノイド弁60gは油路60cにおいて油圧ポンプ60dと切換弁60eの間に介挿され、電磁ソレノイド60g1を備え、電磁ソレノイド60g1を励磁・消磁されることで、そのスプール(弁体)は、作動油、より具体的には油圧を切換弁60eのスプール(図示せず)に作用させる第1位置と、その作動油をドレンする第2位置の間で切り換え自在である。尚、破線はレリーフバルブ系を示す。   The switching valve 60e is a 4-port valve (direction switching valve). A linear solenoid valve 60g for switching the port is connected to the switching valve 60e. The linear solenoid valve 60g is interposed between the hydraulic pump 60d and the switching valve 60e in the oil passage 60c, and includes an electromagnetic solenoid 60g1, and the spool (valve) is operated by exciting and demagnetizing the electromagnetic solenoid 60g1. It is possible to switch between a first position where oil, more specifically oil pressure, acts on the spool (not shown) of the switching valve 60e and a second position where the hydraulic oil is drained. A broken line indicates a relief valve system.

切換弁60eは、そのスプール(弁体)が、油路60cを油路62を介して進角側作動室54dに接続して作動油を供給する一方、遅角側作動室54eをドレン側に接続して作動油を排出させる第1位置と、油路60cを油路64を介して遅角側作動室54eに接続して作動油を供給する一方、進角側作動室54dをドレン側に接続して作動油をドレン(排出)させる第2位置と、その間にあって4つのポートを閉鎖して作動油を保持する中間(中立)位置からなる3つの位置の間で切り替え自在に構成される。スプールは、スプリング60e1で第2位置に付勢される。   In the switching valve 60e, the spool (valve element) connects the oil passage 60c to the advance side working chamber 54d via the oil passage 62 to supply hydraulic oil, while the retard side working chamber 54e is set to the drain side. The first position where the hydraulic oil is connected and discharged, and the oil passage 60c is connected to the retarded-side working chamber 54e via the oil passage 64 to supply the working oil, while the advanced-side working chamber 54d is set to the drain side. It is configured to be switchable between a second position for connecting and draining (draining) hydraulic oil and an intermediate (neutral) position for closing the four ports and holding the hydraulic oil between them. . The spool is biased to the second position by the spring 60e1.

具体的には、切換弁60eのスプールは、リニアソレノイド弁60gから油圧が作用されないとき、第2位置が選択されると共に、リニアソレノイド弁60gから比較的小さな油圧が作用されるとき中間位置が選択され、リニアソレノイド弁60gから大きな油圧が作用すると、第1位置が選択されるように構成される。   Specifically, the second position is selected when the hydraulic pressure is not applied from the linear solenoid valve 60g, and the intermediate position is selected when a relatively small hydraulic pressure is applied from the linear solenoid valve 60g. When the large hydraulic pressure is applied from the linear solenoid valve 60g, the first position is selected.

流量調整弁60fもリニアソレノイド弁からなり、電磁ソレノイド60f1を備えると共に、電磁ソレノイド60f1をPWM制御されることで、そのスプールは作動油が切換弁60eを介して進角側作動室54dなどに供給される第1位置と、作動油がドレンされる第2位置の間の任意な位置の間を切り換え自在に構成され、切り換えられた位置に応じた流量の作動油を油路60cに出力することで、作動油の流量を調整する。破線はレリーフバルブ系を示す。   The flow rate adjusting valve 60f is also a linear solenoid valve, and includes an electromagnetic solenoid 60f1 and PWM control of the electromagnetic solenoid 60f1, so that the hydraulic oil is supplied to the advance side working chamber 54d and the like via the switching valve 60e. Between the first position where the hydraulic oil is drained and the second position where the hydraulic oil is drained is configured to be switchable, and the hydraulic oil having a flow rate corresponding to the switched position is output to the oil passage 60c. Adjust the flow rate of hydraulic oil. A broken line shows a relief valve system.

流量調整弁60fで流量が調整された油路60cの作動油は、切換弁60eを介して進角側作動室54dあるいは遅角側作動室54eに供給される。前記した如く、進角側作動室54dは、作動油を供給されるとき、その流量に応じて膨張し、位相を最進角位置(180度)と中間位置(90度)の間の任意の位置に変更すると共に、遅角側作動室54eも、作動油を供給されるとき、その流量に応じて膨張し、位相を中間位置(90度)と最遅角位置(0度)の間の任意の位置に変更する。   The hydraulic fluid in the oil passage 60c whose flow rate is adjusted by the flow rate adjusting valve 60f is supplied to the advance side working chamber 54d or the retard side working chamber 54e via the switching valve 60e. As described above, when the hydraulic fluid is supplied, the advance side working chamber 54d expands according to the flow rate thereof, and the phase is set to an arbitrary position between the most advanced position (180 degrees) and the intermediate position (90 degrees). When the hydraulic oil is supplied, the retard side working chamber 54e also expands according to the flow rate, and the phase is between the intermediate position (90 degrees) and the most retarded position (0 degrees). Change to any position.

図8の末尾に示す如く、油圧ポンプ60dは第2の電動機60jに接続され、第2の電動機60jによって駆動されるEOP(Electric Oil Pump。電動オイルポンプ)として構成される。第2の電動機60jはインバータ回路(INV)60kに接続される。   As shown at the end of FIG. 8, the hydraulic pump 60d is connected to the second electric motor 60j and is configured as an EOP (Electric Oil Pump) driven by the second electric motor 60j. The second electric motor 60j is connected to an inverter circuit (INV) 60k.

図1の説明に戻ると、車両1において車輪20のそれぞれの付近には車輪速センサ70が配置され、車輪20の所定回転ごとに車速を示すパルス信号を出力する。また運転席(図示せず)の床面のアクセルペダルの付近にはAP開度センサ72が配置され、運転者によるアクセルペダルの開度に応じた出力を生じると共に、電動機10の適宜位置には位相センサ74が配置され、実位相値θに応じた出力を生じる。それらセンサの出力もMOTECU30に送られる。   Returning to the description of FIG. 1, a wheel speed sensor 70 is disposed in the vicinity of each wheel 20 in the vehicle 1, and a pulse signal indicating the vehicle speed is output at every predetermined rotation of the wheel 20. An AP opening sensor 72 is disposed near the accelerator pedal on the floor of the driver's seat (not shown), and generates an output corresponding to the accelerator pedal opening by the driver. A phase sensor 74 is arranged to generate an output corresponding to the actual phase value θ. The outputs of these sensors are also sent to the MOTECU 30.

MOTECU30は電動機10の動作を制御すると共に、電動機10の回転数やバッテリ電圧などの運転状態および電流指令値などに応じてリニアソレノイド60gと流量調整弁60fの電磁ソレノイド60g1,60f1を励磁・消磁して位相を変更(制御)する。   The MOTECU 30 controls the operation of the electric motor 10, and excites and demagnetizes the linear solenoid 60g and the electromagnetic solenoids 60g1 and 60f1 of the flow rate adjusting valve 60f in accordance with the operating state such as the rotational speed of the electric motor 10, the battery voltage, and the current command value. To change (control) the phase.

ここで、図9と図10を参照してこの実施例に係る電動機10の特徴を説明すると、電動機10は、仕切壁54aの先端に取着されたシール部材54cをベーンロータ52のボス部の外周面52cに向けて付勢するスプリング(付勢手段)54fと、外周面52cに開口された凹部52dとを備える。図9は図6、図10は図7の部分拡大図である。   Here, the characteristics of the electric motor 10 according to this embodiment will be described with reference to FIGS. 9 and 10. The electric motor 10 uses the seal member 54 c attached to the tip of the partition wall 54 a as the outer periphery of the boss portion of the vane rotor 52. A spring (biasing means) 54f for biasing toward the surface 52c and a recess 52d opened in the outer peripheral surface 52c are provided. 9 is a partially enlarged view of FIG. 6 and FIG. 10 is a partial enlarged view of FIG.

この実施例に係る電動機10は最遅角位置(位相0度)にあるときに界磁が最も強められると共に、最も弱め位相側の最進角位置(位相180度)にあるときに安定する特性を備えることから、凹部52dは回転子42bが回転子42aに対して最遅角位置(位相0度)となる位置で外周面52cに穿設される(図4で凹部52dの図示を省略)。   The electric motor 10 according to this embodiment has a characteristic in which the field is strengthened most when it is at the most retarded position (phase 0 degree) and is stable when it is at the most advanced position (phase 180 degrees) on the weakest phase side. Therefore, the recess 52d is formed in the outer peripheral surface 52c at a position where the rotor 42b is at the most retarded angle position (phase 0 degree) with respect to the rotor 42a (illustration of the recess 52d is omitted in FIG. 4). .

MOTECU30は、遅角側作動室54eが最大限度まで膨張する一方、進角側作動室54dが最大限度まで収縮するように作動油を給排し、よってシール部材54cを凹部52dの上に位置させるように油圧機構60の動作を制御する。シール部材54cはスプリング54fによって外周面52cに向けて付勢されていることから、シール部材54cは凹部52dに係合(嵌合)する。   The MOTECU 30 supplies and discharges hydraulic oil so that the retard-side working chamber 54e expands to the maximum extent while the advance-side working chamber 54d contracts to the maximum extent, so that the seal member 54c is positioned on the recess 52d. Thus, the operation of the hydraulic mechanism 60 is controlled. Since the seal member 54c is biased toward the outer peripheral surface 52c by the spring 54f, the seal member 54c is engaged (fitted) with the recess 52d.

凹部52dはシール部材54cと同程度の軸方向長さを備えることから、シール部材54cは凹部52dに強固に係合し、電動機10の位相はその位置で確実に固定される。さらに、図示の如く、6個の進角側作動室54dの外周面52cには凹部52dが全て形成されると共に、6個の仕切壁54aのシール部材54cはスプリング54fによって全て外周面52cに付勢されていることから、電動機10の位相はその位置で一層確実に固定される。尚、スプリング54fはコイルスプリングであるが、リーフスプリングであっても良い。   Since the recess 52d has the same axial length as the seal member 54c, the seal member 54c is firmly engaged with the recess 52d, and the phase of the electric motor 10 is securely fixed at that position. Further, as shown in the figure, all the recesses 52d are formed in the outer peripheral surface 52c of the six advance side working chambers 54d, and all the seal members 54c of the six partition walls 54a are attached to the outer peripheral surface 52c by the spring 54f. As a result, the phase of the electric motor 10 is more reliably fixed at that position. The spring 54f is a coil spring, but may be a leaf spring.

さらに、凹部52dの底部52d1とリザーバ60aとを連通する凹部流体路80が設けられる。凹部流体路80は、前記した油路62cを分岐させて穿設される。MOTECU30は、シール部材54cを凹部52dに係合させた後、凹部流体路80から作動油を供給してシール部材54cを底部52d1の側から押圧すると共に、進角側作動室54dに作動油を供給する一方、遅角側作動室54eから作動油を排出させ、よって仕切壁54aとシール部材54cを図6などで時計回りに回転(移動)させ、シール部材54cを凹部52dから離脱させるように油圧機構60の動作を制御する。   Further, a concave fluid path 80 is provided that communicates the bottom 52d1 of the concave 52d and the reservoir 60a. The recessed fluid passage 80 is formed by branching the oil passage 62c. The MOTECU 30 engages the seal member 54c with the recess 52d, then supplies hydraulic oil from the recess fluid path 80 to press the seal member 54c from the bottom 52d1 side, and supplies the hydraulic oil to the advance side working chamber 54d. On the other hand, the hydraulic oil is discharged from the retard side working chamber 54e, so that the partition wall 54a and the seal member 54c are rotated (moved) clockwise in FIG. 6 and the like, and the seal member 54c is detached from the recess 52d. The operation of the hydraulic mechanism 60 is controlled.

次いで図11と図12を参照して上記したMOTECU30の動作を説明する。図11はエンジン12が停止されるとき、図12はエンジン12が始動されるときに実行される制御を示すフロー・チャートである。   Next, the operation of the above-described MOTECU 30 will be described with reference to FIGS. FIG. 11 is a flowchart showing the control executed when the engine 12 is stopped and FIG. 12 is executed when the engine 12 is started.

先ず図11を参照して説明すると、S10でエンジン制御ユニット26と通信してエンジン12のイグニション・スイッチがオフ、即ち、エンジン12が停止されたか否か判断し、否定されるときは以降の処理をスキップする。   Referring first to FIG. 11, in S10, communication with the engine control unit 26 is performed to determine whether the ignition switch of the engine 12 is turned off, that is, whether the engine 12 has been stopped. To skip.

他方、S10で肯定されるときはS12に進み、EOP(電動油圧ポンプ)60dを駆動してシール部材54cを凹部52dに係合させる。即ち、遅角側作動室54eが最大限度まで膨張させる一方、進角側作動室54dを最大限度まで収縮させてシール部材54cを凹部52dに係合させる。次いでS14に進み、EOP60dを停止する。   On the other hand, when the result in S10 is affirmative, the program proceeds to S12, in which an EOP (electric hydraulic pump) 60d is driven to engage the seal member 54c with the recess 52d. That is, while the retard side working chamber 54e is expanded to the maximum extent, the advance side working chamber 54d is contracted to the maximum extent and the seal member 54c is engaged with the recess 52d. Next, in S14, the EOP 60d is stopped.

次いで図12を参照して説明すると、S100で同様にエンジン制御ユニット26と通信してエンジン12のイグニション・スイッチがオン、即ち、エンジン12が始動されたか否か判断し、否定されるときは以降の処理をスキップする。   Next, with reference to FIG. 12, similarly in S100, it communicates with the engine control unit 26 to determine whether the ignition switch of the engine 12 is turned on, that is, whether the engine 12 has been started. Skip the process.

他方、S100で肯定されるときはS102に進み、車両1の車速Vが所定車速Vref(例えば80km/h)を超えたか否か判断し、否定されるときは以降の処理をスキップする。   On the other hand, when the result in S100 is affirmative, the process proceeds to S102, in which it is determined whether or not the vehicle speed V of the vehicle 1 exceeds a predetermined vehicle speed Vref (for example, 80 km / h), and when the result is negative, the subsequent processing is skipped.

他方、S102で肯定されるときはS104に進み、シール部材54cがまだ凹部52dに係合している場合、EOP60dを駆動して係合を解除させる。即ち、凹部流体路80から作動油を供給すると共に、進角側作動室54dに作動油を供給する一方、遅角側作動室54eから作動油を排出させ、シール部材54cを凹部52dから解除(離脱)させる。次いでS106に進み、EOP60dを停止させると共に、通常の位相制御が実行、即ち、電動機10の回転数やバッテリ電圧などの運転状態などから電動機10の位相が制御される。   On the other hand, when the result in S102 is affirmative, the program proceeds to S104, and when the seal member 54c is still engaged with the recess 52d, the EOP 60d is driven to release the engagement. That is, while supplying hydraulic oil from the concave fluid passage 80 and supplying hydraulic oil to the advance side working chamber 54d, the hydraulic oil is discharged from the retard side working chamber 54e and the seal member 54c is released from the concave portion 52d ( Leave). Next, in S106, the EOP 60d is stopped and normal phase control is executed, that is, the phase of the electric motor 10 is controlled based on the operating state such as the rotational speed of the electric motor 10 and the battery voltage.

尚、S102において車速に代え、モータトルク、弱め界磁電流指令値、電源電圧とモータ発生電圧の差などを用いて判断しても良い。   In S102, the determination may be made by using the motor torque, the field weakening current command value, the difference between the power supply voltage and the motor generated voltage, or the like instead of the vehicle speed.

上記した如く、この実施例にあっては、それぞれ着磁されると共に、同一の軸線(回転軸線)44を中心に回転する第1、第2の回転子(外周側の回転子42a、内周側の回転子42b)と、前記第1、第2の回転子の一方に固定されて径方向に突出する複数個(6個)の仕切壁54aと、前記第1、第2の回転子の他方に固定されつつ前記複数個の内の隣接する2個の仕切壁の間で前記径方向に突出するベーン52aとで画成されると共に、前記仕切壁54aとベーン52aの少なくともいずれか、より具体的には仕切壁54aの先端に取着されたシール部材54cを対抗する円周面(外周面)52cに当接させてシールされる第1、第2の作動室(進角側作動室54d、遅角側作動室54e)と、前記第1、第2の作動室に連通される第1、第2の流体路(油路62,64)を介して流体源(リザーバ60a)から作動流体(作動油)を給排して前記第1、第2の回転子を前記軸線44を中心として相対回転させて両者の相対回転角を示す位相を変更する位相変更機構50とを備えた電動機10において、前記シール部材54cを前記円周面に向けて付勢する付勢手段(スプリング)54fと、前記円周面に開口された凹部52dとを備え、よって前記シール部材54cを前記凹部52dに係合させて前記位相をその位置で固定自在とする如く構成したので、凹部52dを所望の位置に形成しておくことで始動時などに外周側と内周側の回転子42a,42bをその位置に固定することが可能となり、よって始動時などに必要なトルクを迅速に出力することができる。   As described above, in this embodiment, the first and second rotors (the outer peripheral side rotor 42a, the inner peripheral side, which are magnetized and rotate about the same axis (rotation axis) 44, respectively. Side rotor 42b), a plurality of (six) partition walls 54a fixed to one of the first and second rotors and projecting in the radial direction, and the first and second rotors A vane 52a protruding in the radial direction between two adjacent partition walls among the plurality of adjacent partition walls while being fixed to the other, and at least one of the partition wall 54a and the vane 52a; Specifically, first and second working chambers (advanced-side working chambers) sealed by contacting a circumferential surface (outer circumferential surface) 52c facing the sealing member 54c attached to the tip of the partition wall 54a. 54d, the retarded-side working chamber 54e) and the first and second working chambers communicated with each other. The working fluid (hydraulic fluid) is supplied and discharged from the fluid source (reservoir 60a) via the second fluid passage (oil passages 62 and 64), and the first and second rotors are centered on the axis 44. In the electric motor 10 including the phase changing mechanism 50 that changes the phase indicating the relative rotation angle by rotating the both relative to each other, an urging means (spring) 54f that urges the seal member 54c toward the circumferential surface; And the recess 52d opened in the circumferential surface, and thus the seal member 54c is engaged with the recess 52d so that the phase can be fixed at that position. By forming them, the outer and inner rotors 42a and 42b can be fixed at the positions at the time of start-up, so that the necessary torque can be output quickly at the time of start-up. .

即ち、電動機10は表面磁束が最も小さい最進角位置で安定する特性を備えるため、ハイブリッド車両1に搭載される場合、車両1の発進時など始動時などに大きな負荷が加わるとき、安定点では必要なトルクを出力できないことから、出力可能な遅角位置まで移動する必要がある。また作動油の温度条件によっては移動に時間を要して必要なトルクを迅速に出力できないことがある。しかしながら、この実施例においては上記の如く構成することで、電動機10は始動時などに必要なトルクを迅速に出力することができる。また、構造としても簡易である。   That is, since the electric motor 10 has the characteristic that the surface magnetic flux is stable at the most advanced angle position, when the electric motor 10 is mounted on the hybrid vehicle 1, when a large load is applied at the time of starting such as the start of the vehicle 1, Since the necessary torque cannot be output, it is necessary to move to a retarding position where output is possible. Also, depending on the temperature conditions of the hydraulic oil, it may take time to move and the required torque cannot be output quickly. However, in this embodiment, by configuring as described above, the electric motor 10 can quickly output a torque necessary for starting. Also, the structure is simple.

また、この実施例に係る電動機10はそうではないが、電動機によっては表面磁束が最も大きい位置で安定する特性を備えると共に、始動時などにそれほど大きなトルクが必要ではない場合、安定点から中間位置あるいは弱め位相側に移動させる必要が生じることも考えられるが、そのような場合にも同様の効果を得ることができる。   In addition, the electric motor 10 according to the present embodiment is not so, but depending on the electric motor, the electric motor 10 has a characteristic that the surface magnetic flux is stable at the position where the surface magnetic flux is the largest. Alternatively, it may be necessary to move to the weak phase side, but the same effect can be obtained in such a case.

さらに、前記凹部52dの底部52d1と前記流体源とを連通する凹部流体路80と、前記凹部流体路80と前記第1、第2の流体路(油路62,64)のいずれか、より具体的には油路62を介して前記作動流体(作動油)を給排する作動流体給排手段(油圧機構60、モータECU(MOTECU)30)とを備え、よって前記凹部流体路80から前記作動流体を供給して前記シール部材54cを前記底部52d1側から押圧すると共に、前記第1、第2の作動室(進角側作動室54d、遅角側作動室54e)に前記作動流体を給排して前記シール部材54cを前記凹部52dから離脱自在とする如く構成したので、上記した効果に加え、固定が不要となったとき、シール部材54cを凹部52dから離脱させて第1、第2の回転子(外周側の回転子42a、内周側の回転子42b)を速やかに相対回転させることができる。また、凹部流体路80を第1、第2の流体路(油路62,64)の一方、より具体的には油路62から分岐させて形成したので、構造も一層簡易となる。   Further, the recess fluid path 80 that communicates the bottom 52d1 of the recess 52d and the fluid source, or the recess fluid path 80 and any of the first and second fluid paths (oil paths 62 and 64), more specifically. Specifically, it is provided with a working fluid supply / discharge means (hydraulic mechanism 60, motor ECU (MOT ECU) 30) for supplying and discharging the working fluid (working oil) through the oil passage 62, and thus the operation from the recessed fluid passage 80. The fluid is supplied to press the seal member 54c from the bottom 52d1 side, and the working fluid is supplied to and discharged from the first and second working chambers (advanced side working chamber 54d and retarded side working chamber 54e). Since the seal member 54c is configured to be detachable from the recess 52d, in addition to the above-described effects, when the fixing is unnecessary, the seal member 54c is detached from the recess 52d and the first and second Rotor (outside Side of the rotor 42a, the inner circumferential side of the rotor 42b) can be rapidly relative rotation. Further, since the recessed fluid path 80 is formed by branching from one of the first and second fluid paths (oil paths 62 and 64), more specifically, from the oil path 62, the structure is further simplified.

さらに、前記作動流体給排手段は、前記電動機10、より具体的にはエンジン12が停止されるとき、前記第1、第2の作動室(進角側作動室54d、遅角側作動室54e)に前記作動流体を給排して前記シール部材54cを前記凹部52dに係合させる如く構成したので、上記した効果に加え、始動時に必要なトルクを確実に出力することができる。   Further, the working fluid supply / discharge means is configured so that when the electric motor 10, more specifically, the engine 12, is stopped, the first and second working chambers (the advance side working chamber 54d and the retard side working chamber 54e). ), The working fluid is supplied and discharged and the seal member 54c is engaged with the recess 52d. In addition to the above-described effects, it is possible to reliably output the torque required at the time of starting.

尚、上記において、6個の進角側作動室54dの全てに凹部52dを穿設したが、全てに穿設しなくても良い。また、仕切壁54aのシール部材54cを係合するようにしたが、環状ハウジング54の内壁面54bに凹部を形成してベーン52aのシール部材52bをそこに係合するようにしても良い。   In the above description, the recesses 52d are formed in all of the six advance side working chambers 54d. Further, the seal member 54c of the partition wall 54a is engaged, but a recess may be formed on the inner wall surface 54b of the annular housing 54 and the seal member 52b of the vane 52a may be engaged therewith.

また、パラレルハイブリッド車に搭載された電動機を例にとってこの発明に係る電動機を説明したが、この発明は、シリーズハイブリッド車に搭載された電動機、さらにはエンジンを備えない電気自動車に搭載された電動機にも妥当する。   Further, the electric motor according to the present invention has been described by taking the electric motor mounted on the parallel hybrid vehicle as an example. However, the present invention is applied to the electric motor mounted on the series hybrid vehicle, and further to the electric motor mounted on the electric vehicle not equipped with the engine. Is also valid.

また、第1、第2の回転子の少なくともいずれか、より具体的には第2の回転子42bを回転軸44で相対回転させて両者の相対回転角を示す位相θを変更するように構成したが、第1、第2の回転子の双方を相対回転させて位相を変更するようにしても良い。   In addition, at least one of the first and second rotors, more specifically, the second rotor 42b is relatively rotated by the rotation shaft 44, and the phase θ indicating the relative rotation angle of both is changed. However, the phase may be changed by relatively rotating both the first and second rotors.

さらに、作動流体として作動油を例示したが、その他の流体であっても良い。   Furthermore, although the working oil has been exemplified as the working fluid, other fluids may be used.

この発明の実施例に係る電動機をハイブリッド車両に組み込んだときの全体構成を示す概略図である。It is the schematic which shows the whole structure when the electric motor which concerns on the Example of this invention is integrated in a hybrid vehicle. 図1に示す電動機の制御装置を示す概略図である。It is the schematic which shows the control apparatus of the electric motor shown in FIG. 図1に示す電動機の要部断面図である。It is principal part sectional drawing of the electric motor shown in FIG. 図3に示す電動機の位相変更機構を示す分解斜視図である。It is a disassembled perspective view which shows the phase change mechanism of the electric motor shown in FIG. 図3に示す回転子の磁石の磁極の向きを示す模式図である。It is a schematic diagram which shows the direction of the magnetic pole of the magnet of the rotor shown in FIG. 図2に示す電動機の回転子の側面図である。It is a side view of the rotor of the electric motor shown in FIG. 同様に図2に示す電動機の回転子の側面図である。3 is a side view of the rotor of the electric motor shown in FIG. 図6に示す位相変更機構の作動室に油圧を供給する油圧機構の油圧回路図である。FIG. 7 is a hydraulic circuit diagram of a hydraulic mechanism that supplies hydraulic pressure to the working chamber of the phase change mechanism shown in FIG. 6. 図6の部分拡大図である。It is the elements on larger scale of FIG. 図7の部分拡大図である。It is the elements on larger scale of FIG. 図2に示すモータ制御ユニットの動作を示すフロー・チャートである。3 is a flowchart showing the operation of the motor control unit shown in FIG. 同様に図2に示すモータ制御ユニットの動作を示すフロー・チャートである。3 is a flowchart showing similarly the operation of the motor control unit shown in FIG. 2.

符号の説明Explanation of symbols

10 電動機、12 エンジン(内燃機関)、16 変速機、22 PDU(パワードライブユニット)、30 モータ制御ユニット、40 固定子、42 回転子、42a 外周側(第1)の回転子、42b 内周側(第2)の回転子、44 回転軸(回転軸線)、46a,46b 磁石片、50 位相変更機構、52 ベーンロータ、52a ベーン、52c 外周面(円周面)、52d 凹部、54 環状ハウジング、54a 仕切壁、54c シール部材、54d 進角側作動室(第2の作動室)、54e 遅角側作動室(第1の作動室)、54f スプリング(付勢手段)、56 ドライブプレート、62,64 油路(第1、第2の流体路)、60 油圧機構、60a リザーバ(流体源)、60d 油圧ポンプ、80 凹部流体路   10 motor, 12 engine (internal combustion engine), 16 transmission, 22 PDU (power drive unit), 30 motor control unit, 40 stator, 42 rotor, 42a outer peripheral side (first) rotor, 42b inner peripheral side ( 2nd rotor, 44 rotating shaft (rotating axis), 46a, 46b magnet piece, 50 phase change mechanism, 52 vane rotor, 52a vane, 52c outer peripheral surface (circumferential surface), 52d recess, 54 annular housing, 54a partition Wall, 54c sealing member, 54d advance side working chamber (second working chamber), 54e retard side working chamber (first working chamber), 54f spring (biasing means), 56 drive plate, 62, 64 oil Path (first and second fluid paths), 60 hydraulic mechanism, 60a reservoir (fluid source), 60d hydraulic pump, 80 recessed fluid path

Claims (3)

それぞれ着磁されると共に、同一の軸線を中心に回転する第1、第2の回転子と、前記第1、第2の回転子の一方に固定されて径方向に突出する複数個の仕切壁と、前記第1、第2の回転子の他方に固定されつつ前記複数個の内の隣接する2個の仕切壁の間で前記径方向に突出するベーンとで画成されると共に、前記仕切壁とベーンの少なくともいずれかの先端に取着されたシール部材を対向する円周面に当接させてシールされる第1、第2の作動室と、前記第1、第2の作動室に連通される第1、第2の流体路を介して流体源から作動流体を給排して前記第1、第2の回転子を前記軸線を中心として相対回転させて両者の相対回転角を示す位相を変更する位相変更機構とを備えた電動機において、前記シール部材を前記円周面に向けて付勢する付勢手段と、前記円周面に開口された凹部とを備え、よって前記シール部材を前記凹部に係合させて前記位相をその位置で固定自在としたことを特徴とする電動機。   First and second rotors that are respectively magnetized and rotate about the same axis, and a plurality of partition walls that are fixed to one of the first and second rotors and project radially And a vane protruding in the radial direction between two adjacent partition walls of the plurality while being fixed to the other of the first and second rotors, and the partition The first and second working chambers are sealed by bringing a seal member attached to at least one end of the wall and the vane into contact with the opposing circumferential surfaces, and the first and second working chambers. The working fluid is supplied / discharged from the fluid source via the first and second fluid passages communicated with each other, and the first and second rotors are rotated relative to each other about the axis to show the relative rotation angle between them. An electric motor having a phase change mechanism for changing a phase, and biasing the seal member toward the circumferential surface And biasing means that, provided with an opening by recesses on the circumferential surface, thus the motor, characterized in that said sealing member is engaged with the recess and fixable to the phase at that position. 前記凹部の底部と前記流体源とを連通する凹部流体路と、前記凹部流体路と前記第1、第2の流体路のいずれかを介して前記作動流体を給排する作動流体給排手段とを備え、よって前記凹部流体路から前記作動流体を供給して前記シール部材を前記底部側から押圧すると共に、前記第1、第2の作動室に前記作動流体を給排して前記シール部材を前記凹部から離脱自在としたことを特徴とする請求項1記載の電動機。   A recessed fluid path that communicates the bottom of the recessed part with the fluid source; and a working fluid supply / discharge means that supplies and discharges the working fluid via the recessed fluid path and the first and second fluid paths. Therefore, the working fluid is supplied from the recessed fluid path to press the seal member from the bottom side, and the working fluid is supplied to and discharged from the first and second working chambers to remove the seal member. The electric motor according to claim 1, wherein the electric motor is detachable from the recess. 前記作動流体給排手段は、前記電動機が停止されるとき、前記第1、第2の作動室に前記作動流体を給排して前記シール部材を前記凹部に係合させることを特徴とする請求項2記載の電動機。   The working fluid supply / discharge means supplies and discharges the working fluid to and from the first and second working chambers and engages the seal member with the recess when the electric motor is stopped. Item 3. The electric motor according to Item 2.
JP2008115227A 2008-04-25 2008-04-25 Electric motor Withdrawn JP2009268269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115227A JP2009268269A (en) 2008-04-25 2008-04-25 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115227A JP2009268269A (en) 2008-04-25 2008-04-25 Electric motor

Publications (1)

Publication Number Publication Date
JP2009268269A true JP2009268269A (en) 2009-11-12

Family

ID=41393388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115227A Withdrawn JP2009268269A (en) 2008-04-25 2008-04-25 Electric motor

Country Status (1)

Country Link
JP (1) JP2009268269A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155740A (en) * 2010-01-26 2011-08-11 Denso Corp Control device of motor
WO2012144386A1 (en) * 2011-04-19 2012-10-26 T.K Leverage有限会社 Power generating device
JP2014204517A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Rotary electric machine control system and control method for rotary electric machine
CN104506001A (en) * 2015-01-05 2015-04-08 上海朗汉传动科技有限公司 Digital motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155740A (en) * 2010-01-26 2011-08-11 Denso Corp Control device of motor
WO2012144386A1 (en) * 2011-04-19 2012-10-26 T.K Leverage有限会社 Power generating device
US9570967B2 (en) 2011-04-19 2017-02-14 T. K Leverage Co., Ltd. Power generator
US10374499B2 (en) 2011-04-19 2019-08-06 T. K Leverage Co., Ltd. Power generator
JP2014204517A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Rotary electric machine control system and control method for rotary electric machine
CN104506001A (en) * 2015-01-05 2015-04-08 上海朗汉传动科技有限公司 Digital motor

Similar Documents

Publication Publication Date Title
JP4184392B2 (en) Electric motor
JP2010273521A (en) Device for control of electric motor
JP2009268269A (en) Electric motor
JP2008230281A (en) Hybrid vehicle
JP5124336B2 (en) Control device for electric vehicle
JP5037083B2 (en) Electric motor
JP5124204B2 (en) Electric motor control device
JP4960799B2 (en) Control device for hybrid vehicle
JP2008281166A (en) Control device of hydraulic actuator
JP4409555B2 (en) Vehicle torque control device
JP5124203B2 (en) Electric motor control device
JP4896546B2 (en) Vehicle equipped with an electric motor
JP2008038799A (en) Vane type hydraulic equipment, motor, and valve timing control device of internal combustion engine
JP2009044805A (en) Electric motor controller
JP2008259298A (en) Motor
JP2009166652A (en) Controller for hybrid vehicle
JP5031351B2 (en) Electric motor
JP4732281B2 (en) Vehicle oil supply device
JP4914868B2 (en) Control device for electric vehicle
JP2007244063A (en) Motor
JP2007318857A (en) Motor
JP4828392B2 (en) Variable motor characteristics system
JP2009268198A (en) Motor controller
JP2008259299A (en) Controller for motor
JP4499052B2 (en) Electric motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705