JP2009231391A - R-t-b based sintered magnet - Google Patents
R-t-b based sintered magnet Download PDFInfo
- Publication number
- JP2009231391A JP2009231391A JP2008072543A JP2008072543A JP2009231391A JP 2009231391 A JP2009231391 A JP 2009231391A JP 2008072543 A JP2008072543 A JP 2008072543A JP 2008072543 A JP2008072543 A JP 2008072543A JP 2009231391 A JP2009231391 A JP 2009231391A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- sintered magnet
- compound
- based sintered
- grain boundary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
本発明は、理想的な組織構造からなる、優れた磁気特性を有するR−T−B系焼結磁石に関する。 The present invention relates to an RTB-based sintered magnet having an excellent structure and having an ideal structure.
高性能永久磁石として代表的なR−T−B系焼結磁石は、磁化作用に寄与するR2T14B型結晶構造を有する化合物からなる主相と、前記主相の粒界部分に位置する粒界相とを含有する組織を有する。ここで、Rは希土類元素のうち少なくとも一種、TはFeまたはFeとCo、Bは硼素である。 A typical RTB-based sintered magnet as a high-performance permanent magnet is a main phase composed of a compound having an R 2 T 14 B-type crystal structure that contributes to the magnetization action, and a grain boundary portion of the main phase. And a grain boundary phase. Here, R is at least one of rare earth elements, T is Fe or Fe and Co, and B is boron.
R−T−B系焼結磁石は、その高磁気特性から年々生産量を伸ばしており、各種モータ用、各種アクチュエータ用、MRI装置用など様々な用途に使用されている。 R-T-B based sintered magnets are increasing in production year by year due to their high magnetic properties, and are used in various applications such as for various motors, various actuators, and MRI apparatuses.
近年、省エネルギーや省スペースなどで新たな用途が開け、ハイブリッドカー(HEV)用磁石の需要が高まっており、R−T−B系焼結磁石の生産量が今後さらに増加する傾向にある。HEV用磁石には高い最大エネルギー積だけでなく耐熱性が要求され、さらなる高保磁力化が必要とされる。 In recent years, new applications have been opened for energy saving and space saving, and the demand for magnets for hybrid cars (HEV) has increased, and the production amount of RTB-based sintered magnets tends to increase further in the future. The magnet for HEV is required not only to have a high maximum energy product but also to have heat resistance, and to further increase the coercive force.
R−T−B系永久磁石の高保磁力化を目的として、R2TM14B磁性相とR−TM−O化合物を含む粒界相とが存在し、R2TM14B磁性相と粒界相の界面近傍における粒界相の結晶構造が面心立方構造であって、R2TM14B磁性相と粒界相が整合しているR−TM−B系永久磁石が提案されている(特許文献1)。 For the purpose of increasing the coercive force of an R-T-B permanent magnet, an R 2 TM 14 B magnetic phase and a grain boundary phase containing an R-TM-O compound exist, and the R 2 TM 14 B magnetic phase and the grain boundary An R-TM-B permanent magnet has been proposed in which the crystal structure of the grain boundary phase in the vicinity of the phase interface is a face-centered cubic structure, and the R 2 TM 14 B magnetic phase and grain boundary phase are matched ( Patent Document 1).
特許文献1では、粒界相となるR−TM−O化合物が面心立方構造であり、R2TM14B磁性相とR−TM−O化合物が特定の方位関係にあるとき、特に優れた磁気特性を有するとの開示はあるものの、開示される実施例には公知の手法が開示されるのみである。 In patent document 1, when the R-TM-O compound used as a grain boundary phase has a face-centered cubic structure, and the R 2 TM 14 B magnetic phase and the R-TM-O compound have a specific orientation relationship, they are particularly excellent. Although there is disclosure that it has magnetic properties, only known techniques are disclosed in the disclosed embodiments.
最大エネルギー積の高いR−T−B系焼結磁石の提供を目的として、R11.7〜13.5モル%、Cu0.01〜0.1モル%、B5〜7モル%、Co0.8モル%以下、酸素3000ppm以下、残部Feを含有し、最大エネルギー積が400kJ/m3以上である焼結磁石が提案されている(特許文献2)。 R11.7 to 13.5 mol%, Cu 0.01 to 0.1 mol%, B5 to 7 mol%, Co 0.8 mol for the purpose of providing an R-T-B sintered magnet having a high maximum energy product Sintered magnets having a maximum energy product of 400 kJ / m 3 or more are proposed (Patent Document 2).
しかし、特許文献2では、高い最大エネルギー積を有する焼結磁石が得られているものの保磁力が非常に低い。特許文献2にて開示される実施例の中で最も保磁力が高いものでも888kA/m(約11kOe)であり、この程度の保磁力では耐熱性が要求される用途に供することはできない。 However, in Patent Document 2, although a sintered magnet having a high maximum energy product is obtained, the coercive force is very low. Even the highest coercive force among the examples disclosed in Patent Document 2 is 888 kA / m (about 11 kOe), and this level of coercive force cannot be used for applications requiring heat resistance.
従来から保磁力を向上させるには、Dy、Tbといった重希土類元素を含有させることが知られている。特許文献2の焼結磁石においても多量の重希土類元素を含有させれば保磁力は向上すると考えられるが、それでは特徴となる最大エネルギー積400kJ/m3以上を得ることができなくなる。 Conventionally, in order to improve the coercive force, it is known to contain heavy rare earth elements such as Dy and Tb. Even in the sintered magnet of Patent Document 2, it is considered that the coercive force is improved if a large amount of heavy rare earth element is contained, but this makes it impossible to obtain a characteristic maximum energy product of 400 kJ / m 3 or more.
また、最近、Dy、Tbなどの重希土類元素は資源の枯渇が大きな問題となっているとともに、価格が異常高騰しており、できるだけ重希土類元素の使用量を少なくする取り組みがなされているところである。
このように、R−T−B系焼結磁石の磁気特性向上については、種々の提案がなされているものの、根本的な解決はなされていないのが現状である。特に、耐熱性用途に要求される高保磁力化については、DyやTbなどの重希土類元素の添加に代わる技術は未だ提案されていない。 As described above, although various proposals have been made for improving the magnetic properties of the RTB-based sintered magnet, the fundamental solution has not been made. In particular, a technique for replacing the addition of heavy rare earth elements such as Dy and Tb has not been proposed for increasing the coercive force required for heat-resistant applications.
特許文献1では、粒界相となるR−TM−O化合物を面心立方構造とし、R2TM14B磁性相とR−TM−O化合物を特定の方位関係にするという一種の理想的な組織構造が挙げられている。しかし、得られたR−T−B系焼結磁石の磁気特性は現在の要望を満足させるものとは言えない。 In Patent Document 1, an R-TM-O compound serving as a grain boundary phase has a face-centered cubic structure, and the R 2 TM 14 B magnetic phase and the R-TM-O compound have a specific orientation relationship. The organizational structure is mentioned. However, it cannot be said that the magnetic properties of the obtained RTB-based sintered magnet satisfy the present demand.
特許文献1が提案された当時は、現在のように製造工程中の原料の酸化抑制技術が確立されていなかった。そのため、ある程度の酸素量が必ず含有されるという認識しかなかった。例えば、特許文献1で得られた焼結磁石の酸素量は4.5at%(約10000ppm)であると記載されている。このように、特定量の酸素、しかも現在に比較してかなり多い酸素が含有されているという前提で想定された理想的な組織構造に基づく焼結磁石であるため、現在の焼結磁石と比較すると、必ずしも優れた磁気特性を有しているとは言えない。 At the time when Patent Document 1 was proposed, the technology for suppressing oxidation of raw materials during the manufacturing process was not established as in the present. Therefore, there was only recognition that a certain amount of oxygen was always contained. For example, it is described that the oxygen amount of the sintered magnet obtained in Patent Document 1 is 4.5 at% (about 10,000 ppm). In this way, it is a sintered magnet based on the ideal structure that is assumed on the premise that it contains a specific amount of oxygen and a considerably larger amount of oxygen compared to the present, so it is compared with the current sintered magnet. Thus, it cannot be said that the magnetic properties are always excellent.
近年、製造工程中の原料の酸化抑制技術が進歩し、特許文献1が提案された当時から比べれば焼結磁石の酸素量を大幅に低減することが可能になっている。例えば、特許文献2には3000ppm以下という具体的な数字が挙げられている。焼結磁石中の酸素量を低減すれば磁気特性が向上するのは周知である。現在、高磁気特性化には酸素量低減が不可欠となっている。 In recent years, the technology for suppressing oxidation of raw materials during the manufacturing process has progressed, and compared with the time when Patent Document 1 was proposed, it has become possible to significantly reduce the oxygen content of sintered magnets. For example, Patent Document 2 includes a specific number of 3000 ppm or less. It is well known that the magnetic properties are improved if the amount of oxygen in the sintered magnet is reduced. At present, it is indispensable to reduce the amount of oxygen for high magnetic properties.
このように、特許文献1が提案された当時に比べ、焼結磁石の酸素量低減が主流となり、磁石組成、磁石組織などにも改良が加えられた現在においては、特許文献1による理想的な組織構造では高磁気特性を得ることができない。 Thus, compared with the time when Patent Document 1 was proposed, reduction of the oxygen content of sintered magnets has become the mainstream, and at present when improvements have been made to the magnet composition, magnet structure, etc., the ideal according to Patent Document 1 is present. High magnetic properties cannot be obtained with a tissue structure.
本発明は、現在主流となっている低酸素のR−T−B系焼結磁石における理想的な組織構造を見出し、今後さらに増加する傾向にあるHEV用磁石に要求される耐熱性を満足することができる保磁力を有し、かつ、希少資源である重希土類元素の使用をできるだけ少なくすることができるR−T−B系焼結磁石の提供を目的とする。 The present invention finds an ideal structure in a low-oxygen RTB-based sintered magnet, which is currently mainstream, and satisfies the heat resistance required for HEV magnets that tend to increase further in the future. An object of the present invention is to provide an RTB-based sintered magnet having a coercive force capable of being used and capable of minimizing the use of heavy rare earth elements, which are rare resources.
発明者らは、前記目的を達成すべく、理想的な組織構造解明のため鋭意研究を行った。その結果、R2T14Bのストイキオメトリー近傍の組成領域で、かつO(酸素)が0.05質量%以下(500ppm以下)という超低酸素含有量で、特定量のCuを含有させることにより、粒界相に面心立方構造を有するR−Cu−O化合物が形成され、そのR−Cu−O化合物が粒界相に存在する酸素のプールとなって、粒界相に不必要な化合物の生成を抑制できることを見出した。 In order to achieve the above-mentioned object, the inventors have conducted intensive research for elucidating an ideal tissue structure. As a result, a specific amount of Cu is contained in the composition region in the vicinity of the stoichiometry of R 2 T 14 B and with an ultra-low oxygen content of O (oxygen) of 0.05% by mass or less (500 ppm or less). Thus, an R—Cu—O compound having a face-centered cubic structure is formed in the grain boundary phase, and the R—Cu—O compound becomes a pool of oxygen existing in the grain boundary phase, which is unnecessary for the grain boundary phase. It discovered that the production | generation of a compound can be suppressed.
また、上記構成においてCuを同じ1B族であるAgまたはAuと置き換えても、R−Ag−O化合物またはR−Au−O化合物が形成され、R−Cu−O化合物と同等の作用効果が得られることを見出した。 Moreover, even if Cu is replaced with Ag or Au which is the same group 1B in the above configuration, an R-Ag-O compound or an R-Au-O compound is formed, and the same effect as that of the R-Cu-O compound is obtained. I found out that
さらに、R−X−O化合物(XはCu、Ag、Auのうち少なくとも一種)はR2T14B主相との濡れ性に極めて優れ、焼結磁石中のほぼ全てのR2T14B主相の周りをR−X−O化合物で包み込むことができ、欠陥の極めて少ない、理想的な組織構造が実現できることを見出した。 Furthermore, the R—X—O compound (X is at least one of Cu, Ag, and Au) is extremely excellent in wettability with the R 2 T 14 B main phase, and almost all R 2 T 14 B in the sintered magnet. It has been found that an ideal structure can be realized in which the periphery of the main phase can be encapsulated with an R—X—O compound and there are very few defects.
そして、上記の理想的な組織構造によって磁気特性、特に保磁力が大きく向上し、DyやTbなどの重希土類元素を使用しなくても、あるいは重希土類元素を使用する場合でもその添加量を大幅に低減しても、耐熱性に要求される高い保磁力を得ることができることを確認し、本発明を提案するに至った。 And the above-mentioned ideal organization structure greatly improves the magnetic characteristics, especially the coercive force, and the addition amount is greatly increased even when heavy rare earth elements such as Dy and Tb are not used or when heavy rare earth elements are used. It was confirmed that a high coercive force required for heat resistance could be obtained even if the amount was reduced to 1, and the present invention was proposed.
本発明のR−T−B系焼結磁石は、R2T14B(Rは希土類元素のうち少なくとも一種、TはFeまたはFeとCo)型結晶構造を有する化合物からなる主相と、粒界相とを有するR−T−B系焼結磁石であって、R:27.3質量%〜29質量%、X(XはCu、Ag、Auのうち少なくとも一種):0.06質量%〜0.18質量%、B:0.92質量%〜1質量%、O:0.05質量%以下、残部FeまたはFeとCo及び不可避的不純物からなることを特徴とする。 The RTB-based sintered magnet of the present invention has a main phase composed of a compound having a R 2 T 14 B (R is at least one rare earth element, T is Fe or Fe and Co) type crystal structure, An RTB-based sintered magnet having a field phase, R: 27.3 mass% to 29 mass%, X (X is at least one of Cu, Ag, Au): 0.06 mass% ~ 0.18 mass%, B: 0.92 mass% to 1 mass%, O: 0.05 mass% or less, remaining Fe or Fe and Co and unavoidable impurities.
本発明は、上記構成を有するR−T−B系焼結磁石において、粒界相に面心立方構造を有するR−X−O化合物が含まれていることを特徴とする。 The present invention is characterized in that, in the RTB-based sintered magnet having the above-described configuration, an R—X—O compound having a face-centered cubic structure is included in the grain boundary phase.
本発明は、上記構成を有するR−T−B系焼結磁石において、主相の平均結晶粒径が3μm〜7μmであることを特徴とする。 In the RTB-based sintered magnet having the above-described configuration, the present invention is characterized in that the average crystal grain size of the main phase is 3 μm to 7 μm.
本発明は、上記構成を有するR−T−B系焼結磁石において、O:0.0135質量%〜0.05質量%であることを特徴とする。 The present invention is characterized in that, in the RTB-based sintered magnet having the above-described configuration, O: 0.0135% by mass to 0.05% by mass.
本発明は、上記構成を有するR−T−B系焼結磁石において、粒界相の厚さが5nm以上であることを特徴とする。 In the RTB-based sintered magnet having the above-described configuration, the present invention is characterized in that the grain boundary phase has a thickness of 5 nm or more.
本発明は、上記構成を有するR−T−B系焼結磁石において、粒界相に非晶質相が含まれていないことを特徴とする。 The present invention is characterized in that, in the RTB-based sintered magnet having the above-described configuration, the grain boundary phase does not contain an amorphous phase.
本発明は、上記構成を有するR−T−B系焼結磁石において、R−X−O化合物のa軸長が0.55nmであることを特徴とする。 In the RTB-based sintered magnet having the above-described configuration, the present invention is characterized in that the a-axis length of the R—X—O compound is 0.55 nm.
本発明によれば、今後さらに増加する傾向にあるHEV用磁石に要求される耐熱性を満足することができる、高保磁力を有するR−T−B系焼結磁石を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the RTB-type sintered magnet which has high coercive force which can satisfy the heat resistance requested | required of the magnet for HEV which tends to increase further in the future can be provided.
本発明によれば、近い将来枯渇の恐れがあるDy、Tbなどの重希土類元素の使用を極力少なくすることができ、希少資源の保護を図ることができるとともに、安価にして高磁気特性を有するR−T−B系焼結磁石を提供することができる。 According to the present invention, the use of heavy rare earth elements such as Dy and Tb, which may be depleted in the near future, can be reduced as much as possible, protection of rare resources can be achieved, and low cost and high magnetic properties can be achieved. An RTB-based sintered magnet can be provided.
本発明のR−T−B系焼結磁石は、上述の通り、R:27.3質量%〜29質量%、B:0.92質量%〜1質量%というR2T14Bのストイキオメトリーに極めて近い組成領域で、かつO:0.05質量%以下(500ppm以下)という従来にはない超低酸素含有量で、0.06質量%〜0.18質量%のX(XはCu、Ag、Auのうち少なくとも一種)を含有させたものである。この構成によって、粒界相に面心立方構造を有するR−X−O化合物が形成される。 As described above, the RTB-based sintered magnet of the present invention has an R 2 T 14 B stoichiometric ratio of R: 27.3 mass% to 29 mass% and B: 0.92 mass% to 1 mass%. X is 0.06 mass% to 0.18 mass% X (X is Cu) in a composition region very close to the measurement and O: 0.05 mass% or less (500 ppm or less), an unprecedented ultralow oxygen content. , Ag, or Au). With this configuration, an R—X—O compound having a face-centered cubic structure in the grain boundary phase is formed.
そして、そのR−X−O化合物が粒界相に存在する酸素のプールとなって、粒界相に不必要な化合物の生成を抑制でき、また、R−X−O化合物がR2T14B主相との濡れ性に極めて優れるため、焼結磁石中のほぼ全てのR2T14B主相の周りをR−X−O化合物で包み込むことができる。その結果、欠陥の極めて少ない、理想的な組織構造が実現でき、磁気特性、特に保磁力を向上させることができる。 Then, the R—X—O compound becomes a pool of oxygen existing in the grain boundary phase, and generation of unnecessary compounds in the grain boundary phase can be suppressed, and the R—X—O compound becomes R 2 T 14. Since the wettability with the B main phase is extremely excellent, almost all of the R 2 T 14 B main phase in the sintered magnet can be wrapped with the R—X—O compound. As a result, an ideal structure with very few defects can be realized, and the magnetic properties, particularly the coercive force, can be improved.
特許文献1には、粒界相となるR−TM−O化合物が面心立方構造を有し、R2TM14B磁性相とR−TM−O化合物とが特定の方位関係にあるとき高い保磁力が得られることが記載されている。しかし、特許文献1において、R−TM−O化合物として具体的に例示されているのはNd−Fe−O化合物のみであり、また、Rの代わりにCuを含む種々の元素を用いることができるとの記載はあるものの、TMの代わりにCu、Ag、Auを用いるとの記載はない。さらに、微量添加元素としてCuなどを添加してもよい旨の記載はあるものの、その含有量についての記載はなく、Nd−Fe−O化合物とCuの関係についても何ら記載されていない。このように、特許文献1からは本発明の構成を想定することができない。 Patent Document 1 discloses that an R-TM-O compound serving as a grain boundary phase has a face-centered cubic structure, and is high when the R 2 TM 14 B magnetic phase and the R-TM-O compound are in a specific orientation relationship. It is described that a coercive force can be obtained. However, in Patent Document 1, only the Nd-Fe-O compound is specifically exemplified as the R-TM-O compound, and various elements including Cu can be used instead of R. However, there is no description that Cu, Ag, or Au is used instead of TM. Furthermore, although there is a description that Cu or the like may be added as a trace addition element, there is no description about the content thereof, and there is no description about the relationship between the Nd—Fe—O compound and Cu. Thus, from Patent Document 1, the configuration of the present invention cannot be assumed.
特許文献2には、R11.7〜13.5モル%、Cu0.01〜0.1モル%、B5〜7モル%、Co0.8モル%以下、酸素3000ppm以下、残部Feを含有し、最大エネルギー積が400kJ/m3以上であるR−T−B系焼結磁石が記載されている。しかし、特許文献2では0.04モル%以下のCuを含む実施例しか開示されていない。後述するように、0.04モル%(=0.04質量%)のCu含有量では、R−Cu−O化合物の形成が不十分となり、余った酸素がRと結合して粒界相にR2O3化合物を形成したり、主相のRと結合して主相の生成量を低下させるため、磁気特性の低下を招く。また、特許文献2には、「酸素含有量は少ないほど好ましいが、製造工程における酸化は不可避であるため、酸素含有量をゼロにすることはできず、通常、500ppm以上は含有される。」と記載されるように、酸素が0.05質量%以下(500ppm以下)のR−T−B系焼結磁石は全く想定されていない。従って、特許文献2からは本発明の構成を想定することができない。 Patent Document 2 contains R11.7 to 13.5 mol%, Cu 0.01 to 0.1 mol%, B5 to 7 mol%, Co 0.8 mol% or less, oxygen 3000 ppm or less, and the balance Fe. An RTB-based sintered magnet having an energy product of 400 kJ / m 3 or more is described. However, Patent Document 2 discloses only an example containing 0.04 mol% or less of Cu. As will be described later, when the Cu content is 0.04 mol% (= 0.04 mass%), the formation of the R—Cu—O compound becomes insufficient, and excess oxygen is combined with R to form a grain boundary phase. An R 2 O 3 compound is formed or combined with R of the main phase to reduce the amount of main phase generated, leading to a decrease in magnetic properties. Patent Document 2 states that “the smaller the oxygen content, the better, but since oxidation in the production process is unavoidable, the oxygen content cannot be made zero, and usually 500 ppm or more is contained.” As described above, an RTB-based sintered magnet having 0.05 mass% or less (500 ppm or less) of oxygen is not assumed at all. Therefore, from Patent Document 2, the configuration of the present invention cannot be assumed.
特許文献2の「酸素含有量は少ないほど好ましい」との記載に代表されるように、従来から、磁気特性を向上させるには酸素はできるだけゼロに近づける方がよいと考えられてきた。近年、製造工程中の原料の酸化抑制技術が進歩し、近い将来、酸素含有量がゼロになれば、究極の磁気特性が得られると推測される。 As represented by the description in Patent Document 2 that “the smaller the oxygen content, the better”, conventionally, it has been considered that oxygen should be as close to zero as possible in order to improve magnetic properties. In recent years, it is speculated that the ultimate magnetic properties can be obtained if the oxidation control technology of raw materials during the manufacturing process advances and the oxygen content becomes zero in the near future.
しかし、本発明者らは、R−T−B系焼結磁石の理想的な組織構造にはR−X−O化合物が不可欠であることを見出した。すなわち、酸素はR−T−B系焼結磁石にとっては必要不可欠な元素であるとの結論に達したのである。限定理由は後述するが、本発明において必要不可欠な酸素は0.05質量%以下、好ましくは0.0135質量%〜0.05質量%である。そして、この酸素を最も効果的に作用させるには、0.06質量%〜0.18質量%の1B族元素X(Cu、Ag、Au)が不可欠であり、この酸素とX元素とが、ストイキオメトリーに極めて近い組成領域で存在することにより、初めて理想的な組織構造が実現できるのである。特許文献1及び2にはこれらの技術思想は全く存在しない。 However, the present inventors have found that an R—X—O compound is indispensable for an ideal structure of an R—T—B system sintered magnet. That is, it has been concluded that oxygen is an indispensable element for an R-T-B sintered magnet. Although the reason for limitation will be described later, the oxygen indispensable in the present invention is 0.05% by mass or less, preferably 0.0135% by mass to 0.05% by mass. And in order to make this oxygen act most effectively, 0.06 mass%-0.18 mass% 1B group element X (Cu, Ag, Au) is indispensable, and this oxygen and X element are The ideal tissue structure can be realized for the first time when it exists in a composition region very close to stoichiometry. Patent Documents 1 and 2 do not have these technical ideas at all.
以下に、本発明におけるR−T−B系焼結磁石の組成限定理由などを詳述する。 Hereinafter, the reasons for limiting the composition of the RTB-based sintered magnet in the present invention will be described in detail.
本発明によるR−T−B系焼結磁石は、R2T14B(Rは希土類元素のうち少なくとも一種、TはFeまたはFeとCo)型結晶構造を有する化合物からなる主相と、粒界相とを有している。この構成は従来から知られるR−T−B系永久磁石と同じである。しかし、後述するように、本発明によるR−T−B系焼結磁石は、粒界相に面心立方構造を有するR−X−O化合物が形成されており、これまでにはなかった理想的な組織構造を有する点で従来とは異なる。 The RTB-based sintered magnet according to the present invention has a main phase composed of a compound having a R 2 T 14 B (R is at least one rare earth element, T is Fe or Fe and Co) type crystal structure, Has a phase. This configuration is the same as a conventionally known R-T-B permanent magnet. However, as will be described later, the RTB-based sintered magnet according to the present invention is formed with an R—X—O compound having a face-centered cubic structure in the grain boundary phase. It differs from the conventional one in that it has a typical organizational structure.
Rは希土類元素のうち少なくとも一種から選択することができ、NdまたはPrのいずれか一方を必ず含むことが望ましい。さらに望ましくはNd−Pr、Nd−Dy、Nd−Tb、Nd−Dy−Tb、Nd−Pr−Dy、Nd−Pr−Tb、Nd−Pr−Dy−Tbで示される希土類元素の組合わせを用いる。ただし、先述の通り、Dy、Tbなどの重希土類元素は希少資源であり、かつ非常に高価であるため、できるだけ使用を少なくすることが好ましい。上記元素以外に少量のCeやLaなど他の希土類元素を含有してもよく、ミッシュメタルやジジムを用いることもできる。また、Rは純元素でなくてもよく、工業上入手可能な範囲で、製造上不可避な不純物を含有するものでも差し支えない。 R can be selected from at least one of rare earth elements, and it is desirable that R contains any one of Nd and Pr. More preferably, a combination of rare earth elements represented by Nd-Pr, Nd-Dy, Nd-Tb, Nd-Dy-Tb, Nd-Pr-Dy, Nd-Pr-Tb, and Nd-Pr-Dy-Tb is used. . However, as described above, heavy rare earth elements such as Dy and Tb are rare resources and are very expensive, so it is preferable to use them as little as possible. In addition to the above elements, a small amount of other rare earth elements such as Ce and La may be contained, and misch metal or didymium can also be used. Further, R may not be a pure element, and may contain impurities that are unavoidable in the manufacturing process within a commercially available range.
RはT(TはFeまたはFeとCo)とBとでR2T14B型結晶構造を有する化合物からなる主相を形成するとともに、R−X−O化合物のRの供給源となる。その含有量はR2T14Bのストイキオメトリーに極めて近い27.3質量%〜29質量%が好ましい。Rが27.3質量%未満では主相の形成が不十分になるとともに、R−X−O化合物が形成されなくなり、29.0質量%を超えると余剰のRが粒界相に集まり、粒界相に不必要な化合物を形成したり、粒界相のサイズが大きくなるため好ましくない。 R forms a main phase composed of a compound having an R 2 T 14 B type crystal structure with T (T is Fe or Fe and Co) and B, and also serves as a source of R in the R—X—O compound. The content thereof is R 2 T 14 very close to stoichiometry B 27.3 wt% to 29 wt% is preferred. When R is less than 27.3% by mass, the main phase is not sufficiently formed, and the R—X—O compound is not formed. When it exceeds 29.0% by mass, excess R is collected in the grain boundary phase, This is not preferable because an unnecessary compound is formed in the boundary phase or the size of the grain boundary phase is increased.
BはRとTとでR2T14B型結晶構造を有する化合物からなる主相を形成する。その含有量はR2T14Bのストイキオメトリーに極めて近い0.92質量%〜1質量%が好ましく、0.94質量%〜0.98質量%がより好ましい。0.92質量%未満では保磁力が低下し、1質量%を超えると残留磁束密度が低下するため好ましくない。
組成がR、T、Bなどの主成分のみの場合は下限を0.94質量%とすることが好ましく、添加元素としてGaを添加した場合は下限を0.92質量%とすることができる。Ga添加した場合はBの含有量を極限まで低減させることができるので、BがR2T14B型結晶構造を有する化合物からなる主相を形成することのみに使用され、余剰のBが不必要な化合物、例えばR1.1T4B4化合物などを形成することがないので、優れた保磁力とともに極めて優れた残留磁束密度を得ることができる。
B and R form a main phase composed of a compound having an R 2 T 14 B type crystal structure. The content is preferably 0.92% by mass to 1% by mass, and more preferably 0.94% by mass to 0.98% by mass, which is very close to the stoichiometry of R 2 T 14 B. If it is less than 0.92% by mass, the coercive force is lowered, and if it exceeds 1% by mass, the residual magnetic flux density is lowered.
The lower limit is preferably 0.94% by mass when the composition is composed of only main components such as R, T, and B, and the lower limit can be 0.92% by mass when Ga is added as an additive element. When Ga is added, the B content can be reduced to the utmost limit, so that B is used only to form a main phase composed of a compound having an R 2 T 14 B type crystal structure, and excess B is not present. Since a necessary compound such as R 1.1 T 4 B 4 compound is not formed, an extremely excellent residual magnetic flux density can be obtained together with an excellent coercive force.
Tは、上記R、Bの残部を占め、RとBとでR2T14B型結晶構造を有する化合物からなる主相を形成する。TはFeを必ず含み、その50%以下をCoで置換することができる。また、FeやCo以外の少量の遷移金属元素を含有することができる。Coは温度特性の向上、耐食性の向上に有効であり、通常は10質量%以下のCoおよび残部Feの組合わせで用いる。 T occupies the rest of R and B, and R and B form a main phase composed of a compound having an R 2 T 14 B type crystal structure. T always contains Fe, and 50% or less of it can be substituted with Co. Moreover, a small amount of transition metal elements other than Fe and Co can be contained. Co is effective in improving temperature characteristics and corrosion resistance, and is usually used in a combination of 10 mass% or less of Co and the balance Fe.
XはR−X−O化合物を形成するための必須元素である。Xは1B族元素であるCu、Ag、Auの少なくとも1種から選択することができ、その含有量は0.06質量%〜0.18質量%が好ましい範囲である。0.06質量%未満ではR−X−O化合物の形成が不十分となり、粒界相とR2T14B主相との濡れ性が低下し、R2T14B主相の周りをR−X−O化合物で包み込むことができなくなり、保磁力が低下する。また、余剰のR及びO(酸素)が粒界相にR2O3化合物を形成し、磁気特性が低下するため好ましくない。0.18質量%を超えると余剰のCuが粒界相に不必要なR−X化合物などを形成し、磁気特性が低下するため好ましくない。 X is an essential element for forming the R—X—O compound. X can be selected from at least one of the group 1B elements Cu, Ag, and Au, and the content is preferably in the range of 0.06% by mass to 0.18% by mass. If it is less than 0.06% by mass, the formation of the R—X—O compound is insufficient, the wettability between the grain boundary phase and the R 2 T 14 B main phase is reduced, and the R around the R 2 T 14 B main phase is R. It becomes impossible to wrap with the -X-O compound, and the coercive force is lowered. Further, excess R and O (oxygen) are not preferable because R 2 O 3 compounds are formed in the grain boundary phase, and the magnetic properties are deteriorated. If it exceeds 0.18% by mass, excess Cu forms an unnecessary R—X compound or the like in the grain boundary phase, which is not preferable.
O(酸素)はR−X−O化合物を形成するための必須元素である。その含有量は0.05質量%以下が好ましい。より好ましくは0.0135質量%〜0.05質量%である。0.05質量%を超えると余剰の酸素がRと優先的に結びつき、R2O3化合物を形成し、磁気特性が低下するため好ましくない。また、この時、余剰の酸素がR2T14B主相のRとも結びつき、R2T14B主相の生成量を低下させ、磁気特性、特に残留磁束密度を低下させるため好ましくない。 O (oxygen) is an essential element for forming the R—X—O compound. The content is preferably 0.05% by mass or less. More preferably, it is 0.0135 mass%-0.05 mass%. Exceeding 0.05% by mass is not preferable because excess oxygen is preferentially combined with R to form an R 2 O 3 compound, resulting in a decrease in magnetic properties. At this time, the excess of oxygen ties also R of R 2 T 14 B main phase, to reduce the generation amount of R 2 T 14 B main phase, the magnetic properties, especially not preferable to reduce the residual magnetic flux density.
先述の通り、酸素は本発明によるR−T−B系焼結磁石にとって必要不可欠な元素である。酸素の下限は0.0135質量%が好ましい。当該下限値は焼結磁石の平均結晶粒径によって異なるため、後述する平均結晶粒径の好ましい範囲である3μm〜7μmおいて、含有酸素量が最も少なくなる平均結晶粒径7μmとし、粒界相にR−X−O化合物が形成されるために必要な粒界相の厚みを5nmとしたときの酸素の含有量により限定した。粒界相の厚みとは主相と主相が隣り合う結晶粒界、いわゆる2粒子粒界における粒界相の厚みであり、その厚みを5nmとしたのは、5nm未満では粒界に非晶質相が形成され、磁気特性が極端に劣化するためである。 As described above, oxygen is an indispensable element for the RTB-based sintered magnet according to the present invention. The lower limit of oxygen is preferably 0.0135% by mass. Since the lower limit value varies depending on the average crystal grain size of the sintered magnet, the average crystal grain size is 7 μm at which the oxygen content is the smallest in 3 μm to 7 μm, which is a preferable range of the average crystal grain size described later, Further, it was limited by the oxygen content when the thickness of the grain boundary phase required to form the R—X—O compound was 5 nm. The thickness of the grain boundary phase is the crystal grain boundary where the main phase and the main phase are adjacent to each other, that is, the thickness of the grain boundary phase at a so-called two-grain grain boundary. This is because a quality phase is formed and the magnetic properties are extremely deteriorated.
本発明において、酸素は必須元素であることは先述の通りであるが、残念ながら、現在の技術では酸素をゼロにすることが不可能であるため、酸素がゼロの場合の磁気特性がどのようになるのかは定かではない。しかし、発明者らのモデル実験によれば、酸素がゼロの場合、すなわち、粒界相にRメタルのみが存在する場合、得られたR−T−B系焼結磁石は保磁力が発現しないことが確認された。 In the present invention, it is as described above that oxygen is an essential element, but unfortunately, it is impossible to make oxygen zero with the current technology, so what is the magnetic property when oxygen is zero? It is not certain that it will be. However, according to the inventors' model experiment, when oxygen is zero, that is, when only R metal is present in the grain boundary phase, the obtained R-T-B system sintered magnet does not exhibit coercive force. It was confirmed.
上記のモデル実験は、鏡面研磨したR−T−B系焼結磁石の表面に酸素をほとんど含有しないRメタル(実験ではNdメタルを使用)を気相成膜法にて成膜し、さらに酸素の供給源を絶つために、該Rメタル上にタンタル被膜を気相成膜法にて成膜した場合のR−T−B系焼結磁石とRメタルが接する結晶粒群の保磁力を測定したものであるが、この時、得られた焼結磁石の磁石表面とRメタル層が接する結晶粒群はほとんど保磁力を有さなかった。一方、上記においてタンタル被膜を設けない場合、すなわち、酸素の供給源を有する場合は通常の焼結磁石と変りない保磁力が得られている。これより、焼結磁石中における酸素含有量がゼロの場合は保磁力が発現しないと考えられる。 In the model experiment described above, an R metal (which uses Nd metal in the experiment) containing almost no oxygen is formed on the surface of a mirror-polished RTB-based sintered magnet by a vapor deposition method, and oxygen In order to cut off the supply source, the coercive force of the R-T-B system sintered magnet and the crystal group in contact with the R metal when a tantalum film is formed on the R metal by a vapor deposition method is measured. However, at this time, the crystal grain group in which the magnet surface of the obtained sintered magnet and the R metal layer were in contact had almost no coercive force. On the other hand, in the case where the tantalum film is not provided, that is, when an oxygen supply source is provided, a coercive force that is the same as that of a normal sintered magnet is obtained. From this, it is considered that the coercive force does not appear when the oxygen content in the sintered magnet is zero.
上記のモデル実験より、本発明では以下の現象が起こっていると考えられる。すなわち、酸素が粒界相とR2T14B主相との界面に存在することにより、界面エネルギーが下がり、界面付近に酸素とXを含む相が粒界相中に形成され、この部分が面心立方構造のR−X−O化合物に変化する。 From the above model experiment, it is considered that the following phenomenon occurs in the present invention. That is, the presence of oxygen at the interface between the grain boundary phase and the R 2 T 14 B main phase lowers the interface energy, and a phase containing oxygen and X is formed in the grain boundary phase in the vicinity of the interface. It changes to an R—X—O compound having a face-centered cubic structure.
本発明は上記の実験結果などにより、R−T−B系焼結磁石には特定量の酸素が不可欠であり、その酸素をR−X−O化合物として存在させることにより、最も理想的な組織構造が得られ、極めて優れた磁気特性、特に高い保磁力が得られることを見出したものである。 According to the present invention, a specific amount of oxygen is indispensable for the RTB-based sintered magnet based on the above experimental results, and the most ideal structure can be obtained by making the oxygen exist as an R—X—O compound. It has been found that a structure can be obtained and extremely excellent magnetic properties, particularly a high coercive force can be obtained.
ここで、本発明における理想的な組織構造とは、焼結磁石中における主相の含有比率が極めて高く、粒界相に面心立方構造を有するR−X−O化合物が形成され、そのR−X−O化合物によって焼結磁石中のほぼ全てのR2T14B主相が包み込まれており、かつ粒界相に不必要な化合物、例えば、R2O3、R1.1T4B4、R2T17などが存在しない組織構造をいう。そのため、R、Bといった主成分組成はストイキオメトリーに極めて近い含有量とし、不必要な化合物の形成を防止するため、特定量のX元素と酸素を規定している。 Here, the ideal structure in the present invention means that the content ratio of the main phase in the sintered magnet is extremely high, and an R—X—O compound having a face-centered cubic structure in the grain boundary phase is formed. A compound in which almost all R 2 T 14 B main phase in the sintered magnet is encapsulated by the —X—O compound and is unnecessary for the grain boundary phase, for example, R 2 O 3 , R 1.1 T 4 This refers to an organizational structure in which B 4 , R 2 T 17 and the like do not exist. Therefore, the main component compositions such as R and B have a content very close to that of stoichiometry, and a specific amount of X element and oxygen are specified in order to prevent formation of unnecessary compounds.
さらに理想的な組織構造としては、主相と主相が隣り合う結晶粒界における粒界相の厚さが5nm以上、好ましくは5nmに近い厚さで、粒界相に非晶質が含まれていない状態がよい。この時、粒界相に非晶質が若干含まれていたとしても、後述する熱処理工程により消失可能である。 Further, as an ideal structure, the grain boundary phase at the grain boundary where the main phase and the main phase are adjacent to each other has a thickness of 5 nm or more, preferably close to 5 nm, and the grain boundary phase contains amorphous. Not good state. At this time, even if the grain boundary phase contains some amorphous material, it can be eliminated by the heat treatment step described later.
本発明の特徴であるR−X−O化合物は、主相形成に使用されるRの余剰分と、0.05質量%以下の酸素と、1B族元素であるCu,Ag、Auの少なくとも一種から構成されている。Cu、Ag、Auのそれぞれの場合において、R−Cu−O化合物、R−Ag−O化合物、R−Au―O化合物を形成すること確認している。なお、特許請求の範囲では、Xの含有量を0.06質量%〜0.18質量%と規定したが、この範囲はXがCuの場合を基準としたものであり、Cuとは原子量が異なるAg、Auを用いる場合は、それぞれの原子量に応じて、例えばAgならばCuの約1.7倍、AuならばCuの約3.1倍の範囲で添加量を決定することができる。 The R—X—O compound, which is a feature of the present invention, is at least one of an excess of R used for forming the main phase, 0.05% by mass or less of oxygen, and a group 1B element such as Cu, Ag, and Au. It is composed of In each case of Cu, Ag, and Au, it has been confirmed that an R—Cu—O compound, an R—Ag—O compound, and an R—Au—O compound are formed. In the claims, the content of X is defined as 0.06% by mass to 0.18% by mass, but this range is based on the case where X is Cu, and Cu has an atomic weight. When different Ag and Au are used, for example, the addition amount can be determined in a range of about 1.7 times Cu for Ag and about 3.1 times Cu for Au.
R−X−O化合物は面心立方構造を有しており、a軸長が0.55nmであることを確認している。R−X−O化合物は粒界相に存在する酸素のプールとなって、粒界相に不必要な化合物の生成を抑制できる。その結果、保磁力が向上する。また、R−X−O化合物はR2T14B主相との濡れ性に極めて優れ、焼結磁石の組成を上述した好ましい組成範囲に調製することにより、焼結磁石中のほぼ全てのR2T14B主相の周りをR−X−O化合物で包み込むことができ、欠陥の極めて少ない、理想的な組織構造が実現できる。これによって、磁気特性が大幅に向上する。 The R—X—O compound has a face-centered cubic structure and is confirmed to have an a-axis length of 0.55 nm. The R—X—O compound becomes a pool of oxygen existing in the grain boundary phase, and can suppress the generation of compounds unnecessary for the grain boundary phase. As a result, the coercive force is improved. Further, the R—X—O compound is extremely excellent in wettability with the R 2 T 14 B main phase, and by adjusting the composition of the sintered magnet to the above-described preferred composition range, almost all R in the sintered magnet is obtained. The 2 T 14 B main phase can be surrounded by the R—X—O compound, and an ideal structure with very few defects can be realized. This greatly improves the magnetic characteristics.
本発明によるR−T−B系焼結磁石において、平均結晶粒径は3μm〜7μmであることが好ましい。平均結晶粒径を3μm未満にするためには、微粉砕時に粉末を2.0μm以下にする必要があり、微粉末が2.0μm以下になると酸素量が増加するため、得られる焼結磁石の酸素量が0.05質量%を超えることとなる。従って、平均結晶粒径は3μm以上であることが好ましい。一方、平均結晶粒径が7μmを超えると、焼結体における酸素量を低減することは可能になるが、磁気特性が低減するため好ましくない。 In the RTB-based sintered magnet according to the present invention, the average crystal grain size is preferably 3 μm to 7 μm. In order to make the average crystal grain size less than 3 μm, it is necessary to make the powder 2.0 μm or less at the time of fine pulverization. When the fine powder becomes 2.0 μm or less, the amount of oxygen increases. The amount of oxygen will exceed 0.05% by mass. Accordingly, the average crystal grain size is preferably 3 μm or more. On the other hand, when the average crystal grain size exceeds 7 μm, it is possible to reduce the amount of oxygen in the sintered body, but this is not preferable because the magnetic properties are reduced.
本発明によるR−T−B系焼結磁石において、上述した組成に加えて、さらなる保磁力向上のためにM元素を添加することができる。M元素は、Al、Si、Ti、V、Cr、Mn、Ni、Zn、Zr、Nb、Mo、In、Ga、Sn、Hf、Ta、Wのうち少なくとも一種である。添加量は2.0質量%以下が好ましい。2.0質量%を超えると残留磁束密度が低下するため好ましくない。 In the RTB-based sintered magnet according to the present invention, in addition to the above-described composition, an M element can be added to further improve the coercive force. The element M is at least one of Al, Si, Ti, V, Cr, Mn, Ni, Zn, Zr, Nb, Mo, In, Ga, Sn, Hf, Ta, and W. The addition amount is preferably 2.0% by mass or less. If it exceeds 2.0% by mass, the residual magnetic flux density decreases, which is not preferable.
上記元素以外に不可避的不純物を許容することができる。例えば、Feから混入するMn、Crや、Fe−B(フェロボロン)から混入するAl、Siなどである。 Inevitable impurities can be allowed in addition to the above elements. For example, Mn and Cr mixed from Fe, and Al and Si mixed from Fe-B (ferroboron).
さらに、本発明のR−T−B系焼結磁石には、水素、窒素、炭素などの不純物を許容することができる。水素は粗粉砕時に水素脆化法を用いた場合、窒素は工程全般、特に微粉砕にジェットミル粉砕を用いた場合、炭素は成形時の潤滑剤などから混入する。不純物として水素を含有する場合は、その含有量を10ppm〜100ppmに制御することが好ましい。水素は少量の含有により磁気特性を向上させる効果を有する。従って10ppm以上の含有は差し支えない。但し、100ppmを超えると逆に磁気特性が低下するため好ましくない。水素含有量の制御は焼結時の熱処理パターン、特に800℃近傍の保持時間により制御することができる。 Furthermore, impurities such as hydrogen, nitrogen, and carbon can be allowed in the RTB-based sintered magnet of the present invention. When hydrogen embrittlement is used for rough pulverization, nitrogen is mixed from the lubricant during molding when nitrogen is used throughout the process, particularly when jet mill pulverization is used for fine pulverization. When hydrogen is contained as an impurity, the content is preferably controlled to 10 ppm to 100 ppm. Hydrogen has the effect of improving the magnetic properties when contained in a small amount. Therefore, the content of 10 ppm or more is acceptable. However, if it exceeds 100 ppm, the magnetic properties are adversely deteriorated. The hydrogen content can be controlled by a heat treatment pattern during sintering, particularly a holding time in the vicinity of 800 ° C.
以下に、本発明によるR−T−B系焼結磁石の製造方法について詳述する。本発明によるR−T−B系焼結磁石は、その組成に特徴があり、磁気特性向上効果の根源となる理想的な組織構造もほとんどが組成によって決定されるものであるため、製造方法については特に限定されるものはなく、公知の製造方法を採用することができる。効率よく本発明のR−T−B系焼結磁石を製造する一例として、以下に詳述する。 Below, the manufacturing method of the RTB system sintered magnet by this invention is explained in full detail. The RTB-based sintered magnet according to the present invention is characterized by its composition, and since the ideal tissue structure that is the basis of the magnetic property improvement effect is mostly determined by the composition, There is no particular limitation, and a known production method can be employed. An example of efficiently producing the RTB-based sintered magnet of the present invention will be described in detail below.
まず、原料金属または合金を溶解、鋳造し、合金鋳片を得る。溶解、鋳造は、公知の手段を採用することができ、特に、ストリップキャスティング法は好ましい手段である。 First, the raw metal or alloy is melted and cast to obtain an alloy slab. For the melting and casting, known means can be employed, and the strip casting method is particularly preferred.
次に、合金鋳片を粉砕し、粗粉砕粉を得る。粗粉砕についても、公知の手段を採用することができる。水素脆化法は好ましい手段の一つである。 Next, the alloy slab is pulverized to obtain a coarsely pulverized powder. For coarse pulverization, known means can be employed. The hydrogen embrittlement method is one of the preferred means.
次に、粗粉砕粉を不活性ガス雰囲気中でジェットミル粉砕することにより微粉砕粉を得る。不活性ガスとしては、窒素、アルゴンなどを使用することができる。また、ジェットミルについては公知の装置を使用することができる。 Next, finely pulverized powder is obtained by jet mill pulverizing the coarsely pulverized powder in an inert gas atmosphere. Nitrogen, argon, etc. can be used as the inert gas. Moreover, a well-known apparatus can be used about a jet mill.
微粉砕粉の平均粒度は、F.S.S.S測定で平均粒度2μm〜5μmであることが好ましい。2μm未満では微粉砕粉の酸素濃度が増加し、5μmを超えると保磁力が低下するため好ましくない。 The average particle size of the finely pulverized powder is F.R. S. S. It is preferable that the average particle size is 2 μm to 5 μm by S measurement. If it is less than 2 μm, the oxygen concentration of the finely pulverized powder increases, and if it exceeds 5 μm, the coercive force decreases, which is not preferable.
次に、得られた微粉砕を磁場中にて成形する。印加磁界としては磁界強度が2.0T以上のパルス磁界を用いることが好ましい。これによって希土類焼結磁石のBrを向上させることができる。 Next, the obtained finely pulverized product is molded in a magnetic field. As the applied magnetic field, it is preferable to use a pulse magnetic field having a magnetic field strength of 2.0 T or more. Thereby, Br of a rare earth sintered magnet can be improved.
成形工程を、微粉砕粉末をモールド内に充填、密閉し、磁界配向の後、冷間静水圧成形によって行うことも好ましい方法である。これにより希土類焼結磁石の残留磁束密度がより一層向上する。さらに、上記磁界配向を2.0T以上のパルス磁界中で行うことにより、さらに残留磁束密度が向上する。 It is also a preferable method to perform the forming step by filling and sealing the finely pulverized powder in the mold and performing cold isostatic pressing after magnetic field orientation. Thereby, the residual magnetic flux density of the rare earth sintered magnet is further improved. Furthermore, the residual magnetic flux density is further improved by performing the magnetic field orientation in a pulse magnetic field of 2.0 T or more.
成形時の給粉の能率、成形密度の均一化、成形時の離型性などを向上させるために、脂肪酸エステルなどの液状潤滑剤やステアリン酸亜鉛などの固状潤滑剤を微粉砕前の粉末および/または微粉砕後の粉末に添加することが好ましい。添加量は、粉末100重量部に対して0.01重量部〜5重量部が好ましい。 Powder before pulverizing liquid lubricants such as fatty acid esters and solid lubricants such as zinc stearate in order to improve powder feeding efficiency during molding, uniformity of molding density, releasability during molding, etc. And / or is preferably added to the finely pulverized powder. The addition amount is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the powder.
焼結温度は950℃〜1180℃、焼結時間は1〜10時間程度が好ましい。焼結後の焼結体には所定の熱処理を施すことが好ましい。熱処理条件は温度400℃〜900℃、時間1〜10時間程度である。 The sintering temperature is preferably 950 ° C. to 1180 ° C., and the sintering time is preferably about 1 to 10 hours. The sintered body after sintering is preferably subjected to a predetermined heat treatment. The heat treatment conditions are a temperature of 400 ° C. to 900 ° C. and a time of about 1 to 10 hours.
特に好ましい熱処理の条件として、焼結温度をT1、熱処理温度をT2としたとき、T1から50℃/min以下で冷却後、引き続きT2で熱処理するか、焼結完了後、T2よりも高い温度(T3)に再加熱し、T3から50℃/min以下で冷却後、引き続きT2で熱処理することが好ましい。この熱処理を採用することにより、粒界相に非晶質が存在する場合であっても、当該非晶質を結晶化し、理想的な組織構造に近づけることができる。 As a particularly preferable heat treatment condition, when the sintering temperature is T1 and the heat treatment temperature is T2, after cooling from T1 to 50 ° C./min or less, heat treatment is subsequently performed at T2, or after sintering is completed, a temperature higher than T2 ( It is preferable to reheat to T3), cool at 50 ° C./min or less from T3, and then heat-treat at T2. By adopting this heat treatment, even when amorphous exists in the grain boundary phase, the amorphous can be crystallized to be close to an ideal structure.
実施例1
焼結後の組成が表1に示す組成になるように、純度99.5%以上の各原料を配合、溶解し、ストリップキャスト法により鋳造し、厚さ0.1mm〜0.3mmの鋳片状の合金を得た。この時、合金中の酸素量を低減するため、溶解室内は無酸素雰囲気とし、酸素を含む不純物混入を防止するため、内部をボロンナイトライドでコーティングしたアルミナ坩堝で溶解した。この合金を水素加圧雰囲気で水素脆化させた後、600℃まで真空中で加熱、冷却して脱水素処理を行い、粗粉砕粉末を得た。
Example 1
Each raw material having a purity of 99.5% or more is blended and dissolved so that the composition after sintering becomes the composition shown in Table 1, and cast by a strip cast method, and a slab having a thickness of 0.1 mm to 0.3 mm A shaped alloy was obtained. At this time, in order to reduce the amount of oxygen in the alloy, the melting chamber was made an oxygen-free atmosphere, and in order to prevent contamination with impurities containing oxygen, the inside was melted in an alumina crucible coated with boron nitride. This alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then heated and cooled in vacuum to 600 ° C. for dehydrogenation treatment to obtain a coarsely pulverized powder.
得られた粗粉砕粉末を窒素雰囲気中でジェットミル装置にて微粉砕し、F.S.S.S測定で平均粒度2μm〜5μmの微粉砕粉末を得た。得られた微粉砕粉末を酸化しないように窒素雰囲気を確保しながら、窒素雰囲気中で磁界中成形して成形体を作製した。成形時の磁界は1.2MA/mの静磁界で、加圧力は147MPaであった。 The obtained coarsely pulverized powder was finely pulverized by a jet mill apparatus in a nitrogen atmosphere. S. S. The finely pulverized powder having an average particle size of 2 μm to 5 μm was obtained by S measurement. The obtained finely pulverized powder was molded in a magnetic field in a nitrogen atmosphere while securing a nitrogen atmosphere so as not to oxidize, thereby producing a molded body. The magnetic field at the time of molding was a static magnetic field of 1.2 MA / m, and the applied pressure was 147 MPa.
さらに、得られた成形体を酸化させないように窒素雰囲気を確保しながら、焼結炉内に投入し、真空中で組成に応じて1040℃〜1080℃で6時間焼結した。焼結後、1.25℃/分にて630℃まで冷却し、630℃で8時間熱処理した。熱処理後は80℃/分にて室温まで冷却した。 Furthermore, while securing a nitrogen atmosphere so as not to oxidize the obtained molded body, it was put into a sintering furnace and sintered at 1040 ° C. to 1080 ° C. for 6 hours in vacuum according to the composition. After sintering, it was cooled to 630 ° C. at 1.25 ° C./min and heat-treated at 630 ° C. for 8 hours. After the heat treatment, it was cooled to room temperature at 80 ° C./min.
得られた焼結磁石の組成を表1に示す。また、得られた焼結磁石に機械加工を施した後、B−Hトレーサーにより室温での保磁力、残留磁束密度、最大エネルギー積を測定した。測定結果を表1に示す。さらに、得られた焼結磁石の断面を鏡面研磨し、光学顕微鏡で観察し、画像データを解析ソフトに取り込んで平均結晶粒径を求めた。平均結晶粒径を表1に示す。なお、試料No.1〜29が本発明、試料No.30〜39が比較例である。表1中横棒線で表記したものは十分な焼結密度が得られず磁気特性が測定不能であった。 Table 1 shows the composition of the obtained sintered magnet. Moreover, after machining the obtained sintered magnet, the coercive force, residual magnetic flux density, and maximum energy product at room temperature were measured with a BH tracer. The measurement results are shown in Table 1. Furthermore, the cross section of the obtained sintered magnet was mirror-polished, observed with an optical microscope, and the image data was taken into analysis software to determine the average crystal grain size. Table 1 shows the average crystal grain size. Sample No. 1 to 29 are sample Nos. 30 to 39 are comparative examples. In Table 1, those indicated by horizontal bar lines could not obtain a sufficient sintered density, and the magnetic properties could not be measured.
表1の結果から明らかなように、本発明によるR−T−B系焼結磁石は、優れた磁気特性を発現することが分かる。特に、DyやTbなどの重希土類元素を含有しなくても、880kA/m(約11kOe)以上の保磁力が得られ、好ましい組成では1000kA/m(約12.5kOe)以上が得られ、耐熱性に要求される高い保磁力を得ることができる。 As is apparent from the results in Table 1, it can be seen that the RTB-based sintered magnet according to the present invention exhibits excellent magnetic properties. In particular, a coercive force of 880 kA / m (about 11 kOe) or more can be obtained without containing a heavy rare earth element such as Dy or Tb, and a preferable composition can obtain 1000 kA / m (about 12.5 kOe) or more, and heat resistance. High coercivity required for the property can be obtained.
実施例2
表1の試料No.2の焼結磁石の断面を鏡面研磨し、TEM−EELSにより観察を行った。その結果を図1に示す。図1において、上段左は組成像、上段中央はNd、上段右はCu、下段左はFe、下段中央はO(酸素)、下段右はBのマッピング像である。図1中、白く表示される部分が各元素の濃度が高い部分を示し、黒く表示される部分が各元素の濃度が低い部分を示す。
Example 2
Sample No. in Table 1 The cross section of the sintered magnet 2 was mirror-polished and observed by TEM-EELS. The result is shown in FIG. In FIG. 1, the upper left is a composition image, the upper middle is Nd, the upper right is Cu, the lower left is Fe, the lower middle is O (oxygen), and the lower right is a mapping image of B. In FIG. 1, a portion displayed in white indicates a portion where the concentration of each element is high, and a portion displayed in black indicates a portion where the concentration of each element is low.
図1上段左に示される組成像に表示の通り、各マッピング像の右上と左下にNd2Fe14B主相があり、それを横切るように右下から左上に粒界相がある。各マッピング像から明らかなように、粒界相にはNdとCuとOが多く存在しており、FeとBはほとんど存在しないことが分かる。この結果より、粒界相にNd−Cu−O化合物が形成されていることが分かる。 As shown in the composition image shown in the upper left of FIG. 1, there are Nd 2 Fe 14 B main phases in the upper right and lower left of each mapping image, and there are grain boundary phases from the lower right to the upper left so as to cross it. As apparent from each mapping image, it can be seen that the grain boundary phase contains a large amount of Nd, Cu, and O, and hardly contains Fe and B. From this result, it can be seen that an Nd—Cu—O compound is formed in the grain boundary phase.
なお、図には示さないが、同じ試料を用いて制限視野電子線回折を行ったところ、上記粒界相に形成されているNd−Cu−O化合物が面心立方構造を有し、かつa軸長が0.55nmであることを確認した。また、図1では主相と主相が隣り合う結晶粒界、いわゆる2粒子粒界について観察したが、粒界の3重点部分や比較的サイズの大きい粒界相でもNd−Cu−O化合物が存在することを確認した。 Although not shown in the figure, when limited-field electron diffraction was performed using the same sample, the Nd—Cu—O compound formed in the grain boundary phase had a face-centered cubic structure, and a The axial length was confirmed to be 0.55 nm. Further, in FIG. 1, the crystal grain boundary where the main phase and the main phase are adjacent to each other, that is, a so-called two-grain grain boundary, is observed, but the Nd—Cu—O compound is also present in the triple point portion of the grain boundary and the relatively large grain boundary phase. Confirmed that it exists.
本発明によるR−T−B系焼結磁石は、高保磁力を有するため、耐熱性が要求されるHEV用などの磁石として最適である。 Since the RTB-based sintered magnet according to the present invention has a high coercive force, it is optimal as a magnet for HEV or the like that requires heat resistance.
Claims (7)
R:27.3質量%〜29質量%、X(XはCu、Ag、Auのうち少なくとも一種):0.06質量%〜0.18質量%、B:0.92質量%〜1質量%、O:0.05質量%以下、残部FeまたはFeとCo及び不可避的不純物からなるR−T−B系焼結磁石。 R 2 T 14 B (R is at least one of rare earth elements, T is Fe or Fe and Co) R-T-B system sintered magnet having a main phase composed of a compound having a crystal structure and a grain boundary phase Because
R: 27.3 mass% to 29 mass%, X (X is at least one of Cu, Ag, and Au): 0.06 mass% to 0.18 mass%, B: 0.92 mass% to 1 mass% , O: 0.05% by mass or less, the balance being an RTB-based sintered magnet made of Fe or Fe and Co and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008072543A JP2009231391A (en) | 2008-03-19 | 2008-03-19 | R-t-b based sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008072543A JP2009231391A (en) | 2008-03-19 | 2008-03-19 | R-t-b based sintered magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009231391A true JP2009231391A (en) | 2009-10-08 |
Family
ID=41246492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008072543A Pending JP2009231391A (en) | 2008-03-19 | 2008-03-19 | R-t-b based sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009231391A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012017574A1 (en) * | 2010-08-04 | 2012-02-09 | 株式会社Kri | Anisotropic rare earth bonded magnet and production method therefor |
EP2752857A2 (en) | 2013-01-07 | 2014-07-09 | Showa Denko K.K. | R-T-B rare earth sintered magnet, alloy for R-T-B rare earth sintered magnet, and method of manufacturing the same |
WO2014115375A1 (en) | 2013-01-28 | 2014-07-31 | Jx日鉱日石金属株式会社 | Sputtering target for rare-earth magnet and production method therefor |
WO2014157451A1 (en) * | 2013-03-29 | 2014-10-02 | 日立金属株式会社 | R-t-b-based sintered magnet |
WO2015020183A1 (en) * | 2013-08-09 | 2015-02-12 | Tdk株式会社 | R-t-b type sintered magnet, and motor |
WO2015020182A1 (en) * | 2013-08-09 | 2015-02-12 | Tdk株式会社 | R-t-b type sintered magnet, and motor |
DE102015212192A1 (en) | 2014-07-08 | 2016-01-14 | Showa Denko K.K. | A method for producing an alloy for an R-T-B-rare earth-based sintered magnet and a method for producing an R-T-B-rare earth-based sintered magnet |
DE102016105105A1 (en) | 2015-03-20 | 2016-09-22 | Tdk Corporation | PERMANENT MAGNET |
EP2980808A4 (en) * | 2013-03-29 | 2016-12-14 | Hitachi Metals Ltd | R-t-b-based sintered magnet |
DE102016121420A1 (en) | 2015-12-03 | 2017-06-08 | Showa Denko K.K. | ALLOY FOR RTB RARE SINTER MAGNET AND METHOD OF MANUFACTURING SUCH AS, AND METHOD OF PRODUCING AN RTB RARE DE SINTER MAGNET |
US20210050150A1 (en) * | 2019-08-16 | 2021-02-18 | Baotou Tianhe Magnetics Technology Co., Ltd. | Sintered Body, Sintered Permanent Magnet And Preparation Methods Thereof |
US11024448B2 (en) | 2011-07-08 | 2021-06-01 | Tdk Corporation | Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004296848A (en) * | 2003-03-27 | 2004-10-21 | Tdk Corp | R-t-b system rare earth permanent magnet |
JP2005150503A (en) * | 2003-11-18 | 2005-06-09 | Tdk Corp | Method for manufacturing sintered magnet |
JP2005197662A (en) * | 2004-10-18 | 2005-07-21 | Tdk Corp | R-t-b-based rare earth permanent magnet |
JP2006165008A (en) * | 2004-12-02 | 2006-06-22 | Tdk Corp | Manufacturing method of rtb-based sintered magnet |
JP2006219723A (en) * | 2005-02-10 | 2006-08-24 | Tdk Corp | R-Fe-B-BASED RARE EARTH PERMANENT MAGNET |
JP2007266026A (en) * | 2006-03-27 | 2007-10-11 | Tdk Corp | Manufacturing method of rare-earth sintered magnet |
-
2008
- 2008-03-19 JP JP2008072543A patent/JP2009231391A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004296848A (en) * | 2003-03-27 | 2004-10-21 | Tdk Corp | R-t-b system rare earth permanent magnet |
JP2005150503A (en) * | 2003-11-18 | 2005-06-09 | Tdk Corp | Method for manufacturing sintered magnet |
JP2005197662A (en) * | 2004-10-18 | 2005-07-21 | Tdk Corp | R-t-b-based rare earth permanent magnet |
JP2006165008A (en) * | 2004-12-02 | 2006-06-22 | Tdk Corp | Manufacturing method of rtb-based sintered magnet |
JP2006219723A (en) * | 2005-02-10 | 2006-08-24 | Tdk Corp | R-Fe-B-BASED RARE EARTH PERMANENT MAGNET |
JP2007266026A (en) * | 2006-03-27 | 2007-10-11 | Tdk Corp | Manufacturing method of rare-earth sintered magnet |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012017574A1 (en) * | 2010-08-04 | 2012-02-09 | 株式会社Kri | Anisotropic rare earth bonded magnet and production method therefor |
US11024448B2 (en) | 2011-07-08 | 2021-06-01 | Tdk Corporation | Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor |
EP2752857A2 (en) | 2013-01-07 | 2014-07-09 | Showa Denko K.K. | R-T-B rare earth sintered magnet, alloy for R-T-B rare earth sintered magnet, and method of manufacturing the same |
US9558872B2 (en) | 2013-01-07 | 2017-01-31 | Showa Denko K.K. | R-T-B rare earth sintered magnet, alloy for R-T-B rare earth sintered magnet, and method of manufacturing the same |
WO2014115375A1 (en) | 2013-01-28 | 2014-07-31 | Jx日鉱日石金属株式会社 | Sputtering target for rare-earth magnet and production method therefor |
EP2980808A4 (en) * | 2013-03-29 | 2016-12-14 | Hitachi Metals Ltd | R-t-b-based sintered magnet |
JPWO2014157451A1 (en) * | 2013-03-29 | 2017-02-16 | 日立金属株式会社 | R-T-B sintered magnet |
WO2014157451A1 (en) * | 2013-03-29 | 2014-10-02 | 日立金属株式会社 | R-t-b-based sintered magnet |
CN105074837A (en) * | 2013-03-29 | 2015-11-18 | 日立金属株式会社 | R-t-b-based sintered magnet |
US10388441B2 (en) | 2013-08-09 | 2019-08-20 | Tdk Corporation | R-T-B based sintered magnet and motor |
CN105453193B (en) * | 2013-08-09 | 2018-01-12 | Tdk株式会社 | R T B system's sintered magnets and motor |
CN105431915A (en) * | 2013-08-09 | 2016-03-23 | Tdk株式会社 | R-T-B type sintered magnet, and motor |
WO2015020182A1 (en) * | 2013-08-09 | 2015-02-12 | Tdk株式会社 | R-t-b type sintered magnet, and motor |
WO2015020183A1 (en) * | 2013-08-09 | 2015-02-12 | Tdk株式会社 | R-t-b type sintered magnet, and motor |
CN105453193A (en) * | 2013-08-09 | 2016-03-30 | Tdk株式会社 | R-T-B type sintered magnet, and motor |
JPWO2015020182A1 (en) * | 2013-08-09 | 2017-03-02 | Tdk株式会社 | R-T-B system sintered magnet and motor |
JPWO2015020183A1 (en) * | 2013-08-09 | 2017-03-02 | Tdk株式会社 | R-T-B system sintered magnet and motor |
US10109403B2 (en) | 2013-08-09 | 2018-10-23 | Tdk Corporation | R-T-B based sintered magnet and motor |
DE102015212192A1 (en) | 2014-07-08 | 2016-01-14 | Showa Denko K.K. | A method for producing an alloy for an R-T-B-rare earth-based sintered magnet and a method for producing an R-T-B-rare earth-based sintered magnet |
DE102016105105A1 (en) | 2015-03-20 | 2016-09-22 | Tdk Corporation | PERMANENT MAGNET |
US10366814B2 (en) | 2015-03-20 | 2019-07-30 | Tdk Corporation | Permanent magnet |
CN105989983A (en) * | 2015-03-20 | 2016-10-05 | Tdk株式会社 | Permanent magnet |
DE102016121420A1 (en) | 2015-12-03 | 2017-06-08 | Showa Denko K.K. | ALLOY FOR RTB RARE SINTER MAGNET AND METHOD OF MANUFACTURING SUCH AS, AND METHOD OF PRODUCING AN RTB RARE DE SINTER MAGNET |
US10490324B2 (en) | 2015-12-03 | 2019-11-26 | Tdk Corporation | Alloy for R-T-B-based rare earth sintered magnet and manufacturing method thereof, and manufacturing method of R-T-B-based rare earth sintered magnet |
US20210050150A1 (en) * | 2019-08-16 | 2021-02-18 | Baotou Tianhe Magnetics Technology Co., Ltd. | Sintered Body, Sintered Permanent Magnet And Preparation Methods Thereof |
US11657960B2 (en) * | 2019-08-16 | 2023-05-23 | Baotou Tianhe Magnetics Technology Co., Ltd. | Sintered body, sintered permanent magnet and preparation methods thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI673730B (en) | R-Fe-B based sintered magnet and manufacturing method thereof | |
JP2009231391A (en) | R-t-b based sintered magnet | |
JP6724865B2 (en) | R-Fe-B system sintered magnet and manufacturing method thereof | |
CN107871582B (en) | R-Fe-B sintered magnet | |
TWI673732B (en) | R-Fe-B based sintered magnet and manufacturing method thereof | |
CN106710766B (en) | R- (Fe, Co) -B sintered magnet and method for producing same | |
CN107871581B (en) | Method for preparing R-Fe-B sintered magnet | |
JP6089535B2 (en) | R-T-B sintered magnet | |
JPWO2009075351A1 (en) | R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet | |
WO2007010860A1 (en) | Rare earth sintered magnet and method for production thereof | |
JP2018082040A (en) | Rare earth-(iron, cobalt)-boron based sintered magnet, and method for manufacturing the same | |
JP7179799B2 (en) | R-Fe-B system sintered magnet | |
WO2005015580A1 (en) | R-t-b sintered magnet and rare earth alloy | |
JP6451900B2 (en) | R-Fe-B sintered magnet and method for producing the same | |
JP4687662B2 (en) | Iron-based rare earth alloy magnet | |
JP7021578B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP2024023206A (en) | Anisotropic rare earth sintered magnet and manufacturing method thereof | |
JP2024020341A (en) | Anisotropic rare earth sintered magnet and method for manufacturing the same | |
JP2005270988A (en) | Method for producing rare-earth-metal alloy thin sheet, rare-earth-metal alloy thin sheet and rare-earth-metal magnet | |
JP2007201102A (en) | Iron group rare-earth permanent magnet and manufacturing method therefor | |
KR20240072054A (en) | R-T-B Sintered Magnet | |
CN115359989A (en) | Anisotropic rare earth sintered magnet and method for producing same | |
JP2020155763A (en) | Method for manufacturing r-t-b based sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110805 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111202 |