JP2009057253A - Glass melting furnace - Google Patents

Glass melting furnace Download PDF

Info

Publication number
JP2009057253A
JP2009057253A JP2007226859A JP2007226859A JP2009057253A JP 2009057253 A JP2009057253 A JP 2009057253A JP 2007226859 A JP2007226859 A JP 2007226859A JP 2007226859 A JP2007226859 A JP 2007226859A JP 2009057253 A JP2009057253 A JP 2009057253A
Authority
JP
Japan
Prior art keywords
glass
melting tank
deposits
melting furnace
local heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007226859A
Other languages
Japanese (ja)
Other versions
JP4630976B2 (en
Inventor
Koji Fujiwara
孝治 藤原
Morihiro Niihara
盛弘 新原
Masahiro Kobayashi
正宏 小林
Atsushi Aoshima
厚 青嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2007226859A priority Critical patent/JP4630976B2/en
Publication of JP2009057253A publication Critical patent/JP2009057253A/en
Application granted granted Critical
Publication of JP4630976B2 publication Critical patent/JP4630976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass melting furnace where, during driving, the presence and position of deposits in the vicinity of the bottom part of a melting tank thereof are specified, and the vicinity of the deposition part thereof can be locally heated, thus the viscosity of the deposits is reduced and the deposits can be selectively extracted, and which can be continuously driven with high efficiency. <P>SOLUTION: The glass melting furnace comprises: a melting tank 14 with a structure whose bottom part is tilted downward toward a downflow nozzle 12; and a plurality of main electrodes 16 arranged at the side walls thereof, and wherein a glass raw material and a radioactive effluent charged to the inside of the melting tank are directly energized by the main electrodes, and are heated and melted by the generated Joule heat, and a molten glass is extracted from the downflow nozzle. The vicinity of the bottom part of the melting tank is installed with: a deposition part detection device specifying the presence and position of deposits; and a local heating device heating the vicinity of the deposition part specified thereby, and, by reducing the viscosity of the deposits by the local heating, the extraction of the deposits by the selective flow-down thereof is made possible. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放射性廃液をガラス固化処理するためのガラス溶融炉に関し、更に詳しく述べると、堆積箇所検知装置によって堆積物の有無と位置を特定し、特定された堆積箇所の近傍を局所加熱装置によって局所加熱することにより、堆積物を選択的に流下させて抜き出すことができるようにしたガラス溶融炉に関するものである。   The present invention relates to a glass melting furnace for vitrifying radioactive waste liquid. More specifically, the presence and position of deposits are identified by a deposition location detector, and the vicinity of the identified deposition location is identified by a local heating device. The present invention relates to a glass melting furnace in which deposits can be selectively flowed down and extracted by local heating.

再処理工場などの原子力施設から発生する放射性廃液は、濃縮処理した後、ガラス原料と共にガラス溶融炉に供給され、溶融処理しガラス固化処理される。ガラス溶融炉としては、通常、溶融槽の側壁に対向するように主電極を設置し、ガラスに直接通電することにより生じるジュール熱を利用してガラスを加熱溶融する(直接通電方式)。この種のガラス溶融炉は従来公知であり、その詳細な構造については、例えば特許文献1などに記載されている。溶融したガラスは、溶融槽底部に設けられている流下ノズルから重力により抜き出されガラス固化体容器へ注入される。得られたガラス固化体は放射性廃棄物保管施設で保管される。   A radioactive liquid waste generated from a nuclear facility such as a reprocessing plant is concentrated, supplied to a glass melting furnace together with a glass raw material, melted and vitrified. As a glass melting furnace, a main electrode is usually installed so as to face the side wall of the melting tank, and glass is heated and melted by using Joule heat generated by directly energizing the glass (direct energization method). This type of glass melting furnace is conventionally known, and its detailed structure is described in, for example, Patent Document 1. The molten glass is extracted by gravity from a falling nozzle provided at the bottom of the melting tank and injected into a glass solidified container. The obtained vitrified body is stored in a radioactive waste storage facility.

ところで、再処理工場などから発生する高放射性廃液中には、ガラスへの溶解度の低い金属(クロム、ルテニウム、パラジウムなど)が含まれており、それらは溶解度を超えると酸化物等として析出する。ガラスよりも比重が大きいこれらの析出物の一部は、溶融槽底部へ沈降し、流下ノズルから排出されずに底部に徐々に蓄積されていく。析出物濃度が高くなったガラスは、通常の溶融したガラスに比べて電気抵抗が小さく、粘度が大きい。このため、ガラスを溶融する電流がこの堆積物に集中するため電流分布が偏り、ガラスが加熱され難くなる。また、堆積物は流下ノズルを閉塞させたり、流下ノズルに流入するガラスの流路を妨げ、流下ノズルからガラスを抜き出し難くするなどの支障が生じる。   By the way, the highly radioactive waste liquid generated from a reprocessing plant or the like contains metals (chromium, ruthenium, palladium, etc.) having low solubility in glass, and when they exceed the solubility, they precipitate as oxides. Some of these precipitates having a specific gravity greater than that of glass settle to the bottom of the melting tank and gradually accumulate at the bottom without being discharged from the flow nozzle. Glass with a high precipitate concentration has a lower electrical resistance and a higher viscosity than ordinary molten glass. For this reason, since the current for melting the glass is concentrated on the deposit, the current distribution is biased and the glass is hardly heated. In addition, the deposits obstruct the flow nozzle, obstruct the glass flow path flowing into the flow nozzle, and make it difficult to extract the glass from the flow nozzle.

このような事態の発生を防止するため、従来方法では、析出物濃度が高くなり堆積が予測された場合に、ガラス原料及び放射性廃液の供給を停止し、溶融槽内のガラスを全て排出した後、ガラス溶融炉を降温し、残留した堆積物を物理的あるいは化学的な手法で除去する等の処置が必要であった。このように、堆積物を除去した後、ガラス溶融炉の運転を再開する。従って、ガラス溶融炉の運転を中断することになり、運転効率が低くなるばかりでなく、煩瑣な堆積物除去操作が必要になるし、炉メンテナンスに要するコストが多くかかるなどの問題がある。
実公平3−48183号公報
In order to prevent the occurrence of such a situation, in the conventional method, when the deposit concentration is high and deposition is predicted, the supply of the glass raw material and radioactive waste liquid is stopped, and all the glass in the melting tank is discharged. It was necessary to take measures such as lowering the temperature of the glass melting furnace and removing the remaining deposits by physical or chemical methods. Thus, after removing the deposit, the operation of the glass melting furnace is resumed. Therefore, the operation of the glass melting furnace is interrupted, and not only the operation efficiency is lowered, but also a troublesome sediment removal operation is required, and the cost required for the furnace maintenance is increased.
Japanese Utility Model Publication 3-48183

本発明が解決しようとする課題は、ガラス溶融炉運転中に、その溶融槽の底部近傍での堆積物の有無及び位置を特定し、その堆積箇所近傍を局所的に加熱できるようにして、堆積物の粘度を下げ、選択的に堆積物を抜き出すことができ、ガラス溶融炉を効率よく連続運転できるようにすることである。   The problem to be solved by the present invention is to determine the presence and position of deposits in the vicinity of the bottom of the melting tank during operation of the glass melting furnace so that the vicinity of the deposit can be heated locally. The object is to reduce the viscosity of the product, to selectively extract deposits, and to allow the glass melting furnace to operate efficiently and continuously.

ガラス溶融炉による放射性廃液の溶融固化処理において、運転開始と共に析出するクロム、ルテニウム、パラジウム等の金属酸化物は、比重が大きいため徐々に沈降し、溶融槽の底部に蓄積されていく。これらの堆積物は、電気抵抗が低く、温度が上昇に従って粘度は低下する。本発明は、このような物性に着目し、堆積物の有無及び位置を特定し、その堆積箇所の近傍を局所加熱するすることにより堆積物の粘度を下げ、選択的に抜き出すことができるようにしたものである。   In the melting and solidifying treatment of radioactive liquid waste in a glass melting furnace, metal oxides such as chromium, ruthenium, and palladium that are deposited at the start of operation gradually settle and accumulate at the bottom of the melting tank because of their high specific gravity. These deposits have a low electrical resistance and the viscosity decreases with increasing temperature. The present invention pays attention to such physical properties, specifies the presence and position of the deposit, and locally heats the vicinity of the deposit so that the viscosity of the deposit can be lowered and selectively extracted. It is a thing.

本発明は、底部が流下ノズルに向かって下向きに傾斜する構造の溶融槽と、該溶融槽の側壁に配設された複数の主電極を具備し、前記溶融槽内に投入したガラス原料と放射性廃液に前記主電極により直接通電し発生するジュール熱により加熱溶融し、溶融ガラスを流下ノズルから抜き出すようにしたガラス溶融炉において、前記溶融槽の底部近傍に、堆積物の有無及び位置を特定する堆積箇所検知装置と、該堆積箇所検知装置によって特定された堆積箇所の近傍を加熱する局所加熱装置とを設置し、局所加熱により堆積物の粘度を低下させることで堆積物の選択的な流下による抜き出しを可能にしたことを特徴とするガラス溶融炉である。   The present invention includes a melting tank having a structure in which a bottom portion is inclined downward toward a flow nozzle, and a plurality of main electrodes disposed on a side wall of the melting tank. In a glass melting furnace in which waste liquid is heated and melted by Joule heat generated by energizing directly with the main electrode and the molten glass is extracted from the flow nozzle, the presence and position of deposits are specified in the vicinity of the bottom of the melting tank. By installing a deposition location detection device and a local heating device that heats the vicinity of the deposition location identified by the deposition location detection device, and by reducing the viscosity of the deposition by local heating, the selective flow of the deposition It is a glass melting furnace characterized by enabling extraction.

例えば、溶融槽の底部に複数の底部電極が分散埋設されており、堆積箇所検知装置は前記底部電極間での抵抗計測方式で堆積物を検知し、局所加熱装置は前記底部電極間での直接通電方式で局所加熱を行うように構成する。あるいは、溶融槽の底部に複数の底部電極が分散埋設されていると共に溶融槽の底部近傍に達するように棒状電極が挿入可能となっており、堆積箇所検知装置は前記底部電極と棒状電極間での抵抗計測方式で堆積物を検知し、局所加熱装置は前記底部電極と棒状電極間での直接通電方式で局所加熱を行うように構成してもよい。   For example, a plurality of bottom electrodes are dispersedly embedded at the bottom of the melting tank, the deposition point detection device detects deposits by a resistance measurement method between the bottom electrodes, and the local heating device directly connects between the bottom electrodes. It is configured to perform local heating by an energization method. Alternatively, a plurality of bottom electrodes are dispersedly embedded at the bottom of the melting tank, and a rod-shaped electrode can be inserted so as to reach the vicinity of the bottom of the melting tank, and the deposition point detection device is disposed between the bottom electrode and the rod-shaped electrode. The deposit may be detected by the resistance measurement method, and the local heating device may be configured to perform the local heating by the direct current method between the bottom electrode and the rod-shaped electrode.

堆積箇所検知装置は、溶融槽の底部近傍に達するように挿入可能なプローブとし、接触検出方式で堆積物を検知するような構成も可能である。また局所加熱装置は、溶融槽の底部に分散埋設されている複数の発熱抵抗体からなり、該発熱抵抗体への通電発熱により局所加熱する構成も可能である。   The deposition location detection device may be a probe that can be inserted so as to reach the vicinity of the bottom of the melting tank, and may be configured to detect deposits by a contact detection method. In addition, the local heating device can be configured to include a plurality of heat generating resistors dispersedly embedded in the bottom of the melting tank, and to perform local heating by energization heat generation to the heat generating resistors.

また本発明は、これらのガラス溶融炉を使用し、主電極によるガラス溶融運転を継続しつつ、特定された堆積位置を局所加熱することにより、堆積物を選択的に流下させて抜き出すように運転するガラス溶融炉の運転方法である。   In addition, the present invention uses these glass melting furnaces, and continues the glass melting operation by the main electrode, while locally heating the specified deposition position, so that the deposit is selectively flowed down and extracted. This is a method of operating a glass melting furnace.

本発明に係るガラス溶融炉は、溶融槽の底部近傍に、堆積物の有無及び位置を特定する堆積箇所検知装置と、それによって特定された堆積位置の近傍を加熱する局所加熱装置とを設置する構成したことにより、ガラス溶融炉運転中に、堆積物の有無と位置を特定し、その堆積位置近傍を局所的に加熱することで、堆積物の粘度を下げ、選択的に堆積物を流下させ抜き出すことができる。そのため、ガラス溶融炉の運転を中断することなく効率よく連続的に行うことが可能となり、運転コストの低減を図ることができる。   In the glass melting furnace according to the present invention, a deposition location detection device that identifies the presence and position of deposits and a local heating device that heats the vicinity of the deposition location identified thereby are installed near the bottom of the melting tank. By configuring, during the glass melting furnace operation, the presence and location of deposits are specified, and the vicinity of the deposit position is locally heated, thereby lowering the viscosity of the deposit and selectively flowing down the deposit. Can be extracted. Therefore, it becomes possible to carry out efficiently and continuously without interrupting the operation of the glass melting furnace, and the operation cost can be reduced.

ここで、溶融槽の底部に複数の底部電極を分散埋設し、堆積箇所検知装置は前記底部電極間での抵抗計測方式、局所加熱装置は前記底部電極間での直接通電方式とすると、埋設した底部電極を両方の装置で共用できる。複数の底部電極と棒状電極を使用し、堆積箇所検知装置は前記底部電極と棒状電極間での抵抗計測方式、局所加熱装置は前記底部電極と棒状電極間での直接通電方式としても、両方の装置で電極を共用できる。   Here, a plurality of bottom electrodes are dispersedly embedded at the bottom of the melting tank, the deposition spot detection device is embedded in the resistance measurement method between the bottom electrodes, and the local heating device is directly energized between the bottom electrodes. The bottom electrode can be shared by both devices. A plurality of bottom electrodes and rod-shaped electrodes are used, the deposition point detection device is a resistance measurement method between the bottom electrode and the rod-shaped electrode, and the local heating device is a direct current method between the bottom electrode and the rod-shaped electrode. The electrode can be shared by the device.

図1は、本発明に係るガラス溶融炉の一実施例を示す説明図である。Aは全体構成を示しており、Bは堆積箇所検知装置、Cは局所加熱装置を、それぞれ示している。このガラス溶融炉10は、底部が流下ノズル12に向かって下向きに傾斜する形状で耐食・耐火構造の溶融槽14と、該溶融槽14の側壁に対向配設された複数の主電極16とを具備している。高放射性廃液はガラス供給系18に送られ、予めガラス原料20に染みこませた状態で、溶融槽14内に供給する。溶融槽14内に投入したガラス原料と高放射性廃液を、前記主電極16により直接通電し、発生するジュール熱を利用して加熱溶融し、溶融ガラス22を流下ノズル12から流下させて抜き出す。その際に発生するガスはオフガス処理系24を経て排出される。   FIG. 1 is an explanatory view showing an embodiment of a glass melting furnace according to the present invention. A shows the entire configuration, B shows a deposition site detection device, and C shows a local heating device. The glass melting furnace 10 includes a melting tank 14 having a corrosion-resistant and fire-resistant structure with a bottom inclined downward toward the flow-down nozzle 12, and a plurality of main electrodes 16 arranged to face the side walls of the melting tank 14. It has. The highly radioactive waste liquid is sent to the glass supply system 18 and supplied into the melting tank 14 in a state where the glass raw material 20 is preliminarily soaked. The glass raw material and the highly radioactive liquid waste introduced into the melting tank 14 are directly energized by the main electrode 16 and heated and melted using the generated Joule heat, and the molten glass 22 is flowed down from the flow-down nozzle 12 and extracted. The gas generated at that time is discharged through the off-gas treatment system 24.

前述したように、高放射性廃液中には、クロム、ルテニウム、パラジウム等のガラスへの溶解度の低い金属が含まれており、溶解度を超えると酸化物等として析出する。これらの析出物26の一部は溶融ガラス22よりも比重が大きい。従って、ガラス溶融炉10では、運転開始と共に溶融槽14中にクロム、ルテニウム、パラジウム等の金属酸化物が析出し、時間の経過につれて溶融槽14の底部へ沈降する。それらは流下ノズル12から排出されず、徐々に蓄積されていき堆積物28となる。ところで、溶融ガラス22は析出物の濃度に応じて電気抵抗が変化することから、運転中、逐次、溶融ガラス22の電気抵抗を計測することで堆積状況を予測することができ、これにより、溶融炉内の析出物堆積状況を監視することができる。析出物濃度が高くなったガラスは、通常の溶融したガラスに比べ、電気抵抗が小さくなり、粘度が大きくなる。このため、ガラスを溶融する電流は、この堆積物に集中して電流分布が偏り、ガラスが加熱され難くなる。これらの堆積物28は、温度の上昇に従って粘度が下がる性質を有するので、堆積物の周辺を加熱すると粘度が下がり、堆積物を選択的に流下させることができる。   As described above, the highly radioactive waste liquid contains a metal having low solubility in glass such as chromium, ruthenium, and palladium, and precipitates as an oxide or the like when the solubility is exceeded. Some of these precipitates 26 have a higher specific gravity than the molten glass 22. Therefore, in the glass melting furnace 10, metal oxides such as chromium, ruthenium, and palladium are deposited in the melting tank 14 at the start of operation, and settle to the bottom of the melting tank 14 as time passes. They are not discharged from the flow-down nozzle 12 but gradually accumulate and become deposits 28. By the way, since the electrical resistance of the molten glass 22 changes depending on the concentration of precipitates, the deposition state can be predicted by measuring the electrical resistance of the molten glass 22 sequentially during operation. The deposit accumulation status in the furnace can be monitored. Glass with a high precipitate concentration has a lower electrical resistance and a higher viscosity than ordinary molten glass. For this reason, the current that melts the glass is concentrated on the deposit, the current distribution is biased, and the glass is hardly heated. Since these deposits 28 have the property that the viscosity decreases as the temperature increases, the viscosity decreases when the periphery of the deposits is heated, and the deposits can be selectively flowed down.

そこで本発明では、溶融槽14の底部近傍に、堆積物の有無と位置を特定する堆積箇所検知装置と、それによって特定された堆積位置の近傍を加熱する局所加熱装置とを設置する。この実施例は、溶融槽14の底部に分散埋設した複数の底部電極30を用いるものであり、謂わば「底部固定式」である。堆積箇所検知装置は、図1のBに示すように、隣接する任意の底部電極30間の電気抵抗を抵抗計32で計測する抵抗計測方式であり、局所加熱装置は、図1のCに示すように、前記底部電極30間に電源34から通電し加熱する直接通電方式としている。底部電極30を変えて隣接する底部電極30間で電気抵抗を計測することで、抵抗値が低い部位の分布から堆積物28の有無と位置を特定することができる。従って、その位置に該当する底部電極30間を選んで通電することにより、発生するジュール熱を利用して堆積物28を局所加熱し、粘度を低下させて流動性を上げ、流下させることができる。なお、この実施例では、複数の底部電極30は、堆積箇所検知装置と局所加熱装置とで共用できることになり、構成が簡略化される利点がある。局所加熱装置による局所加熱により、堆積物の粘度が低下し、それによって堆積物28の選択的な抜き出しが実現できる。その結果、ガラス中の析出物濃度の上昇が抑えられ、ガラスは加熱され易くなる。   Therefore, in the present invention, a deposition location detection device that identifies the presence and position of deposits and a local heating device that heats the vicinity of the deposition location identified thereby are installed near the bottom of the melting tank 14. In this embodiment, a plurality of bottom electrodes 30 dispersedly embedded in the bottom of the melting tank 14 are used, which is a so-called “bottom fixed type”. As shown in FIG. 1B, the deposition location detection device is a resistance measurement method in which the electrical resistance between any adjacent bottom electrodes 30 is measured by an ohmmeter 32, and the local heating device is shown in FIG. 1C. As described above, a direct energization method is employed in which electricity is supplied from the power source 34 between the bottom electrodes 30 and heated. By measuring the electrical resistance between the adjacent bottom electrodes 30 by changing the bottom electrode 30, the presence and position of the deposit 28 can be specified from the distribution of the parts having low resistance values. Therefore, by electrifying between the bottom electrodes 30 corresponding to the position, the deposit 28 can be locally heated using the generated Joule heat, the viscosity can be lowered, the fluidity can be increased, and the flow can be lowered. . In this embodiment, the plurality of bottom electrodes 30 can be shared by the deposition point detection device and the local heating device, and there is an advantage that the configuration is simplified. Due to the local heating by the local heating device, the viscosity of the deposit is lowered, whereby the deposit 28 can be selectively extracted. As a result, an increase in the concentration of precipitates in the glass is suppressed, and the glass is easily heated.

図2は、本発明に係るガラス溶融炉の他の実施例を示す説明図である。ここでも、Aは全体構成を示しており、Bは堆積箇所検知装置、Cは局所加熱装置を、それぞれ示している。ガラス溶融炉本体の構成は、図1に示すものと基本的に同様であってよいので、対応する部分に同一符号を付し、それらについての説明は省略する。   FIG. 2 is an explanatory view showing another embodiment of the glass melting furnace according to the present invention. Here too, A shows the overall configuration, B shows the deposition site detection device, and C shows the local heating device. Since the structure of the glass melting furnace main body may be basically the same as that shown in FIG. 1, the same reference numerals are given to corresponding parts, and description thereof will be omitted.

この実施例は、溶融槽14の底部に分散埋設されている複数の底部電極30と、溶融槽14の底部近傍に達するように上方から挿入した棒状電極36を用いるものであり、謂わば「プローブ式」である。堆積箇所検知装置は、図2のBに示すように、前記底部電極30と棒状電極36間の電気抵抗を抵抗計32で計測する抵抗計測方式であり、局所加熱装置は、図2のCに示すように、前記底部電極30と棒状電極36間に電源34で通電し加熱する直接通電方式としている。従って、この実施例でも、複数の底部電極30及び棒状電極36は、堆積箇所検知装置と局所加熱装置とで共用できることになり、構成は簡略化される。局所加熱装置による局所加熱により、堆積物28の粘度を低下させて流動化し、それによって堆積物28の選択的な抜き出しを実現する。   In this embodiment, a plurality of bottom electrodes 30 distributed and embedded at the bottom of the melting tank 14 and a rod-shaped electrode 36 inserted from above so as to reach the vicinity of the bottom of the melting tank 14 are used. Formula ". As shown in FIG. 2B, the deposition location detection device is a resistance measurement method in which the electrical resistance between the bottom electrode 30 and the rod-shaped electrode 36 is measured with an ohmmeter 32, and the local heating device is shown in FIG. As shown in the figure, a direct energization method is employed in which a power source 34 energizes and heats between the bottom electrode 30 and the rod electrode 36. Therefore, also in this embodiment, the plurality of bottom electrodes 30 and the rod-shaped electrodes 36 can be shared by the deposition site detection device and the local heating device, and the configuration is simplified. By the local heating by the local heating device, the viscosity of the deposit 28 is lowered and fluidized, thereby realizing the selective extraction of the deposit 28.

本発明において、堆積箇所検知装置は、上記実施例のような構成のみに限定されるものではない。図3は、接触式のプローブ40を用いる例を示している。プローブ40に振動・衝撃センサを取り付けて溶融槽14の上方から挿入し、プローブ40の先端が溶融槽14の傾斜した底面に対して僅かな間隔をおいた状態を保ちつつ底面に沿って動かすことで堆積物の有無と位置を特定することができる。堆積物が存在すれば、プローブの先端が接触し、その時の振動・衝撃で検知できるからである。   In the present invention, the deposition site detection device is not limited to the configuration as in the above embodiment. FIG. 3 shows an example in which a contact probe 40 is used. A vibration / impact sensor is attached to the probe 40 and inserted from above the melting tank 14, and the tip of the probe 40 is moved along the bottom surface while maintaining a slight distance from the inclined bottom surface of the melting tank 14. To identify the presence and location of deposits. This is because if there is a deposit, the tip of the probe contacts and can be detected by vibration / impact at that time.

本発明において、局所加熱装置も、前記実施例のような構成のみに限定されるものではない。図4は底部固定式の例を、図5はプローブ式の例を、それぞれ示している。   In the present invention, the local heating device is not limited to the configuration as in the above embodiment. FIG. 4 shows an example of the bottom fixed type, and FIG. 5 shows an example of the probe type.

図4の底部固定式の場合、Aに示すような発熱抵抗体方式、あるいはBに示すような誘導加熱方式などがある。発熱抵抗体方式では、溶融槽14の底部に発熱抵抗体42を分散配設し、該発熱抵抗体42に通電することで発熱させ、堆積物28の粘度を低下させる。誘導加熱方式では、溶融槽14の底部にコイル44を分散配設し、該コイル44に高周波電流を供給することで堆積物28を局所発熱させる。これらの場合、発熱抵抗体42やコイル44の近くに別途電極を配設し、それらの電極を利用して堆積箇所検知装置を構成することができる。勿論、接触式のプローブを用いる方式でもよい。   In the case of the bottom fixed type in FIG. 4, there is a heating resistor type as shown in A, an induction heating type as shown in B, or the like. In the heating resistor system, the heating resistors 42 are dispersedly arranged at the bottom of the melting tank 14, and the heating resistors 42 are energized to generate heat, thereby reducing the viscosity of the deposit 28. In the induction heating method, the coils 44 are dispersedly arranged at the bottom of the melting tank 14, and a high frequency current is supplied to the coils 44 to cause the deposit 28 to generate heat locally. In these cases, a separate electrode can be disposed near the heating resistor 42 and the coil 44, and the deposition site detection device can be configured using these electrodes. Of course, a system using a contact type probe may be used.

図5のプローブ式の場合も、Aに示すような発熱抵抗体方式、あるいはBに示すような誘導加熱方式などがある。発熱抵抗体方式では、プローブ46の先端に発熱抵抗体48を組み込み、該発熱抵抗体48に通電することで局所発熱させ、堆積物28の粘度を低下させる。誘導加熱方式では、プローブ50の先端にコイル52を組み込み、該コイル52に高周波電流を供給することで堆積物28を局所発熱させる。これらの場合、溶融槽14の底部に複数の電極30を分散配設し、それらの電極30を利用して堆積箇所検知装置を構成することができる。勿論、接触式のプローブを用いる方式でもよい。   Also in the case of the probe type of FIG. 5, there are a heating resistor type as shown in A, an induction heating type as shown in B, and the like. In the heating resistor method, a heating resistor 48 is incorporated at the tip of the probe 46, and the heating resistor 48 is energized to generate local heat, thereby reducing the viscosity of the deposit 28. In the induction heating method, a coil 52 is incorporated at the tip of the probe 50 and a high frequency current is supplied to the coil 52 to cause the deposit 28 to generate heat locally. In these cases, a plurality of electrodes 30 can be dispersedly arranged at the bottom of the melting tank 14, and the deposition site detection device can be configured using these electrodes 30. Of course, a system using a contact type probe may be used.

本発明に係るガラス溶融炉を用いて放射性廃液を処理する溶融炉運転方法の一例を図6に示す。この運転方法の特徴は、堆積物除去のために溶融炉の運転を中断する必要がない点である。運転手順は、例えば次のようになる。
(a)溶融槽にガラス原料と放射性廃液を投入する(運転期間を通じて投入し続ける)。
(b)主電極への通電によりガラスを加熱溶融する。
(c)ガラス中の析出物の濃度に応じて電気抵抗が変化するため、抵抗計測により堆積を予測することができる。また、通電加熱に平行して堆積箇所検知装置により堆積物検知を行う。なお、予め溶融炉の運転開始初期に溶融槽内に堆積物がないことを利用して、堆積箇所検知装置を校正しておく。
(d)溶融槽内のガラス保持量が規定値に達するまで、上記(a)〜(c)を繰り返す。
(e)溶融槽内のガラス保持量が規定値に達したならば、溶融ガラスの流下のために流下ノズルの加熱を開始する。
(f)前記(c)の工程で堆積物が検知された場合には、流下ノズル加熱と同時に、堆積位置の近傍で局所加熱を行う。堆積物は加熱とともに粘度が低下し、選択的に流下させることができる。局所加熱装置は、堆積物を流下できるように加熱出力の調整を行いながら流下ノズルから堆積物を流下させる。
(g)溶融ガラスの流下量が規定値に達するまで流下ノズルの加熱を続け、溶融ガラスの流下を継続する。
(h)溶融ガラスの流下量が規定値に達したならば、流下ノズルの加熱を停止して冷却を行い、ガラス固化操作を終了する。
An example of a melting furnace operation method for treating radioactive waste liquid using the glass melting furnace according to the present invention is shown in FIG. The feature of this operation method is that it is not necessary to interrupt the operation of the melting furnace in order to remove deposits. The operation procedure is as follows, for example.
(A) The glass raw material and the radioactive liquid waste are charged into the melting tank (continuously charged throughout the operation period).
(B) The glass is heated and melted by energizing the main electrode.
(C) Since electric resistance changes according to the density | concentration of the precipitate in glass, deposition can be estimated by resistance measurement. In addition, the deposit detection is performed by the deposition point detection device in parallel with the electric heating. Note that the deposition location detector is calibrated in advance by utilizing the fact that there is no deposit in the melting tank at the beginning of the operation of the melting furnace.
(D) The above steps (a) to (c) are repeated until the glass holding amount in the melting tank reaches a specified value.
(E) When the glass holding amount in the melting tank reaches a specified value, heating of the falling nozzle is started to flow down the molten glass.
(F) When deposits are detected in the step (c), local heating is performed in the vicinity of the deposition position simultaneously with the falling nozzle heating. The deposit decreases in viscosity with heating and can be selectively flowed down. The local heating device causes the deposit to flow down from the flow nozzle while adjusting the heating output so that the deposit can flow down.
(G) The heating of the flow nozzle is continued until the flow rate of the molten glass reaches a specified value, and the flow of the molten glass is continued.
(H) When the flow-down amount of the molten glass reaches a specified value, the flow-down nozzle is stopped from heating and cooled to finish the glass solidification operation.

このようにして、溶融槽の底部に堆積物が蓄積されても、運転を継続しつつ堆積物を選択的に流下させ、抜き出すことができ、溶融炉を停止する必要がないため、炉の運転効率は格段に向上することになる。   In this way, even if deposits are accumulated at the bottom of the melting tank, the deposits can be selectively flowed down and extracted while continuing operation, and it is not necessary to stop the melting furnace. Efficiency will be greatly improved.

最後に、本発明の物理的根拠となるガラスの特性について説明する。ガラス溶融炉では運転開始とともに溶融炉中にクロム、ルテニウム、パラジウム等の金属酸化物が析出し、時間の経過とともに炉底に堆積する。溶融ガラスは析出物の濃度に応じて図7に示す物性に従い比抵抗が変化することから、運転時に逐次、溶融ガラスの比抵抗を計測することで堆積状況を予測することができる。これにより、溶融炉内の析出物堆積状況を監視する。堆積物は図8に示すとおり温度の上昇に従って粘度が下がる。従って、局所加熱によって堆積物および周辺を加熱することで粘度を下げ、選択的に堆積物を流下させることができる。なお、図8で計測したガラスは、高レベル放射性廃液に含まれているRu、Rh、Pdの濃度比が一定になるように調製されている。従って図8中のx軸にはRuO2 の濃度が代表として記されているが、実際にはRh、PdもRuO2 と比例して増減している。 Finally, the characteristics of the glass that is the physical basis of the present invention will be described. In the glass melting furnace, metal oxides such as chromium, ruthenium, and palladium are deposited in the melting furnace as the operation starts, and deposit on the furnace bottom as time passes. Since the specific resistance of molten glass changes in accordance with the physical properties shown in FIG. 7 according to the concentration of precipitates, the deposition status can be predicted by measuring the specific resistance of the molten glass sequentially during operation. Thereby, the deposit accumulation situation in the melting furnace is monitored. As shown in FIG. 8, the viscosity of the deposit decreases as the temperature increases. Therefore, by heating the deposit and the surroundings by local heating, the viscosity can be lowered and the deposit can be selectively flowed down. Note that the glass measured in FIG. 8 is prepared so that the concentration ratio of Ru, Rh, and Pd contained in the high-level radioactive liquid waste is constant. Therefore, the concentration of RuO 2 is shown as a representative on the x-axis in FIG. 8, but actually Rh and Pd also increase and decrease in proportion to RuO 2 .

本発明に係るガラス溶融炉の一実施例を示す説明図。Explanatory drawing which shows one Example of the glass melting furnace which concerns on this invention. 本発明に係るガラス溶融炉の他の実施例を示す説明図。Explanatory drawing which shows the other Example of the glass melting furnace which concerns on this invention. 堆積箇所検知装置の他の例を示す説明図。Explanatory drawing which shows the other example of a deposition location detection apparatus. 局所加熱装置の他の例を示す説明図。Explanatory drawing which shows the other example of a local heating apparatus. 局所加熱装置の更に他の例を示す説明図。Explanatory drawing which shows the further another example of a local heating apparatus. ガラス溶融炉の運転方法の一例を示すフロー図。The flowchart which shows an example of the operating method of a glass melting furnace. 溶融ガラスの酸化ルテニウム濃度と温度と比抵抗の関係を示すグラフ。The graph which shows the relationship between a ruthenium oxide density | concentration of molten glass, temperature, and a specific resistance. 溶融ガラスの酸化ルテニウム濃度と温度と粘度の関係を示すグラフ。The graph which shows the relationship between a ruthenium oxide density | concentration of molten glass, temperature, and a viscosity.

符号の説明Explanation of symbols

10 ガラス溶融炉
12 流下ノズル
14 溶融槽
16 主電極
18 ガラス原料供給系
20 ガラス原料
22 溶融ガラス
24 オフガス処理系
26 析出物
28 堆積物
30 底部電極
32 抵抗計
34 電源
DESCRIPTION OF SYMBOLS 10 Glass melting furnace 12 Flowing nozzle 14 Melting tank 16 Main electrode 18 Glass raw material supply system 20 Glass raw material 22 Molten glass 24 Off-gas treatment system 26 Precipitate 28 Deposit 30 Bottom electrode 32 Resistance meter 34 Power supply

Claims (6)

底部が流下ノズルに向かって下向きに傾斜する構造の溶融槽と、該溶融槽の側壁に配設された複数の主電極を具備し、前記溶融槽内に投入したガラス原料と放射性廃液に前記主電極により直接通電し発生するジュール熱により加熱溶融し、溶融ガラスを流下ノズルから抜き出すようにしたガラス溶融炉において、
前記溶融槽の底部近傍に、堆積物の有無及び位置を特定する堆積箇所検知装置と、該堆積箇所検知装置によって特定された堆積箇所の近傍を加熱する局所加熱装置とを設置し、局所加熱により堆積物の粘度を低下させることで堆積物の選択的な流下による抜き出しを可能にしたことを特徴とするガラス溶融炉。
A melting tank having a structure in which a bottom portion is inclined downward toward the flow-down nozzle and a plurality of main electrodes arranged on a side wall of the melting tank, and the main material is added to the glass raw material and radioactive waste liquid charged in the melting tank. In a glass melting furnace that is heated and melted by Joule heat that is generated by energizing the electrode directly, and the molten glass is extracted from the flow nozzle.
In the vicinity of the bottom of the melting tank, a deposition location detection device that identifies the presence and position of deposits and a local heating device that heats the vicinity of the deposition location identified by the deposition location detection device are installed, and by local heating A glass melting furnace characterized in that the deposit can be extracted by selective flow down by reducing the viscosity of the deposit.
溶融槽の底部に複数の底部電極が分散埋設されており、堆積箇所検知装置は前記底部電極間での抵抗計測方式で堆積物を検知し、局所加熱装置は前記底部電極間での直接通電方式で局所加熱を行うものである請求項1記載のガラス溶融炉。   A plurality of bottom electrodes are dispersedly embedded at the bottom of the melting tank, the deposition location detection device detects deposits by a resistance measurement method between the bottom electrodes, and the local heating device is a direct energization method between the bottom electrodes The glass melting furnace according to claim 1, wherein local heating is performed. 溶融槽の底部に複数の底部電極が分散埋設されていると共に溶融槽の底部近傍に達するように棒状電極が挿入可能となっており、堆積箇所検知装置は前記底部電極と棒状電極間での抵抗計測方式で堆積物を検知し、局所加熱装置は前記底部電極と棒状電極間での直接通電方式で局所加熱を行うものである請求項1記載のガラス溶融炉。   A plurality of bottom electrodes are dispersedly embedded at the bottom of the melting tank, and a rod-shaped electrode can be inserted so as to reach the vicinity of the bottom of the melting tank, and the deposition point detection device has a resistance between the bottom electrode and the rod-shaped electrode. The glass melting furnace according to claim 1, wherein deposits are detected by a measurement method, and the local heating device performs local heating by a direct energization method between the bottom electrode and the rod-shaped electrode. 堆積箇所検知装置が、溶融槽の底部近傍に達するように挿入可能なプローブであり、接触検出方式で堆積物を検知する請求項1記載のガラス溶融炉。   The glass melting furnace according to claim 1, wherein the deposition site detection device is a probe that can be inserted so as to reach the vicinity of the bottom of the melting tank, and detects deposits by a contact detection method. 局所加熱装置が、溶融槽の底部に分散埋設されている複数の発熱抵抗体からなり、該発熱抵抗体への通電発熱により局所加熱する請求項1又は4記載のガラス溶融炉。   5. The glass melting furnace according to claim 1, wherein the local heating device includes a plurality of heat generating resistors dispersedly embedded at the bottom of the melting tank, and locally heats the energized heat generated by the heat generating resistors. 請求項1乃至5のいずれかに記載のガラス溶融炉を使用し、主電極によるガラス溶融運転を継続しつつ、特定された堆積位置を局所加熱することにより、堆積物を選択的に流下させて抜き出すように運転するガラス溶融炉の運転方法。   Using the glass melting furnace according to any one of claims 1 to 5, the deposit is selectively flowed down by locally heating the specified deposition position while continuing the glass melting operation by the main electrode. A method of operating a glass melting furnace that operates to be extracted.
JP2007226859A 2007-08-31 2007-08-31 Glass melting furnace Expired - Fee Related JP4630976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226859A JP4630976B2 (en) 2007-08-31 2007-08-31 Glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226859A JP4630976B2 (en) 2007-08-31 2007-08-31 Glass melting furnace

Publications (2)

Publication Number Publication Date
JP2009057253A true JP2009057253A (en) 2009-03-19
JP4630976B2 JP4630976B2 (en) 2011-02-09

Family

ID=40553338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226859A Expired - Fee Related JP4630976B2 (en) 2007-08-31 2007-08-31 Glass melting furnace

Country Status (1)

Country Link
JP (1) JP4630976B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132473A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Glass substrate production method
JP2012202924A (en) * 2011-03-28 2012-10-22 Ihi Corp Tomography apparatus and tomography measuring method
JP5192100B2 (en) * 2011-03-31 2013-05-08 AvanStrate株式会社 Manufacturing method of glass substrate
US9212270B2 (en) 2010-01-14 2015-12-15 Basf Se Method for producing expandable granulates containing polylactic acid
CN114068058A (en) * 2021-11-11 2022-02-18 中广核研究院有限公司 Method for melt processing radioactive waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112798A (en) * 1988-10-21 1990-04-25 Power Reactor & Nuclear Fuel Dev Corp Melting furnace for treating waste and heating method thereof
JPH04332859A (en) * 1991-05-08 1992-11-19 Power Reactor & Nuclear Fuel Dev Corp Device for detecting conductive insoluble constituent within high-temperature melt
JPH11271494A (en) * 1998-03-25 1999-10-08 Ishikawajima Inspection & Instrumentation Co Platinum group detector of glass melting furnace
JP2000088998A (en) * 1998-09-10 2000-03-31 Ishikawajima Harima Heavy Ind Co Ltd Glass melting furnace
JP2001330697A (en) * 2000-05-24 2001-11-30 Ishikawajima Harima Heavy Ind Co Ltd Instrument for measuring metal sludge in glass melting furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112798A (en) * 1988-10-21 1990-04-25 Power Reactor & Nuclear Fuel Dev Corp Melting furnace for treating waste and heating method thereof
JPH04332859A (en) * 1991-05-08 1992-11-19 Power Reactor & Nuclear Fuel Dev Corp Device for detecting conductive insoluble constituent within high-temperature melt
JPH11271494A (en) * 1998-03-25 1999-10-08 Ishikawajima Inspection & Instrumentation Co Platinum group detector of glass melting furnace
JP2000088998A (en) * 1998-09-10 2000-03-31 Ishikawajima Harima Heavy Ind Co Ltd Glass melting furnace
JP2001330697A (en) * 2000-05-24 2001-11-30 Ishikawajima Harima Heavy Ind Co Ltd Instrument for measuring metal sludge in glass melting furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212270B2 (en) 2010-01-14 2015-12-15 Basf Se Method for producing expandable granulates containing polylactic acid
US10253150B2 (en) 2010-01-14 2019-04-09 Basf Se Method for producing expandable granulates containing polylactic acid
JP2012202924A (en) * 2011-03-28 2012-10-22 Ihi Corp Tomography apparatus and tomography measuring method
WO2012132473A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Glass substrate production method
CN103080025A (en) * 2011-03-31 2013-05-01 安瀚视特控股株式会社 Glass substrate production method
JP5192100B2 (en) * 2011-03-31 2013-05-08 AvanStrate株式会社 Manufacturing method of glass substrate
KR101300980B1 (en) * 2011-03-31 2013-08-27 아반스트레이트 가부시키가이샤 Glass substrate production method
CN114068058A (en) * 2021-11-11 2022-02-18 中广核研究院有限公司 Method for melt processing radioactive waste
CN114068058B (en) * 2021-11-11 2024-03-19 中广核研究院有限公司 Method for melting radioactive waste

Also Published As

Publication number Publication date
JP4630976B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4691710B2 (en) Electric melting furnace for waste vitrification
JP4630976B2 (en) Glass melting furnace
JP5787494B2 (en) Method and apparatus for producing glass products from glass melts
EP2570392B1 (en) Melting furnace having a gas supplying apparatus
JP5772349B2 (en) Glass melting furnace operation method
JP2009300010A (en) Level measuring method and level measuring device for ash melting furnace
JP4618555B2 (en) Method and apparatus for controlling molten metal level in continuous casting
JP5776178B2 (en) Deposit removal method for glass melting furnace
JP5682289B2 (en) Method for suppressing deposition in glass melting furnace
JP3746921B2 (en) Operation method of electric melting furnace
JP4800292B2 (en) Melting equipment
JP2011202985A (en) Melting furnace and method for operating the same
JP2012207972A (en) Method for removing sediment of glass melting furnace
JP4815640B2 (en) Glass melting furnace
RU2737663C1 (en) Induction furnace with cold crucible for vitrification of hlw
JP4491990B2 (en) Method for preventing platinum group deposition in glass melting furnace
JP2013028483A (en) Furnace bottom nozzle part structure of glass melting furnace
JP2014111271A (en) Temperature measurement device for electro-slag-remelting and temperature measurement method for electro-slag-remelting
JP2971788B2 (en) Glass contact detection method in vitrification equipment
JP3766828B2 (en) Bottom electrode of glass melting furnace
JP2003090524A (en) Molten metal temperature measuring device for melting furnace
JP5346625B2 (en) Melting furnace level measuring device
JPH1123792A (en) Waste melting device
JP5720730B2 (en) Method for suppressing deposition of conductive material
JP6343929B2 (en) Method and apparatus for removing ruthenium in high-level radioactive liquid waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees