JP2008312309A - Vibration type actuator - Google Patents

Vibration type actuator Download PDF

Info

Publication number
JP2008312309A
JP2008312309A JP2007156127A JP2007156127A JP2008312309A JP 2008312309 A JP2008312309 A JP 2008312309A JP 2007156127 A JP2007156127 A JP 2007156127A JP 2007156127 A JP2007156127 A JP 2007156127A JP 2008312309 A JP2008312309 A JP 2008312309A
Authority
JP
Japan
Prior art keywords
vibration
drive
support
type actuator
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007156127A
Other languages
Japanese (ja)
Other versions
JP4901598B2 (en
Inventor
Shin Kiuchi
慎 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2007156127A priority Critical patent/JP4901598B2/en
Publication of JP2008312309A publication Critical patent/JP2008312309A/en
Application granted granted Critical
Publication of JP4901598B2 publication Critical patent/JP4901598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration type actuator capable of allowing a mover fitted to a driver with a screw to move forward by resonating the driver using a driving element provided on a support. <P>SOLUTION: A support 5 supporting the bottom end of a vibration shaft 2 is provided with a plurality of piezoelectric elements 6, 7, 8, 9. Vibration to be imparted to the support 5 is imparted to the vibration shaft 2 via the support 5 by the electrostrictive effect of the piezoelectric elements. The phase of a drive signal to be imparted to the piezoelectric elements is changed, and thus, the driver 3 fixed on the vibration shaft 2 can perform circular motion. A male screw portion 13 is formed on the driver 3, and a female screw portion 14 screwing with the male screw portion 13 is formed on the internal circumferential surface of a center hole 4a of the mover 4. The mover 4 is rotated by the circular motion of the driver 3, and the mover 4 is moved in a shaft direction in response to the locus of the screw. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧電素子などの駆動素子によって駆動体が加振させられ、振動している駆動体に対してねじ部を介して嵌合している移動体が、軸方向へ移動させられる振動型アクチュエータに関する。   The present invention is a vibration type in which a driving body is vibrated by a driving element such as a piezoelectric element, and a moving body fitted to a vibrating driving body via a screw portion is moved in an axial direction. It relates to an actuator.

以下の特許文献1と特許文献2には、ねじ部を介して互いに嵌合している駆動体と移動体、および前記駆動体を加振する圧電素子を有する振動型アクチュエータが開示されている。   The following Patent Document 1 and Patent Document 2 disclose a vibration type actuator having a driving body and a moving body that are fitted to each other via a screw portion, and a piezoelectric element that vibrates the driving body.

前記圧電素子で駆動体が振動させられると、駆動体の振動が移動体に伝達されて、移動体が回転させられる。移動体は駆動体とねじ部を介して嵌合しているため、回転する移動体はねじ部に沿って軸方向へ移動させられる。この種の振動型アクチュエータは、移動体が比較的低速で回転しながら軸方向へ進退移動でき、大きな駆動トルクを得ることができる利点がある。   When the driving body is vibrated by the piezoelectric element, the vibration of the driving body is transmitted to the moving body and the moving body is rotated. Since the moving body is fitted to the driving body via the screw portion, the rotating moving body is moved along the screw portion in the axial direction. This type of vibration type actuator has an advantage that a moving body can move forward and backward in the axial direction while rotating at a relatively low speed, and a large driving torque can be obtained.

特許文献1に記載されている振動型アクチュエータは、駆動体が雌ねじ部を有する筒状体で、移動体が前記筒状体の雌ねじ部に螺合する雄ねじを有する軸体である。筒状の駆動体の端面に圧電素子が取り付けられており、この圧電素子で、筒状の駆動体に進行波を発生させることで移動体に回転力が与えられ、回転する移動体がねじ部の中心軸に沿う方向へ移動させられる。   The vibration-type actuator described in Patent Document 1 is a shaft body having a male body in which a driving body is a cylindrical body having a female thread portion and a moving body is screwed into the female thread portion of the cylindrical body. A piezoelectric element is attached to the end face of the cylindrical driving body. With this piezoelectric element, a traveling wave is generated in the cylindrical driving body to apply a rotational force to the moving body. It is moved in the direction along the central axis of.

特許文献2に記載されている振動型アクチュエータは、筒状の駆動体の軸穴の両端部に雌ねじ部材が設けられ、筒状の駆動体の内部には、それぞれの雌ねじ部材に嵌合する雄ねじ部を有する軸状の移動体が設けられている。筒状の駆動体の外面には圧電素子が設けられ、この圧電素子によって、筒状の駆動体が撓むように変形させられて、雌ねじ部材に円運動が与えられる。これにより、雌ねじ部材に嵌合している軸上の移動体が回転させられて、移動体が軸方向へ進行する。
特公平7−40791号公報 米国特許明細書書第6,940,209号
The vibration type actuator described in Patent Document 2 is provided with female screw members at both ends of a shaft hole of a cylindrical drive body, and male screws fitted into the respective female screw members inside the cylindrical drive body. A shaft-like moving body having a portion is provided. A piezoelectric element is provided on the outer surface of the cylindrical driving body, and the cylindrical driving body is deformed by the piezoelectric element so as to bend, and a circular motion is given to the female screw member. Thereby, the movable body on the shaft fitted to the female screw member is rotated, and the movable body advances in the axial direction.
Japanese Patent Publication No. 7-40791 US Patent Specification No. 6,940,209

特許文献1に記載された振動型アクチュエータは、筒状の駆動体の端面に圧電素子が取り付けられており、圧電素子から前記端面に与える歪みにより、駆動体に進行波を伝達させるというものであるが、筒状の駆動体の内周面に進行波を発生させるには、圧電素子から前記端面に大きな歪みを与えることが必要であり、エネルギーの利用効率がきわめて悪い。また、圧電素子を駆動体の端面に高精度に位置合わせして取り付けることができないと、駆動体に進行波を発生させる効率が悪くなる。さらに、圧電素子を端面に貼着するための接着剤の厚みのばらつきなどが駆動体の振動特性に影響を与えるため、接着剤を用いた貼着作業が非常に難しい。   In the vibration type actuator described in Patent Document 1, a piezoelectric element is attached to an end face of a cylindrical drive body, and a traveling wave is transmitted to the drive body by distortion applied from the piezoelectric element to the end face. However, in order to generate a traveling wave on the inner peripheral surface of the cylindrical driving body, it is necessary to give a large strain to the end face from the piezoelectric element, and the energy utilization efficiency is extremely poor. In addition, if the piezoelectric element cannot be attached to the end face of the drive body with high accuracy, the efficiency of generating a traveling wave in the drive body is deteriorated. Furthermore, since the variation in the thickness of the adhesive for attaching the piezoelectric element to the end face affects the vibration characteristics of the driving body, the attaching operation using the adhesive is very difficult.

次に、特許文献2に記載の振動型アクチュエータは、内部にねじ部材が設けられた筒状の駆動体を撓み変形させるために、筒状の駆動体の外面に複数の圧電素子が取り付けられている。複数の圧電素子は、駆動体の外面において軸方向へ直線的に傾かないように取り付けることが必要であるため、その取り付け作業がきわめて困難である。また、圧電素子を駆動体に接着するための接着剤を軸方向にわたって均一な厚さで塗布することが必要であり、貼着作業が煩雑である。   Next, in the vibration type actuator described in Patent Document 2, a plurality of piezoelectric elements are attached to the outer surface of the cylindrical driving body in order to bend and deform the cylindrical driving body provided with a screw member inside. Yes. Since it is necessary to attach the plurality of piezoelectric elements so as not to incline linearly in the axial direction on the outer surface of the driving body, the attaching operation is extremely difficult. Further, it is necessary to apply an adhesive for adhering the piezoelectric element to the driving body with a uniform thickness in the axial direction, and the attaching operation is complicated.

また、筒状の駆動体の外面には、圧電素子を貼着するための取り付け平面が、軸方向に沿って形成されるため、駆動体の断面形状が多角形となる。そのため、駆動体はその撓み方向が変わると断面係数が相違することになり、駆動体の撓み変形によって雌ねじ部をスムーズに円運動させることが難しい。   Moreover, since the attachment plane for sticking a piezoelectric element is formed in an axial direction on the outer surface of a cylindrical drive body, the cross-sectional shape of a drive body becomes a polygon. Therefore, when the bending direction of the driving body changes, the section modulus differs, and it is difficult to smoothly circularly move the female screw portion due to the bending deformation of the driving body.

本発明は、上記従来の課題を解決するものであり、駆動素子の駆動力によって駆動体を振動させる際のエネルギーの利用効率が高く、また、駆動体の形状を単純にでき、製造も容易で高精度な動作を実現できる振動型アクチュエータを提供することを目的としている。   The present invention solves the above-described conventional problems, has high energy use efficiency when the driving body is vibrated by the driving force of the driving element, can simplify the shape of the driving body, and is easy to manufacture. An object of the present invention is to provide a vibration type actuator capable of realizing a highly accurate operation.

本発明の振動型アクチュエータは、軸方向に連続してねじ部が形成された移動体と、弾性変形可能であり軸方向の一部に前記移動体の前記ねじ部と嵌合する駆動用嵌合部を有する駆動体と、前記駆動体を支持する支持体と、
前記支持体に振動を与え前記支持体から前記駆動体に振動を伝達させて、前記駆動体を撓み変形させる駆動素子とを有しており、
前記駆動体の撓み変形によって前記駆動用嵌合部が円運動し、この円運動によって前記移動体が回転させられて、移動体が前記ねじ部によって軸方向へ移動させられることを特徴とするものである。
The vibration type actuator of the present invention includes a moving body in which a thread portion is continuously formed in the axial direction, and a driving fitting that is elastically deformable and that fits the thread portion of the moving body in a part of the axial direction. A drive body having a portion, a support body for supporting the drive body,
A driving element that applies vibration to the support and transmits vibration from the support to the driving body to bend and deform the driving body;
The drive fitting portion is caused to perform a circular motion due to the bending deformation of the drive body, the movable body is rotated by the circular motion, and the movable body is moved in the axial direction by the screw portion. It is.

また、本発明は、前記駆動素子から前記支持体に与えられる振動によって、前記駆動体が共振させられるものである。   In the present invention, the driving body is caused to resonate by vibration applied from the driving element to the support body.

また、前記駆動用嵌合部は、前記駆動体の撓み振動の節と節との間に設けられているものである。   Further, the driving fitting portion is provided between the nodes of the flexural vibration of the driving body.

本発明の振動型アクチュエータは、駆動体に直接に駆動素子が取り付けられているのではなく、駆動素子から支持体に振動が与えられ、この振動が駆動体に伝達されて、駆動体が所定の振動数で振動させられる。そのため、駆動体の軸方向に沿って圧電素子などを傾くことなく高精度に貼着するという作業が不要になり、製造を容易にできる。また駆動体に圧電素子を貼着する際に接着剤の厚みのばらつきによる質量分布の片寄りという問題も生じることがなく、駆動体の質量のばらつきの発生を抑制でき、駆動体を常に高精度な振動モードで駆動できる。   In the vibration type actuator of the present invention, the drive element is not directly attached to the drive body, but vibration is applied from the drive element to the support body, and this vibration is transmitted to the drive body, so that the drive body is It can be vibrated at the frequency. Therefore, the work of attaching the piezoelectric element or the like with high accuracy without inclining along the axial direction of the driving body becomes unnecessary, and the manufacturing can be facilitated. In addition, when a piezoelectric element is attached to the drive body, there is no problem of deviation of the mass distribution due to variations in the thickness of the adhesive, and the occurrence of variation in the mass of the drive body can be suppressed, and the drive body is always highly accurate. Can be driven in various vibration modes.

本発明は、前記支持体には、前記駆動体の軸と直交する平面が設けられ、前記駆動素子が前記平面に取り付けられており、前記駆動素子から前記駆動体の軸中心に対して、互いに直交する向きで且つ位相が相違する加振力が与えられるものである。   In the present invention, the support is provided with a plane orthogonal to the axis of the drive body, the drive element is attached to the plane, and the drive element is mutually attached to the axis center of the drive body. Exciting forces that are orthogonal and have different phases are applied.

また、本発明は、前記支持体には、前記駆動体の軸中心の延長上に穴が開口していることが好ましい。   In the present invention, it is preferable that a hole is opened in the support body on an extension of an axial center of the driving body.

支持体に、駆動体の軸中心の延長上に位置する穴が開口していると、それぞれの駆動素子から支持体に与える振動によって、駆動体と支持体との連結部に円運動を発生させやすくなり、駆動体を共振モードで振動させやすい。   If a hole located on the support is located on the extension of the axis of the drive body, a circular motion is generated at the connecting part between the drive body and the support body due to the vibration applied to the support body from each drive element. This makes it easier to vibrate the driving body in the resonance mode.

さらに、本発明は、前記支持体には、隣り合う駆動素子の間に位置する穴が形成されていることが好ましい。   Furthermore, in the present invention, it is preferable that a hole positioned between adjacent drive elements is formed in the support.

支持体の平面において、直交して隣り合う位置に配置された駆動素子は、互いに位相が相違する振動を発生するが、隣り合う駆動素子の間において支持体に穴を形成しておくと、異なる位相の振動により支持体の平面に波状の不要な振動が発生しにくくなる。   Drive elements arranged at adjacent positions orthogonal to each other on the plane of the support generate vibrations having different phases from each other, but differ if holes are formed in the support between adjacent drive elements. Due to the vibration of the phase, unnecessary wavy vibration is hardly generated on the plane of the support.

本発明は、例えば、前記駆動体は、弾性変形可能な振動軸で、前記移動体は、内周面に雌ねじ部が形成された筒体であり、前記駆動用嵌合部は、前記振動軸に設けられた雄ねじ部である。   In the present invention, for example, the driving body is an elastically deformable vibration shaft, the moving body is a cylindrical body having an internal thread formed on an inner peripheral surface, and the driving fitting portion is the vibration shaft. It is the external thread part provided in.

この場合に、前記振動軸の外周面には圧電素子などの駆動素子を貼着する必要がないため、振動軸の外周面を円筒面にできる。そのため、振動軸の製造が容易である。さらに外周面が円筒面であると、振動軸は、撓み方向がどの方向であっても断面係数をほぼ等しくできる。よって、駆動用嵌合部が円運動する撓み振動を発生しやすい。   In this case, since it is not necessary to attach a driving element such as a piezoelectric element to the outer peripheral surface of the vibration shaft, the outer peripheral surface of the vibration shaft can be a cylindrical surface. Therefore, it is easy to manufacture the vibration shaft. Furthermore, when the outer peripheral surface is a cylindrical surface, the vibration axis can have substantially the same section modulus regardless of the direction of bending. Therefore, it is easy to generate the flexural vibration in which the driving fitting portion moves circularly.

または、本発明は、前記駆動体は、弾性変形可能な振動筒体で、前記移動体は、外周面に雄ねじ部が形成された軸体であり、前記駆動用嵌合部は、前記振動筒体の内周面に設けられた雌ねじ部である。   Alternatively, in the present invention, the driving body is an elastically deformable vibration cylinder, the moving body is a shaft body having a male screw portion formed on an outer peripheral surface, and the driving fitting portion is the vibration cylinder. It is the internal thread part provided in the internal peripheral surface of the body.

この場合も、前記振動筒体の外周面を円筒面にすることが可能であり、振動筒体の撓み方向がどの方向であっても断面係数をほぼ等しくできる。   Also in this case, the outer peripheral surface of the vibrating cylinder can be a cylindrical surface, and the section modulus can be made almost equal regardless of the direction of bending of the vibrating cylinder.

本発明では、駆動素子によって支持体を振動させ、支持体の振動を駆動体に伝達させて、駆動体を振動させている。そのため、駆動体に圧電素子などの駆動素子を貼着する必要がなく、駆動体の形状を簡単にでき、製造が容易である。また、駆動体のを円形に形成することができ、それぞれの撓み方向への断面係数をほぼ均一にすることが可能であり、駆動用ねじ部に高精度な円運動を発生させやすくなる。   In the present invention, the support body is vibrated by the drive element, and the vibration of the support body is transmitted to the drive body to vibrate the drive body. Therefore, there is no need to attach a driving element such as a piezoelectric element to the driving body, the shape of the driving body can be simplified, and manufacturing is easy. In addition, the driving body can be formed in a circular shape, and the section modulus in each bending direction can be made substantially uniform, and it is easy to generate a highly accurate circular motion in the driving screw portion.

図1は本発明の第1の実施の形態の振動型アクチュエータを、移動体を取り外した状態で示す斜視図、図2は、第1の実施の形態の振動型アクチュエータを軸中心と垂直な面で切断した横断面図、図3は前記振動型アクチュエータを軸中心を含む面で切断した縦断面図である。図4と図5は圧電素子と駆動回路との結線構造を示す説明図、図6は圧電素子に与える駆動信号の位相を示す波形図である。図7(A)(B)は、第1の実施の形態の振動型アクチュエータの共振モードをモデル別に示す説明図である。図8は、第1の実施の形態の変形例の振動型アクチュエータの振動モードのモデル説明図である。   FIG. 1 is a perspective view showing a vibration type actuator according to a first embodiment of the present invention with a moving body removed, and FIG. 2 is a plane perpendicular to the axis center of the vibration type actuator according to the first embodiment. FIG. 3 is a longitudinal sectional view of the vibration type actuator cut along a plane including the axial center. 4 and 5 are explanatory diagrams showing the connection structure between the piezoelectric element and the drive circuit, and FIG. 6 is a waveform diagram showing the phase of the drive signal applied to the piezoelectric element. FIGS. 7A and 7B are explanatory diagrams showing resonance modes of the vibration type actuator according to the first embodiment for each model. FIG. 8 is an explanatory diagram of a vibration mode model of the vibration type actuator according to the modification of the first embodiment.

図1に示す振動型アクチュエータ1は、駆動体が振動軸2であり、移動体4が上下方向(Z軸方向)に貫通する中心穴4aを有する筒体である。移動体4の中心穴4aの内周面には軸方向に連続する雌ねじ部14が形成されている。また、振動軸2の軸方向の中心部には、駆動子3が固定されており、この駆動子3の外周面に駆動用嵌合部として機能する雄ねじ部13が形成されている。   The vibration type actuator 1 shown in FIG. 1 is a cylindrical body having a center hole 4a through which the driving body is the vibration shaft 2 and the moving body 4 penetrates in the vertical direction (Z-axis direction). An internal thread portion 14 that is continuous in the axial direction is formed on the inner peripheral surface of the center hole 4 a of the moving body 4. A drive element 3 is fixed at the axial center of the vibration shaft 2, and a male screw part 13 that functions as a drive fitting part is formed on the outer peripheral surface of the drive element 3.

振動軸2は、金属または合成樹脂材料などの弾性材料で形成されており、外力が作用していないときに軸中心O1が直線となる中実軸または中空軸である。振動軸2は軸中心O1が湾曲するように撓むことができ、その結果、振動軸2に固定されている駆動子3が円運動をするものである。よって、軸中心O1と直交するX−Y座標平面内のどの方向に対しても曲げ剛性がほぼ等しいことが好ましく、そのためには、振動軸2の断面係数がどの方向に対しても一律であることが好ましい。この振動型アクチュエータ1は、振動軸2の外周面に圧電素子を取り付ける必要がないため、振動軸2の外周面を円筒面にでき、振動軸2をX−Y平面で切断した断面の形状を、中実円形または中空円形(円筒形状)とすることができる。よって、振動軸2は、X−Y平面のどの向きに対しても断面係数が一律である。   The vibration shaft 2 is formed of an elastic material such as a metal or a synthetic resin material, and is a solid shaft or a hollow shaft whose axial center O1 is a straight line when no external force is applied. The vibration shaft 2 can be bent so that the shaft center O1 is curved. As a result, the driver 3 fixed to the vibration shaft 2 performs a circular motion. Therefore, it is preferable that the bending rigidity is almost equal in any direction in the XY coordinate plane orthogonal to the axis center O1, and for that purpose, the section modulus of the vibration shaft 2 is uniform in any direction. It is preferable. Since the vibration type actuator 1 does not require a piezoelectric element to be attached to the outer peripheral surface of the vibration shaft 2, the outer peripheral surface of the vibration shaft 2 can be a cylindrical surface, and the cross-sectional shape of the vibration shaft 2 cut along the XY plane can be obtained. It can be a solid circle or a hollow circle (cylindrical shape). Therefore, the vibration axis 2 has a uniform section modulus with respect to any direction on the XY plane.

振動軸2の外周面が円筒面であると、振動軸を丸棒状の軸や円筒体で製造することができ、製造コストを低減できる。また、振動軸2の軸方向での質量の分布を均一にできる。   When the outer peripheral surface of the vibration shaft 2 is a cylindrical surface, the vibration shaft can be manufactured with a round bar-shaped shaft or a cylindrical body, and the manufacturing cost can be reduced. In addition, the mass distribution in the axial direction of the vibration shaft 2 can be made uniform.

図1に示すように、振動軸2は図示下端部が支持体5に保持されて固定されており、振動軸2の図示上端部が自由端である。図1に示すように、支持体5は、一定の厚みの弾性力を発揮する板材であり、金属板または合成樹脂板あるいはセラミック板である。支持体5には中心穴5aが貫通して形成されており、前記振動軸2の下端部は、前記中心穴5aの内部に挿入されて支持体5に溶接などの手段で固定されている。または振動軸2の下端部が前記中心穴5a内に圧入されて固定されている。振動軸2に駆動力が作用していない状態で、振動軸2の軸中心O1は、支持体5の表平面5bに対して垂直である。   As shown in FIG. 1, the vibration shaft 2 is fixed with a lower end portion of the vibration shaft 2 held by a support 5, and the upper end portion of the vibration shaft 2 is a free end. As shown in FIG. 1, the support 5 is a plate material that exhibits a certain thickness of elastic force, and is a metal plate, a synthetic resin plate, or a ceramic plate. A center hole 5a is formed through the support 5 and the lower end portion of the vibration shaft 2 is inserted into the center hole 5a and fixed to the support 5 by means such as welding. Alternatively, the lower end portion of the vibration shaft 2 is press-fitted into the center hole 5a and fixed. In a state where no driving force is applied to the vibration shaft 2, the axis center O <b> 1 of the vibration shaft 2 is perpendicular to the surface 5 b of the support 5.

支持体5の表平面5bには、駆動素子として4つの圧電素子6,7,8,9が取り付けられている。圧電素子6,7,8,9は電歪効果を発揮する圧電セラミックで形成されており、それぞれの圧電素子6,7,8,9の誘電分極の向きは厚み方向(Z方向)である。   Four piezoelectric elements 6, 7, 8, and 9 are attached to the surface 5 b of the support 5 as drive elements. The piezoelectric elements 6, 7, 8, 9 are made of a piezoelectric ceramic that exhibits an electrostrictive effect, and the direction of dielectric polarization of each of the piezoelectric elements 6, 7, 8, 9 is the thickness direction (Z direction).

圧電素子6と圧電素子7は、振動軸2の下端部の中心O2を通ってX方向に延びる線上に位置している。圧電素子6は、前記中心O2よりも+X側に位置し、圧電素子7は、前記中心O2よりも−X側に位置している。圧電素子6は上側(+Z側)の面に電極6aが支持体5の表平面5bと対向する面に電極6bが設けられている。圧電素子7は上側(+Z側)の面に電極7aが支持体5の表平面5bと対向する面に電極7bが設けられている。   The piezoelectric element 6 and the piezoelectric element 7 are located on a line extending in the X direction through the center O2 of the lower end portion of the vibration shaft 2. The piezoelectric element 6 is located on the + X side with respect to the center O2, and the piezoelectric element 7 is located on the −X side with respect to the center O2. In the piezoelectric element 6, an electrode 6 b is provided on a surface of the upper surface (+ Z side) where the electrode 6 a faces the surface 5 b of the support 5. In the piezoelectric element 7, an electrode 7 b is provided on the upper surface (+ Z side) of the electrode 7 a on the surface facing the front surface 5 b of the support 5.

支持体5が金属で形成されて、支持体5が接地電位に設定される場合には、図4と図5に示すように、それぞれの電極6b,7bは支持体5に電気的に接続されて、電極6b,7bが接地電位に設定される。支持体5が金属で形成されており、電極6b,7bに接地電位以外の駆動電圧が与えられるときは、電極6b,7bと支持体5の表平面5bとの間に絶縁層が設けられる。   When the support 5 is made of metal and the support 5 is set to the ground potential, the electrodes 6b and 7b are electrically connected to the support 5 as shown in FIGS. Thus, the electrodes 6b and 7b are set to the ground potential. When the support 5 is made of metal and a drive voltage other than the ground potential is applied to the electrodes 6b and 7b, an insulating layer is provided between the electrodes 6b and 7b and the surface 5b of the support 5.

圧電素子8と圧電素子9は、振動軸2の下端部の中心O2を通ってY方向に延びる線上に位置している。圧電素子8は、前記中心O2よりも+Y側に位置し、圧電素子9は、前記中心O2よりも−Y側に位置している。圧電素子8は上側(+Z側)の面に電極8aが支持体5の表平面5bと対向する面に電極8bが設けられている。圧電素子9は上側(+Z側)の面に電極9aが、支持体5の表平面5bと対向する面に電極9bが設けられている。   The piezoelectric element 8 and the piezoelectric element 9 are located on a line extending in the Y direction through the center O2 of the lower end portion of the vibration shaft 2. The piezoelectric element 8 is located on the + Y side with respect to the center O2, and the piezoelectric element 9 is located on the −Y side with respect to the center O2. In the piezoelectric element 8, an electrode 8 b is provided on a surface of the upper surface (+ Z side) where the electrode 8 a faces the surface 5 b of the support 5. In the piezoelectric element 9, an electrode 9 a is provided on the upper (+ Z side) surface, and an electrode 9 b is provided on the surface of the support 5 that faces the front surface 5 b.

支持体5が金属で形成されて、支持体5が接地電位に設定される場合には、図4と図5に示すように、それぞれの電極8b,9bは支持体5に電気的に接続されて、電極8b,9bが接地電位に設定される。支持体5が金属で形成されており、電極8b,9bに接地電位以外の駆動電圧が与えられるときは、電極8b,9bと支持体5の表平面5bとの間に絶縁層が設けられる。   When the support 5 is made of metal and the support 5 is set to the ground potential, the electrodes 8b and 9b are electrically connected to the support 5 as shown in FIGS. Thus, the electrodes 8b and 9b are set to the ground potential. When the support 5 is made of metal and a drive voltage other than the ground potential is applied to the electrodes 8b and 9b, an insulating layer is provided between the electrodes 8b and 9b and the surface 5b of the support 5.

圧電素子6と圧電素子7は、長手方向がX方向に向けられ、Y方向の幅寸法は長手方向の寸法よりも十分に短い。よって、電極6a,6b間に駆動信号(駆動電圧)が与えられて圧電素子6に体積変化が生じると、圧電素子6から支持体5に対して、主にX方向への伸び応力または収縮応力が与えられる。同様に、圧電素子7から支持体5に対してX方向への伸び応力または収縮応力が与えられる。圧電素子6と圧電素子7は、一方がX方向へ伸びると他方がX方向へ縮むように動作する。   The piezoelectric element 6 and the piezoelectric element 7 have the longitudinal direction oriented in the X direction, and the width dimension in the Y direction is sufficiently shorter than the dimension in the longitudinal direction. Therefore, when a drive signal (drive voltage) is applied between the electrodes 6a and 6b and a volume change occurs in the piezoelectric element 6, an elongation stress or a contraction stress mainly in the X direction from the piezoelectric element 6 to the support 5 is obtained. Is given. Similarly, an elongation stress or a contraction stress in the X direction is applied from the piezoelectric element 7 to the support 5. The piezoelectric element 6 and the piezoelectric element 7 operate so that when one extends in the X direction, the other contracts in the X direction.

圧電素子8と圧電素子9は、長手方向がY方向に向けられ、X方向の幅寸法が長手方向の寸法よりも十分に短い長尺形状である。よって、電極8a,8b間に駆動信号(駆動電圧)が与えられ、電極9a,9b間に駆動信号(駆動電圧)が与えられると、圧電素子8および圧電素子9から支持体5に対して、主にY方向への伸び応力と収縮応力が与えられる。圧電素子8と圧電素子9は、一方がY方向へ伸びると他方がY方向へ縮むように動作する。   The piezoelectric element 8 and the piezoelectric element 9 have a long shape in which the longitudinal direction is directed in the Y direction and the width dimension in the X direction is sufficiently shorter than the dimension in the longitudinal direction. Therefore, when a drive signal (drive voltage) is applied between the electrodes 8a and 8b and a drive signal (drive voltage) is applied between the electrodes 9a and 9b, the piezoelectric element 8 and the piezoelectric element 9 are applied to the support 5 with respect to the support body 5. Elongation stress and shrinkage stress in the Y direction are mainly given. The piezoelectric element 8 and the piezoelectric element 9 operate so that when one extends in the Y direction, the other contracts in the Y direction.

図1に示すように、隣り合う圧電素子の間には、扇形状の貫通穴5dが設けられている。圧電素子6,7,8,9のそれぞれから支持体5に与えられる歪みは、前記貫通穴5dで遮断され、圧電素子6,7,8,9から支持体5に対して不要な波状の歪みが与えられるのを防止できる。よって、圧電素子6,7,8,9から支持体5に与えられる伸び応力や収縮応力が、振動軸2の下端部の中心O2に対してX方向とY方向に作用しやすくなる。さらに、支持体5には、前記振動軸2と同軸上に位置する中心穴5aが開口しているため、圧電素子6,7,8,9から支持体5に与えられる応力によって、振動軸2の下端部の中心O2に振動を与えやすくなる。すなわち、圧電素子6,7から支持体5に与えられるX方向への応力と、圧電素子8,9から支持体5に与えられるY方向への応力とが、中心穴5aを介して振動軸2の下端部の中心O2に作用しやすくなる。   As shown in FIG. 1, a fan-shaped through hole 5d is provided between adjacent piezoelectric elements. The distortion applied to the support 5 from each of the piezoelectric elements 6, 7, 8, 9 is blocked by the through-hole 5 d, and unnecessary wave-like distortion from the piezoelectric elements 6, 7, 8, 9 to the support 5. Can be prevented from being given. Therefore, the elongation stress and the contraction stress applied from the piezoelectric elements 6, 7, 8, 9 to the support body 5 easily act in the X direction and the Y direction with respect to the center O 2 of the lower end portion of the vibration shaft 2. Further, since the support 5 has a central hole 5a located coaxially with the vibration axis 2, the vibration axis 2 is caused by stress applied to the support 5 from the piezoelectric elements 6, 7, 8, and 9. It becomes easy to give a vibration to the center O2 of the lower end part of. That is, the stress in the X direction applied from the piezoelectric elements 6 and 7 to the support body 5 and the stress in the Y direction applied from the piezoelectric elements 8 and 9 to the support body 5 are transmitted through the center hole 5a. It becomes easy to act on the center O2 of the lower end part.

その結果、圧電素子6,7と圧電素子8,9に対して位相が90度相違する駆動信号を与えることにより、振動軸2の下端部の中心O2が円運動を生じやすくなる。   As a result, by giving drive signals having a phase difference of 90 degrees to the piezoelectric elements 6 and 7 and the piezoelectric elements 8 and 9, the center O2 of the lower end portion of the vibration shaft 2 is likely to cause a circular motion.

図2と図3に示すように、前記駆動子3は金属または合成樹脂で形成されており、その内周面が振動軸2の外側に挿通されて固定されている。なお、駆動子3と振動軸2とが金属材料などで一体に形成されていてもよい。そして、駆動子3の外周面には駆動用嵌合部として機能する雄ねじ部13が形成されている。   As shown in FIGS. 2 and 3, the driver 3 is made of metal or synthetic resin, and an inner peripheral surface thereof is inserted and fixed to the outside of the vibration shaft 2. The driver 3 and the vibration shaft 2 may be integrally formed of a metal material or the like. A male screw portion 13 that functions as a driving fitting portion is formed on the outer peripheral surface of the driver element 3.

図1の例では、駆動子3が、振動軸2の長さの中点に配置されているが、駆動子3の最適位置は移動軸2の撓み共振のモードに応じて決まる。そのため、駆動子3を振動軸2の自由端に設けることが最適である場合があり、また駆動子3を振動軸2の中点以外の位置に設けることが最適な場合もある。いずれにせよ、振動子3は振動軸2の共振モードでの振動の節と節との中点に設けられることが好ましい。   In the example of FIG. 1, the driver element 3 is arranged at the midpoint of the length of the vibration shaft 2, but the optimum position of the driver element 3 is determined according to the mode of flexural resonance of the moving shaft 2. For this reason, it may be optimal to provide the drive element 3 at the free end of the vibration shaft 2, and it may be optimal to provide the drive element 3 at a position other than the midpoint of the vibration shaft 2. In any case, the vibrator 3 is preferably provided at a midpoint between vibration nodes in the resonance mode of the vibration shaft 2.

円筒状の移動体4は金属製であり、その中心穴4aの内周面に雌ねじ部14が軸方向の全長にわたって形成されている。移動体4は慣性力が大きいことが好ましく、そのためには質量が大きいことが好ましい。移動体4は、その質量が、振動軸2の質量と駆動子3の質量との総和、すなわち振動部分の質量の総和よりも大きいことが好ましい。   The cylindrical moving body 4 is made of metal, and an internal thread portion 14 is formed over the entire length in the axial direction on the inner peripheral surface of the center hole 4a. The moving body 4 preferably has a large inertial force, and for that purpose, the mass is preferably large. It is preferable that the mass of the movable body 4 is larger than the sum of the mass of the vibration shaft 2 and the mass of the driver 3, that is, the sum of the masses of the vibrating portions.

移動体4の中心穴4aの内周面に形成された雌ねじ部14は、前記駆動子3の外周面に形成された雄ねじ部13と同じピッチを有しているが、雌ねじ部14の有効径は、雄ねじ部13の有効径よりもやや大きい。そのため、図2および図3に模式的に示すように、移動体4の雌ねじ部14が、駆動子3の雄ねじ部13に嵌合したときに、移動体4は軸中心O1と直交する方向へ若干のがたつきを有しているが、移動体4を軸中心O1に沿う方向へ移動させようとしても、雌ねじ部14のねじ山が、雄ねじ部13のねじ山を越えることはない。すなわち、移動体4は、駆動子3に対して軸方向へがたつきを生じるように嵌合されているが、移動体4が駆動子3に対して軸方向へ抜き出ることはない。   The internal thread portion 14 formed on the inner peripheral surface of the center hole 4 a of the moving body 4 has the same pitch as the external thread portion 13 formed on the outer peripheral surface of the driver 3, but the effective diameter of the internal thread portion 14. Is slightly larger than the effective diameter of the male screw portion 13. Therefore, as schematically shown in FIGS. 2 and 3, when the female screw portion 14 of the moving body 4 is fitted to the male screw portion 13 of the driver 3, the moving body 4 moves in a direction orthogonal to the axial center O <b> 1. Although it has some shakiness, even if the moving body 4 is moved in the direction along the axial center O1, the thread of the female screw portion 14 does not exceed the screw thread of the male screw portion 13. That is, the moving body 4 is fitted to the driver element 3 so as to rattle in the axial direction, but the moving body 4 is not pulled out of the driver element 3 in the axial direction.

図4には、駆動回路20としてA相の駆動信号生成部(交流電圧発生部)21とB相の駆動信号生成部(交流電圧発生部)22が示されている。この実施の形態の振動型アクチュエータ1では、それぞれの圧電素子6,7,8,9と前記駆動回路20とで加振手段が構成されている。図6の波形図に示すように、A相の駆動信号生成部21で生成されるA+相の駆動信号(電圧)と、B相の駆動信号生成部21で生成されるB+相の駆動信号(電圧)は位相が互いに90度相違し、一方がほぼ正弦波で他方がほぼ余弦波の関係である。B+相はA+相よりも位相が90度進んでいる。なお、前記A相の駆動信号とB相の駆動信号とが、位相が相違する矩形波であってもよい。圧電素子6,7,8,9に矩形波を与えたときも、電気的な信号伝達の遅延や機械的な電歪効果の遅れにより、圧電素子6,7,8,9に正弦波と余弦波を与えたのと同等にして駆動することが可能である。   FIG. 4 shows an A-phase drive signal generator (AC voltage generator) 21 and a B-phase drive signal generator (AC voltage generator) 22 as the drive circuit 20. In the vibration type actuator 1 according to this embodiment, the piezoelectric elements 6, 7, 8, 9 and the drive circuit 20 constitute vibration means. As shown in the waveform diagram of FIG. 6, the A + phase drive signal (voltage) generated by the A phase drive signal generator 21 and the B + phase drive signal (voltage) generated by the B phase drive signal generator 21 (see FIG. 6). (Voltage) are 90 degrees out of phase with each other, one of which is approximately a sine wave and the other is approximately a cosine wave. The B + phase is 90 degrees ahead of the A + phase. The A-phase drive signal and the B-phase drive signal may be rectangular waves having different phases. Even when a rectangular wave is applied to the piezoelectric elements 6, 7, 8, 9, a sine wave and cosine are applied to the piezoelectric elements 6, 7, 8, 9 due to a delay in electrical signal transmission and a delay in mechanical electrostriction effect. It can be driven in the same way as a wave is applied.

図4に示す結線構造では、圧電素子6と圧電素子9の誘電分極方向が−Z方向であり、圧電素子7と圧電素子8の誘電分極方向が+Z方向である。圧電素子6,7,8,9の電極6b,7b,8b,9bは、金属製の支持体5に接触した状態で固定されており、電極6b,7b,8b,9bは接地電位に設定されている。   In the connection structure shown in FIG. 4, the dielectric polarization direction of the piezoelectric elements 6 and 9 is the −Z direction, and the dielectric polarization direction of the piezoelectric elements 7 and 8 is the + Z direction. The electrodes 6b, 7b, 8b, 9b of the piezoelectric elements 6, 7, 8, 9 are fixed in contact with the metal support 5, and the electrodes 6b, 7b, 8b, 9b are set to the ground potential. ing.

A相の駆動信号生成部21からのA+相の駆動信号は、圧電素子6の表側の電極6aと、圧電素子7の表側の電極7aに与えられる。また、B相の駆動信号生成部からのB+相の駆動信号は、圧電素子8の表側の電極8aと、圧電素子9の表側の電極9aに与えられる。また、駆動信号生成部21のA−側と駆動信号生成部22のB−側は接地電位に設定されている。   The A + phase drive signal from the A phase drive signal generator 21 is applied to the front electrode 6 a of the piezoelectric element 6 and the front electrode 7 a of the piezoelectric element 7. Also, the B + phase drive signal from the B phase drive signal generation unit is applied to the front electrode 8 a of the piezoelectric element 8 and the front electrode 9 a of the piezoelectric element 9. The A-side of the drive signal generation unit 21 and the B-side of the drive signal generation unit 22 are set to the ground potential.

図4に示す結線構造では、それぞれの駆動信号生成部21,22内の発振回路で得られたほぼ正弦波およびほぼ余弦波が、圧電素子6,7,8,9の表側の電極6a,7a,8a,9aに直接に与えられる構造であるため、回路構成を単純にできる。   In the connection structure shown in FIG. 4, substantially sine waves and substantially cosine waves obtained by the oscillation circuits in the respective drive signal generation units 21 and 22 are converted to the electrodes 6 a and 7 a on the front side of the piezoelectric elements 6, 7, 8 and 9. , 8a, 9a, the circuit configuration can be simplified.

次に、上記振動型アクチュエータ1の動作について説明する。
図4に示す結線構造では、圧電素子6と圧電素子7の誘電分極方向が逆向きであり、しかも電極6aと電極7aにA+相の同じ駆動信号が与えられている。そのため、圧電素子6と圧電素子7の一方が支持体5にX方向への伸び応力を与えるときに、同時に他方が支持体5にX方向への収縮応力を与える。よって、圧電素子6と圧電素子7との中間に位置する振動軸2の下端部の中心O2は、A+相の周波数と同じ振動数で+X方向と−X方向へ往復運動し、このときの中心O2の時間に対する位置の変化は、ほぼ正弦関数に一致する。
Next, the operation of the vibration type actuator 1 will be described.
In the connection structure shown in FIG. 4, the dielectric polarization directions of the piezoelectric element 6 and the piezoelectric element 7 are opposite to each other, and the same A + phase drive signal is applied to the electrodes 6a and 7a. Therefore, when one of the piezoelectric element 6 and the piezoelectric element 7 applies an elongation stress in the X direction to the support 5, the other simultaneously applies a contraction stress in the X direction to the support 5. Therefore, the center O2 of the lower end portion of the vibration shaft 2 located between the piezoelectric element 6 and the piezoelectric element 7 reciprocates in the + X direction and the −X direction at the same frequency as the frequency of the A + phase, and the center at this time The change in position with respect to time of O2 almost corresponds to a sine function.

また、圧電素子8と圧電素子9は誘電分極方向が逆であるため、電極8aと電極9aに、B+相の駆動信号が同時に与えられると、圧電素子8と圧電素子9の一方が支持体5にY方向への伸び応力を与え、同時に他方が支持体5にY方向への収縮応力を与える。圧電素子8と圧電素子9の中間に振動軸2の下端部の中心O2は、B+相の周波数と同じ振動数で+Y方向と−Y方向へ往復運動し、このときの中心O2の時間に対する位置の変化は、ほぼ余弦関数に一致する。   In addition, since the dielectric polarization directions of the piezoelectric element 8 and the piezoelectric element 9 are opposite to each other, when a B + phase drive signal is simultaneously applied to the electrode 8a and the electrode 9a, one of the piezoelectric element 8 and the piezoelectric element 9 becomes the support 5. Is given an elongation stress in the Y direction, while the other gives a shrinkage stress in the Y direction to the support 5. The center O2 of the lower end portion of the vibration shaft 2 between the piezoelectric element 8 and the piezoelectric element 9 reciprocates in the + Y direction and the −Y direction at the same frequency as the frequency of the B + phase, and the position of the center O2 with respect to time at this time The change of is almost coincident with the cosine function.

すなわち、A+相とB+相は、位相が90度相違し、A+相とB+相とが同じ周波数であるため、前記のようにA+相とB+相は正弦関数と余弦関数の関係となる。前記中心O2は正弦関数と余弦関数との合成運動となり、よって前記中心O2が円運動をする。   That is, the A + phase and the B + phase are different by 90 degrees, and the A + phase and the B + phase have the same frequency. Therefore, as described above, the A + phase and the B + phase have a sine function and a cosine function. The center O2 is a combined motion of a sine function and a cosine function, and thus the center O2 performs a circular motion.

図4に示す結線構造では、例えば、図6に示す時刻(a)で、圧電素子7が収縮して圧電素子6が伸び、その後の時刻(b)で、圧電素子8が収縮して圧電素子9が伸びるため、振動軸2の下端部の中心O2が上からみて時計方向へ円運動する。   In the connection structure shown in FIG. 4, for example, the piezoelectric element 7 contracts and the piezoelectric element 6 extends at time (a) shown in FIG. 6, and the piezoelectric element 8 contracts and piezoelectric element at a subsequent time (b). Since 9 extends, the center O2 of the lower end portion of the vibration shaft 2 moves in a clockwise direction as viewed from above.

図4において、A+相の駆動信号を圧電素子8,9の電極8a,9aに与え、B+相の駆動信号を圧電素子6,7の電極6a,7aに与えるように回路を切り換えると、前記中心O2の回転方向が逆の反時計方向となる。   In FIG. 4, when the circuit is switched such that an A + phase drive signal is applied to the electrodes 8a and 9a of the piezoelectric elements 8 and 9 and a B + phase drive signal is applied to the electrodes 6a and 7a of the piezoelectric elements 6 and 7, The rotation direction of O2 is counterclockwise.

図5は、圧電素子6,7,8,9と駆動回路20との他の結線構造を示している。
図5に示す結線構造では、全ての圧電素子6,7,8,9の誘電分極方向が同じ方向の−Z方向へ向けられている。また、全ての圧電素子6,7,8,9の−Z側の面に設けられている電極6b,7b,8b,9bが、金属製の支持体5の表平面5bに接続されて固定されており、支持体5とともに、電極6b,7b,8b,9bが接地電位に設定されている。
FIG. 5 shows another connection structure between the piezoelectric elements 6, 7, 8 and 9 and the drive circuit 20.
In the connection structure shown in FIG. 5, the dielectric polarization directions of all the piezoelectric elements 6, 7, 8, 9 are directed to the same −Z direction. Further, the electrodes 6b, 7b, 8b, 9b provided on the −Z side surface of all the piezoelectric elements 6, 7, 8, 9 are connected and fixed to the front surface 5b of the metal support 5. In addition to the support 5, the electrodes 6b, 7b, 8b, 9b are set to the ground potential.

A相の駆動信号生成部21で発せられるA+相の駆動信号は、圧電素子6の表側の電極6aに与えられるとともに、A+相の駆動信号が位相反転回路23によって位相が180度変えられて反転され、圧電素子7の表側の電極7aに与えられる。B相の駆動信号生成部22で発せられるB+相の駆動信号は、圧電素子9の表側の電極9aに与えられるとともに、B+相の駆動信号が位相反転回路24によって位相が反転されて、圧電素子8の表側の電極8aに与えられる。   The A + phase drive signal generated by the A phase drive signal generation unit 21 is applied to the front electrode 6a of the piezoelectric element 6, and the phase of the A + phase drive signal is inverted by 180 degrees by the phase inverter 23. And applied to the front electrode 7 a of the piezoelectric element 7. The B + phase drive signal generated by the B phase drive signal generation unit 22 is applied to the front electrode 9a of the piezoelectric element 9, and the B + phase drive signal is inverted in phase by the phase inversion circuit 24. 8 is applied to the front electrode 8a.

図5に示す結線構造では、圧電素子7と圧電素子8の誘電分極方向が−Z方向であり、図4に示す結線構造における+Z方向の誘電分極方向と逆向きである。ただし、図5では、圧電素子7の電極7aにA+相の駆動信号が反転されて与えられ、圧電素子8の電極8aにB+相の駆動信号が反転されて与えられている。   In the connection structure shown in FIG. 5, the dielectric polarization direction of the piezoelectric elements 7 and 8 is the −Z direction, which is opposite to the + Z direction dielectric polarization direction in the connection structure shown in FIG. 4. However, in FIG. 5, the A + phase drive signal is inverted and applied to the electrode 7 a of the piezoelectric element 7, and the B + phase drive signal is inverted and applied to the electrode 8 a of the piezoelectric element 8.

そのため、図5に示す結線構造では、図4に示す結線構造と同様に、振動軸2の下端部の中心O2が、上方から見て時計回りに円運動する。また、図5の結線構造において、A+相の駆動信号とB+相の駆動信号を入れ替えるように切り換えると、中心O2の円運動の向きが反時計回りに切り換えられる。   Therefore, in the connection structure shown in FIG. 5, the center O2 of the lower end portion of the vibration shaft 2 circularly moves clockwise as viewed from above, similarly to the connection structure shown in FIG. In the connection structure of FIG. 5, when the A + phase drive signal and the B + phase drive signal are switched so as to be switched, the direction of the circular motion of the center O2 is switched counterclockwise.

図5に示す結線構造では、全ての圧電素子6,7,8,9の誘電分極方向が同じであるため、圧電素子の取付けの向きを誤ることがなく、組み立てミスが生じにくい。   In the connection structure shown in FIG. 5, all the piezoelectric elements 6, 7, 8, 9 have the same dielectric polarization direction.

前記駆動信号生成部21から圧電素子6,7に与えられるA+相の駆動信号の周波数と、駆動信号生成部22から圧電素子8,9に与えられるB+相の駆動信号の周波数は、振動軸2を固有振動数で撓み振動させることができる値に設定される。すなわち、A+相の駆動信号とB+相の駆動信号によって、振動軸2は図7および図8などに示す共振モードで撓みながら、下端部の中心O2が円運動し、よって、振動軸2の各部分も共振モードに対応した変形状態で円運動する。   The frequency of the A + phase drive signal given to the piezoelectric elements 6 and 7 from the drive signal generation unit 21 and the frequency of the B + phase drive signal given to the piezoelectric elements 8 and 9 from the drive signal generation unit 22 are the vibration axis 2. Is set to a value that can bend and vibrate at the natural frequency. That is, the vibration shaft 2 is bent in the resonance mode shown in FIG. 7 and FIG. 8 by the A + phase drive signal and the B + phase drive signal, and the center O2 of the lower end is circularly moved. The part also moves circularly in a deformed state corresponding to the resonance mode.

振動軸2の撓みの固有振動数は、振動軸2の質量と駆動子3の質量、ならびに振動軸2の長さ、および振動軸2の撓み変形の弾性係数で決まる。なお、駆動子3の質量は、振動軸2の全体の質量に比べてさほど大きくはなく、よって、振動軸2と駆動子3の質量は、実質的に振動軸2の軸方向に均一的に分布しているのに等しい。よって、振動軸2の固有振動数は、質量が軸方向に均等に分布している片持ち梁の固有振動数とおおむね等価である。ただし、実際は、振動軸2と共に移動体4も一緒に振動するため、移動体の質量と長さも、振動軸2の固有振動数を決定する要因のひとつとなる。   The natural frequency of the bending of the vibration shaft 2 is determined by the mass of the vibration shaft 2 and the mass of the driver 3, the length of the vibration shaft 2, and the elastic coefficient of the bending deformation of the vibration shaft 2. Note that the mass of the driver element 3 is not so large as compared with the entire mass of the vibration shaft 2, and therefore the masses of the vibration shaft 2 and the driver element 3 are substantially uniform in the axial direction of the vibration shaft 2. It is equal to being distributed. Therefore, the natural frequency of the vibration shaft 2 is approximately equivalent to the natural frequency of a cantilever beam whose mass is evenly distributed in the axial direction. However, in actuality, the moving body 4 and the moving body 4 vibrate together, so the mass and length of the moving body are one of the factors that determine the natural frequency of the vibrating shaft 2.

図7(A)(B)は、振動軸2の2つの共振モードをモデル別に示している。図7(A)の共振モードは、振動軸2の全長がほぼ1波長に相当する共振である。駆動子3は、振動の節と節との中点に位置しており、駆動子3の部分で円運動の振幅が最大となる。図4と図5の通電状態では、駆動子3が上から見て時計方向へ円運動する。図7(B)に示す共振モードは、1波長が振動軸2の全長のほぼ4倍である。振動軸2は、その下端部の中心O2において円運動の振幅が最大になり、駆動子3は、振幅が最大となる部分と振動の節との中点に位置して、時計方向へ円運動する。なお、振動軸2を、図7(A)(B)よりもさらに高次の固有振動数で共振させることも可能である。   7A and 7B show the two resonance modes of the vibration axis 2 for each model. The resonance mode in FIG. 7A is a resonance in which the entire length of the vibration axis 2 corresponds to approximately one wavelength. The driver 3 is located at the midpoint between the vibration nodes, and the amplitude of the circular motion is maximized at the portion of the driver 3. In the energized state shown in FIGS. 4 and 5, the driver element 3 moves in a clockwise direction when viewed from above. In the resonance mode shown in FIG. 7B, one wavelength is almost four times the entire length of the vibration axis 2. The vibration shaft 2 has the maximum circular motion amplitude at the center O2 at the lower end thereof, and the driver 3 is positioned at the midpoint between the maximum amplitude portion and the vibration node, and moves in a clockwise direction. To do. It is also possible to resonate the vibration shaft 2 at a higher natural frequency than in FIGS. 7 (A) and 7 (B).

振動軸2が、図7(A)(B)などに示す共振モードで撓み変形振動し、駆動子3が時計方向へ円運動すると、駆動子3の雄ねじ部13から筒状の移動体4の雌ねじ部14に対して時計方向への回転力が与えられる。よって、移動体4は時計方向へ回転させられながら、雌ねじ部14の螺旋軌跡にしたがって図示下方(−Z方向)へ進行していく。   When the vibration shaft 2 bends, deforms and vibrates in the resonance mode shown in FIGS. 7A and 7B and the driver element 3 moves in a clockwise direction, the male screw portion 13 of the driver element 3 causes the cylindrical moving body 4 to move. A clockwise rotational force is applied to the female screw portion 14. Therefore, the moving body 4 advances downward in the figure (−Z direction) according to the spiral locus of the female screw portion 14 while being rotated clockwise.

また、各圧電素子6,7,8,9の電極に対するA+相の駆動信号とB+相の駆動信号の通電状態が、図4および図5とは逆となるように切り換えられ、振動軸2の下端部の中心O2が反時計方向へ円運動すると、共振状態の駆動子3も上方から見て反時計方向へ円運動する。   In addition, the energization states of the A + phase drive signal and the B + phase drive signal to the electrodes of the piezoelectric elements 6, 7, 8, and 9 are switched so as to be opposite to those in FIGS. 4 and 5. When the center O2 of the lower end portion moves in a counterclockwise direction, the resonant driving element 3 also moves in a counterclockwise direction as viewed from above.

このとき、駆動子3の雄ねじ部13から移動体4の雌ねじ部14に対して反時計方向への回転力が与えられる。よって、移動体4は反時計方向へ回転させられながら、雌ねじ部14の螺旋軌跡にしたがって図示上方(+Z方向)へ向けて進行していく。   At this time, a counterclockwise rotational force is applied from the male screw portion 13 of the driver 3 to the female screw portion 14 of the moving body 4. Therefore, the moving body 4 proceeds in the upward direction (+ Z direction) according to the spiral locus of the female screw portion 14 while being rotated counterclockwise.

図8は第1の実施の形態の変形例となる振動型アクチュエータ1Aの共振モードを示している。   FIG. 8 shows a resonance mode of the vibration type actuator 1A which is a modification of the first embodiment.

この振動型アクチュエータ1Aでは、振動軸2の上端に雄ねじ部13を有する駆動子3が固定されている。振動軸2を共振させるための加振手段は、図1ないし図6に示した第1の実施の形態と同じである。加振手段により、振動軸2の下端部の中心O2に対してX−Y平面内で円運動を生じる力が与えられる。このときの共振モードは、1波長が振動軸2の軸方向の全長の2倍である。   In the vibration type actuator 1A, a driver element 3 having a male screw portion 13 is fixed to the upper end of the vibration shaft 2. The vibration means for resonating the vibration shaft 2 is the same as that of the first embodiment shown in FIGS. A force that causes circular motion in the XY plane is applied to the center O2 of the lower end portion of the vibration shaft 2 by the vibration means. In this case, one wavelength of the resonance mode is twice the total length of the vibration axis 2 in the axial direction.

図8に示す振動型アクチュエータ1Aでは、振動軸2の上端に設けられた駆動子3が共振状態で円運動するため、この駆動子3により移動体4に回転力が与えられ、雌ねじ部14の軌跡によって、移動体4が+Z方向または−Z方向へ移動させられる。   In the vibration type actuator 1A shown in FIG. 8, the driving element 3 provided at the upper end of the vibration shaft 2 performs a circular motion in a resonance state, so that a rotational force is applied to the moving body 4 by the driving element 3, and the female screw portion 14 The moving body 4 is moved in the + Z direction or the −Z direction by the locus.

図9は本発明の第2の実施の形態の振動型アクチュエータ101を示す縦断面図である。   FIG. 9 is a longitudinal sectional view showing the vibration type actuator 101 according to the second embodiment of the present invention.

図9に示す振動型アクチュエータ101は、駆動体が振動筒体104であり、この振動筒体104の下端部が支持体5に形成された中心穴5a内に挿入されて固定されている。振動筒体104の中心穴104aの上端部には駆動子103aが固定され、前記中心穴104aの下端部には駆動子103bが固定されている。それぞれの駆動子103a,103bはリング形状であり、その外周面が前記振動筒体104の中心穴104aの内周面に固定されている。そして、駆動子103a,103bのそれぞれの内周面には、駆動用嵌合部として機能する雌ねじ部14aと雌ねじ部14bが形成されている。   In the vibration type actuator 101 shown in FIG. 9, the driving body is a vibration cylinder 104, and the lower end portion of the vibration cylinder 104 is inserted into a center hole 5 a formed in the support body 5 and fixed. A driver element 103a is fixed to the upper end portion of the center hole 104a of the vibrating cylinder 104, and a driver element 103b is fixed to the lower end portion of the center hole 104a. Each of the driver elements 103 a and 103 b has a ring shape, and the outer peripheral surface thereof is fixed to the inner peripheral surface of the center hole 104 a of the vibrating cylinder 104. A female screw portion 14a and a female screw portion 14b functioning as a driving fitting portion are formed on the inner peripheral surfaces of the driver elements 103a and 103b.

支持体5の表平面5bには、図1に示すように、圧電素子6,7,8,9が固定されており、また隣り合う圧電素子の間には貫通穴5dが形成されている。   As shown in FIG. 1, piezoelectric elements 6, 7, 8, and 9 are fixed to the front surface 5 b of the support 5, and through holes 5 d are formed between adjacent piezoelectric elements.

移動体102は軸体であり、その軸中心は直線状である。そして、移動体102の外周面には、軸方向に連続する雄ねじ部13が形成されている。それぞれの雌ねじ部14a,14bと雄ねじ部13の有効径どうしの寸法関係や嵌合状態は、図2と図3に示された第1の実施の形態での雄ねじ部13と雌ねじ部14との嵌合と同じである。なお、軸体である移動体102の上方部分に、上側の雌ねじ部14aと嵌合する雄ねじ部が形成され、移動体102の下方部分に、下側の雌ねじ部14bと嵌合する雄ねじ部が形成され、上方部分の雄ねじ部と下方部分の雄ねじ部との間に、雄ねじ部が刻まれていない軸体の外周面が現れていてもよい。   The moving body 102 is a shaft body, and the center of the axis is linear. A male screw portion 13 that is continuous in the axial direction is formed on the outer peripheral surface of the moving body 102. The dimensional relationship and fitting state between the effective diameters of the female screw portions 14a and 14b and the male screw portion 13 are the same as those of the male screw portion 13 and the female screw portion 14 in the first embodiment shown in FIGS. Same as mating. A male screw portion that fits with the upper female screw portion 14a is formed in the upper portion of the moving body 102 that is a shaft body, and a male screw portion that fits with the lower female screw portion 14b is formed in the lower portion of the moving body 102. The outer peripheral surface of the shaft body which is formed and between which the male screw part is not engraved may appear between the male screw part of the upper part and the male screw part of the lower part.

この振動型アクチュエータ101では、第1の実施の形態と同様に、加振手段である圧電素子6,7,8,9から支持体5に伸び応力と収縮応力が与えられて、振動筒体104の下端部の中心が円運動する。この円運動の周波数を振動筒体104の固有振動数に合わせることにより、振動筒体104は撓み変形しなが円運動を起こすように共振する。   In this vibration type actuator 101, as in the first embodiment, elongation stress and contraction stress are applied to the support body 5 from the piezoelectric elements 6, 7, 8, 9 serving as vibration means, and the vibration cylinder 104 The center of the lower end of the circle moves circularly. By matching the frequency of this circular motion with the natural frequency of the vibrating cylinder 104, the vibrating cylinder 104 resonates so as to cause a circular movement without being deformed.

図10(A)(B)はこのときの共振モードの例を示している。共振周波数は、振動筒体104の質量および駆動子103a,103bの質量と、振動筒体104の長さ、ならびに振動筒体104のたわみ変形の弾性係数によって決まる。ただし、軸体である移動体102も一緒に動作するため、移動体102の質量および長さも共振周波数の決定要因となる。   10A and 10B show examples of resonance modes at this time. The resonance frequency is determined by the mass of the vibrating cylinder 104 and the masses of the driver elements 103a and 103b, the length of the vibrating cylinder 104, and the elastic coefficient of the deflection deformation of the vibrating cylinder 104. However, since the moving body 102, which is a shaft body, also operates together, the mass and length of the moving body 102 also determine the resonance frequency.

図10(A)に示す共振モードは、1波長が振動筒体104の長さのほぼ2倍である。図10(B)に示す共振モードは、振動筒体104の長さがほぼ1波長に相当している。   In the resonance mode shown in FIG. 10A, one wavelength is approximately twice the length of the vibrating cylinder 104. In the resonance mode shown in FIG. 10B, the length of the vibrating cylinder 104 is substantially equivalent to one wavelength.

いずれも共振モードにおいても、振動筒体104に設けられた駆動子103aと駆動子103bが上から見て時計方向へ円運動すると、駆動子103a,103bに形成された雌ねじ部14a,14bによって、移動体102が時計方向へ回転させられる。よって移動体102は、雄ねじ部13の螺旋軌跡にしたがって−Z方向へ進行する。駆動子103a,103bが上から見て反時計方向へ円運動するように共振すると、雌ねじ部14a,14bによって移動体102が反時計方向へ回転させられて+Z方向へ進行する。   In any of the resonance modes, when the driver element 103a and the driver element 103b provided on the vibrating cylinder 104 perform a circular motion in the clockwise direction when viewed from above, the female screw portions 14a and 14b formed on the driver elements 103a and 103b The moving body 102 is rotated clockwise. Therefore, the moving body 102 advances in the −Z direction according to the spiral trajectory of the male screw portion 13. When the drive elements 103a and 103b resonate so as to make a circular motion counterclockwise when viewed from above, the moving body 102 is rotated counterclockwise by the female screw portions 14a and 14b and proceeds in the + Z direction.

図11(A)(B)は、第2の実施の形態の変形例となる振動型アクチュエータ101A,101Bを示している。   FIGS. 11A and 11B show vibration type actuators 101A and 101B which are modifications of the second embodiment.

図11(A)に示す振動型アクチュエータ101Aは、駆動体である振動筒体104と軸体である移動体102を有している。振動筒体104の中心穴104a内では、その軸長の半分の位置に1個の駆動子103が固定されており、この駆動子103の内面に駆動用嵌合部として機能する雌ねじ部14が形成されている。図11(A)に示す振動筒体104の共振モードは、振動筒体104の全長がほぼ1波長に相当している。   A vibration type actuator 101A shown in FIG. 11A includes a vibration cylinder 104 as a driving body and a moving body 102 as a shaft. In the center hole 104a of the vibration cylinder 104, one driver element 103 is fixed at a position that is half the axial length, and an internal thread portion 14 that functions as a drive fitting portion is formed on the inner surface of the driver element 103. Is formed. In the resonance mode of the vibrating cylinder 104 shown in FIG. 11A, the entire length of the vibrating cylinder 104 is substantially equivalent to one wavelength.

図11(B)に示す振動型アクチュエータ101Bでは、振動筒体104の下端部、すなわち支持体5に支持されている部分に駆動子103が設けられ、この駆動子103に雌ねじ部14が形成されている。この例では、振動筒体104は、その全長が1/4波長に相当する共振モードで駆動される。   In the vibration type actuator 101 </ b> B shown in FIG. 11B, the driver element 103 is provided at the lower end of the vibration cylinder 104, that is, the part supported by the support body 5, and the female screw part 14 is formed in the driver element 103. ing. In this example, the vibrating cylinder 104 is driven in a resonance mode whose full length corresponds to a quarter wavelength.

図9ないし図11に示す振動型アクチュエータ101,101A,101Bは、いずれも駆動体である振動筒体104が共振周波数で撓み振動し、駆動子103,103a,103bが、振動の節と節との間に固定されて円運動をする。よって、圧電素子6,7,8,9によって、振動筒体104を効果的に共振させて、移動体102を確実に進退動作させることができる。   In the vibration type actuators 101, 101A, 101B shown in FIGS. 9 to 11, the vibration cylinder 104, which is a drive body, bends and vibrates at a resonance frequency, and the drive elements 103, 103a, 103b have vibration nodes and nodes. It is fixed between and moves circularly. Therefore, the vibrating cylinder 104 can be effectively resonated by the piezoelectric elements 6, 7, 8, and 9, and the moving body 102 can be reliably advanced and retracted.

図12は本発明の第3の実施の形態の振動型アクチュエータ201を示している。
この振動型アクチュエータ201では、駆動体である振動筒体204の軸方向の全長の中間点が支持体5の中心穴5aに挿入されて固定されている。支持体5には、図1に示すように、加振手段を構成する圧電素子6,7,8,9が固定されている。振動筒体204の軸方向の全長の中間点、すなわち支持体5で保持されている部分の内周面に、駆動子203が固定されており、駆動子203の内周面に駆動用嵌合部として機能する雌ねじ部14が形成されている。また、移動体202は軸体であり、外周面には軸方向に連続する雄ねじ部13が形成されている。そして、駆動子203の雌ねじ部14と雄ねじ部13とが嵌合している。
FIG. 12 shows a vibration type actuator 201 according to the third embodiment of the present invention.
In the vibration type actuator 201, the midpoint of the axial length of the vibration cylinder 204 as a driving body is inserted into the center hole 5 a of the support 5 and fixed. As shown in FIG. 1, piezoelectric elements 6, 7, 8, and 9 that constitute vibration means are fixed to the support 5. A drive element 203 is fixed to an intermediate point of the axial length of the vibration cylinder 204, that is, an inner peripheral surface of a portion held by the support body 5, and a driving fitting is fitted to the inner peripheral surface of the drive element 203. A female screw portion 14 that functions as a portion is formed. The moving body 202 is a shaft body, and an external thread portion 13 that is continuous in the axial direction is formed on the outer peripheral surface. The female screw portion 14 and the male screw portion 13 of the driver 203 are fitted.

圧電素子6,7,8,9から支持体5に伸び歪みと収縮歪みが与えられ、振動筒体204が図13(A)に示す共振モードまたは図13(B)に示す共振モードで駆動される。駆動子203は振動の節と節との中間の振幅が最も大きい部分に固定されて、円運動をする。   The piezoelectric element 6, 7, 8, 9 gives an extension strain and a contraction strain to the support 5, and the vibration cylinder 204 is driven in the resonance mode shown in FIG. 13A or the resonance mode shown in FIG. The The driver 203 is fixed to a portion having the largest amplitude between the vibration nodes and performs a circular motion.

図4または図5に示すように圧電素子6,7,8,9に通電することで、駆動子203が円運動し、雌ねじ部14によって軸体である移動体202が回転させられて、+Z方向または−Z方向へ移動させられる。   As shown in FIG. 4 or 5, when the piezoelectric elements 6, 7, 8, and 9 are energized, the driver 203 moves circularly, and the moving body 202, which is a shaft body, is rotated by the female screw portion 14. Direction or -Z direction.

なお、図13(B)に示す共振モードで駆動する場合に、駆動子203を支持体5と同じ位置に設けるのではなく、駆動子203を振動筒体204の上端部と下端部のそれぞれに固定してもよい。   When driving in the resonance mode shown in FIG. 13B, the driver 203 is not provided at the same position as the support 5, but the driver 203 is provided at each of the upper end and the lower end of the vibrating cylinder 204. It may be fixed.

なお、前記各実施の形態では、支持体5に振動のための応力を与える駆動素子として圧電素子6,7,8,9を使用しているが、支持体5に振動を作用させる駆動素子として圧電素子以外の電磁アクチュエータや静電アクチュエータあるいは熱応力発生素子などを使用してもよい。   In each of the above embodiments, the piezoelectric elements 6, 7, 8, and 9 are used as drive elements that apply stress for vibration to the support 5. However, as drive elements that cause vibration to act on the support 5. Electromagnetic actuators other than piezoelectric elements, electrostatic actuators, thermal stress generating elements, or the like may be used.

本発明の第1の実施の形態の振動型アクチュエータを、移動体を外した状態で示す斜視図、The perspective view which shows the vibration type actuator of the 1st Embodiment of this invention in the state which removed the moving body, 第1の実施の形態の振動型アクチュエータの横断面図、A cross-sectional view of the vibration type actuator of the first embodiment, 第1の実施の形態の振動型アクチュエータの縦断面図、A longitudinal sectional view of the vibration type actuator of the first embodiment, 圧電素子と駆動回路との結線構造を示す説明図、Explanatory drawing which shows the connection structure of a piezoelectric element and a drive circuit, 圧電素子と駆動回路との結線構造の他の例を示す説明図、Explanatory drawing which shows the other example of the connection structure of a piezoelectric element and a drive circuit, A相の駆動信号とB相の駆動信号の波形図、Waveform diagram of A phase drive signal and B phase drive signal, (A)(B)は、第1の実施の形態の振動型アクチュエータの共振モードのモデル説明図、(A) (B) is a model explanatory view of a resonance mode of the vibration type actuator of the first embodiment, 第1の実施の形態の変形例の振動型アクチュエータの共振モードのモデル説明図、FIG. 5 is a model explanatory diagram of a resonance mode of a vibration type actuator according to a modification of the first embodiment; 本発明の第2の実施の形態の振動型アクチュエータの縦断面図、The longitudinal cross-sectional view of the vibration type actuator of the 2nd Embodiment of this invention, (A)(B)は、第2の実施の形態の振動型アクチュエータの共振モードのモデル説明図、(A) (B) is a model explanatory view of a resonance mode of the vibration type actuator of the second embodiment, (A)(B)は、第2の実施の形態の変形例の振動型アクチュエータの共振モードのモデル説明図、(A) (B) is a model explanatory view of a resonance mode of a vibration type actuator of a modification of the second embodiment, 本発明の第3の実施の形態の振動型アクチュエータの縦断面図、The longitudinal cross-sectional view of the vibration type actuator of the 3rd Embodiment of this invention, (A)(B)は、第3の実施の形態の振動型アクチュエータの共振モードのモデル説明図、(A) (B) is a model explanatory view of a resonance mode of the vibration type actuator of the third embodiment,

符号の説明Explanation of symbols

1 振動型アクチュエータ
2 振動軸(駆動体)
3 駆動子
4 移動体
4a 中心穴
5 支持体
5a 中心穴
5b 表平面
5d 貫通穴
6,7,8,9 圧電素子
6a,6b,7a,7b,8a,8b,9a,9b 電極
13 雄ねじ部
14 雌ねじ部
20 駆動回路
101 振動型アクチュエータ
102 移動体
103,103a,103b 駆動子
104 振動筒体
201 振動型アクチュエータ
202 移動体
203 駆動子
204 振動筒体
1 Vibrating actuator 2 Vibrating shaft (Driver)
3 driver 4 moving body 4a center hole 5 support body 5a center hole 5b surface plane 5d through hole 6, 7, 8, 9 piezoelectric element 6a, 6b, 7a, 7b, 8a, 8b, 9a, 9b electrode 13 male screw part 14 Female screw portion 20 Drive circuit 101 Vibrating actuator 102 Moving body 103, 103a, 103b Driving element 104 Vibrating cylinder 201 Vibrating actuator 202 Moving body 203 Driving element 204 Vibrating cylinder

Claims (10)

軸方向に連続してねじ部が形成された移動体と、弾性変形可能であり軸方向の一部に前記移動体の前記ねじ部と嵌合する駆動用嵌合部を有する駆動体と、前記駆動体を支持する支持体と、
前記支持体に振動を与え前記支持体から前記駆動体に振動を伝達させて、前記駆動体を撓み変形させる駆動素子とを有しており、
前記駆動体の撓み変形によって前記駆動用嵌合部が円運動し、この円運動によって前記移動体が回転させられて、移動体が前記ねじ部によって軸方向へ移動させられることを特徴とする振動型アクチュエータ。
A moving body in which a threaded portion is formed continuously in the axial direction, a driving body that is elastically deformable and has a driving fitting portion that fits the threaded portion of the moving body in a part of the axial direction; A support for supporting the drive body;
A driving element that applies vibration to the support and transmits vibration from the support to the driving body to bend and deform the driving body;
The drive fitting portion circularly moves due to bending deformation of the drive body, the movable body is rotated by the circular motion, and the movable body is moved in the axial direction by the screw portion. Type actuator.
前記駆動素子から前記支持体に与えられる振動によって、前記駆動体が共振させられる請求項1記載の振動型アクチュエータ。   The vibration type actuator according to claim 1, wherein the drive body is resonated by vibration applied to the support body from the drive element. 前記駆動用嵌合部は、前記駆動体の撓み振動の節と節との間に設けられている請求項1または2記載の振動型アクチュエータ。   The vibration actuator according to claim 1, wherein the driving fitting portion is provided between nodes of flexural vibration of the driving body. 前記支持体には、前記駆動体の軸と直交する平面が設けられ、前記駆動素子が前記平面に取り付けられており、前記駆動素子から前記駆動体の軸中心に対して、互いに直交する向きで且つ位相が相違する加振力が与えられる請求項1ないし3のいずれかに記載の振動型アクチュエータ。   The support is provided with a plane orthogonal to the axis of the drive body, the drive element is attached to the plane, and the drive element is oriented perpendicular to the axis center of the drive body. 4. The vibration type actuator according to claim 1, wherein excitation forces having different phases are applied. 前記支持体には、前記駆動体の軸中心の延長上に穴が開口している請求項4記載の振動型アクチュエータ。   The vibration type actuator according to claim 4, wherein a hole is opened in the support body on an extension of an axial center of the driving body. 前記支持体には、隣り合う駆動素子の間に位置する穴が形成されている請求項4または5記載の振動型アクチュエータ。   6. The vibration type actuator according to claim 4, wherein the support is formed with a hole positioned between adjacent drive elements. 前記駆動体は、弾性変形可能な振動軸で、前記移動体は、内周面に雌ねじ部が形成された筒体であり、前記駆動用嵌合部は、前記振動軸に設けられた雄ねじ部である請求項1ないし6のいずれかに記載の振動型アクチュエータ。   The drive body is an elastically deformable vibration shaft, the moving body is a cylindrical body having an internal thread portion formed on an inner peripheral surface, and the drive fitting portion is an external thread portion provided on the vibration shaft. The vibration type actuator according to any one of claims 1 to 6. 前記振動軸の外周面は円筒面である請求項7記載の振動型アクチュエータ。   The vibration type actuator according to claim 7, wherein an outer peripheral surface of the vibration shaft is a cylindrical surface. 前記駆動体は、弾性変形可能な振動筒体で、前記移動体は、外周面に雄ねじ部が形成された軸体であり、前記駆動用嵌合部は、前記振動筒体の内周面に設けられた雌ねじ部である請求項1ないし6のいずれかに記載の振動型アクチュエータ。   The drive body is an elastically deformable vibration cylinder, the moving body is a shaft body having an external thread formed on an outer peripheral surface, and the drive fitting portion is formed on an inner peripheral surface of the vibration cylinder. The vibration type actuator according to claim 1, wherein the vibration type actuator is a female screw portion provided. 前記振動筒体の外周面は円筒面である請求項9記載の振動型アクチュエータ。   The vibration type actuator according to claim 9, wherein an outer peripheral surface of the vibration cylinder is a cylindrical surface.
JP2007156127A 2007-06-13 2007-06-13 Vibration type actuator Expired - Fee Related JP4901598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156127A JP4901598B2 (en) 2007-06-13 2007-06-13 Vibration type actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156127A JP4901598B2 (en) 2007-06-13 2007-06-13 Vibration type actuator

Publications (2)

Publication Number Publication Date
JP2008312309A true JP2008312309A (en) 2008-12-25
JP4901598B2 JP4901598B2 (en) 2012-03-21

Family

ID=40239398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156127A Expired - Fee Related JP4901598B2 (en) 2007-06-13 2007-06-13 Vibration type actuator

Country Status (1)

Country Link
JP (1) JP4901598B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171299A (en) * 2013-03-01 2014-09-18 Canon Inc Vibration type drive device
KR101544124B1 (en) 2014-11-25 2015-08-12 주식회사 이노칩테크놀로지 Piezoelectric vibrating device
CN113098320A (en) * 2021-04-25 2021-07-09 歌尔微电子股份有限公司 Stepping motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225182A (en) * 1986-03-25 1987-10-03 Canon Inc Oscillatory wave motor
JPS642592A (en) * 1987-06-22 1989-01-06 Mitsubishi Gas Chem Co Inc Production of pyrroloquinolinequinone
JPH02299477A (en) * 1989-03-06 1990-12-11 Tokin Corp Ultrasonic motor
JPH09271187A (en) * 1996-03-29 1997-10-14 Toyota Central Res & Dev Lab Inc Vibrator for ultrasonic actuator
JPH11113270A (en) * 1997-09-30 1999-04-23 Olympus Optical Co Ltd Actuator
JPH11220893A (en) * 1997-11-27 1999-08-10 Canon Inc Vibration-type actuator and vibration-type drive unit
JP2001298976A (en) * 2000-02-25 2001-10-26 Meritor Light Vehicle Syst Fr Improved linear displacement actuator
JP2007505599A (en) * 2003-09-08 2007-03-08 ニュー スケール テクノロジーズ インク Ultrasonic motor for lead screw
JP2007110805A (en) * 2005-10-12 2007-04-26 Konica Minolta Opto Inc Driver and lens barrel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225182A (en) * 1986-03-25 1987-10-03 Canon Inc Oscillatory wave motor
JPS642592A (en) * 1987-06-22 1989-01-06 Mitsubishi Gas Chem Co Inc Production of pyrroloquinolinequinone
JPH02299477A (en) * 1989-03-06 1990-12-11 Tokin Corp Ultrasonic motor
JPH09271187A (en) * 1996-03-29 1997-10-14 Toyota Central Res & Dev Lab Inc Vibrator for ultrasonic actuator
JPH11113270A (en) * 1997-09-30 1999-04-23 Olympus Optical Co Ltd Actuator
JPH11220893A (en) * 1997-11-27 1999-08-10 Canon Inc Vibration-type actuator and vibration-type drive unit
JP2001298976A (en) * 2000-02-25 2001-10-26 Meritor Light Vehicle Syst Fr Improved linear displacement actuator
JP2007505599A (en) * 2003-09-08 2007-03-08 ニュー スケール テクノロジーズ インク Ultrasonic motor for lead screw
JP2007110805A (en) * 2005-10-12 2007-04-26 Konica Minolta Opto Inc Driver and lens barrel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171299A (en) * 2013-03-01 2014-09-18 Canon Inc Vibration type drive device
KR101544124B1 (en) 2014-11-25 2015-08-12 주식회사 이노칩테크놀로지 Piezoelectric vibrating device
CN113098320A (en) * 2021-04-25 2021-07-09 歌尔微电子股份有限公司 Stepping motor

Also Published As

Publication number Publication date
JP4901598B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US5821667A (en) Ultrasonic motor
EP2080263B1 (en) Vibration-type actuator
US6747394B2 (en) Near-resonance electromechanical motor
JP5633508B2 (en) Piezoelectric actuator and lens barrel
US8299682B2 (en) Ultrasonic motor
JP4901598B2 (en) Vibration type actuator
JP4901597B2 (en) Vibration type actuator
JP2006527581A (en) Piezoelectric mechanical drive
JP2006513683A (en) Piezoelectric motor operation method and piezoelectric motor in the form of a hollow cylindrical oscillator having a stator
JP2020532255A (en) Ultrasonic resonance motor
CN110661445B (en) Parallel three-degree-of-freedom piezoelectric resonance self-actuating mechanism and excitation method thereof
JP2009044838A (en) Ultrasonic actuator and method for manufacturing piezoelectric displacement portion
JPS62225182A (en) Oscillatory wave motor
KR101225008B1 (en) Piezoelectric vibrator of ultrasonic motor
JP5740397B2 (en) Electromechanical motor
JP2012065454A (en) Vibration actuator
US8299683B2 (en) Ultrasonic motor
WO2021200417A1 (en) Actuator and optical reflective element
JPH09271187A (en) Vibrator for ultrasonic actuator
Mazeika et al. Flat small size piezoelectric actuator operating in several modes
JPH02146967A (en) Ultrasonic actuator
JP2008148440A (en) Oscillation driver
JP4724904B2 (en) Vibration actuator
JP2716423B2 (en) Vibration generator
JP6012226B2 (en) Vibration wave driving device and driving circuit thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees