JP2008309443A - Heat transfer pipe connecting structure - Google Patents

Heat transfer pipe connecting structure Download PDF

Info

Publication number
JP2008309443A
JP2008309443A JP2007159847A JP2007159847A JP2008309443A JP 2008309443 A JP2008309443 A JP 2008309443A JP 2007159847 A JP2007159847 A JP 2007159847A JP 2007159847 A JP2007159847 A JP 2007159847A JP 2008309443 A JP2008309443 A JP 2008309443A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
tube
pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007159847A
Other languages
Japanese (ja)
Inventor
Yoshio Oritani
好男 織谷
Takashi Yoshioka
俊 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007159847A priority Critical patent/JP2008309443A/en
Publication of JP2008309443A publication Critical patent/JP2008309443A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer pipe connecting structure in which a predetermined connecting pipe is connected to a heat transfer pipe, preventing oil from staying in the outflow end side of the heat transfer pipe. <P>SOLUTION: An enlarged diameter pipe part 22b is formed at the outflow end of the heat transfer pipe 22, and the end of the connecting pipe 23 is internally fitted to the enlarged diameter pipe part 22b. The connecting pipe 23 is so constructed that its inside diameter B is larger than the inside diameter A of the intermediate part 22a of the heat transfer pipe 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷凍サイクルを行う冷凍装置に適用される熱交換器の伝熱管の接続構造に関するものであり、特に熱交換器の伝熱促進対策に係るものである。   The present invention relates to a connection structure of heat transfer tubes of a heat exchanger applied to a refrigeration apparatus that performs a refrigeration cycle, and particularly relates to measures for promoting heat transfer of a heat exchanger.

従来より、蒸気圧縮式の冷凍サイクルを行う冷凍装置が知られており、空気調和装置や給湯器等に広く適用されている。   Conventionally, a refrigeration apparatus that performs a vapor compression refrigeration cycle is known, and is widely applied to an air conditioner, a water heater, and the like.

例えば特許文献1に開示されている空気調和装置は、圧縮機、室外熱交換器、膨張機、及び室内熱交換器が接続された冷媒回路を有している。この冷媒回路には、冷媒として二酸化炭素が充填されている。   For example, an air conditioner disclosed in Patent Document 1 has a refrigerant circuit to which a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger are connected. This refrigerant circuit is filled with carbon dioxide as a refrigerant.

この空気調和装置の冷房運転では、圧縮機で臨界圧力以上まで圧縮された冷媒が、室外熱交換器を流れる。室外熱交換器では、冷媒と室外空気とが熱交換し、冷媒が室外空気へ放熱する。室外熱交換器で放熱した冷媒は、膨張機で減圧された後、室内熱交換器を流れる。室内熱交換器では、冷媒と室内空気とが熱交換し、冷媒が室内空気から吸熱して蒸発する。その結果、室内の冷房が行われる。室内熱交換器で蒸発した冷媒は、圧縮機に吸入されて再び圧縮される。
特開2001−116371号公報
In the cooling operation of the air conditioner, the refrigerant compressed to a critical pressure or higher by the compressor flows through the outdoor heat exchanger. In the outdoor heat exchanger, the refrigerant and the outdoor air exchange heat, and the refrigerant radiates heat to the outdoor air. The refrigerant radiated by the outdoor heat exchanger is depressurized by the expander and then flows through the indoor heat exchanger. In the indoor heat exchanger, the refrigerant and room air exchange heat, and the refrigerant absorbs heat from the room air and evaporates. As a result, the room is cooled. The refrigerant evaporated in the indoor heat exchanger is sucked into the compressor and compressed again.
JP 2001-116371 A

ところで、上述のような冷凍装置では、圧縮機の各摺動部を潤滑するために潤滑油(冷凍機油)が用いられており、この油は冷媒回路を流れる冷媒中に含まれることになる。このため、冷媒が蒸発器や放熱器等の熱交換器を流れる際には、冷媒に溶けきれなかった油が熱交換器の内部に溜まり易くなる。特に、この種の熱交換器では、伝熱管と所定の接続配管(U字管や連絡配管等)との接続部において、冷媒中の油が溜まってしまうという問題があった。   By the way, in the refrigeration apparatus as described above, lubricating oil (refrigerating machine oil) is used to lubricate each sliding portion of the compressor, and this oil is included in the refrigerant flowing through the refrigerant circuit. For this reason, when the refrigerant flows through a heat exchanger such as an evaporator or a radiator, oil that has not been dissolved in the refrigerant easily accumulates in the heat exchanger. In particular, this type of heat exchanger has a problem that oil in the refrigerant accumulates at a connection portion between the heat transfer tube and a predetermined connection pipe (such as a U-shaped tube or a communication pipe).

この点について、図7を参照しながら詳細に説明する。なお、図7は、従来の伝熱管接続構造の一例を示すものである。この種の熱交換器は、直線状に延びる複数の伝熱管(80)と、各伝熱管(80)を互いに連結するU字管(81)とを有している。伝熱管(80)の端部は、フレア加工等によって拡径されており、この拡管部(80a)にU字管(81)の端部が内嵌される。このような状態のU字管(81)は、ろう付けによって伝熱管(80)に接続される。ここで、伝熱管(80)は、その伝熱面積を稼ぐために内径Aが比較的大きく設計されている。これに対し、U字管(81)は、曲げ加工が施されても充分な耐圧を確保できるように厚肉となっており、その内径Bが比較的小さく設計されている。即ち、従来例の伝熱管接続構造では、伝熱管(80)の内径Aが、U字管(81)の内径Bよりも大きくなっている。また、伝熱管(80)の端部に連絡管を接続する場合にも、一般的には図7と同様の接続構造となっている。   This point will be described in detail with reference to FIG. FIG. 7 shows an example of a conventional heat transfer tube connection structure. This type of heat exchanger has a plurality of heat transfer tubes (80) extending in a straight line and a U-shaped tube (81) connecting the heat transfer tubes (80) to each other. The end of the heat transfer tube (80) is expanded by flaring or the like, and the end of the U-shaped tube (81) is fitted into the expanded tube (80a). The U-shaped tube (81) in such a state is connected to the heat transfer tube (80) by brazing. Here, the heat transfer tube (80) has a relatively large inner diameter A in order to increase its heat transfer area. On the other hand, the U-shaped tube (81) is thick so that a sufficient pressure resistance can be ensured even if it is bent, and its inner diameter B is designed to be relatively small. That is, in the heat transfer tube connection structure of the conventional example, the inner diameter A of the heat transfer tube (80) is larger than the inner diameter B of the U-shaped tube (81). Moreover, also when connecting a connecting pipe to the edge part of a heat exchanger tube (80), it is generally the same connection structure as FIG.

このような構造の熱交換器において、図7の矢印で示す方向に冷媒が流れると、伝熱管(80)からU字管(81)へ冷媒が流出する際に、冷媒の流路断面積が急激に縮小されることになる。従って、伝熱管(80)の流出端では、冷媒中に含まれる油が、U字管(81)へ速やかに流出し難くなり、この油が伝熱管(80)側の内周面近傍に滞ってしまうことがある。このようにして、油が伝熱管(80)側に徐々に蓄積されていくと、伝熱管(80)の内周面に油膜が形成され、これにより伝熱管(80)の伝熱性能が低下してしまうという問題が生じる。   In the heat exchanger having such a structure, when the refrigerant flows in the direction indicated by the arrow in FIG. 7, when the refrigerant flows out from the heat transfer tube (80) to the U-shaped tube (81), the flow path cross-sectional area of the refrigerant is reduced. It will be reduced rapidly. Therefore, at the outflow end of the heat transfer tube (80), the oil contained in the refrigerant is difficult to quickly flow out to the U-shaped tube (81), and this oil stays in the vicinity of the inner peripheral surface on the heat transfer tube (80) side. May end up. In this way, when oil is gradually accumulated on the heat transfer tube (80) side, an oil film is formed on the inner peripheral surface of the heat transfer tube (80), thereby reducing the heat transfer performance of the heat transfer tube (80). The problem of end up occurs.

特に、上述の特許文献1に開示されていような、二酸化炭素を冷媒として冷凍サイクルを行う冷凍装置では、二酸化炭素に対する相溶性が低い油(例えばPAG(ポリアルキレングリコール))を用いるのが一般的である。従って、この種の冷凍装置に図7に示すような熱交換器を適用すると、伝熱管の流出端に油が更に残存し易くなるので、伝熱性能の低下が顕著となってしまう。   In particular, in a refrigeration apparatus that performs a refrigeration cycle using carbon dioxide as a refrigerant as disclosed in the above-mentioned Patent Document 1, it is common to use an oil having low compatibility with carbon dioxide (for example, PAG (polyalkylene glycol)). It is. Therefore, when a heat exchanger as shown in FIG. 7 is applied to this type of refrigeration apparatus, oil is more likely to remain at the outflow end of the heat transfer tube, so that the heat transfer performance is significantly reduced.

本発明は、かかる点に鑑みてなされたものであり、その目的は、伝熱管に所定の接続管が接続される伝熱管接続構造において、伝熱管の流出端側に油が溜まってしまうことを防止することである。   The present invention has been made in view of such a point, and the object thereof is that in the heat transfer tube connection structure in which a predetermined connection tube is connected to the heat transfer tube, oil accumulates on the outflow end side of the heat transfer tube. Is to prevent.

第1の発明は、蒸気圧縮式の冷凍サイクルを行う冷凍装置(1)の冷媒回路(10)に設けられる熱交換器(12,13)の伝熱管(22)と、該伝熱管(22)に接続される所定の接続管(23)とを有する伝熱管接続構造を前提としている。そして、この伝熱管接続構造は、上記伝熱管(22)の流出端に、該伝熱管(22)の中間部(22a)よりも拡径して上記接続管(23)の端部が内嵌する拡管部(22b)が形成されており、上記接続管(23)の端部の内径が、上記伝熱管(22)の中間部(22a)の内径以上となっていることを特徴とするものである。   The first invention includes a heat transfer tube (22) of a heat exchanger (12, 13) provided in a refrigerant circuit (10) of a refrigeration apparatus (1) performing a vapor compression refrigeration cycle, and the heat transfer tube (22). It assumes a heat transfer tube connection structure having a predetermined connection tube (23) connected to. The heat transfer tube connection structure has a larger diameter than the intermediate portion (22a) of the heat transfer tube (22) at the outflow end of the heat transfer tube (22), and the end of the connection tube (23) is fitted inside the heat transfer tube (22). An expanded pipe part (22b) is formed, and the inner diameter of the end part of the connection pipe (23) is equal to or greater than the inner diameter of the intermediate part (22a) of the heat transfer pipe (22) It is.

第1の発明では、伝熱管(22)の流出端に、拡管部(22b)が形成され、この拡管部(22b)内に所定の接続管(23)が接続される。ここで、本発明では、伝熱管(22)の中間部(22a)の内径が、接続管(23)の端部の内径と等しいか、それよりも大きくなっている。これにより、油を含んだ冷媒が伝熱管(22)から接続管(23)へ流出する際、冷媒の流路断面が急激に縮小されることがない。その結果、冷媒中に含まれる油は、伝熱管(22)から接続管(23)へ速やかに流出することになる。   In the first invention, the expanded pipe portion (22b) is formed at the outflow end of the heat transfer tube (22), and a predetermined connecting pipe (23) is connected to the expanded pipe portion (22b). Here, in this invention, the internal diameter of the intermediate part (22a) of a heat exchanger tube (22) is equal to or larger than the internal diameter of the edge part of a connection pipe (23). Thereby, when the refrigerant containing oil flows out from the heat transfer tube (22) to the connection tube (23), the flow passage cross section of the refrigerant is not rapidly reduced. As a result, the oil contained in the refrigerant quickly flows out from the heat transfer tube (22) to the connection tube (23).

第2の発明は、蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)に設けられる熱交換器(12,13)の伝熱管(22)と、該伝熱管(22)に接続される所定の接続管(23)とを有する伝熱管接続構造を前提としている。そして、この伝熱管接続構造は、上記接続管(23)が、上記伝熱管(22)の流出端の外周側に外嵌するように構成されていることを特徴とするものである。   According to a second aspect of the present invention, there is provided a heat transfer tube (22) of a heat exchanger (12, 13) provided in a refrigerant circuit (10) for performing a vapor compression refrigeration cycle, and a predetermined connection connected to the heat transfer tube (22). A heat transfer pipe connection structure having a connection pipe (23) is assumed. The heat transfer tube connection structure is characterized in that the connection tube (23) is configured to be fitted on the outer peripheral side of the outflow end of the heat transfer tube (22).

第2の発明では、伝熱管(22)の流出端に、接続管(23)が外嵌して接続される。従って、本発明では、冷媒が伝熱管(22)から接続管(23)へ流出する際、冷媒の流路断面が、接続管(23)によって急激に縮小されてしまうことがない。その結果、冷媒中に含まれる油は、伝熱管(22)から接続管(23)へ速やかに流出することになる。   In the second invention, the connection pipe (23) is externally fitted and connected to the outflow end of the heat transfer pipe (22). Therefore, in the present invention, when the refrigerant flows out from the heat transfer tube (22) to the connecting tube (23), the flow passage cross section of the refrigerant is not rapidly reduced by the connecting tube (23). As a result, the oil contained in the refrigerant quickly flows out from the heat transfer tube (22) to the connection tube (23).

第3の発明は、第2の発明の伝熱管接続構造において、上記接続管(23)の端部には、該接続管(23)の中間部(23a)よりも拡径して上記伝熱管(22)の流出端部に外嵌する拡管部(23b)が形成されていることを特徴とするものである。   According to a third aspect of the present invention, in the heat transfer tube connection structure according to the second aspect, the end portion of the connection pipe (23) has a diameter larger than that of the intermediate portion (23a) of the connection pipe (23). An expanded pipe portion (23b) that is fitted around the outflow end portion of (22) is formed.

第3の発明では、接続管(23)の端部に拡管部(23b)が形成され、この接続管(23)の拡管部(23b)が伝熱管(22)の流出端に外嵌される。これにより、冷媒の流路断面が、接続管(23)によって急激に縮小されてしまうことなく、且つ接続管(23)の中間部(23a)の外径を必要最小限に抑えることができる。   In the third aspect of the invention, the expanded pipe part (23b) is formed at the end of the connection pipe (23), and the expanded pipe part (23b) of the connection pipe (23) is fitted around the outflow end of the heat transfer pipe (22). . Thereby, the flow path cross section of the refrigerant is not rapidly reduced by the connecting pipe (23), and the outer diameter of the intermediate portion (23a) of the connecting pipe (23) can be suppressed to a necessary minimum.

第4の発明は、第1乃至第3のいずれか1つの発明の伝熱管接続構造において、上記熱交換器(12,13)は、直線状に延びる複数の上記伝熱管(22)と、各伝熱管(22)を互いに連結する上記接続管としての複数のU字管(23)とを備えていることを特徴とするものである。   According to a fourth aspect of the present invention, in the heat transfer tube connection structure according to any one of the first to third aspects, the heat exchanger (12, 13) includes a plurality of the heat transfer tubes (22) extending linearly, A plurality of U-shaped tubes (23) serving as the connection tubes for connecting the heat transfer tubes (22) to each other are provided.

第4の発明では、複数の伝熱管(22)が、接続管としての複数のU字管(23)によって互いに連結される。本発明では、伝熱管(22)の流出端の流路断面が、U字管(23)の端部によって急激に縮小されてしまうことがない。その結果、冷媒が伝熱管(22)とU字管(23)とを交互に流れる際、冷媒中に含まれる油は各伝熱管(22)から各U字管(23)へ速やかに流出する。   In the fourth invention, the plurality of heat transfer tubes (22) are connected to each other by the plurality of U-shaped tubes (23) as connecting tubes. In the present invention, the flow path cross section at the outflow end of the heat transfer tube (22) is not rapidly reduced by the end of the U-shaped tube (23). As a result, when the refrigerant flows alternately through the heat transfer tubes (22) and the U-shaped tubes (23), the oil contained in the refrigerant quickly flows out from the respective heat transfer tubes (22) to the respective U-shaped tubes (23). .

第5の発明は、冷媒としての二酸化炭素を臨界圧力以上まで圧縮する冷凍サイクルを行う冷媒回路(10)に設けられる熱交換器(12,13)に用いられることを特徴とするものである。   5th invention is used for the heat exchanger (12, 13) provided in the refrigerant circuit (10) which performs the refrigerating cycle which compresses the carbon dioxide as a refrigerant | coolant to more than a critical pressure, It is characterized by the above-mentioned.

第5の発明では、二酸化炭素を用いていわゆる超臨界サイクルを行う冷媒回路(10)に設けられる熱交換器(12,13)について、第1乃至第4のいずれか1つの発明の伝熱管接続構造が適用される。   In the fifth invention, for the heat exchanger (12, 13) provided in the refrigerant circuit (10) that performs a so-called supercritical cycle using carbon dioxide, the heat transfer tube connection of any one of the first to fourth inventions Structure is applied.

第1の発明では、伝熱管(22)の拡管部(22b)に接続管(23)の端部を接続すると共に、伝熱管(22)の中間部(22a)の内径を接続管(23)の端部の内径以上としている。また、第2の発明では、伝熱管(22)の流出端の外周面に接続管(23)を外嵌させている。従って、第1や第2の発明によれば、伝熱管(22)の流出端での冷媒の流路断面を拡大でき、伝熱管(22)内を流れる冷媒中に含まれる油を接続管(23)に速やかに流出させることができる。その結果、伝熱管(22)の内周面に油が溜まり込んでしまうことを未然に回避できるので、伝熱管(22)の伝熱性能、ひいては熱交換器(12,13)の熱交換率を改善することができる。また、伝熱管(22)から接続管(23)へ冷媒が流出する際の抵抗も小さくなるため、熱交換器(12,13)における圧力損失を低減できる。また、熱交換器(12,13)内での油の溜まり込みを回避することで、圧縮機への返油量を充分確保できる。従って、圧縮機の潤滑不良を防止でき、冷凍装置(1)の信頼性の向上を図ることができる。   In the first invention, the end of the connection pipe (23) is connected to the expanded pipe part (22b) of the heat transfer pipe (22), and the inner diameter of the intermediate part (22a) of the heat transfer pipe (22) is set to the connection pipe (23). The inner diameter of the end is greater than or equal to. Moreover, in 2nd invention, the connection pipe (23) is externally fitted by the outer peripheral surface of the outflow end of a heat exchanger tube (22). Therefore, according to the first and second inventions, the cross section of the refrigerant flow path at the outflow end of the heat transfer tube (22) can be enlarged, and the oil contained in the refrigerant flowing in the heat transfer tube (22) is connected to the connection tube ( 23) can be quickly discharged. As a result, it is possible to prevent oil from accumulating on the inner peripheral surface of the heat transfer tube (22), so that the heat transfer performance of the heat transfer tube (22) and thus the heat exchange rate of the heat exchanger (12, 13) Can be improved. Moreover, since the resistance when the refrigerant flows out from the heat transfer pipe (22) to the connection pipe (23) is reduced, the pressure loss in the heat exchanger (12, 13) can be reduced. Further, by avoiding the accumulation of oil in the heat exchanger (12, 13), it is possible to secure a sufficient oil return amount to the compressor. Therefore, poor lubrication of the compressor can be prevented, and the reliability of the refrigeration apparatus (1) can be improved.

特に、第3の発明では、接続管(23)の端部に拡管部(23b)を形成し、この接続管(23)の拡管部(23b)を伝熱管(22)の流出端に外嵌させている。従って、本発明によれば、伝熱管(22)の流出端の流路断面を拡大しつつ、接続管(23)の中間部(23a)の外径を小さくできる。その結果、接続管(23)の中間部(23a)の加工も容易となり、製造コストも削減できる。   In particular, in the third aspect of the present invention, the expanded pipe (23b) is formed at the end of the connecting pipe (23), and the expanded pipe (23b) of the connecting pipe (23) is externally fitted to the outflow end of the heat transfer pipe (22). I am letting. Therefore, according to the present invention, it is possible to reduce the outer diameter of the intermediate portion (23a) of the connection pipe (23) while enlarging the flow path cross section at the outflow end of the heat transfer pipe (22). As a result, the intermediate portion (23a) of the connecting pipe (23) can be easily processed, and the manufacturing cost can be reduced.

また、第4の発明によれば、複数の伝熱管(22)と、各伝熱管(22)を互いに連結するU字管(23)とについて、第1から第3までの伝熱管接続構造を適用するようにしている。従って、本発明によれば、複数の伝熱管(22)のそれぞれについての油の滞留を回避できるので、この熱交換器(12,13)の伝熱性能を効果的に改善することができる。   Moreover, according to 4th invention, about the heat exchanger tube (22) and the U-shaped tube (23) which connects each heat exchanger tube (22) mutually, the heat exchanger tube connection structure from 1st to 3rd is provided. I am trying to apply it. Therefore, according to the present invention, oil stagnation in each of the plurality of heat transfer tubes (22) can be avoided, so that the heat transfer performance of the heat exchanger (12, 13) can be effectively improved.

更に、第5の発明によれば、二酸化炭素を臨界圧力以上まで圧縮する冷媒回路(10)に用いられる熱交換器(12,13)について、第1から第4までの発明の伝熱管接続構造を適用するようにしている。ここで、このような冷媒回路(10)では、二酸化炭素に溶けにくい冷凍機油(例えばPAG)を用いることが一般的である。このため、従来のものであれば、この油が伝熱管内に溜まりやすくなり、伝熱管の伝熱性能の低下も顕著となる。これに対し、本発明によれば、冷媒中に含まれる油を伝熱管(22)から接続管(23)へ速やかに流出させることができるので、伝熱管(22)の伝熱性能の低下を効果的に回避することができる。   Furthermore, according to the fifth invention, for the heat exchanger (12, 13) used in the refrigerant circuit (10) for compressing carbon dioxide to a critical pressure or higher, the heat transfer tube connection structure according to the first to fourth inventions. To apply. Here, in such a refrigerant circuit (10), it is common to use refrigerating machine oil (for example, PAG) which is not easily dissolved in carbon dioxide. For this reason, if it is a conventional one, this oil will easily accumulate in the heat transfer tube, and the heat transfer performance of the heat transfer tube will be significantly reduced. On the other hand, according to the present invention, the oil contained in the refrigerant can be quickly discharged from the heat transfer tube (22) to the connection tube (23), so that the heat transfer performance of the heat transfer tube (22) is reduced. It can be effectively avoided.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明に係る実施形態1の伝熱管接続構造は、蒸気圧縮式の冷凍サイクルを行う冷凍装置(1)の熱交換器に適用されるものである。実施形態1の冷凍装置は、室内の冷房と暖房とを切り換えて行う空気調和装置(1)を構成している。
Embodiment 1 of the Invention
The heat transfer tube connection structure of Embodiment 1 according to the present invention is applied to a heat exchanger of a refrigeration apparatus (1) that performs a vapor compression refrigeration cycle. The refrigeration apparatus of Embodiment 1 constitutes an air conditioner (1) that performs switching between indoor cooling and heating.

〈冷媒回路の概略構成〉
図1に示すように、空気調和装置(1)は、冷媒が充填される冷媒回路(10)を備えている。冷媒回路(10)には、冷媒として二酸化炭素が充填されている。また、この空気調和装置(1)では、圧縮機(11)の各摺動部を潤滑するための潤滑油(冷凍機油)として、有極性の油であるポリアルキレングリコール(PAG)が用いられている。そして、このPAGは、圧縮機(11)から吐出された冷媒と共に冷媒回路(10)へ流出することになる。従って、冷媒回路(10)では、冷媒としての二酸化炭素と、冷凍機油としてのPAGが循環する。また、冷媒回路では、二酸化炭素を臨界圧力以上まで圧縮する冷凍サイクル(いわゆる超臨界サイクル)が行われる。
<Schematic configuration of refrigerant circuit>
As shown in FIG. 1, the air conditioner (1) includes a refrigerant circuit (10) filled with a refrigerant. The refrigerant circuit (10) is filled with carbon dioxide as a refrigerant. In this air conditioner (1), polyalkylene glycol (PAG), which is a polar oil, is used as a lubricating oil (refrigerating machine oil) for lubricating each sliding portion of the compressor (11). Yes. And this PAG flows out into a refrigerant circuit (10) with the refrigerant discharged from the compressor (11). Accordingly, in the refrigerant circuit (10), carbon dioxide as the refrigerant and PAG as the refrigerating machine oil circulate. In the refrigerant circuit, a refrigeration cycle (so-called supercritical cycle) is performed in which carbon dioxide is compressed to a critical pressure or higher.

冷媒回路(10)には、圧縮機(11)と室外熱交換器(12)と室内熱交換器(13)と膨張弁(14)とが設けられている。   The refrigerant circuit (10) is provided with a compressor (11), an outdoor heat exchanger (12), an indoor heat exchanger (13), and an expansion valve (14).

上記圧縮機(11)は、例えばスクロール型の圧縮機で構成されている。圧縮機(11)には、圧縮機構の吐出冷媒が流出する吐出管(11a)と、圧縮機構の吸入冷媒が流入する吸入管(11b)とが接続されている。上記室外熱交換器(12)は、室外空間に配置されている。室外熱交換器(12)では、その内部を流れる冷媒と室外空気とが熱交換する。上記室内熱交換器(13)は、室内空間に配置されている。室内熱交換器(13)では、その内部を流れる冷媒と室内空気とが熱交換する。室外熱交換器(12)及び室内熱交換器(13)は、本発明に係る熱交換器であって、クロスフィン式の熱交換器を構成している。   The compressor (11) is constituted by, for example, a scroll type compressor. Connected to the compressor (11) are a discharge pipe (11a) through which the refrigerant discharged from the compression mechanism flows and a suction pipe (11b) through which the refrigerant drawn from the compression mechanism flows. The outdoor heat exchanger (12) is disposed in the outdoor space. In the outdoor heat exchanger (12), heat is exchanged between the refrigerant flowing inside and the outdoor air. The indoor heat exchanger (13) is disposed in the indoor space. In the indoor heat exchanger (13), heat is exchanged between the refrigerant flowing in the indoor heat exchanger and the indoor air. The outdoor heat exchanger (12) and the indoor heat exchanger (13) are heat exchangers according to the present invention and constitute a cross fin type heat exchanger.

上記膨張弁(14)は、室外熱交換器(12)と室内熱交換器(13)との間に接続されている。膨張弁(14)は、例えば電子膨張弁で構成されている。また、冷媒回路(10)には、四路切換弁(15)が設けられている。四路切換弁(15)は、第1から第4までの4つのポートを備えている。四路切換弁(15)では、第1ポートが室外熱交換器(12)と繋がり、第2ポートが圧縮機(11)の吸入側と繋がり、第3ポートが圧縮機(11)の吐出側と繋がり、第4ポートが室内熱交換器(13)と繋がっている。四路切換弁(15)は、第1ポートと第3ポートとを連通させると同時に第2ポートと第4ポートとを連通させる第1状態(図1の実線の状態)と、第1ポートと第2ポートとを連通させると同時に第3ポートと第4ポートとを連通させる第2状態(図1の破線の状態)とに切換可能となっている。   The expansion valve (14) is connected between the outdoor heat exchanger (12) and the indoor heat exchanger (13). The expansion valve (14) is composed of, for example, an electronic expansion valve. The refrigerant circuit (10) is provided with a four-way switching valve (15). The four-way selector valve (15) has four ports from first to fourth. In the four-way selector valve (15), the first port is connected to the outdoor heat exchanger (12), the second port is connected to the suction side of the compressor (11), and the third port is the discharge side of the compressor (11). And the fourth port is connected to the indoor heat exchanger (13). The four-way selector valve (15) has a first state (solid line state in FIG. 1) in which the first port and the third port are in communication with each other and a second port and a fourth port in communication with each other; The second port can be switched to a second state (a state indicated by a broken line in FIG. 1) in which the third port and the fourth port are simultaneously communicated with each other.

〈熱交換器の構成〉
図2に示すように、各熱交換器(12,13)は、複数のフィン(21)と、複数の伝熱管(22)と、各伝熱管(22)を互いに連結するU字管(23)とを備えている。複数のフィン(21)は、アルミニウム製であって、長方形板状に形成されている。各フィン(21)は、互いに平行な姿勢で所定の間隔を介して配列されている。
<Configuration of heat exchanger>
As shown in FIG. 2, each heat exchanger (12, 13) includes a plurality of fins (21), a plurality of heat transfer tubes (22), and a U-shaped tube (23 ). The plurality of fins (21) are made of aluminum and have a rectangular plate shape. The fins (21) are arranged at predetermined intervals in parallel postures.

上記伝熱管(22)及びU字管(23)は、銅材料(銅管)によって構成されている。伝熱管(22)は、直線状に延びている。各伝熱管(22)は、複数のフィン(21)を全て貫通するように水平な姿勢で各フィン(21)に支持されている。本実施形態において、各伝熱管(22)は、フィン(21)の長手方向に等間隔で並べられており、これらの配列群が、フィン(21)の幅方向に2列設けられている。U字管(23)は、各伝熱管(22)を互いに連結する接続管を構成している。U字管(23)は、上下に隣り合う伝熱管(22,22)同士を繋ぐように各伝熱管(22)の端部に接続されている。   The heat transfer tube (22) and the U-shaped tube (23) are made of a copper material (copper tube). The heat transfer tube (22) extends linearly. Each heat transfer tube (22) is supported by each fin (21) in a horizontal posture so as to penetrate all of the plurality of fins (21). In the present embodiment, the heat transfer tubes (22) are arranged at equal intervals in the longitudinal direction of the fins (21), and these array groups are provided in two rows in the width direction of the fins (21). The U-shaped tube (23) constitutes a connecting tube that connects the heat transfer tubes (22) to each other. The U-shaped tube (23) is connected to the end portion of each heat transfer tube (22) so as to connect the heat transfer tubes (22, 22) adjacent vertically.

図3に示すように、伝熱管(22)は、その両端の間に亘って形成される中間部(22a)と、該中間部(22a)の一端にそれぞれ形成される拡管部(22b)と、中間部(22a)及び拡管部(22b)の間に形成される拡径部(22c)とを有している。   As shown in FIG. 3, the heat transfer tube (22) includes an intermediate portion (22a) formed between both ends thereof, and an expanded portion (22b) formed at one end of the intermediate portion (22a). And an enlarged diameter part (22c) formed between the intermediate part (22a) and the expanded pipe part (22b).

中間部(22a)は、伝熱管(22)の本体を構成しており、横断面が均一な筒状に形成されている。なお、中間部(22a)の内周面には、図示しない伝熱促進溝が形成されている。この伝熱促進溝は、例えば伝熱管(22)の軸心を中心として旋回する複数の螺旋溝で構成されている。拡径部(22c)は、中間部(22a)の端部と連続しており、伝熱管(22)の端部側に向かうに連れてその内径を拡大させるようなテーパ状に形成されている。拡管部(22b)は、拡径部(22c)の端部と連続しており、横断面が均一となる筒状に形成されている。拡径部(22c)及び拡管部(22b)は、伝熱管(22)の端部にフレア加工を施すことで形成されている。   The intermediate part (22a) constitutes the main body of the heat transfer tube (22) and is formed in a cylindrical shape having a uniform cross section. A heat transfer promoting groove (not shown) is formed on the inner peripheral surface of the intermediate portion (22a). The heat transfer promotion groove is composed of, for example, a plurality of spiral grooves that turn around the axis of the heat transfer tube (22). The enlarged diameter portion (22c) is continuous with the end portion of the intermediate portion (22a), and is formed in a taper shape that expands the inner diameter toward the end portion side of the heat transfer tube (22). . The expanded pipe portion (22b) is continuous with the end of the expanded diameter portion (22c), and is formed in a cylindrical shape having a uniform cross section. The enlarged diameter part (22c) and the expanded pipe part (22b) are formed by flaring the end of the heat transfer pipe (22).

上記U字管(23)は、その内径及び外径が概ね均一に形成されている。U字管(23)の端部は、拡管部(22b)に内嵌している。つまり、U字管(23)の端部の外径は、拡管部(22b)の内径と実質的に同じか、この内径に対して若干小さい。拡管部(22b)に内嵌した状態のU字管(23)は、ろう付けによって伝熱管(22)に接続される。   The U-shaped tube (23) has an inner diameter and an outer diameter that are substantially uniform. The end of the U-shaped tube (23) is fitted in the expanded tube portion (22b). That is, the outer diameter of the end portion of the U-shaped tube (23) is substantially the same as or slightly smaller than the inner diameter of the expanded pipe portion (22b). The U-shaped tube (23) fitted in the expanded portion (22b) is connected to the heat transfer tube (22) by brazing.

実施形態1において、U字管(23)の厚みは、伝熱管(22)の中間部(22a)の厚みよりも大きくなっている。また、U字管(23)の外径は、伝熱管(22)の中間部(22a)の外径と概ね等しくなっている。更に、U字管(23)の内径(図3に示す寸法B)は、伝熱管(22)の中間部(22a)の内径(図3に示す寸法A)と等しくなっている。以上のような伝熱管接続構造では、冷媒が図3の矢印方向に流れる際、冷媒中に含まれる油が、伝熱管(22)の流出端近傍に溜まり込んでしまうのを回避できるようにしている。この作用についての詳細は後述する。   In Embodiment 1, the thickness of the U-shaped tube (23) is larger than the thickness of the intermediate portion (22a) of the heat transfer tube (22). The outer diameter of the U-shaped tube (23) is substantially equal to the outer diameter of the intermediate portion (22a) of the heat transfer tube (22). Furthermore, the inner diameter (dimension B shown in FIG. 3) of the U-shaped tube (23) is equal to the inner diameter (dimension A shown in FIG. 3) of the intermediate portion (22a) of the heat transfer tube (22). In the heat transfer tube connection structure as described above, when the refrigerant flows in the direction of the arrow in FIG. 3, it is possible to prevent oil contained in the refrigerant from collecting in the vicinity of the outflow end of the heat transfer tube (22). Yes. Details of this operation will be described later.

−空気調和装置の運転動作−
次に、実施形態1に係る空気調和装置(1)の運転動作について説明する。空気調和装置(1)の冷媒回路(10)では、上記四路切換弁(15)の設定に応じて、冷媒の循環方向が切り換わる。具体的には、四路切換弁(15)は、冷房運転において図1の実線で示す状態となる。その結果、冷房運転では、室外熱交換器(12)が放熱器となり、室内熱交換器(13)が蒸発器となる冷凍サイクルが行われる。一方、四路切換弁(15)は、暖房運転において図1の破線で示す状態となる。その結果、暖房運転では、室外熱交換器(12)が蒸発器となり、室内熱交換器(13)が放熱器となる冷凍サイクルが行われる。以下には、このような空気調和装置(1)の冷房運転を代表に説明する。
-Operation of air conditioner-
Next, the operation of the air conditioner (1) according to Embodiment 1 will be described. In the refrigerant circuit (10) of the air conditioner (1), the refrigerant circulation direction is switched according to the setting of the four-way switching valve (15). Specifically, the four-way selector valve (15) is in the state indicated by the solid line in FIG. 1 in the cooling operation. As a result, in the cooling operation, a refrigeration cycle is performed in which the outdoor heat exchanger (12) serves as a radiator and the indoor heat exchanger (13) serves as an evaporator. On the other hand, the four-way selector valve (15) is in a state indicated by a broken line in FIG. As a result, in the heating operation, a refrigeration cycle in which the outdoor heat exchanger (12) serves as an evaporator and the indoor heat exchanger (13) serves as a radiator is performed. Hereinafter, the cooling operation of such an air conditioner (1) will be described as a representative.

図1に示す冷媒回路(10)において、圧縮機(11)で臨界圧力以上まで圧縮された冷媒は、吐出管(11a)より吐出される。なお、圧縮機(11)からは、各摺動部の潤滑に利用された油が、高圧冷媒とともに吐出される。その後、冷媒は室外熱交換器(12)を流れる。室外熱交換器(12)では、高圧冷媒が室外空気へ放熱する。室外熱交換器(12)で放熱した後の高圧冷媒は、膨張弁(14)を通過する際に減圧されて、低圧冷媒となる。その後、冷媒は室内熱交換器(13)を流れる。室内熱交換器(13)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内の冷房が行われる。室内熱交換器(13)で蒸発した冷媒は、吸入管(11b)を流れて圧縮機(11)に吸入され、再び圧縮される。   In the refrigerant circuit (10) shown in FIG. 1, the refrigerant compressed to the critical pressure or higher by the compressor (11) is discharged from the discharge pipe (11a). In addition, from the compressor (11), the oil utilized for lubrication of each sliding part is discharged with a high pressure refrigerant. Thereafter, the refrigerant flows through the outdoor heat exchanger (12). In the outdoor heat exchanger (12), the high-pressure refrigerant radiates heat to the outdoor air. The high-pressure refrigerant that has radiated heat in the outdoor heat exchanger (12) is decompressed when passing through the expansion valve (14), and becomes a low-pressure refrigerant. Thereafter, the refrigerant flows through the indoor heat exchanger (13). In the indoor heat exchanger (13), the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room is cooled. The refrigerant evaporated in the indoor heat exchanger (13) flows through the suction pipe (11b), is sucked into the compressor (11), and is compressed again.

〈伝熱管の油溜まりの抑制作用〉
ところで、上述した冷房運転や暖房運転において、室外熱交換器(12)や室内熱交換器(13)内を冷媒が流通する際には、伝熱管(22)内で冷媒に溶けきれない油が分離することがある。ここで、例えば従来の伝熱管接続構造において、図7の矢印方向へ流れる冷媒が、伝熱管(80)からU字管(81)へ流出する際、冷媒中に含まれる油が伝熱管(80)の流出端に残存してしまうことがある。具体的には、従来例の伝熱管接続構造では、U字管(81)の内径が、伝熱管(80)の中間部の内径よりも小さい。そのため、冷媒が伝熱管(80)からU字管(81)へ流出する際には、冷媒の流路断面が急激に縮小されてしまうことになる。従って、冷媒中に含まれる油が、U字管(81)へ速やかに流出し難くなり、伝熱管(80)の流出端の内周面近傍に溜まってしまうことがある。このようにして、伝熱管(80)内に次々と油が溜まってしまうと、伝熱管(80)の内周面に油膜が形成され、この油膜の肥大化に伴い伝熱管(80)の伝熱性能が低下するという不具合が生じる。
<Suppression of oil accumulation in heat transfer tube>
By the way, when the refrigerant circulates in the outdoor heat exchanger (12) or the indoor heat exchanger (13) in the above-described cooling operation or heating operation, the oil that cannot be completely dissolved in the refrigerant in the heat transfer tube (22). May separate. Here, for example, in the conventional heat transfer tube connection structure, when the refrigerant flowing in the direction of the arrow in FIG. 7 flows out from the heat transfer tube (80) to the U-shaped tube (81), the oil contained in the refrigerant is transferred to the heat transfer tube (80 ) May remain at the outflow end. Specifically, in the heat transfer tube connection structure of the conventional example, the inner diameter of the U-shaped tube (81) is smaller than the inner diameter of the intermediate portion of the heat transfer tube (80). Therefore, when the refrigerant flows out from the heat transfer tube (80) to the U-shaped tube (81), the flow path cross section of the refrigerant is abruptly reduced. Therefore, the oil contained in the refrigerant does not easily flow out to the U-shaped tube (81) and may accumulate in the vicinity of the inner peripheral surface of the outflow end of the heat transfer tube (80). Thus, if oil accumulates one after another in the heat transfer tube (80), an oil film is formed on the inner peripheral surface of the heat transfer tube (80), and the heat transfer tube (80) is transferred along with the enlargement of the oil film. There arises a problem that the thermal performance is lowered.

そこで、本実施形態では、このような不具合を解消すべく、伝熱管(22)の中間部(22a)の内径AとU字管(23)の内径Bとを等しくしている。これにより、図3の矢印方向へ流れる冷媒が、伝熱管(22)からU字管(23)へ流出する際には、冷媒の流路断面が急激に縮小されてしまうことがない。従って、冷媒中に含まれる油は、伝熱管(22)の流出端からU字管(23)へ速やかに流出するので、伝熱管(22)内に油が溜まってしまうことが未然に回避される。   Therefore, in the present embodiment, the inner diameter A of the intermediate portion (22a) of the heat transfer tube (22) and the inner diameter B of the U-shaped tube (23) are made equal to eliminate such a problem. Thereby, when the refrigerant flowing in the direction of the arrow in FIG. 3 flows out from the heat transfer tube (22) to the U-shaped tube (23), the cross section of the flow path of the refrigerant is not rapidly reduced. Therefore, the oil contained in the refrigerant quickly flows out from the outflow end of the heat transfer tube (22) to the U-shaped tube (23), so that the oil is prevented from collecting in the heat transfer tube (22). The

また、本実施形態では、伝熱管(22)の流入側において、冷媒が図3の矢印方向と逆に流れることになる。また、上述の冷房運転と暖房運転とを切り換えた場合にも、冷媒の流れが逆転することになる。実施形態1の伝熱管接続構造では、U字管(23)から伝熱管(22)へ冷媒が流れる際にも、冷媒の流路断面が急激に小さくなることがない。従って、U字管(23)を流れる冷媒中に含まれる油は、速やかに伝熱管(22)へ流出すると共に、この油は円滑に伝熱管(22)を流通する。その結果、本実施形態では、冷媒の流れを逆転させても、伝熱管(22)内における油溜まりが回避される。   Moreover, in this embodiment, a refrigerant | coolant flows on the inflow side of a heat exchanger tube (22) reversely to the arrow direction of FIG. In addition, when the cooling operation and the heating operation are switched, the refrigerant flow is reversed. In the heat transfer tube connection structure of the first embodiment, even when the refrigerant flows from the U-shaped tube (23) to the heat transfer tube (22), the flow path cross section of the refrigerant does not become suddenly small. Accordingly, the oil contained in the refrigerant flowing through the U-shaped tube (23) quickly flows out to the heat transfer tube (22), and this oil smoothly flows through the heat transfer tube (22). As a result, in this embodiment, even if the refrigerant flow is reversed, an oil pool in the heat transfer tube (22) is avoided.

−実施形態1の効果−
上記実施形態1では、伝熱管(22)の流出端を構成する拡管部(22b)にU字管(23)を内嵌すると共に、伝熱管(22)の中間部(22a)の内径Aと、U字管(23)の端部の内径Bとを同じ長さとしている。これにより、伝熱管(22)からU字管(23)へ向かう冷媒の流路断面が急激に小さくことないので、冷媒中に含まれる油を速やかにU字管(23)へ流出させることができる。その結果、伝熱管(22)の内周面に油膜が形成されてしまうことを未然に回避できるので、伝熱管(22)の伝熱性能、ひいては室外熱交換器(12)や室内熱交換器(13)の熱交換率を改善することができる。
-Effect of Embodiment 1-
In the first embodiment, the U-shaped tube (23) is fitted into the expanded tube portion (22b) constituting the outflow end of the heat transfer tube (22), and the inner diameter A of the intermediate portion (22a) of the heat transfer tube (22) The inner diameter B of the end of the U-shaped tube (23) has the same length. Thereby, since the flow path cross section of the refrigerant heading from the heat transfer tube (22) to the U-shaped tube (23) is not abruptly reduced, oil contained in the refrigerant can quickly flow out to the U-shaped tube (23). it can. As a result, it is possible to avoid the formation of an oil film on the inner peripheral surface of the heat transfer tube (22), so the heat transfer performance of the heat transfer tube (22), and consequently the outdoor heat exchanger (12) and the indoor heat exchanger The heat exchange rate of (13) can be improved.

また、伝熱管(22)からU字管(23)へ冷媒が流出する際の流路抵抗を低減できるので、室外熱交換器(12)や室内熱交換器(13)の圧力損失を低減できる。更に、これらの熱交換器(12,13)内での冷媒の溜まり込みを回避することで、圧縮機(11)への返油量を充分確保できる。従って、圧縮機(11)の各摺動部の潤滑不良を防止でき、空気調和装置(1)の信頼性を向上できる。   Moreover, since the flow resistance when the refrigerant flows out from the heat transfer pipe (22) to the U-shaped pipe (23) can be reduced, the pressure loss of the outdoor heat exchanger (12) and the indoor heat exchanger (13) can be reduced. . Furthermore, by avoiding the accumulation of refrigerant in these heat exchangers (12, 13), it is possible to secure a sufficient amount of oil return to the compressor (11). Therefore, poor lubrication of each sliding part of the compressor (11) can be prevented, and the reliability of the air conditioner (1) can be improved.

〈実施形態1の変形例〉
図4に示す変形例は、上記実施形態1と伝熱管接続構造が異なるものである。この変形例の伝熱管(22)では、上記実施形態1と比較すると、拡径部(22c)のテーパ角が大きくなっている。これに伴い、伝熱管(22)の拡管部(22b)は、上記実施形態1よりも内径及び外径が大きくなっている。一方、変形例のU字管(23)は、その厚みが上記実施形態1と同じ厚みであるのに対し、その内径は実施形態1よりも大きくなっている。そして、この変形例では、U字管(23)の端部の内径Bが、伝熱管(22)の中間部(22a)の内径Aよりも大きくなっている。
<Modification of Embodiment 1>
The modification shown in FIG. 4 is different from the first embodiment in the heat transfer tube connection structure. In the heat transfer tube (22) of this modified example, the taper angle of the enlarged diameter portion (22c) is larger than that in the first embodiment. Accordingly, the expanded portion (22b) of the heat transfer tube (22) has an inner diameter and an outer diameter larger than those of the first embodiment. On the other hand, the U-shaped tube (23) of the modified example has the same thickness as that of the first embodiment, but its inner diameter is larger than that of the first embodiment. In this modification, the inner diameter B of the end portion of the U-shaped tube (23) is larger than the inner diameter A of the intermediate portion (22a) of the heat transfer tube (22).

この変形例において、冷媒が伝熱管(22)からU字管(23)へ流れる場合、U字管(23)の流入端での冷媒の流路断面が更に大きくなる。従って、冷媒中に含まれる油は、速やかにU字管(23)へ流出する。その結果、伝熱管(22)内に油が溜まってしまうことが回避され、伝熱管(22)の伝熱性能が確保される。   In this modification, when the refrigerant flows from the heat transfer tube (22) to the U-shaped tube (23), the refrigerant flow path cross section at the inflow end of the U-shaped tube (23) is further increased. Therefore, the oil contained in the refrigerant quickly flows out to the U-shaped tube (23). As a result, it is avoided that oil accumulates in the heat transfer tube (22), and the heat transfer performance of the heat transfer tube (22) is ensured.

《発明の実施形態2》
図5に示す実施形態2は、上記実施形態1と伝熱管接続構造が異なるものである。実施形態2の伝熱管(22)は、その両端に亘って内径及び外径が均一なストレート管で構成されている。また、実施形態2のU字管(23)も、その両端に亘って内径及び外径が均一に構成される。実施形態2では、伝熱管(22)の外径が、U字管(23)の内径Bと実質的に同じか、あるいは若干小さい。そして、U字管(23)は、その端部が伝熱管(22)の端部の外周面に外嵌している。伝熱管(22)に外嵌した状態のU字管(23)は、ろう付け等によって伝熱管(22)と接続される。
<< Embodiment 2 of the Invention >>
The second embodiment shown in FIG. 5 is different from the first embodiment in the heat transfer tube connection structure. The heat transfer tube (22) of the second embodiment is formed of a straight tube having a uniform inner diameter and outer diameter across both ends thereof. In addition, the U-shaped tube (23) of the second embodiment is also configured to have uniform inner and outer diameters across both ends. In Embodiment 2, the outer diameter of the heat transfer tube (22) is substantially the same as or slightly smaller than the inner diameter B of the U-shaped tube (23). And the end part of the U-shaped pipe (23) is externally fitted on the outer peripheral surface of the end part of the heat transfer pipe (22). The U-shaped tube (23) externally fitted to the heat transfer tube (22) is connected to the heat transfer tube (22) by brazing or the like.

実施形態2においても、U字管(23)の厚みは、伝熱管(22)の厚みよりも大きくなっている。また、U字管(23)の外径は、伝熱管(22)の外径よりも大きくなっている。更に、U字管(23)の内径Bは、伝熱管(22)の内径Aよりも大きくなっている。   Also in Embodiment 2, the thickness of the U-shaped tube (23) is larger than the thickness of the heat transfer tube (22). Moreover, the outer diameter of the U-shaped tube (23) is larger than the outer diameter of the heat transfer tube (22). Furthermore, the inner diameter B of the U-shaped tube (23) is larger than the inner diameter A of the heat transfer tube (22).

実施形態2の伝熱管接続構造においても、冷媒が伝熱管(22)からU字管(23)へ流れる場合、U字管(23)の流入端での冷媒の流路断面が更に大きくなる。従って、冷媒中に含まれる油は、速やかにU字管(23)へ流出する。その結果、伝熱管(22)内に油が溜まってしまうことが回避され、伝熱管(22)の伝熱性能が確保される。   Also in the heat transfer tube connection structure of the second embodiment, when the refrigerant flows from the heat transfer tube (22) to the U-shaped tube (23), the refrigerant flow path cross section at the inflow end of the U-shaped tube (23) is further increased. Therefore, the oil contained in the refrigerant quickly flows out to the U-shaped tube (23). As a result, it is avoided that oil accumulates in the heat transfer tube (22), and the heat transfer performance of the heat transfer tube (22) is ensured.

また、実施形態2では、冷媒がU字管(23)から伝熱管(22)へ流入する際に、油がU字管(23)に残存することがあっても、伝熱管(22)内に溜まり込むことはない。従って、伝熱管(22)の内周面に油膜が形成されることも確実に回避され、伝熱性能を確保できる。   Moreover, in Embodiment 2, even if oil may remain in the U-shaped tube (23) when the refrigerant flows from the U-shaped tube (23) into the heat-transfer tube (22), It doesn't collect in. Therefore, the formation of an oil film on the inner peripheral surface of the heat transfer tube (22) can be reliably avoided and heat transfer performance can be ensured.

〈実施形態2の変形例〉
図6に示す変形例は、上記実施形態1や2と伝熱管接続構造が異なるものである。この変形例では、伝熱管(22)が上記実施形態2と同様に構成される一方、U字管(23)の両端にそれぞれ拡管部(23b)が形成されている。具体的に、U字管(23)は、上記実施形態1の伝熱管(22)と同様にして、その両端の間に亘って形成される中間部(23a)と、該中間部(23a)の両端にそれぞれ形成される拡管部(23b)と、中間部(23a)及び拡管部(23b)の間に形成される拡径部(23c)とを有している。そして、U字管(23)の拡管部(23b)が、伝熱管(22)の端部の外周面に外嵌している。
<Modification of Embodiment 2>
The modification shown in FIG. 6 is different from the first and second embodiments in the heat transfer tube connection structure. In this modified example, the heat transfer tube (22) is configured in the same manner as in the second embodiment, and the expanded portion (23b) is formed at each end of the U-shaped tube (23). Specifically, the U-shaped tube (23) includes an intermediate portion (23a) formed between both ends in the same manner as the heat transfer tube (22) of the first embodiment, and the intermediate portion (23a). And a widened portion (23c) formed between the intermediate portion (23a) and the expanded portion (23b). And the expansion part (23b) of the U-shaped pipe (23) is externally fitted on the outer peripheral surface of the end part of the heat transfer pipe (22).

この変形例では、伝熱管(22)の内径と、U字管(23)の中間部(23a)の内径とが等しくなっている。これにより、冷媒が伝熱管(22)からU字管(23)へ流れる際に、流路断面が急激に減少してしまうことが回避され、伝熱管(22)内の油溜まりが未然に回避される。また、この変形例では、U字管(23)の両端部以外(中間部)の外径を、上記実施形態2よりも小さくできる。従って、このU字管(23)の加工が容易となり、製造コストも低減できる。なお、この変形例においても、U字管(23)の中間部(23a)の内径Bを、伝熱管(22)の内径Aよりも大きくして良いのは勿論のことである。   In this modification, the inner diameter of the heat transfer tube (22) is equal to the inner diameter of the intermediate portion (23a) of the U-shaped tube (23). As a result, when the refrigerant flows from the heat transfer tube (22) to the U-shaped tube (23), it is avoided that the cross section of the flow path suddenly decreases, and an oil reservoir in the heat transfer tube (22) is avoided in advance. Is done. In this modified example, the outer diameter of the U-shaped tube (23) other than both end portions (intermediate portion) can be made smaller than that of the second embodiment. Therefore, the U-shaped tube (23) can be easily processed and the manufacturing cost can be reduced. In this modification as well, it goes without saying that the inner diameter B of the intermediate portion (23a) of the U-shaped tube (23) may be larger than the inner diameter A of the heat transfer tube (22).

《その他の実施形態》
上記各実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About each said embodiment, it is good also as the following structures.

上記各実施形態では、伝熱管(22)とU字管(23)との接続構造について、本発明を適用するようにしている。しかしながら、伝熱管(22)とそれ以外の接続管の接続構造について、同様に本発明を適用しても良い。具体的には、例えば室外熱交換器(12)や室内熱交換器(13)の流出端に接続される連絡配管と、伝熱管(22)とについて、上記各実施形態で述べた接続構造を採用しても良い。   In each of the above embodiments, the present invention is applied to the connection structure between the heat transfer tube (22) and the U-shaped tube (23). However, the present invention may be similarly applied to the connection structure of the heat transfer tube (22) and other connection tubes. Specifically, for example, the connection pipes connected to the outflow ends of the outdoor heat exchanger (12) and the indoor heat exchanger (13) and the heat transfer pipe (22) have the connection structures described in the above embodiments. It may be adopted.

また、上記各実施形態では、冷媒として二酸化炭素を用い、冷凍機油としてPAGを用いる冷凍装置について、本発明に係る伝熱管接続構造を適用しているが、これ以外の種類の冷媒や冷凍機油を用いる冷凍装置について、この伝熱管接続構造を適用しても良い。具体的には、冷媒としては、R134a、R410a、R407c、R32等が挙げられる一方、冷凍機油としては、ポリ−α−オレフィン、P06、フッ素系の油等が挙げられる。   Further, in each of the above embodiments, the heat transfer tube connection structure according to the present invention is applied to a refrigeration apparatus that uses carbon dioxide as a refrigerant and PAG as a refrigeration oil, but other types of refrigerants and refrigeration oils are used. You may apply this heat exchanger tube connection structure about the refrigeration apparatus to be used. Specifically, examples of the refrigerant include R134a, R410a, R407c, and R32, and examples of the refrigerating machine oil include poly-α-olefin, P06, and fluorine-based oil.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、冷凍サイクルを行う冷凍装置に適用される熱交換器について有用である。   As described above, the present invention is useful for a heat exchanger applied to a refrigeration apparatus that performs a refrigeration cycle.

図1は、実施形態1に係る冷凍装置の冷媒回路の概略構成を示す配管系統図である。FIG. 1 is a piping diagram illustrating a schematic configuration of a refrigerant circuit of a refrigeration apparatus according to Embodiment 1. 図2は、実施形態1に係る熱交換器の概略構成を示す斜視図である。FIG. 2 is a perspective view illustrating a schematic configuration of the heat exchanger according to the first embodiment. 図3は、実施形態1に係る伝熱管接続構造の要部を拡大した縦断面図である。FIG. 3 is an enlarged longitudinal sectional view of a main part of the heat transfer tube connection structure according to the first embodiment. 図4は、実施形態1の変形例に係る伝熱管接続構造の要部を拡大した縦断面図である。FIG. 4 is an enlarged vertical cross-sectional view of a main part of the heat transfer tube connection structure according to the modification of the first embodiment. 図5は、実施形態2に係る伝熱管接続構造の要部を拡大した縦断面図である。FIG. 5 is an enlarged vertical cross-sectional view of a main part of the heat transfer tube connection structure according to the second embodiment. 図6は、実施形態2の変形例に係る伝熱管接続構造の要部を拡大した縦断面図である。FIG. 6 is an enlarged longitudinal sectional view of a main part of a heat transfer tube connection structure according to a modification of the second embodiment. 図7は、従来例に係る伝熱管接続構造の要部を拡大した縦断面図である。FIG. 7 is an enlarged vertical cross-sectional view of a main part of a heat transfer tube connection structure according to a conventional example.

符号の説明Explanation of symbols

1 空気調和装置(冷凍装置)
10 冷媒回路
12 室内熱交換器(熱交換器)
13 室外熱交換器(熱交換器)
22 伝熱管
22a 中間部
22b 拡管部
23 U字管
23a 中間部
23b 拡管部
1 Air conditioner (refrigeration equipment)
10 Refrigerant circuit
12 Indoor heat exchanger (heat exchanger)
13 Outdoor heat exchanger (heat exchanger)
22 Heat transfer tube
22a Middle part
22b Expansion section
23 U-tube
23a Middle part
23b Expanding section

Claims (5)

蒸気圧縮式の冷凍サイクルを行う冷凍装置(1)の冷媒回路(10)に設けられる熱交換器(12,13)の伝熱管(22)と、該伝熱管(22)に接続される所定の接続管(23)とを有する伝熱管接続構造であって、
上記伝熱管(22)の流出端には、該伝熱管(22)の中間部(22a)よりも拡径して上記接続管(23)の端部が内嵌する拡管部(22b)が形成されており、
上記接続管(23)の端部の内径が、上記伝熱管(22)の中間部(22a)の内径以上となっていることを特徴とする伝熱管接続構造。
A heat transfer tube (22) of a heat exchanger (12, 13) provided in a refrigerant circuit (10) of a refrigeration system (1) that performs a vapor compression refrigeration cycle, and a predetermined connection connected to the heat transfer tube (22) A heat transfer pipe connection structure having a connection pipe (23),
At the outflow end of the heat transfer tube (22), there is formed an expanded portion (22b) having a diameter larger than that of the intermediate portion (22a) of the heat transfer tube (22) and into which the end of the connection tube (23) is fitted. Has been
The heat transfer tube connection structure, wherein an inner diameter of an end portion of the connection tube (23) is equal to or greater than an inner diameter of an intermediate portion (22a) of the heat transfer tube (22).
蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)に設けられる熱交換器(12,13)の伝熱管(22)と、該伝熱管(22)に接続される所定の接続管(23)とを有する伝熱管接続構造であって、
上記接続管(23)は、上記伝熱管(22)の流出端の外周側に外嵌するように構成されていることを特徴とする伝熱管接続構造。
A heat transfer pipe (22) of a heat exchanger (12, 13) provided in a refrigerant circuit (10) performing a vapor compression refrigeration cycle, and a predetermined connection pipe (23) connected to the heat transfer pipe (22) A heat transfer tube connection structure comprising:
The heat transfer tube connection structure, wherein the connection tube (23) is configured to be fitted on the outer peripheral side of the outflow end of the heat transfer tube (22).
請求項2において、
上記接続管(23)の端部には、該接続管(23)の中間部(23a)よりも拡径して上記伝熱管(22)の流出端部に外嵌する拡管部(23b)が形成されていることを特徴とする伝熱管接続構造。
In claim 2,
At the end of the connection pipe (23), there is an expanded pipe part (23b) that has a diameter larger than that of the intermediate part (23a) of the connection pipe (23) and is fitted around the outflow end of the heat transfer pipe (22). A heat transfer tube connection structure characterized by being formed.
請求項1乃至3のいずれか1つにおいて、
上記熱交換器(12,13)は、直線状に延びる複数の上記伝熱管(22)と、各伝熱管(22)を互いに連結する上記接続管としての複数のU字管(23)とを備えていることを特徴とする伝熱管接続構造。
In any one of Claims 1 thru | or 3,
The heat exchanger (12, 13) includes a plurality of linearly extending heat transfer tubes (22), and a plurality of U-shaped tubes (23) as the connection tubes connecting the heat transfer tubes (22) to each other. A heat transfer tube connection structure characterized by comprising:
請求項1乃至4のいずれか1つにおいて、
冷媒としての二酸化炭素を臨界圧力以上まで圧縮する冷凍サイクルを行う冷媒回路(10)に設けられる熱交換器(12,13)に用いられることを特徴とする伝熱管接続構造。
In any one of Claims 1 thru | or 4,
A heat transfer tube connection structure used for a heat exchanger (12, 13) provided in a refrigerant circuit (10) for performing a refrigeration cycle for compressing carbon dioxide as a refrigerant to a critical pressure or higher.
JP2007159847A 2007-06-18 2007-06-18 Heat transfer pipe connecting structure Pending JP2008309443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159847A JP2008309443A (en) 2007-06-18 2007-06-18 Heat transfer pipe connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159847A JP2008309443A (en) 2007-06-18 2007-06-18 Heat transfer pipe connecting structure

Publications (1)

Publication Number Publication Date
JP2008309443A true JP2008309443A (en) 2008-12-25

Family

ID=40237200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159847A Pending JP2008309443A (en) 2007-06-18 2007-06-18 Heat transfer pipe connecting structure

Country Status (1)

Country Link
JP (1) JP2008309443A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075495A (en) * 2013-03-26 2014-10-01 珠海格力电器股份有限公司 Air conditioner and finned heat exchanger thereof
JP2017122549A (en) * 2016-01-08 2017-07-13 株式会社デンソー Heat exchanger and method of manufacturing the same
WO2022227757A1 (en) * 2021-04-30 2022-11-03 浙江盾安人工环境股份有限公司 Gas collection pipe and heat exchanger assembly having same
WO2024071379A1 (en) * 2022-09-30 2024-04-04 ダイキン工業株式会社 Refrigerant channel module, refrigeration cycle device, and method for manufacturing refrigeration cycle device
JP7507994B1 (en) 2024-03-12 2024-06-28 日立ジョンソンコントロールズ空調株式会社 Air Conditioning Equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075495A (en) * 2013-03-26 2014-10-01 珠海格力电器股份有限公司 Air conditioner and finned heat exchanger thereof
CN104075495B (en) * 2013-03-26 2016-10-05 珠海格力电器股份有限公司 Air conditioner and finned heat exchanger thereof
JP2017122549A (en) * 2016-01-08 2017-07-13 株式会社デンソー Heat exchanger and method of manufacturing the same
WO2022227757A1 (en) * 2021-04-30 2022-11-03 浙江盾安人工环境股份有限公司 Gas collection pipe and heat exchanger assembly having same
WO2024071379A1 (en) * 2022-09-30 2024-04-04 ダイキン工業株式会社 Refrigerant channel module, refrigeration cycle device, and method for manufacturing refrigeration cycle device
JP7545066B2 (en) 2022-09-30 2024-09-04 ダイキン工業株式会社 Refrigeration cycle device and manufacturing method for refrigeration cycle device
JP7507994B1 (en) 2024-03-12 2024-06-28 日立ジョンソンコントロールズ空調株式会社 Air Conditioning Equipment

Similar Documents

Publication Publication Date Title
JP4738401B2 (en) Air conditioner
WO2010016516A1 (en) Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle apparatus, and air conditioning apparatus
WO2011086881A1 (en) Heat transfer tube for heat exchanger, heat exchanger, refrigeration cycle device, and air conditioning device
AU2006293190A1 (en) Air conditioning apparatus
WO2014147788A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
US12055329B2 (en) Pipe coupling structure and refrigeration cycle apparatus
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
JP2011106770A (en) Heat exchanger and refrigerating cycle device
JP2008309443A (en) Heat transfer pipe connecting structure
EP3191784B1 (en) Turbulators in enhanced tubes
JP2008309361A (en) Refrigerating cycle device
US9506700B2 (en) Air-conditioning apparatus
JP2001133075A (en) Heat exchanger in refrigerating circuit
JP5591285B2 (en) Heat exchanger and air conditioner
JP2008122059A (en) Heat exchanger and refrigeration system
JP5646257B2 (en) Refrigeration cycle equipment
JP2008116135A (en) Heat exchanger and refrigeration device
JP6298992B2 (en) Air conditioner
JP2008164254A (en) Coolant piping structure
EP1843109A2 (en) Cooling System
JPWO2020202492A1 (en) Air conditioner
JP2008309442A (en) Heat transfer pipe and heat exchanger
JP4813534B2 (en) Air conditioner
JP2012167912A (en) Air conditioner
JP2010078256A (en) Fin tube type heat exchanger, and refrigerating cycle device and air conditioner using the same