JP2008308626A - Sheet-like fiber-reinforced composite material and production method therefor - Google Patents
Sheet-like fiber-reinforced composite material and production method therefor Download PDFInfo
- Publication number
- JP2008308626A JP2008308626A JP2007159598A JP2007159598A JP2008308626A JP 2008308626 A JP2008308626 A JP 2008308626A JP 2007159598 A JP2007159598 A JP 2007159598A JP 2007159598 A JP2007159598 A JP 2007159598A JP 2008308626 A JP2008308626 A JP 2008308626A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- composite material
- reinforced composite
- sheet
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 64
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000835 fiber Substances 0.000 claims abstract description 94
- 239000010410 layer Substances 0.000 claims abstract description 60
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 32
- 239000002344 surface layer Substances 0.000 claims abstract description 18
- 239000002759 woven fabric Substances 0.000 claims abstract description 18
- 230000002787 reinforcement Effects 0.000 claims description 29
- 239000012779 reinforcing material Substances 0.000 claims description 23
- 238000007796 conventional method Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 28
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 238000000465 moulding Methods 0.000 description 12
- 229920000049 Carbon (fiber) Polymers 0.000 description 11
- 239000004917 carbon fiber Substances 0.000 description 11
- 239000004744 fabric Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 239000004760 aramid Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 238000011074 autoclave method Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明は、繊維強化材とマトリックス樹脂とからなるシート状の繊維強化複合材料と、その製造方法に関する。 The present invention relates to a sheet-like fiber reinforced composite material comprising a fiber reinforcing material and a matrix resin, and a method for producing the same.
近年、炭素繊維、ガラス繊維、アラミド繊維等の繊維強化材は、各種のマトリックス樹脂と複合化され、得られる繊維強化複合材料は種々の分野・用途に広く利用されるようになってきた。そして、高度の機械的特性や耐熱性等を要求される航空・宇宙分野や、一般産業分野では、従来、マトリックス樹脂として、不飽和ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂が使用されてきた。しかし、特に航空・宇宙分野では、これらのマトリックス樹脂は、脆く、耐衝撃性に劣るという欠点を有するため、その改善が求められてきた。また、熱硬化性樹脂の場合、これをプリプリグとしたとき、樹脂のライフ等によるプリプレグの保存管理上の問題点、製品形状に対して追従性が乏しい、成形時間が長く生産性が低い等の問題もあった。 In recent years, fiber reinforcing materials such as carbon fibers, glass fibers, and aramid fibers have been combined with various matrix resins, and the resulting fiber reinforced composite materials have been widely used in various fields and applications. And in the aerospace field and general industrial fields where high mechanical properties and heat resistance are required, conventionally, thermosetting resins such as unsaturated polyester resin, epoxy resin, and polyimide resin have been used as matrix resins. It has been. However, especially in the aerospace field, these matrix resins have the drawbacks of being brittle and inferior in impact resistance, and therefore, improvement has been demanded. In the case of a thermosetting resin, when this is used as a prepreg, there are problems in storage management of the prepreg due to the life of the resin, etc., poor followability to the product shape, long molding time and low productivity, etc. There was also a problem.
これに対して、熱可塑性樹脂プリプレグの場合は、複合材料としたときの耐衝撃性が優れ、プリプレグの保存管理が容易で、かつ成形時間が短く、成形コスト低減の可能性もある。熱可塑性樹脂プリプレグの製造法としては、従来、例えば、フィルム状の樹脂を加熱溶融して基材としての繊維強化材に含浸させる方法(溶融含浸法、特許文献1参照)、粉末状の樹脂を流動床法や懸濁法によって繊維強化材に塗布・融着させる方法(パウダー法、特許文献2参照)、樹脂を溶液化し、繊維強化材に含浸後溶媒を除去する方法(溶液含浸法)が知られている。また、多軸織物を使用した場合は、表面平滑性や均一性を向上させる方法として、多軸織物のステッチ糸に低融点ポリマーを使用し、繊維強化プラスチック成形品を成形する際、低融点ポリマーの融点以上で加熱成形し、ステッチ糸を溶融する方法も提案されている(特許文献3)。
一方、繊維強化複合材料の成形方法は、従来、繊維強化材に予め樹脂を含浸したプリプレグを用いたオートクレーブ成形が主流であったが、
近年は、成形品のコスト削減の要望が高く、従来のオートクレーブ成形方法の外に、前記溶融含浸法を用いたレジンフィルムインフュージョン成形法(RFI法)も広く行われるようになった。 しかしながら、いずれにしろ従来の方法・手段では、得られる繊維強化複合材料はコストの高いものであり、特に繊維強化材の低コスト化という点で改良技術の開発が望まれていた。
On the other hand, as a molding method of fiber reinforced composite material, conventionally, autoclave molding using a prepreg in which a fiber reinforcing material is impregnated with a resin has been mainly used.
In recent years, there has been a high demand for cost reduction of molded products, and in addition to the conventional autoclave molding method, a resin film infusion molding method (RFI method) using the melt impregnation method has been widely performed. However, in any case, the conventional method and means are expensive in the fiber reinforced composite material obtained, and development of an improved technique has been desired particularly in terms of cost reduction of the fiber reinforcing material.
本発明の目的は、従来の方法・手段よりも低コストで製造される、優れた機械的特性を有するシート状の繊維強化複合材料を提供することにある。 An object of the present invention is to provide a sheet-like fiber-reinforced composite material having excellent mechanical properties, which is manufactured at a lower cost than conventional methods and means.
本発明の請求項1に記載された発明は、繊維強化材と熱可塑性樹脂とからなるシート状の繊維強化複合材料であって、繊維強化材が少なくとも片方の表層部分に偏在していることを特徴とするシート状の繊維強化複合材料である。そして、表層部分の繊維強化材としては、織物が好ましい(請求項2の発明)。 The invention described in claim 1 of the present invention is a sheet-like fiber reinforced composite material composed of a fiber reinforcing material and a thermoplastic resin, and the fiber reinforcing material is unevenly distributed in at least one surface layer portion. It is a sheet-like fiber-reinforced composite material. And as a fiber reinforcement of a surface layer part, a textile fabric is preferable (invention of Claim 2).
請求項1に記載された発明の中で好ましい態様は、シート状の繊維強化複合材料の中央部分に、繊維強化材を含まない繊維非含有層(熱可塑性樹脂層)が存在し、該繊維非含有層の厚さが、繊維強化複合材料全体の厚さの少なくとも10分の1であるシート状の繊維強化複合材料である(請求項3の発明)。 In a preferred embodiment of the invention described in claim 1, a non-fiber-containing layer (thermoplastic resin layer) that does not contain a fiber reinforcement is present in the central portion of the sheet-like fiber-reinforced composite material. The thickness of the containing layer is a sheet-like fiber-reinforced composite material that is at least one-tenth the thickness of the entire fiber-reinforced composite material (Invention of Claim 3).
請求項1に記載された発明の中で好ましいもう一つの態様は、シート状の繊維強化複合材料の中央部分に、表層部分に比べて繊維体積含有率(Vf)の低い層が存在し、該繊維体積含有率の低い層の厚さが、繊維強化複合材料全体の厚さの少なくとも10分の1であるシート状の繊維強化複合材料である(請求項4の発明)。 In another preferred embodiment of the invention described in claim 1, a layer having a lower fiber volume content (Vf) than the surface layer portion is present in the central portion of the sheet-like fiber-reinforced composite material, It is a sheet-like fiber-reinforced composite material in which the thickness of the layer having a low fiber volume content is at least 1/10 of the total thickness of the fiber-reinforced composite material (Invention of Claim 4).
請求項1に記載された本発明のシート状の繊維強化複合材料の製造方法の一つは、繊維強化材を含まない繊維非含有層(熱可塑性樹脂層)の両面又は片面に、繊維強化材と熱可塑性樹脂とからなる層を配置し積層体を形成せしめ、その後、該積層体を加熱及び加圧処理により一体的に融着せしめる方法である(請求項5の発明)。 One of the manufacturing methods of the sheet-like fiber reinforced composite material of this invention described in Claim 1 is a fiber reinforcement material on both surfaces or one surface of the fiber-free layer (thermoplastic resin layer) which does not contain a fiber reinforcement material. And a layer of thermoplastic resin are disposed to form a laminate, and then the laminate is integrally fused by heating and pressurizing (Invention of Claim 5).
本発明のシート状の繊維強化複合材料の製造方法のもう一つの態様は、繊維強化材と熱可塑性樹脂とからなる層の両面又は片面に、該層よりも繊維体積含有率が高い、繊維強化材と熱可塑性樹脂とからなる層を配置し積層体を形成せしめ、その後、該積層体を加熱及び加圧処理により一体的に融着せしめることを特徴とするシート状の繊維強化複合材料の製造方法である(請求項7の発明)。 Another aspect of the method for producing a sheet-like fiber reinforced composite material of the present invention is that the fiber volume content is higher on both sides or one side of the layer composed of the fiber reinforcing material and the thermoplastic resin than the layer. A sheet-like fiber-reinforced composite material, characterized in that a layer comprising a material and a thermoplastic resin is arranged to form a laminate, and then the laminate is integrally fused by heating and pressing. This is a method (invention of claim 7).
前記請求項5と7の製造方法の発明において、いずれの場合も、表層部分の繊維強化材としては、織物が好ましい(請求項6と8の発明)。 In the inventions of the manufacturing methods of the fifth and seventh aspects, in any case, a woven fabric is preferable as the fiber reinforcement of the surface layer portion (the inventions of the sixth and eighth aspects).
本発明によって得られたシート状の繊維強化複合材料は、従来の方法・手段によるよりも低コストで製造でき、その機械的特性は、従来の方法・手段によって得られるものに比べ優るとも劣らないものである。また、本発明のシート状の繊維強化複合材料は、機械的特性が優れている割に材料の軽量化に資するものである。 The sheet-like fiber-reinforced composite material obtained by the present invention can be manufactured at a lower cost than that obtained by the conventional method and means, and its mechanical properties are not inferior to those obtained by the conventional method and means. Is. Moreover, the sheet-like fiber-reinforced composite material of the present invention contributes to weight reduction of the material although it has excellent mechanical properties.
本発明の繊維強化複合材料は、シート状の繊維強化材と熱可塑性樹脂とからなるものであって、繊維強化材が少なくとも片方の表層部分に偏在しているものである。本発明において表層部分とは、シート状物の上表面を含む部分(表面部分)又は下表面を含む部分(裏面部分)を意味し、中央部分とは、上表面を含む部分と下表面を含む部分に挟まれた部分を意味する。本発明は、繊維強化材が、少なくとも片方の表層部分、即ち、表面部分及び/又は裏面部分に偏在しているものである。 The fiber-reinforced composite material of the present invention comprises a sheet-like fiber reinforcing material and a thermoplastic resin, and the fiber reinforcing material is unevenly distributed in at least one surface layer portion. In the present invention, the surface layer portion means a portion including the upper surface of the sheet (surface portion) or a portion including the lower surface (back surface portion), and the central portion includes a portion including the upper surface and a lower surface. It means a part sandwiched between parts. In the present invention, the fiber reinforcement is unevenly distributed in at least one surface layer portion, that is, the front surface portion and / or the back surface portion.
本発明の好ましい態様の一つは、繊維強化材が、表面部分及び/又は裏面部分に偏在しているシート状の繊維強化複合材料であって、その中央部分に、繊維強化材を含まない繊維非含有層(熱可塑性樹脂のみからなる層)が存在し、該繊維非含有層の厚さが、繊維強化複合材料全体の厚さの少なくとも10分の1であるものである。好ましくは、10分の1から4分の3の範囲である。繊維非含有層の厚さが10分の1未満の場合には、繊維強化材を低減するという発明の目的にそぐわない。 One of the preferred embodiments of the present invention is a sheet-like fiber-reinforced composite material in which the fiber reinforcement is unevenly distributed on the front surface portion and / or the back surface portion, and the fiber does not include a fiber reinforcement material in the center portion thereof. There is a non-containing layer (a layer made of only a thermoplastic resin), and the thickness of the non-fiber-containing layer is at least 1/10 of the total thickness of the fiber-reinforced composite material. Preferably, it is in the range of 1/10 to 3/4. When the thickness of the non-fiber-containing layer is less than 1/10, it does not meet the object of the invention of reducing the fiber reinforcement.
本発明の好ましい他の態様は、繊維強化材が、表面部分及び/又は裏面部分に偏在してシート状の繊維強化複合材料であって、その中央部分に、表層部分に比べて繊維体積含有率の低い層が存在し、該繊維体積含有率の低い層の厚さが、繊維強化複合材料全体の厚さの少なくとも10分の1であるものである。好ましくは、10分の1から4分の3の範囲である。繊維非含有層の厚さが10分の1未満の場合には、繊維強化材を低減するという発明の目的にそぐわない。 In another preferred embodiment of the present invention, the fiber reinforcing material is a sheet-like fiber-reinforced composite material that is unevenly distributed on the front surface portion and / or the back surface portion, and the fiber volume content rate in the central portion compared to the surface layer portion. In which the thickness of the low fiber volume content layer is at least one-tenth of the total thickness of the fiber-reinforced composite material. Preferably, it is in the range of 1/10 to 3/4. When the thickness of the non-fiber-containing layer is less than 1/10, it does not meet the object of the invention of reducing the fiber reinforcement.
表面部分及び/又は裏面部分に偏在している繊維強化材の形態は、下記に説明するようなシート状の物であればどのようなものでも良いが、好ましいのは織物である。表面部分及び/又は裏面部分に織物を用い、中央部分に織物以外の形態のシート状物を用いても良い。 The form of the fiber reinforcing material unevenly distributed on the front surface part and / or the back surface part may be any sheet-like material as described below, but is preferably a woven fabric. A woven fabric may be used for the front surface portion and / or the back surface portion, and a sheet-like material other than the woven fabric may be used for the central portion.
本発明において用いられる繊維強化材としては、無機繊維、有機繊維、金属繊維またはそれらの混合からなる繊維が挙げられる。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維などが挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン、ポリエステル等の有機繊維が挙げられる。金属繊維としては、ステンレス、鉄等の繊維が使用可能であり、また金属を被覆した炭素繊維等もある。特に好ましいのは、炭素繊維である。炭素繊維の場合、200〜1600tex、3K〜24Kフィラメントのストランドが好ましい。 Examples of the fiber reinforcing material used in the present invention include inorganic fibers, organic fibers, metal fibers, or fibers made of a mixture thereof. Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of organic fibers include aramid fibers, high-density polyethylene fibers, and other general organic fibers such as nylon and polyester. As the metal fibers, fibers such as stainless steel and iron can be used, and there are also carbon fibers coated with metal. Particularly preferred is carbon fiber. In the case of carbon fibers, strands of 200-1600 tex and 3K-24K filaments are preferred.
本発明においては、上記繊維強化材はシート状にして用いられる。本発明においてシート状とは、繊維強化材の織編物、多軸織物、ストランドの一方向配列シート状物等の平面状の形態のものを意味する。チョップトストランドを用いて作成された炭素繊維ペーパーであっても良い。なお、多軸織物とは、一般に、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層したもの(多軸織物基材)を、ナイロン糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。本発明において好ましいのは、炭素繊維又は炭素繊維と他の繊維との混繊によって得られた織物、例えば、平織物、綾織物、多軸織物である。 In the present invention, the fiber reinforcement is used in the form of a sheet. In the present invention, the sheet form means a flat form such as a woven or knitted fabric of fiber reinforcement, a multiaxial woven fabric, or a unidirectionally arranged sheet of strands. Carbon fiber paper made using chopped strands may be used. In addition, multiaxial woven fabrics are generally nylon yarns, polyester yarns, glass fibers, which are bundles of fiber reinforcements aligned in one direction and laminated in a sheet form (multiaxial woven fabric base material). This refers to a woven fabric that is stitched by stitches such as yarns, penetrates the laminate in the thickness direction, and reciprocates between the front and back surfaces of the laminate along the surface direction. Preferred in the present invention is a fabric obtained by carbon fiber or a mixture of carbon fiber and other fibers, for example, a plain fabric, a twill fabric, or a multiaxial fabric.
本発明の繊維強化複合材料において、繊維体積含有率(Vf)は、10〜60%、好ましくは20〜50%、従って、熱可塑性樹脂の体積含有率が90〜40%、好ましくは80〜50%であり、通常のプリプレグよりも繊維強化材の割合が低めである。従って、繊維強化材が高価なものである場合には、コスト的に有利である。加えて、通常繊維強化材はマトリクス樹脂に比べて比重が高いため、繊維強化材の割合を低くすることによって、製品の軽量化が期待される。 In the fiber-reinforced composite material of the present invention, the fiber volume content (Vf) is 10 to 60%, preferably 20 to 50%. Therefore, the volume content of the thermoplastic resin is 90 to 40%, preferably 80 to 50%. %, And the ratio of the fiber reinforcement is lower than that of a normal prepreg. Therefore, when the fiber reinforcement is expensive, it is advantageous in terms of cost. In addition, since the specific gravity of the fiber reinforcing material is higher than that of the matrix resin, the weight of the product is expected to be reduced by reducing the ratio of the fiber reinforcing material.
本発明において用いられる熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリフェニレンサルファイド、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、アクリロニトリルブタジエンスチレン、ポリ乳酸なる群から選ばれた1種若しくは2種以上の樹脂が挙げられる。また、用途によっては、一部熱硬化性樹脂と混合して用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたポリアミド樹脂やアクリロニトリルブタジエンスチレン(ABS)樹脂が、特に好ましい。これらの熱可塑性樹脂には、通常用いられる着色剤や各種添加剤等が含まれていても良い。 Examples of the thermoplastic resin used in the present invention include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyphenylene sulfide, polyetherimide, and poly Examples thereof include one or more resins selected from the group consisting of arylene oxide, thermoplastic polyimide, polyamideimide, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyethylene, acrylonitrile butadiene styrene, and polylactic acid. Moreover, depending on a use, it can also be mixed and used partially with a thermosetting resin. Of these, polyamide resins and acrylonitrile butadiene styrene (ABS) resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermoplastic resins may contain commonly used colorants and various additives.
本発明のシート状の繊維強化複合材料は、好ましくは、下記に説明する方法で製造することができる。 The sheet-like fiber-reinforced composite material of the present invention can be preferably produced by the method described below.
一つの方法は、繊維強化材を含まない繊維非含有層(熱可塑性樹脂層)の両面又は片面に、繊維強化材と熱可塑性樹脂とからなる層を配置し積層体を形成せしめ、その後、該積層体を加熱及び加圧処理により一体的に融着せしめる方法である。繊維非含有層(熱可塑性樹脂層)の両面又は片面に配置される繊維強化材としては、織物が好ましい。 One method is to form a laminate by disposing a layer comprising a fiber reinforcement and a thermoplastic resin on both sides or one side of a fiber-free layer (thermoplastic resin layer) that does not contain a fiber reinforcement, and then forming the laminate. In this method, the laminate is integrally fused by heating and pressing. As the fiber reinforcing material disposed on both surfaces or one surface of the non-fiber-containing layer (thermoplastic resin layer), a woven fabric is preferable.
もう一つの方法は、繊維強化材と熱可塑性樹脂とからなる層の両面又は片面に、該層よりも繊維体積含有率が高い、繊維強化材と熱可塑性樹脂とからなる層を配置し積層体を形成せしめ、その後、該積層体を加熱及び加圧処理により一体的に融着せしめる方法である。中央部分を形成する繊維強化材と熱可塑性樹脂とからなる層の、両面又は片面に配置される繊維強化材としては、織物が好ましい。中央部分を形成する繊維強化材は、織物以外の形態のシート状物を用いても良い。 Another method is a laminate in which a layer composed of a fiber reinforcement and a thermoplastic resin having a fiber volume content higher than that of the layer composed of a fiber reinforcement and a thermoplastic resin is disposed on both sides or one side of the layer. Is formed, and then the laminate is integrally fused by heating and pressing. As the fiber reinforcement disposed on both sides or one side of the layer composed of the fiber reinforcement and the thermoplastic resin forming the central portion, a woven fabric is preferable. As the fiber reinforcing material forming the central portion, a sheet-like material having a form other than the woven fabric may be used.
前記積層体を加熱及び加圧処理により一体的に融着せしめる方法としては、例えば、この積層体を
スチールベルトで挟み、スチールベルトごと熱ロール間に通すことによって加熱・加圧して、あるいは間欠プレスすることによって、熱可塑性樹脂を溶融させて一体化する方法がある。あるいは、ベルトプレスにより、積層体の加熱冷却を連続して行う方法、また、積層体を遠赤外線ヒータによって予熱した後、コールドプレスする方法、又は、加熱冷却プレスを用いるバッチ方式などがある。加熱温度は150〜400℃、加圧は0.1〜10MPa程度が好ましい。
As a method of fusing the laminated body integrally by heating and pressurizing treatment, for example, the laminated body is sandwiched between steel belts and heated and pressurized by passing the steel belt between hot rolls, or intermittent press. By doing so, there is a method of melting and integrating the thermoplastic resin. Alternatively, there are a method in which the laminated body is continuously heated and cooled by a belt press, a method in which the laminated body is preheated by a far infrared heater and then cold-pressed, or a batch method in which a heated and cooled press is used. The heating temperature is preferably 150 to 400 ° C. and the pressure is preferably about 0.1 to 10 MPa.
本発明で得られたシート状の繊維強化複合材料を1枚あるいは複数枚積層し、金型プレス法、オートクレーブ法、加熱・冷間プレス法等で成形して繊維強化プラスチック成形品が得られる。この際、成形品中の繊維体積分率(Vf)あるいは樹脂含量を調整するために、必要に応じて、熱可塑性樹脂フィルムを追加積層することもできる。成形品中の熱可塑性樹脂の含有率は、通常、10〜90重量%、好ましくは30〜70重量%が適当である。 One or a plurality of sheet-like fiber reinforced composite materials obtained in the present invention are laminated and molded by a die pressing method, an autoclave method, a heating / cold pressing method, or the like to obtain a fiber reinforced plastic molded product. At this time, in order to adjust the fiber volume fraction (Vf) or the resin content in the molded product, a thermoplastic resin film can be additionally laminated as necessary. The content of the thermoplastic resin in the molded product is usually 10 to 90% by weight, preferably 30 to 70% by weight.
以下、実施例により、本発明を詳述する。 Hereinafter, the present invention will be described in detail by way of examples.
[実施例1]
繊維強化材としては、炭素繊維HTA−12K(12000本のストランドの長繊維、800テックス、東邦テナックス社製)を使用した。この長繊維を一方向に配向した目付200g/m2
の多軸織物基材([0/90]の角度で2枚積層したもの)の中間に、PA6フィルム(ユニチカ社製、目付28.75g/m2)を4枚挿入し、ポリエステルのステッチ糸で縫合一体化して、層間にPA6フィルムを有する多軸織物を得た。
[Example 1]
As the fiber reinforcement, carbon fiber HTA-12K (12,000 long strand fibers, 800 tex, manufactured by Toho Tenax Co., Ltd.) was used. The basis weight of this long fiber oriented in one direction is 200 g / m 2.
4 pieces of PA6 film (Unitika, weight per unit: 28.75 g / m 2 ) is inserted in the middle of the multi-axial woven fabric base material (two laminated at an angle of [0/90]), and polyester stitch yarn To obtain a multiaxial fabric having a PA6 film between the layers.
成形板を成形することとし、先ず成形板の表面強化層を積層・構成した。即ち、上記多軸織物の上面と下面にそれぞれPA6フィルムを2枚ずつ配置したものを作成し、これを2枚重ねてVfが約40%の表面強化層とした。次いで、かくして得られた2枚の表面強化層の間に、繊維強化材を含有しない層(Vf=0%)が形成されるように、積層体の厚み方向中央部分にPA6フィルムを30枚挿入した。成形板全体でVfは約23%となった。得られた積層体の積層構成は、表面強化層が擬似等方性となるように、表層が0°あるいは90°[[0/90]/[45/−45]]/樹脂層/[[−45/45]/[90/0]]とした。 The molded plate was molded, and first, the surface reinforcing layer of the molded plate was laminated and constituted. That is, two PA6 films were prepared on each of the upper and lower surfaces of the multiaxial woven fabric, and the two layers were stacked to form a surface reinforcing layer having a Vf of about 40%. Next, 30 PA6 films are inserted into the central portion of the laminate in the thickness direction so that a layer containing no fiber reinforcement (Vf = 0%) is formed between the two surface reinforcing layers thus obtained. did. Vf was about 23% for the entire molded plate. The laminated structure of the obtained laminate has a surface layer of 0 ° or 90 ° [[0/90] / [45 / −45]] / resin layer / [[[so that the surface reinforcing layer becomes pseudo-isotropic. −45/45] / [90/0]].
次いで、成形板へ成形を行った。即ち、上記で得られた積層物を金型上に配置し、これを295℃に加熱したプレス盤に設置し、金型温度を285℃に昇温後10分間保温してから、成形面圧10kg/cm2まで加圧した。加圧後、金型温度50℃以下まで冷却し、脱型した。得られた成形板の断面観察画像を図1に示した。得られた成形板の3点曲げ物性試験を行った。その際、最外層の繊維配向が試験片の長手方向に対して0°となるように試験片を準備した。また、得られた成形板内部の観察から、Vf=0%層は成形板全体の約3分の1であった。得られた成形板の物性値は表1に示したとおりであった。 Subsequently, it shape | molded to the shaping | molding board. That is, the laminate obtained above was placed on a mold, placed on a press machine heated to 295 ° C., the mold temperature was raised to 285 ° C. and kept for 10 minutes, and then the molding surface pressure was increased. The pressure was increased to 10 kg / cm 2 . After pressurization, the mold was cooled to a mold temperature of 50 ° C. or lower and demolded. A cross-sectional observation image of the obtained molded plate is shown in FIG. The obtained molded plate was subjected to a three-point bending property test. At that time, the test piece was prepared so that the fiber orientation of the outermost layer was 0 ° with respect to the longitudinal direction of the test piece. Further, from the observation inside the obtained molded plate, the Vf = 0% layer was about one third of the entire molded plate. The physical properties of the obtained molded plate were as shown in Table 1.
[比較例1]
実施例1で使用した層間にPA6フィルムを有する多軸織物を4枚用い、それらの層間にPA6フィルムを挟むことによって、成形板でVf=23%になるように積層した。積層構成は擬似等方性として、表層が0°あるいは90°となる[[[0/90]/[45/−45]]2]sである。成形板及び試験片の作製は実施例1と同様に行った。得られた成形板の物性値は表1に示したとおりであった。
[Comparative Example 1]
Four multiaxial fabrics having a PA6 film between the layers used in Example 1 were used, and the PA6 film was sandwiched between these layers, so that the molded plates were laminated so that Vf = 23%. The laminated structure is [[[0/90] / [45 / −45]] 2 ] s in which the surface layer is 0 ° or 90 ° as pseudo-isotropic. The molded plate and the test piece were produced in the same manner as in Example 1. The physical properties of the obtained molded plate were as shown in Table 1.
[実施例2]
実施例1で作製した積層体のVf=0%の厚み方向の中央部分に、炭素繊維のチョップドストランドを用いて作製された炭素繊維ペーパー材料を挿入し、中央部分をVf=10%、積層体全体をVf=28%となるように積層し、低Vfの中央部分を有する成形板を作製した。成形板の成形方法及び試験片の測定方法は、実施例1と同様に行った。また、得られた成形板内部の観察から、低Vf層は成形板全体の約3分の1であった。得られた成形板の物性値は表1に示したとおりであった。
[Example 2]
A carbon fiber paper material produced using a chopped strand of carbon fiber is inserted into the central part in the thickness direction of Vf = 0% of the laminate produced in Example 1, and the central part is Vf = 10%, the laminate. The whole was laminated so that Vf = 28%, and a molded plate having a low Vf central portion was produced. The forming method of the forming plate and the measuring method of the test piece were performed in the same manner as in Example 1. Moreover, from the observation inside the obtained molded plate, the low Vf layer was about one third of the entire molded plate. The physical properties of the obtained molded plate were as shown in Table 1.
[比較例2]
実施例1で使用した層間にPA6フィルムを有する多軸織物を4枚用い、それらの層間にPA6フィルムを挟むことによって、成形板でVf=28%になるように積層した。積層構成は擬似等方性として、表層が0°あるいは90°となる[[[0/90]/[45/−45]]2]sである。成形板及び試験片の作製は実施例1と同様に行った。得られた成形板の物性値は表1に示したとおりであった。
[Comparative Example 2]
Four multiaxial fabrics having a PA6 film between the layers used in Example 1 were used, and the PA6 film was sandwiched between these layers, so that the molded plates were laminated so that Vf = 28%. The laminated structure is [[[0/90] / [45 / −45]] 2 ] s in which the surface layer is 0 ° or 90 ° as pseudo-isotropic. The molded plate and the test piece were produced in the same manner as in Example 1. The physical properties of the obtained molded plate were as shown in Table 1.
[比較例3]
実施例1で使用した層間にPA6フィルムを有する多軸織物を8枚と、その層間にPA6フィルムを、成形板でVf=45%になるように積層した。積層構成は擬似等方性として、表層が0°あるいは90°となる[[[0/90]/[45/−45]]2]sである。成形板及び試験片の作製は実施例1と同様に行った。得られた成形板の断面観察画像を図2に示した。得られた成形板の物性値は表1に示したとおりであった。
[Comparative Example 3]
Eight multiaxial woven fabrics having a PA6 film between the layers used in Example 1 and a PA6 film between the layers were laminated so that Vf = 45% with a molding plate. The laminated structure is [[[0/90] / [45 / −45]] 2 ] s in which the surface layer is 0 ° or 90 ° as pseudo-isotropic. The molded plate and the test piece were produced in the same manner as in Example 1. A cross-sectional observation image of the obtained molded plate is shown in FIG. The physical properties of the obtained molded plate were as shown in Table 1.
表1から分かるように、繊維強化材が表層部分に偏在している本発明の実施例1又は2の複合材料は、それぞれ同じ繊維体積含有率の比較例1又は2のものに比べ、曲げ弾性率と曲げ強度がより優れている。また、比較例3から分かるとおり、繊維体積含有率が23%の実施例1の複合材料、あるいは繊維体積含有率が28%の実施例2の複合材料の曲げ弾性率と曲げ強度は、繊維体積含有率が50%の比較例3のものに匹敵している。 As can be seen from Table 1, the composite material of Example 1 or 2 of the present invention in which the fiber reinforcing material is unevenly distributed in the surface layer portion has bending elasticity compared to that of Comparative Example 1 or 2 having the same fiber volume content. The rate and bending strength are better. Further, as can be seen from Comparative Example 3, the flexural modulus and flexural strength of the composite material of Example 1 with a fiber volume content of 23% or the composite material of Example 2 with a fiber volume content of 28% are the fiber volume. It is comparable to that of Comparative Example 3 with a content of 50%.
Claims (8)
The method for producing a sheet-like fiber-reinforced composite material according to claim 7, wherein the fiber reinforcing material disposed on both sides or one side of the layer composed of the fiber reinforcing material and the thermoplastic resin is a woven fabric.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007159598A JP2008308626A (en) | 2007-06-16 | 2007-06-16 | Sheet-like fiber-reinforced composite material and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007159598A JP2008308626A (en) | 2007-06-16 | 2007-06-16 | Sheet-like fiber-reinforced composite material and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008308626A true JP2008308626A (en) | 2008-12-25 |
Family
ID=40236509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007159598A Pending JP2008308626A (en) | 2007-06-16 | 2007-06-16 | Sheet-like fiber-reinforced composite material and production method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008308626A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015051630A (en) * | 2013-08-06 | 2015-03-19 | 三菱レイヨン株式会社 | Method for producing laminate substrate and laminate substrate |
WO2021187043A1 (en) * | 2020-03-18 | 2021-09-23 | 東レ株式会社 | Laminated body and welded body using same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0465234A (en) * | 1990-07-06 | 1992-03-02 | Ishikawajima Harima Heavy Ind Co Ltd | Thermoplastic resin frp |
-
2007
- 2007-06-16 JP JP2007159598A patent/JP2008308626A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0465234A (en) * | 1990-07-06 | 1992-03-02 | Ishikawajima Harima Heavy Ind Co Ltd | Thermoplastic resin frp |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015051630A (en) * | 2013-08-06 | 2015-03-19 | 三菱レイヨン株式会社 | Method for producing laminate substrate and laminate substrate |
WO2021187043A1 (en) * | 2020-03-18 | 2021-09-23 | 東レ株式会社 | Laminated body and welded body using same |
CN115243880A (en) * | 2020-03-18 | 2022-10-25 | 东丽株式会社 | Laminate and welded body using same |
CN115243880B (en) * | 2020-03-18 | 2024-02-02 | 东丽株式会社 | Laminate and welded body using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4789940B2 (en) | Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate | |
JP4988229B2 (en) | A hybrid composite material excellent in surface smoothness and a molding method thereof. | |
EP1027206B1 (en) | Unidirectional fiber-random mat preform | |
CA2765074C (en) | Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure | |
KR101934059B1 (en) | Thermoplastic prepreg and method for producing the same | |
JP5294609B2 (en) | Gas-barrier carbon fiber reinforced prepreg, carbon fiber reinforced plastic, and production method thereof | |
JP6087545B2 (en) | Fiber reinforced plastic molding substrate | |
JP2013208725A (en) | Carbon fiber-reinforced thermoplastic resin laminated body and method of producing the same | |
JP4988230B2 (en) | Fiber reinforced thermoplastic resin sheet and method for producing the same | |
JP5336225B2 (en) | Multi-axis stitch base material and preform using it | |
JP5932576B2 (en) | Fiber reinforced plastic molding substrate | |
JP2014050981A (en) | Substrate for molding fiber reinforced plastic and fiber reinforced plastic | |
JP4759303B2 (en) | Composite material using multiaxial fabric | |
JP2008308626A (en) | Sheet-like fiber-reinforced composite material and production method therefor | |
JP2014162858A (en) | Prepreg and production method of the same, and fiber reinforced composite material | |
JP2013010255A (en) | Thermoplastic resin composite material | |
JP6806292B1 (en) | Molded article manufacturing method and composite materials | |
JP2008307818A (en) | Multiaxial material for fiber-reinforced thermoplastic resin, and molded product | |
JP6650296B2 (en) | Substrate for fiber reinforced plastic, multilayer substrate for fiber reinforced plastic, preform for fiber reinforced plastic, and method for producing the same | |
JP2005002514A (en) | Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform | |
JP7473416B2 (en) | Method for producing fiber-reinforced composite material | |
JP2004338270A (en) | Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material | |
WO2021019928A1 (en) | Formed product production method and composite material | |
JP2013203834A (en) | Fiber-reinforced thermoplastic resin sheet and method for producing the same | |
JP2014051554A (en) | Fiber reinforced plastic molding substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100518 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100908 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110707 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120417 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120814 |