JP2008127612A - Non-oriented electromagnetic steel sheet for divided core - Google Patents
Non-oriented electromagnetic steel sheet for divided core Download PDFInfo
- Publication number
- JP2008127612A JP2008127612A JP2006312270A JP2006312270A JP2008127612A JP 2008127612 A JP2008127612 A JP 2008127612A JP 2006312270 A JP2006312270 A JP 2006312270A JP 2006312270 A JP2006312270 A JP 2006312270A JP 2008127612 A JP2008127612 A JP 2008127612A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- oriented electrical
- rolling
- electrical steel
- split core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、モーターやトランスのコア(鉄芯)材料として用いる無方向性電磁鋼板に関する。 The present invention relates to a non-oriented electrical steel sheet used as a core (iron core) material for a motor or a transformer.
近年、環境保全や、省エネルギーの観点から、電気自動車への関心が高まり、駆動用モーターには、高速回転と小型化とともに、周波数400〜数kHzで駆動できることが求められている。 In recent years, interest in electric vehicles has increased from the viewpoints of environmental protection and energy saving, and drive motors are required to be capable of being driven at a frequency of 400 to several kHz along with high-speed rotation and miniaturization.
このため、モーターのコア材料である無方向性電磁鋼板においては、渦電流損失を低減するため、板厚を薄くするとともに、固有抵抗を高め、さらに、鋼板強度(ローター剛性を上げる)を改善するため、Si量及びAl量を増加する必要がある。さらに、無方向性電磁鋼板には、モーターの初動トルクを改善するため、高い磁束密度も要求される。 For this reason, in the non-oriented electrical steel sheet that is the core material of the motor, in order to reduce eddy current loss, the sheet thickness is reduced, the specific resistance is increased, and further the steel sheet strength (increasing the rotor rigidity) is improved. Therefore, it is necessary to increase the amount of Si and the amount of Al. Furthermore, non-oriented electrical steel sheets are also required to have a high magnetic flux density in order to improve the initial torque of the motor.
モーターコアは、無方向性電磁鋼板を打ち抜いて製造されるが、最近は、打抜き歩留りを改善する観点や、巻き線を効率化して銅損を低減する観点から、モーターコアを、ティース部分を個々に分割した分割コアで構成する傾向にある。そして、分割コアのティース部分には、長さ方向及び幅方向(コアバック)に磁界が印加されるので、磁束密度が高いことが要求される。 Motor cores are manufactured by stamping non-oriented electrical steel sheets. Recently, from the viewpoint of improving punching yield and reducing the copper loss by increasing winding efficiency, the motor core and individual teeth are individually manufactured. Tend to be composed of split cores. And since a magnetic field is applied to the teeth part of a division | segmentation core in a length direction and a width direction (core back), it is requested | required that magnetic flux density is high.
通常、無方向性電磁鋼板から、一つのモーターコアを打ち抜く場合、無方向性電磁鋼板の磁気特性には、鋼板の圧延方向(コイル長手方向、以下「L方向」ということがある。)、L方向と直角の方向(コイル幅方向、以下「C方向」ということがある。)、L方向と45度の方向(以下「X方向」ということがある。)において、差(異方性)が小さいことが望まれる(特許文献1〜6、参照)。 Usually, when one motor core is punched from a non-oriented electrical steel sheet, the magnetic properties of the non-oriented electrical steel sheet include the rolling direction of the steel sheet (coil longitudinal direction, hereinafter referred to as “L direction”), L. There is a difference (anisotropy) between the direction perpendicular to the direction (coil width direction, hereinafter referred to as “C direction”) and the L direction and 45 ° direction (hereinafter also referred to as “X direction”). It is desired to be small (see Patent Documents 1 to 6).
しかし、分割コアを打ち抜く場合、磁気特性の優れた方向に沿って、ティース部分を打ち抜けばよいから、無方向性電磁鋼板を分割コア専用として用いる場合、L方向、C方向、及び、X方向における磁気特性の異方性は、必ずしも、小さくなくてもよい。つまり、磁気特性の異方性が大きいほうが、即ち、X方向の磁気特性を犠牲にして、L方向とC方向の磁気特性を改善したほうが、分割コアの設計において、分割コアのティース部分で所要の磁気特性を確保することができる点で、好ましい。 However, when punching the split core, it is only necessary to punch through the teeth portion along the direction of excellent magnetic properties. Therefore, when using a non-oriented electrical steel sheet exclusively for the split core, the L direction, the C direction, and the X direction The anisotropy of the magnetic characteristics in is not necessarily small. In other words, the larger the magnetic property anisotropy, that is, the improvement of the magnetic properties in the L direction and the C direction at the expense of the magnetic properties in the X direction is required in the tooth portion of the divided core in the design of the divided core. It is preferable in that the magnetic characteristics can be secured.
本発明者は、無方向性電磁鋼板において、磁気特性を高めるため、鋼板の板厚を薄くし、かつ、Si量及び/又はAl量を増加すると、磁束密度の異方性が小さくなるという現象に気がついた。即ち、特定の方向、例えば、L方向やC方向の磁束密度が低下し、所望の磁束密度が得られず、結局、このような磁気特性を有する無方向性電磁鋼板は、分割コア用に適さないという問題に遭遇した。 The present inventor has a phenomenon that, in a non-oriented electrical steel sheet, in order to enhance magnetic properties, when the thickness of the steel sheet is reduced and the Si content and / or Al content is increased, the magnetic flux density anisotropy is reduced. I noticed. That is, the magnetic flux density in a specific direction, for example, the L direction or the C direction is reduced, and a desired magnetic flux density cannot be obtained. As a result, a non-oriented electrical steel sheet having such magnetic characteristics is suitable for a split core. Encountered the problem of not.
そこで、本発明は、モーターやトランスの分割コア用として最適な磁気特性を有する無方向性電磁鋼板を提供することを目的とする。 Then, an object of this invention is to provide the non-oriented electrical steel sheet which has the optimal magnetic characteristic for the division | segmentation cores of a motor or a transformer.
本発明者は、質量%で、Si:2〜4%、及び、Al:0.2〜2%を含有する板厚0.1〜0.3mmの無方向性電磁鋼板において、Snを0.003〜0.2%添加して、ゴス方位の結晶粒を増加し、L方向及びC方向の磁気特性(磁束密度)を改善することを基本思想とし、分割コア用として最適な磁気特性を確保する手法について、鋭意研究した。その結果、次の知見を得るに至った。 The inventor of the present invention is a non-oriented electrical steel sheet having a thickness of 0.1 to 0.3 mm containing Si: 2 to 4% and Al: 0.2 to 2% by mass%. Add 003 to 0.2% to increase the Goss-oriented crystal grains and improve the magnetic properties (magnetic flux density) in the L and C directions, ensuring optimum magnetic properties for the split core We studied earnestly about the technique to do. As a result, the following knowledge was obtained.
(x)L、C、及び、X方向の磁気特性の差(異方性)は、冷間圧延における圧下率の配分、中間焼鈍前後の結晶粒径、再結晶焼鈍(仕上焼鈍)後の結晶粒径に密接に関連するが、最終的に、これらを制御すれば、異方性の大きい所要の磁束密度B50(磁化力5000A/mで得られる磁束密度[T])を確保することができる。 (X) The difference in magnetic properties (anisotropy) in the L, C, and X directions is the distribution of the rolling reduction in cold rolling, the crystal grain size before and after intermediate annealing, and the crystal after recrystallization annealing (finish annealing). Although it is closely related to the particle diameter, if these are finally controlled, it is possible to secure a required magnetic flux density B 50 having a large anisotropy (magnetic flux density [T] obtained with a magnetizing force of 5000 A / m). it can.
(y)L方向とC方向の磁気特性を繋ぐ、X方向の磁束密度B50を低減すると、L方向及びC方向の磁束密度B50が改善される傾向にあるから、X方向の磁気特性は、分割コア用無方向性電磁鋼板の磁気特性を評価する上で重要な指標であり、C方向の磁気特性との関係で、所定の比の範囲に維持する必要がある。 (Y) connecting the magnetic properties of the L direction and the C direction and to reduce the magnetic flux density B 50 in the X direction, because there is a tendency that the magnetic flux density B 50 in the L direction and C direction are improved, the magnetic properties of the X-direction This is an important index for evaluating the magnetic properties of the non-oriented electrical steel sheet for the split core, and must be maintained within a predetermined ratio range in relation to the magnetic properties in the C direction.
本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。 This invention was made | formed based on the said knowledge, and the summary is as follows.
(1) 質量%で、C:0.005%以下、Si:2〜4%、Mn:1%以下、Al:0.2〜2%、Sn:0.003〜0.2%を含有し、残部がFe及び不可避的不純物からなる熱延板に、中間焼鈍を挟む2回の冷間圧延を施し、次いで、再結晶焼鈍を施して製造した板厚:0.1〜0.3mmの無方向性電磁鋼板であって、
(i)平均結晶粒径が40〜200μmの再結晶組織を有し、かつ、
(ii)圧延方向(L方向)と90°の方向(C方向)の磁束密度B50(C)と、圧延方向(L方向)と45°の方向(X方向)の磁束密度B50(X)が、下記式(1)を満たす磁気特性を有する
ことを特徴とする分割コア用無方向性電磁鋼板。
B50(C)/B50(X)>1.03 ・・・(1)
(1) By mass%, C: 0.005% or less, Si: 2-4%, Mn: 1% or less, Al: 0.2-2%, Sn: 0.003-0.2% The thickness of the hot-rolled sheet consisting of Fe and inevitable impurities is cold-rolled twice with intermediate annealing, followed by recrystallization annealing. A grain-oriented electrical steel sheet,
(I) having a recrystallized structure having an average crystal grain size of 40 to 200 μm, and
(Ii) Magnetic flux density B 50 (C) in the rolling direction (L direction) and 90 ° direction (C direction), and magnetic flux density B 50 (X in the rolling direction (L direction) and 45 ° direction (X direction). ) Has a magnetic property satisfying the following formula (1): a non-oriented electrical steel sheet for split cores.
B 50 (C) / B 50 (X)> 1.03 (1)
(2) 前記磁気特性において、圧延方向(L方向)の磁束密度B50(L)が、下記式(2)を満たすことを特徴とする前記(1)に記載の分割コア用無方向性電磁鋼板。
B50(L)/Bs≧0.82 ・・・(2)
ここで、Bs:飽和磁束密度
(2) In the magnetic characteristics, the magnetic flux density B 50 (L) in the rolling direction (L direction) satisfies the following formula (2): steel sheet.
B 50 (L) /Bs≧0.82 (2)
Where Bs: saturation magnetic flux density
(3) 前記磁気特性において、鉄損W10/800が40W/kg以下であることを特徴とする前記(1)又は(2)に記載の分割コア用無方向性電磁鋼板。 (3) The non-oriented electrical steel sheet for split core according to (1) or (2), wherein the iron loss W 10/800 is 40 W / kg or less in the magnetic characteristics.
(4) 前記熱延板に熱延板焼鈍を施すことを特徴とする前記(1)〜(3)のいずれかに記載の分割コア用無方向性電磁鋼板。 (4) The non-oriented electrical steel sheet for split core according to any one of (1) to (3), wherein the hot-rolled sheet is subjected to hot-rolled sheet annealing.
(5) 前記中間焼鈍を900℃以上の高温で行なうことを特徴とする前記(1)〜(4)のいずれかに記載の分割コア用無方向性電磁鋼板。 (5) The non-oriented electrical steel sheet for split core according to any one of (1) to (4), wherein the intermediate annealing is performed at a high temperature of 900 ° C or higher.
(6) 前記中間焼鈍後の冷間圧延における圧下率が40〜75%であることを特徴とする前記(1)〜(5)のいずれかに記載の分割コア用無方向性電磁鋼板。 (6) The non-oriented electrical steel sheet for split core according to any one of (1) to (5), wherein a rolling reduction in cold rolling after the intermediate annealing is 40 to 75%.
(7) 前記中間焼鈍後の冷間圧延がレバース圧延であることを特徴とする前記(1)〜(6)のいずれかに記載の分割コア用無方向性電磁鋼板。 (7) The non-oriented electrical steel sheet for split core according to any one of (1) to (6), wherein the cold rolling after the intermediate annealing is lever rolling.
(8) 前記再結晶焼鈍において、昇温速度が100〜5000℃/秒であることを特徴とする前記(1)〜(7)のいずれかに記載の分割コア用無方向性電磁鋼板。 (8) The non-oriented electrical steel sheet for split core according to any one of (1) to (7), wherein a temperature increase rate is 100 to 5000 ° C./second in the recrystallization annealing.
本発明によれば、モーターやトランスの分割コア用として最適な磁気特性を有する無方向性電磁鋼板を提供することができる。また、本発明によれば、分割コアの形状、及び/又は、分割コアのティース部分に求める磁気特性に応じて、分割コアを設計し、打ち抜くことができるので、無方向性電磁鋼板の利用度が増す。 ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel sheet which has the optimal magnetic characteristic as an object for the split cores of a motor or a transformer can be provided. Further, according to the present invention, since the split core can be designed and punched according to the shape of the split core and / or the magnetic characteristics required for the tooth portion of the split core, the utilization of the non-oriented electrical steel sheet Increase.
本発明は、質量%で、C:0.005%以下、Si:2〜4%、Mn:1%以下、Al:0.2〜2%、Sn:0.003〜0.2%を含有し、残部がFe及び不可避的不純物からなる熱延板に、中間焼鈍を挟む2回の冷間圧延を施し、次いで、再結晶焼鈍を施して製造した板厚0.1〜0.3mmの分割コア用無方向性電磁鋼板であって、
(i)平均結晶粒径が40〜200μmの再結晶組織を有し、かつ、
(ii)圧延方向(L方向)と90°の方向(C方向)の磁束密度B50(C)と、圧延方向(L方向)と45°の方向(X方向)の磁束密度B50(X)が、下記式(1)を満たす磁気特性を有することを特徴とする。
B50(C)/B50(X)>1.03 ・・・(1)
The present invention contains, in mass%, C: 0.005% or less, Si: 2-4%, Mn: 1% or less, Al: 0.2-2%, Sn: 0.003-0.2% Then, a hot-rolled sheet consisting of Fe and unavoidable impurities is subjected to cold rolling twice with intermediate annealing, and then subjected to recrystallization annealing, and is divided into a thickness of 0.1 to 0.3 mm. Non-oriented electrical steel sheet for core,
(I) having a recrystallized structure having an average crystal grain size of 40 to 200 μm, and
(Ii) Magnetic flux density B 50 (C) in the rolling direction (L direction) and 90 ° direction (C direction), and magnetic flux density B 50 (X in the rolling direction (L direction) and 45 ° direction (X direction). ) Has a magnetic property satisfying the following formula (1).
B 50 (C) / B 50 (X)> 1.03 (1)
B50(C)は、鋼板面上で、C方向に5000A/mで磁化して測定したC方向の磁束密度(単位:T)である。B50(X)は、鋼板面上で、X方向に5000A/mで磁化して測定したX方向の磁束密度である。なお、B50(L)は、L方向に5000A/mで磁化して測定したL方向の磁束密度である。 B 50 (C) is a magnetic flux density (unit: T) in the C direction measured by being magnetized at 5000 A / m in the C direction on the steel plate surface. B 50 (X) is the magnetic flux density in the X direction measured by magnetization at 5000 A / m in the X direction on the steel plate surface. B 50 (L) is the magnetic flux density in the L direction measured by magnetizing at 5000 A / m in the L direction.
まず、熱延板の成分組成を限定する理由について説明する。なお、以下、%は、質量%を意味する。 First, the reason for limiting the component composition of the hot-rolled sheet will be described. Hereinafter, “%” means mass%.
Cは、鋼板を強化する元素であるが、磁気特性の点で有害な元素であり、極力低減するのが好ましいので、Cは、0.005%以下に限定した。好ましくは、0.003%以下である。 C is an element that reinforces the steel sheet. However, C is an element harmful in terms of magnetic properties and is preferably reduced as much as possible. Therefore, C is limited to 0.005% or less. Preferably, it is 0.003% or less.
Siは、鋼板の電気抵抗を高め、鉄損を低減する元素であるので、2%以上を含有する。4%を超えて含有すると、鋼板が脆化し、また、所要の磁束密度B50が得られないので、Siの上限を4%とした。 Since Si is an element that increases the electrical resistance of the steel sheet and reduces iron loss, it contains 2% or more. When the content exceeds 4%, the steel sheet is embrittled, and since the required magnetic flux density B 50 is not obtained, and 4% the upper limit of Si.
Mnは、熱間圧延時に、MnSとしてSを固定し、熱間圧延時の鋼板耳割れを防止する元素である。固溶Mnは、鋼板の電気抵抗を高め、鉄損を低減するが、Mnが多すぎると結晶粒成長性が阻害されるので、Mnの上限を1%とした。 Mn is an element that fixes S as MnS at the time of hot rolling and prevents steel plate ear cracks during hot rolling. The solute Mn increases the electrical resistance of the steel sheet and reduces the iron loss. However, if Mn is too much, crystal grain growth is inhibited, so the upper limit of Mn is set to 1%.
Alは、Siと同様に、鋼板の電気抵抗を高め、鉄損を低減する元素であるので、0.2%以上を含有する。ただし、Alが多くなると,磁束密度の異方性が小さくなる傾向にあるので、本発明で採用する各種の対策が必要となる。一方、2%を超えて含有すると、添加コストの問題や、飽和磁束密度の低下が懸念されるので、上限を2%とした。 Al, like Si, is an element that increases the electrical resistance of the steel sheet and reduces the iron loss, and therefore contains 0.2% or more. However, since the anisotropy of the magnetic flux density tends to decrease as the Al content increases, various measures adopted in the present invention are required. On the other hand, if the content exceeds 2%, there is a concern about the problem of addition cost and a decrease in saturation magnetic flux density, so the upper limit was made 2%.
Snは、Si:2〜4%、及び、Al:0.3〜2%を含有する無方向性電磁鋼板の再結晶組織において、Goss方位粒を増加し、特に、L方向の磁気特性(磁束密度)を改善するために、0.003%以上含有する必要がある。一方、0.2%を超えて含有しても、上記改善効果は飽和するし、熱間脆性の問題で表面疵が増加するので,上限を0.2%とした。 Sn increases the number of Goss orientation grains in the recrystallized structure of non-oriented electrical steel sheets containing Si: 2 to 4% and Al: 0.3 to 2%. In order to improve (density), it is necessary to contain 0.003% or more. On the other hand, even if the content exceeds 0.2%, the above improvement effect is saturated, and surface defects increase due to hot brittleness, so the upper limit was made 0.2%.
本発明は、上記元素の他、不可避的不純物として、S、P、N、O、Cu、Ni、Cr、Ca、REM(希土類元素)等を、本発明の機械特性及び磁気特性を損なわない範囲で含有してもよい。ただし、従来どおり、不純物としてのS、N、及び、Oは、少ないほうが好ましい。それら各成分は、それぞれ、0.003%以下、0.0025%以下、及び、0.003%以下が好ましい。 In the present invention, in addition to the above elements, S, P, N, O, Cu, Ni, Cr, Ca, REM (rare earth elements) and the like are inevitable impurities, and the mechanical and magnetic properties of the present invention are not impaired. You may contain. However, as in the past, it is preferable that S, N, and O as impurities are small. Each of these components is preferably 0.003% or less, 0.0025% or less, and 0.003% or less.
また,狙いの異方性を阻害しないことを確認している範囲は、Cu<0.2%、Ni<0.1%、Cr<0.1%、Ca<0.01%、Nb<0.002%、Ti<0.003%、REM<0.01%であるので、これら元素は、それぞれ上記範囲内に抑制するのが望ましい。なお,Sbは、異方性を小さくするので、添加してはならない。Sbは、不可避的に含有する場合は、0.001%未満が好ましい。 Further, the ranges where it is confirmed that the target anisotropy is not inhibited are Cu <0.2%, Ni <0.1%, Cr <0.1%, Ca <0.01%, Nb <0. Since 0.002%, Ti <0.003%, and REM <0.01%, it is desirable to suppress these elements within the above ranges. Note that Sb should not be added because it reduces anisotropy. When Sb is inevitably contained, it is preferably less than 0.001%.
上記成分組成の熱延板に、熱延板焼鈍を施すか、又は、施さないで、中間焼鈍を挟む2回の冷間圧延を施し、次いで、仕上焼鈍(再結晶焼鈍)を施して、平均結晶粒径が40〜200μmの再結晶組織を形成する。 The hot-rolled sheet having the above composition is subjected to hot-rolled sheet annealing or not, and subjected to cold rolling twice with intermediate annealing, and then subjected to finish annealing (recrystallization annealing), and the average A recrystallized structure having a crystal grain size of 40 to 200 μm is formed.
本発明においては、前述した知見(x)に基づいて、再結晶組織の平均結晶粒径を40〜200μmに限定する。平均結晶粒径が大きいと、鉄損特性は改善されるが,磁束密度の異方性が小さくなる傾向にある。この傾向からすれば、平均結晶粒径は小さいほうがよいが、40μm未満であると、所望の高周波鉄損W10/800が得られない。 In the present invention, based on the above-described knowledge (x), the average crystal grain size of the recrystallized structure is limited to 40 to 200 μm. When the average grain size is large, the iron loss characteristics are improved, but the anisotropy of the magnetic flux density tends to be small. From this tendency, the average crystal grain size should be small, but if it is less than 40 μm, the desired high-frequency iron loss W 10/800 cannot be obtained.
一方、平均結晶粒径が200μmを超えると、磁束密度の異方性が小さくなり、本発明の狙う所望のB50(C)/B50(X)が確保することが困難となる。高周波鉄損をさらに改善する意味では、再結晶組織の平均結晶粒径は80〜200μmがより好ましい。 On the other hand, when the average crystal grain size exceeds 200 μm, the anisotropy of the magnetic flux density becomes small, and it becomes difficult to secure the desired B 50 (C) / B 50 (X) aimed by the present invention. In order to further improve the high-frequency iron loss, the average crystal grain size of the recrystallized structure is more preferably 80 to 200 μm.
なお、平均結晶粒径は、鋼板断面を光学顕微鏡で観察した組織において、L方向の線分と交差する結晶粒界の個数を数え、平均化して求めた。 The average crystal grain size was obtained by counting and averaging the number of crystal grain boundaries intersecting the line segment in the L direction in the structure obtained by observing the cross section of the steel sheet with an optical microscope.
本発明は、平均結晶粒径40〜200μmの再結晶組織を有する板厚0.1〜0.3mmの無方向性電磁鋼板が、下記式(1)を満たす磁気特性を有することを特徴とする。
B50(C)/B50(X)>1.03 ・・・(1)
The present invention is characterized in that a non-oriented electrical steel sheet having a thickness of 0.1 to 0.3 mm having a recrystallized structure having an average crystal grain size of 40 to 200 μm has a magnetic property satisfying the following formula (1). .
B 50 (C) / B 50 (X)> 1.03 (1)
なお、B50(C)、B50(X)、及び、B50(L)については、前述したとおりである。 B 50 (C), B 50 (X), and B 50 (L) are as described above.
X方向のB50(X)は、L方向のB50(L)がC方向のB50(C)(通常、B50(L)>B50(C))へ遷移する過程で、両者を繋ぐ磁束密度B50である。そして、本発明者は、X方向のB50(X)に着目した。 B 50 (X) in the X direction is a process in which B 50 (L) in the L direction transitions to B 50 (C) in the C direction (usually B 50 (L)> B 50 (C)). Magnetic flux density B 50 to be connected. The inventor paid attention to B 50 (X) in the X direction.
B50(C)/B50(X)は、X方向のB50(X)に着目し、B50(C)とB50(X)の差を、両者の比で評価する指標であり、この比を所定の範囲内に規定することは、B50(C)とB50(X)の差を、所定の範囲内に抑制することを意味している。 B 50 (C) / B 50 (X) is focused on the X-direction of the B 50 (X), the difference between the B 50 (C) and B 50 (X), an indicator for evaluating in their ratio, Defining this ratio within a predetermined range means that the difference between B 50 (C) and B 50 (X) is suppressed within the predetermined range.
本発明者は、この意味するところは、下記の理由で、無方向性電磁鋼板の分割コア用としての適確性を判断する上で、極めて重要であるとの認識に立ち、分割コア用無方向性電磁鋼板の磁気特性を評価する指標として、「B50(C)/B50(X)」を導入した。 The present inventor has recognized that this is extremely important in determining the appropriateness of the non-oriented electrical steel sheet for the split core for the following reasons, and the non-direction for the split core. "B 50 (C) / B 50 (X)" was introduced as an index for evaluating the magnetic properties of the heat-resistant electrical steel sheet.
図1(a)及び(b)に、分割コアの打ち抜き態様を示す。図1(a)は、分割コアのティース部分をC方向(L方向と90°)に設定し、打抜き歩留りを最優先して打ち抜く態様(以下「打抜き態様A」ということがある。)を示し、図1(b)は、分割コアのティース部分をL方向に設定し、打抜き歩留りとともに、鉄心特性(ティース部の磁束密度)を重視して打ち抜く態様(以下「打抜き態様B」ということがある。)を示す。 1 (a) and 1 (b) show how the split core is punched. FIG. 1A shows an aspect in which the tooth portion of the split core is set in the C direction (90 degrees with respect to the L direction) and punching is performed with the highest priority on the punching yield (hereinafter sometimes referred to as “punching aspect A”). In FIG. 1B, the tooth portion of the split core is set in the L direction, and punching is performed with emphasis on the core characteristics (magnetic flux density of the tooth portion) as well as the punching yield (hereinafter referred to as “punching mode B”). .)
直近、電動モーターの分野では、従来の一体コアに加え、打抜き歩留まりの向上や、巻き線の効率化による銅損向上の観点から、分割コアを用いるケースが増加している。分割コアは、圧延後コイル状に巻き取った電磁鋼板コイルの圧延方向(L方向)に対し、打抜き態様A又は打抜き態様Bで打ち抜かれる場合が多い。 Recently, in the field of electric motors, in addition to the conventional integrated core, the number of cases using a split core is increasing from the viewpoint of improving the punching yield and improving copper loss by increasing the efficiency of winding. In many cases, the split core is punched in the punching mode A or the punching mode B with respect to the rolling direction (L direction) of the magnetic steel sheet coil wound in a coil shape after rolling.
一般に、工業的に製造される無方向性電磁鋼板は、C方向及びX方向の磁気特性(磁化特性、鉄損特性)が、L方向の磁気特性(磁化特性、鉄損特性)に比べ劣位であり、C方向又はX方向の磁気特性が、分割コア鉄心全体の磁気特性を左右することになる。 In general, non-oriented electrical steel sheets manufactured industrially have inferior magnetic properties (magnetization characteristics, iron loss characteristics) in the C direction and X direction compared to magnetic characteristics (magnetization characteristics, iron loss characteristics) in the L direction. Yes, the magnetic characteristics in the C direction or the X direction influence the magnetic characteristics of the entire split core iron core.
そして、分割コア鉄芯の磁束流には、打抜き態様A及び打抜き態様Bで打ち抜かれた分割コアのいずれの場合も、磁束がL方向からC方向に回転する途中に、遷移的なX方向の磁束流が存在するが、分割コアでは,このX方向の遷移的な磁束流領域は少なく、分割コア鉄心の磁気特性に及ぼす影響度は小さいと推測される。 The flux flow of the split core iron core includes a transitional X direction in the middle of the magnetic flux rotating from the L direction to the C direction in both cases of the split core punched in the punching mode A and the punching mode B. Although there is a magnetic flux flow, in the split core, the transitional magnetic flux region in the X direction is small, and it is estimated that the degree of influence on the magnetic properties of the split core iron core is small.
つまり、本発明者は、C方向の磁気特性とX方向の磁気特性の比:B50(C)/B50(X)が大きくなるように材料設計すれば、分割コア鉄心全体の磁気特性を改善することができると発想した。 In other words, the present inventor can control the magnetic properties of the entire split core iron core by designing the material so that the ratio of the magnetic properties in the C direction to the magnetic properties in the X direction: B 50 (C) / B 50 (X) is increased. I thought it could be improved.
なお、L方向とC方向における適正な磁気特性のバランスは、分割コア一片の寸法、形状により決定される。 The appropriate balance of magnetic characteristics in the L direction and the C direction is determined by the size and shape of the split core piece.
B50(C)/B50(X)を所定の範囲に規定することは、無方向性電磁鋼板の磁気特性の異方性を所定の範囲に限定することであるから、分割コアを設計する際、分割コア鉄心全体の磁気特性の向上を考慮して、分割コアの形状、及び、打ち抜き態様を設計することができる。 Since defining B 50 (C) / B 50 (X) within a predetermined range is to limit the anisotropy of the magnetic properties of the non-oriented electrical steel sheet to a predetermined range, a split core is designed. At this time, the shape of the split core and the punching mode can be designed in consideration of the improvement of the magnetic characteristics of the entire split core iron core.
したがって、B50(C)/B50(X)は、無方向性電磁鋼板の分割コア用としての適確性を判断する上で、極めて重要な指標である。そして、本発明においては、B50(C)/B50(X)を、上記式(1)で規定した。即ち、本発明において、B50(L)/B50(X)が、1.03以下であれば、磁気特性の異方性が小さくなって、必要な、L方向とC方向の磁気特性が得られない。 Therefore, B 50 (C) / B 50 (X) is a very important index for judging the accuracy of the non-oriented electrical steel sheet for the split core. In the present invention, B 50 (C) / B 50 (X) is defined by the above formula (1). That is, in the present invention, if B 50 (L) / B 50 (X) is 1.03 or less, the magnetic property anisotropy is reduced, and the required magnetic properties in the L and C directions are reduced. I can't get it.
なお、上記式(1)は、無方向性電磁鋼板の板厚が0.1〜0.3mmの場合に成立する関係式であり、板厚が上記範囲を超える無方向性電磁鋼板に適用することはできない。 The above formula (1) is a relational expression that is established when the thickness of the non-oriented electrical steel sheet is 0.1 to 0.3 mm, and is applied to the non-oriented electrical steel sheet whose thickness exceeds the above range. It is not possible.
例えば、板厚が0.3mmを超えると、B50(C)/B50(X)が急激に大きくなり、分割コア用としての磁気特性としては満足できるが、高周波用のコアとしては不適格である。 For example, when the plate thickness exceeds 0.3 mm, B 50 (C) / B 50 (X) increases rapidly, which is satisfactory as a magnetic property for a split core, but is not suitable for a high frequency core. It is.
本発明は、板厚が薄くても(薄ければ、磁気特性の異方性が小さくなる)、なおかつ、B50(C)/B50(X)が大きい(即ち、磁気特性の異方性が大きい)分割コア用無方向性電磁鋼板の開発に取り組み、その結果、なされたものである。 According to the present invention, even if the plate thickness is thin (the thin the sheet, the magnetic property anisotropy becomes small), and B 50 (C) / B 50 (X) is large (ie, the magnetic property anisotropy). As a result, we have developed non-oriented electrical steel sheets for split cores.
即ち、本発明は、分割コア用としての無方向性電磁鋼板の磁気特性を評価するため、磁気特性の異方性を表示する指標「B50(C)/B50(X)」を導入し、その下限を規定することを基本思想とするものである。 That is, the present invention introduces an index “B 50 (C) / B 50 (X)” indicating the anisotropy of the magnetic properties in order to evaluate the magnetic properties of the non-oriented electrical steel sheet for the split core. The basic idea is to define the lower limit.
分割コアを設計する場合、上記式(1)には現れないL方向の磁束密度B50(L)も重要な指標である。B50(L)の値は、当然のことながら、鋼板の成分組成によっても変化するので、飽和磁束密度Bsとの比:B50(L)/Bs(結晶方位指標)を採用し、この比によっても、無方向性電磁鋼板の磁気特性を評価することが好ましい。 When designing a split core, the magnetic flux density B 50 (L) in the L direction that does not appear in the above equation (1) is also an important index. Since the value of B 50 (L) naturally changes depending on the composition of the steel plate, the ratio with the saturation magnetic flux density Bs is adopted: B 50 (L) / Bs (crystal orientation index). Therefore, it is preferable to evaluate the magnetic properties of the non-oriented electrical steel sheet.
より優れた磁気特性を有する分割コアを得る場合には、B50(L)/Bsが、下記式(2)を満たすように材料設計をすることが必要である。
B50(L)/Bs≧0.82 (2)
In order to obtain a split core having better magnetic properties, it is necessary to design the material so that B 50 (L) / Bs satisfies the following formula (2).
B 50 (L) /Bs≧0.82 (2)
結晶方位指標B50(L)/Bsが0.82未満であると、分割コアとしての磁気特性が不十分である。 When the crystal orientation index B 50 (L) / Bs is less than 0.82, the magnetic properties as a split core are insufficient.
本発明は、熱延板に焼鈍を施すか、又は、施さないで、中間焼鈍を挟む2回の冷間圧延を施し、次いで、仕上焼鈍(再結晶焼鈍)を施すことを要件とするものであるので、次に、好ましい製造要件について、説明する。 The present invention requires that the hot-rolled sheet is annealed or not, subjected to cold rolling twice with intermediate annealing, and then subjected to finish annealing (recrystallization annealing). Therefore, next, preferable manufacturing requirements will be described.
熱延板焼鈍は、実施することも、実施しないことも可能である。しかし、熱延板焼鈍を実施すると、磁束密度B50(L)を、約0.01T程度改善することができる。焼鈍温度は、通常の850℃以上が好ましい。 Hot-rolled sheet annealing can be performed or not performed. However, when hot-rolled sheet annealing is performed, the magnetic flux density B 50 (L) can be improved by about 0.01T. The annealing temperature is preferably a normal 850 ° C. or higher.
熱延板焼鈍後の冷間圧延(一次冷延)について、特別な制限条件はないが、続く、中間焼鈍、及び、中間焼鈍後の冷間圧延(二次冷延)と仕上焼鈍(再結晶焼鈍)は、重要である。 There is no special restriction condition for cold rolling (primary cold rolling) after hot-rolled sheet annealing, but subsequent intermediate annealing, cold rolling (secondary cold rolling) after intermediate annealing and finish annealing (recrystallization) Annealing is important.
本発明においては、熱延板に、中間焼鈍を挟む2回の冷間圧延を施すことにより、C方向の磁束密度B50(C)と、X方向の磁束密度B50(X)の比:B50(C)/B50(X)、即ち、磁気特性の異方性を大きくすることが特徴である。 In the present invention, the hot-rolled sheet is subjected to cold rolling twice with intermediate annealing, whereby the ratio of the magnetic flux density B 50 (C) in the C direction and the magnetic flux density B 50 (X) in the X direction: B 50 (C) / B 50 (X), that is, the feature is to increase the anisotropy of the magnetic properties.
特に、冷間圧延を、一次冷延と二次冷延の2回に分けて行うことにより、通常の一回の冷延法に比べて、一回の冷間圧延当たりの圧下率を大幅に減少させることができるし、また、熱延板の板厚と製品板の板厚との組み合わせの中で、圧下率の選択範囲が増え、最適な圧下率の下で結晶方位制御を行なうことができる。 In particular, by performing cold rolling in two steps, primary cold rolling and secondary cold rolling, the rolling reduction per cold rolling can be greatly increased compared to the usual cold rolling method. In addition, the selection range of the rolling reduction can be increased in combination with the thickness of the hot rolled sheet and the thickness of the product sheet, and the crystal orientation can be controlled under the optimum rolling ratio. it can.
そして、特に、二次冷延での圧下率、即ち、二次冷延率が、指標B50(C)/B50(X)の値に、支配的に効いていることが分かった。 In particular, it was found that the rolling reduction ratio in the secondary cold rolling, that is, the secondary cold rolling ratio, has a dominant effect on the value of the index B 50 (C) / B 50 (X).
中間焼鈍は、十分に、結晶粒を成長させるべく、900℃以上の高温で行なうことが望ましい。高温で中間焼鈍を行なうことにより、磁束密度B50(L)及びB50(C)を改善することができる。 The intermediate annealing is desirably performed at a high temperature of 900 ° C. or higher in order to sufficiently grow crystal grains. By performing the intermediate annealing at a high temperature, the magnetic flux densities B 50 (L) and B 50 (C) can be improved.
本発明においては、中間焼鈍後の冷間圧延(二次冷延)における圧下率を40〜75%とすることが、磁気特性の異方性を大きくする点で好ましい。圧下率60%程度で、最も大きい異方性B50(C)/B50(X)が得られ、圧下率60%程度をピークにして、その前後、即ち、軽圧下側でも強圧下側でも、徐々に、異方性B50(C)/B50(X)が低下する。圧下率が40%未満と75%超では、本発明所望の分割コア用としての磁束密度の異方性が得られない。 In the present invention, the rolling reduction in cold rolling (secondary cold rolling) after intermediate annealing is preferably 40 to 75% from the viewpoint of increasing the magnetic property anisotropy. The maximum anisotropy B 50 (C) / B 50 (X) is obtained at a reduction ratio of about 60%, and the peak reduction ratio is about 60%. The anisotropy B 50 (C) / B 50 (X) gradually decreases. If the rolling reduction is less than 40% and more than 75%, the magnetic flux density anisotropy for the desired split core of the present invention cannot be obtained.
磁気特性の異方性を大きくした無方向性電磁鋼板において、分割コアを、ティース部分をL方向に設定して打ち抜けば、磁束密度の高いティース部分を有する分割コアを得ることができる。スキンパス圧延における圧下率を調整することにより、C方向とX方向のB50の比を調整できるので、分割コアの設計で要求される磁束密度に応じて、無方向性電磁鋼板を製造することができる。 In a non-oriented electrical steel sheet with increased magnetic property anisotropy, a split core having a tooth portion with a high magnetic flux density can be obtained by punching the split core with the tooth portion set in the L direction. By adjusting the rolling reduction in skin pass rolling, the ratio of B 50 in the C direction and the X direction can be adjusted, so that it is possible to produce a non-oriented electrical steel sheet according to the magnetic flux density required in the design of the split core. it can.
なお、二次冷延は、レバース圧延が好ましい。この圧延により、一方向圧延のいわゆるタンデム圧延に比較し、B50(L)を、0.02Tほど改善することができる。レバース圧延は、通常のゼンジミャーミル圧延などで実施することができる。 The secondary cold rolling is preferably lever rolling. By this rolling, B 50 (L) can be improved by about 0.02 T as compared with so-called tandem rolling of unidirectional rolling. The lever rolling can be carried out by ordinary Sendzimir mill rolling or the like.
仕上焼鈍(再結晶焼鈍)においては、昇温速度を、少なくとも600〜700℃の温度範囲にて、100〜5000℃/秒として急速加熱することが好ましい。この急速加熱で、Goss方位粒を増加させ、特に、B50(C)/B50(X)を改善することができる。昇温速度が100℃/秒未満では、上記改善効果が少なく、また、5000℃/秒以上では、工業的な設備コスト面で無理がある。 In finish annealing (recrystallization annealing), it is preferable to rapidly heat at a temperature increase rate of 100 to 5000 ° C./second in a temperature range of at least 600 to 700 ° C. This rapid heating can increase Goss orientation grains and in particular improve B 50 (C) / B 50 (X). If the rate of temperature increase is less than 100 ° C./second, the above improvement effect is small, and if it is 5000 ° C./second or more, it is impossible in terms of industrial equipment cost.
また、鉄損W10/800は、40W/kg以下であることが好ましい。コンパクトなモーターコアにするための高速回転仕様に適用させるためである。 The iron loss W 10/800 is preferably 40 W / kg or less. This is because it is applied to a high-speed rotation specification for making a compact motor core.
次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(実施例1)
鋼を真空溶解炉で溶解しつつ、成分組成を調整し、表1に示す成分組成を有するインゴットを鋳造した。これを、1070℃に加熱して熱間圧延し、2.10mm厚の熱延板とした。次いで、N2雰囲気中、900℃で120秒均熱して焼鈍を行った。酸洗後、冷間圧延を施して、板厚0.40mm(81%圧下)の冷延板とした。
(Example 1)
The component composition was adjusted while melting steel in a vacuum melting furnace, and an ingot having the component composition shown in Table 1 was cast. This was heated to 1070 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.10 mm. Next, annealing was performed in a N 2 atmosphere at 900 ° C. for 120 seconds. After pickling, cold rolling was performed to obtain a cold-rolled sheet having a sheet thickness of 0.40 mm (81% reduction).
中間焼鈍を、H2雰囲気中で、1000℃で3秒均熱して行った。次いで、二次冷延して、板厚を0.20mm(50%圧下)とした。 Intermediate annealing was performed by soaking at 1000 ° C. for 3 seconds in an H 2 atmosphere. Subsequently, the sheet was secondarily cold rolled to a thickness of 0.20 mm (50% reduction).
仕上焼鈍を、H2雰囲気中、1000℃で10秒均熱し、冷延板に、再結晶焼鈍を施した。55mm角に打抜いて、SSTで、角度別の磁気特性を測定した。平均結晶粒径は、100〜110μmの範囲であった。得られた結果を表1に示す。 The finish annealing was soaked at 1000 ° C. for 10 seconds in an H 2 atmosphere, and the cold rolled sheet was subjected to recrystallization annealing. A 55 mm square was punched out, and the magnetic characteristics for each angle were measured by SST. The average crystal grain size was in the range of 100 to 110 μm. The obtained results are shown in Table 1.
飽和磁束密度Bsは、振動試料型磁力計(Vibrating Sample Magnetometer)で計測した。W10/800は、磁束密度1.0T、周波数800Hzでの鉄損であり、L方向とC方向の測定値を平均化したものである。 The saturation magnetic flux density Bs was measured with a vibrating sample magnetometer. W 10/800 is an iron loss at a magnetic flux density of 1.0 T and a frequency of 800 Hz, and is an average of measured values in the L direction and the C direction.
実施例2以下も、これらの記号に準じるものとする。 Example 2 and the following also conform to these symbols.
Sn量が本発明の範囲で、優れた磁束密度の異方性を得ることができた。 An anisotropy of excellent magnetic flux density could be obtained when the Sn amount was within the range of the present invention.
(実施例2)
質量%で、C:0.0010%、Si:2.3%、Mn:0.2%、Al:1.95%、Sn:0.03%、S:0.0001%、N:0.0008%、O:0.002%、P:0.025%を含む板厚1.6mmの熱延板を、一次冷延(タンデム圧延)し、板厚0.40mm(75%圧下)としてから、表2に示す中間焼鈍温度で、H2雰囲気中、10秒、熱処理した。次いで,二次冷延(タンデム圧延)を行い、板厚0.12mm(70%圧下)とした。
(Example 2)
In mass%, C: 0.0010%, Si: 2.3%, Mn: 0.2%, Al: 1.95%, Sn: 0.03%, S: 0.0001%, N: 0.00. A hot-rolled sheet having a thickness of 1.6 mm containing 0008%, O: 0.002%, and P: 0.025% is subjected to primary cold rolling (tandem rolling) to a thickness of 0.40 mm (75% reduction). Then, heat treatment was performed at an intermediate annealing temperature shown in Table 2 for 10 seconds in an H 2 atmosphere. Next, secondary cold rolling (tandem rolling) was performed to obtain a sheet thickness of 0.12 mm (70% reduction).
仕上焼鈍を、表2に示す温度で、H2雰囲気中、20秒均熱して行った。55mm角に打ち抜いてから、SSTで、角度別の磁気特性を測定し、また、平均結晶粒径も測定した。得られた結果を表2に示す。 Finish annealing was performed at a temperature shown in Table 2 by soaking in an H 2 atmosphere for 20 seconds. After punching out to 55 mm square, the magnetic characteristics for each angle were measured by SST, and the average crystal grain size was also measured. The obtained results are shown in Table 2.
中間焼鈍温度が、本発明の範囲内で高いと、分割コア用として、L方向とC方向に優れた磁束密度を有する磁気特性が得られていることが、実験No.1〜5から分かる。また、仕上焼鈍後の平均結晶粒径については、実験No.6〜12より、本発明の範囲内で、優れた異方性B50(C)/B50(X)と同時に、高周波鉄損W10/800が得られていることが分かる。 When the intermediate annealing temperature is high within the range of the present invention, it is shown in Experiment No. 1 that magnetic properties having excellent magnetic flux density in the L direction and C direction are obtained for the split core. It can be seen from 1-5. For the average crystal grain size after finish annealing, Experiment No. From 6 to 12, it can be seen that high-frequency iron loss W 10/800 is obtained simultaneously with excellent anisotropy B 50 (C) / B 50 (X) within the scope of the present invention.
(実施例3)
質量%で、C:0.003%、Si:3.5%、Mn:0.6%、Al:0.3%、Sn:0.05%、その他、不可避的成分として、Cu:0.15%、、Ni:0.01%、Cr:0.01%、Ti:0.002%、Mo:0.002%、P:0.02%を含むスラブを、1000℃に加熱し、板厚2.7mmの熱延板を得た。熱延板を、1050℃で150秒、N2雰囲気中で焼鈍した後、酸洗し、一次冷延(タンデム圧延)を行った。
(Example 3)
In terms of mass%, C: 0.003%, Si: 3.5%, Mn: 0.6%, Al: 0.3%, Sn: 0.05%, and other inevitable ingredients, Cu: 0.00%. A slab containing 15%, Ni: 0.01%, Cr: 0.01%, Ti: 0.002%, Mo: 0.002%, P: 0.02% is heated to 1000 ° C. A hot rolled sheet having a thickness of 2.7 mm was obtained. The hot-rolled sheet was annealed at 1050 ° C. for 150 seconds in an N 2 atmosphere, then pickled and subjected to primary cold rolling (tandem rolling).
中間焼鈍を、950℃で10秒、H2雰囲気中で実施し、次いで、表3に示す圧下率の二次冷延を、レバースミルで行って、板厚を0.28mmとした。それから、H2雰囲気中、970℃で8秒均熱して仕上焼鈍を行った。仕上焼鈍における昇温速度は、12℃/秒であった。エプスタイン試料を切り出してから、角度別の磁気特性及び結晶粒径を計測した。得られた結果を表3に示す。 Intermediate annealing was performed at 950 ° C. for 10 seconds in an H 2 atmosphere, and then secondary cold rolling at the rolling reduction shown in Table 3 was performed with a lever mill to obtain a plate thickness of 0.28 mm. Then, finish annealing was performed by soaking at 970 ° C. for 8 seconds in an H 2 atmosphere. The temperature increase rate in the finish annealing was 12 ° C./second. After the Epstein sample was cut out, the magnetic properties and crystal grain size were measured for each angle. The obtained results are shown in Table 3.
二次冷延率が本発明の範囲内のものは、分割コアに適した異方性が発現している。 When the secondary cold rolling rate is within the range of the present invention, anisotropy suitable for the split core is developed.
(実施例4)
実施例3で用いた実験No.7の板厚0.28mmの2次冷延板を、誘導加熱装置で急速加熱した。昇温速度は、常温から1030℃まで、表4に示すように変更した。雰囲気は、30%H2+70%N2とし、均熱は、1030℃で10秒、行った。次いで,エプスタイン試料を切り出して、角度別の磁気特性及び結晶粒径を計測した。結晶粒径は、全てが190μmであった。得られた結果を表4に示す。
Example 4
Experiment No. used in Example 3 A secondary cold-rolled plate having a thickness of 0.28 mm was rapidly heated with an induction heating device. The heating rate was changed from room temperature to 1030 ° C. as shown in Table 4. The atmosphere was 30% H 2 + 70% N 2 and soaking was performed at 1030 ° C. for 10 seconds. Next, the Epstein sample was cut out, and the magnetic characteristics and crystal grain size were measured for each angle. The crystal grain size was all 190 μm. Table 4 shows the obtained results.
表4から、昇温速度が上昇すると、磁束密度の異方性が改善され、特に、昇温速度が100℃/秒以上では,優れたB50(C)/B50(X)が得られることが分かった。 From Table 4, when the heating rate is increased, the anisotropy of the magnetic flux density is improved. Especially when the heating rate is 100 ° C./second or more, excellent B 50 (C) / B 50 (X) is obtained. I understood that.
前述したように、本発明によれば、モーターやトランスの分割コア用として最適な磁気特性を有し、かつ、利用度の高い無方向性電磁鋼板を提供することができる。したがって、本発明は、無方向性電磁鋼板を素材として用いる電気機器製造産業において利用可能性が大きいものである。 As described above, according to the present invention, it is possible to provide a non-oriented electrical steel sheet that has optimum magnetic characteristics for a split core of a motor or a transformer and has high utilization. Therefore, the present invention has great applicability in the electrical equipment manufacturing industry using non-oriented electrical steel sheets as raw materials.
1 分割コア
2 ティース部分
1 split core 2 teeth
Claims (8)
(i)平均結晶粒径が40〜200μmの再結晶組織を有し、かつ、
(ii)圧延方向(L方向)と90°の方向(C方向)の磁束密度B50(C)と、圧延方向(L方向)と45°の方向(X方向)の磁束密度B50(X)が、下記式(1)を満たす磁気特性を有する
ことを特徴とする分割コア用無方向性電磁鋼板。
B50(C)/B50(X)>1.03 ・・・(1) In mass%, C: 0.005% or less, Si: 2-4%, Mn: 1% or less, Al: 0.2-2%, Sn: 0.003-0.2%, the balance being Non-directional electromagnetic with a thickness of 0.1 to 0.3 mm manufactured by subjecting a hot-rolled sheet made of Fe and inevitable impurities to cold rolling twice with intermediate annealing and then recrystallization annealing A steel plate,
(I) having a recrystallized structure having an average crystal grain size of 40 to 200 μm, and
(Ii) Magnetic flux density B 50 (C) in the rolling direction (L direction) and 90 ° direction (C direction), and magnetic flux density B 50 (X in the rolling direction (L direction) and 45 ° direction (X direction). ) Has a magnetic property satisfying the following formula (1): a non-oriented electrical steel sheet for split cores.
B 50 (C) / B 50 (X)> 1.03 (1)
B50(L)/Bs≧0.82 ・・・(2)
ここで、Bs:飽和磁束密度 2. The non-oriented electrical steel sheet for split core according to claim 1, wherein a magnetic flux density B 50 (L) in a rolling direction (L direction) satisfies the following formula (2) in the magnetic characteristics.
B 50 (L) /Bs≧0.82 (2)
Where Bs: saturation magnetic flux density
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006312270A JP4855222B2 (en) | 2006-11-17 | 2006-11-17 | Non-oriented electrical steel sheet for split core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006312270A JP4855222B2 (en) | 2006-11-17 | 2006-11-17 | Non-oriented electrical steel sheet for split core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008127612A true JP2008127612A (en) | 2008-06-05 |
JP4855222B2 JP4855222B2 (en) | 2012-01-18 |
Family
ID=39553757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006312270A Active JP4855222B2 (en) | 2006-11-17 | 2006-11-17 | Non-oriented electrical steel sheet for split core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4855222B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011089170A (en) * | 2009-10-22 | 2011-05-06 | Jfe Steel Corp | Motor core |
KR101051747B1 (en) * | 2008-11-26 | 2011-07-25 | 주식회사 포스코 | Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties |
JP2012036458A (en) * | 2010-08-09 | 2012-02-23 | Sumitomo Metal Ind Ltd | Non-oriented magnetic steel sheet and production method therefor |
JP2012046806A (en) * | 2010-08-30 | 2012-03-08 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
JP2012075218A (en) * | 2010-09-28 | 2012-04-12 | Jfe Steel Corp | Motor core with less iron loss deterioration under compressive stress |
JP2012090391A (en) * | 2010-10-18 | 2012-05-10 | Jfe Steel Corp | Motor core with small iron loss deterioration under compression stress |
JP2012135123A (en) * | 2010-12-22 | 2012-07-12 | Jfe Steel Corp | Motor core with small iron loss deterioration under compressive stress |
JP2013513724A (en) * | 2010-10-25 | 2013-04-22 | 宝山鋼鉄股▲分▼有限公司 | Manufacturing process of high magnetic induction non-oriented silicon steel |
JP2013091837A (en) * | 2011-10-27 | 2013-05-16 | Nippon Steel & Sumitomo Metal Corp | Method for producing non-oriented electromagnetic steel sheet having good magnetic property in rolling direction |
WO2013146879A1 (en) * | 2012-03-29 | 2013-10-03 | 新日鐵住金株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
KR101482312B1 (en) * | 2012-09-05 | 2015-01-13 | 주식회사 포스코 | Non-oriented electric steel plate having excellent magnetism and method for manufacturing the same |
WO2015099315A1 (en) * | 2013-12-23 | 2015-07-02 | 주식회사 포스코 | Non-oriented electrical steel sheet and manufacturing method therefor |
KR20160044452A (en) * | 2016-04-12 | 2016-04-25 | 주식회사 포스코 | Non-oriented electrical steel sheets and method for manufacturing the same |
WO2016063118A1 (en) | 2014-10-20 | 2016-04-28 | Arcelormittal | Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof |
CN107052074A (en) * | 2017-02-28 | 2017-08-18 | 中国船舶重工集团公司第七二五研究所 | The preparation method of large-sized low-speed diesel engine bush high tin-aluminum alloy steel composite board |
JP2018012854A (en) * | 2016-07-20 | 2018-01-25 | 新日鐵住金株式会社 | Nonoriented silicon steel sheet and method for producing the same |
US11162155B2 (en) | 2016-12-20 | 2021-11-02 | Posco | Non-oriented electrical steel sheet and method for producing same |
US11371109B2 (en) | 2014-11-18 | 2022-06-28 | Arcelormittal | Method for manufacturing a high strength steel product and steel product thereby obtained |
JP2022545025A (en) * | 2019-08-26 | 2022-10-24 | バオシャン アイアン アンド スティール カンパニー リミテッド | Cu-containing non-oriented electrical steel sheet and manufacturing method thereof |
US11486019B2 (en) | 2017-12-26 | 2022-11-01 | Posco | Non-oriented electrical steel sheet and manufacturing method therefor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1192891A (en) * | 1997-09-22 | 1999-04-06 | Nkk Corp | Silicon steel sheet for electric automobile motor |
JP2000017330A (en) * | 1998-06-30 | 2000-01-18 | Nkk Corp | Production of nonoriented silicon steel sheet low in iron loss |
JP2001059145A (en) * | 1999-06-16 | 2001-03-06 | Sumitomo Metal Ind Ltd | Nonoriented silicon steel sheet and its manufacture |
JP2004323972A (en) * | 2003-04-10 | 2004-11-18 | Nippon Steel Corp | Method for manufacturing non-directional silicon steel plate of high magnetic flux density |
-
2006
- 2006-11-17 JP JP2006312270A patent/JP4855222B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1192891A (en) * | 1997-09-22 | 1999-04-06 | Nkk Corp | Silicon steel sheet for electric automobile motor |
JP2000017330A (en) * | 1998-06-30 | 2000-01-18 | Nkk Corp | Production of nonoriented silicon steel sheet low in iron loss |
JP2001059145A (en) * | 1999-06-16 | 2001-03-06 | Sumitomo Metal Ind Ltd | Nonoriented silicon steel sheet and its manufacture |
JP2004323972A (en) * | 2003-04-10 | 2004-11-18 | Nippon Steel Corp | Method for manufacturing non-directional silicon steel plate of high magnetic flux density |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101051747B1 (en) * | 2008-11-26 | 2011-07-25 | 주식회사 포스코 | Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties |
JP2011089170A (en) * | 2009-10-22 | 2011-05-06 | Jfe Steel Corp | Motor core |
JP2012036458A (en) * | 2010-08-09 | 2012-02-23 | Sumitomo Metal Ind Ltd | Non-oriented magnetic steel sheet and production method therefor |
JP2012046806A (en) * | 2010-08-30 | 2012-03-08 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
JP2012075218A (en) * | 2010-09-28 | 2012-04-12 | Jfe Steel Corp | Motor core with less iron loss deterioration under compressive stress |
JP2012090391A (en) * | 2010-10-18 | 2012-05-10 | Jfe Steel Corp | Motor core with small iron loss deterioration under compression stress |
JP2013513724A (en) * | 2010-10-25 | 2013-04-22 | 宝山鋼鉄股▲分▼有限公司 | Manufacturing process of high magnetic induction non-oriented silicon steel |
JP2012135123A (en) * | 2010-12-22 | 2012-07-12 | Jfe Steel Corp | Motor core with small iron loss deterioration under compressive stress |
JP2013091837A (en) * | 2011-10-27 | 2013-05-16 | Nippon Steel & Sumitomo Metal Corp | Method for producing non-oriented electromagnetic steel sheet having good magnetic property in rolling direction |
US9570219B2 (en) | 2012-03-29 | 2017-02-14 | Nippon Steel & Sumitomo Metal Corporation | Non-oriented electrical steel sheet and method of manufacturing non-oriented electrical steel sheet |
CN103842544A (en) * | 2012-03-29 | 2014-06-04 | 新日铁住金株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
JP2014210978A (en) * | 2012-03-29 | 2014-11-13 | 新日鐵住金株式会社 | Nonoriented magnetic steel sheet and method for producing the same |
JPWO2013146879A1 (en) * | 2012-03-29 | 2015-12-14 | 新日鐵住金株式会社 | Method for producing non-oriented electrical steel sheet |
KR20140050743A (en) * | 2012-03-29 | 2014-04-29 | 신닛테츠스미킨 카부시키카이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
KR101974674B1 (en) * | 2012-03-29 | 2019-05-03 | 닛폰세이테츠 가부시키가이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
WO2013146879A1 (en) * | 2012-03-29 | 2013-10-03 | 新日鐵住金株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
KR101482312B1 (en) * | 2012-09-05 | 2015-01-13 | 주식회사 포스코 | Non-oriented electric steel plate having excellent magnetism and method for manufacturing the same |
JP2017509799A (en) * | 2013-12-23 | 2017-04-06 | ポスコPosco | Non-oriented electrical steel sheet and manufacturing method thereof |
WO2015099315A1 (en) * | 2013-12-23 | 2015-07-02 | 주식회사 포스코 | Non-oriented electrical steel sheet and manufacturing method therefor |
US10643771B2 (en) | 2013-12-23 | 2020-05-05 | Posco | Non-oriented electrical steel sheet and manufacturing method therefor |
CN105849300A (en) * | 2013-12-23 | 2016-08-10 | Posco公司 | Non-oriented electrical steel sheet and manufacturing method therefor |
CN105849300B (en) * | 2013-12-23 | 2017-09-08 | Posco公司 | Non orientation electric steel plate and its manufacture method |
JP2020183583A (en) * | 2014-10-20 | 2020-11-12 | アルセロールミタル | Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof |
JP7066782B2 (en) | 2014-10-20 | 2022-05-13 | アルセロールミタル | Manufacturing method of tin-containing non-directional silicon steel sheet, obtained steel sheet and use of the steel sheet |
EP4254440A3 (en) * | 2014-10-20 | 2024-05-22 | ArcelorMittal | Method of production of tin containing non grain-oriented silicon steel sheet |
EP4254440A2 (en) | 2014-10-20 | 2023-10-04 | ArcelorMittal | Method of production of tin containing non grain-oriented silicon steel sheet |
JP2017537230A (en) * | 2014-10-20 | 2017-12-14 | アルセロールミタル | Method for producing tin-containing non-oriented silicon steel sheet, obtained steel sheet and use of the steel sheet |
US11566296B2 (en) | 2014-10-20 | 2023-01-31 | Arcelormittal | Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof |
WO2016063098A1 (en) | 2014-10-20 | 2016-04-28 | Arcelormittal | Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof |
WO2016063118A1 (en) | 2014-10-20 | 2016-04-28 | Arcelormittal | Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof |
CN107075647A (en) * | 2014-10-20 | 2017-08-18 | 安赛乐米塔尔公司 | Produce method, steel plate of gained of the silicon steel plate of stanniferous non grain orientation and application thereof |
EP3741874A1 (en) | 2014-10-20 | 2020-11-25 | ArcelorMittal | Method of production of tin containing non grain-oriented silicon steel sheet |
US11371109B2 (en) | 2014-11-18 | 2022-06-28 | Arcelormittal | Method for manufacturing a high strength steel product and steel product thereby obtained |
KR20160044452A (en) * | 2016-04-12 | 2016-04-25 | 주식회사 포스코 | Non-oriented electrical steel sheets and method for manufacturing the same |
KR101722702B1 (en) * | 2016-04-12 | 2017-04-03 | 주식회사 포스코 | Non-oriented electrical steel sheets and method for manufacturing the same |
JP2018012854A (en) * | 2016-07-20 | 2018-01-25 | 新日鐵住金株式会社 | Nonoriented silicon steel sheet and method for producing the same |
US11162155B2 (en) | 2016-12-20 | 2021-11-02 | Posco | Non-oriented electrical steel sheet and method for producing same |
CN107052074B (en) * | 2017-02-28 | 2018-08-10 | 中国船舶重工集团公司第七二五研究所 | The preparation method of large-sized low-speed diesel engine bush high tin-aluminum alloy-steel composite board |
CN107052074A (en) * | 2017-02-28 | 2017-08-18 | 中国船舶重工集团公司第七二五研究所 | The preparation method of large-sized low-speed diesel engine bush high tin-aluminum alloy steel composite board |
US11486019B2 (en) | 2017-12-26 | 2022-11-01 | Posco | Non-oriented electrical steel sheet and manufacturing method therefor |
JP2022545025A (en) * | 2019-08-26 | 2022-10-24 | バオシャン アイアン アンド スティール カンパニー リミテッド | Cu-containing non-oriented electrical steel sheet and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4855222B2 (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4855222B2 (en) | Non-oriented electrical steel sheet for split core | |
JP4855220B2 (en) | Non-oriented electrical steel sheet for split core | |
KR100956530B1 (en) | Nonoriented electromagnetic steel sheet | |
CN103052722B (en) | Process for producing non-oriented electromagnetic steel sheet | |
JP5854182B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP2019019355A (en) | Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core | |
JP5699642B2 (en) | Motor core | |
JP2017057462A (en) | Non-oriented magnetic electromagnetic steel sheet and manufacturing method therefor | |
WO2018135414A1 (en) | Non-oriented electromagnetic steel sheet and production method therefor | |
JP4319889B2 (en) | Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same | |
JP2018178198A (en) | Nonoriented electromagnetic steel sheet and manufacturing method therefor | |
JP5515451B2 (en) | Core material for split motor | |
JP5724837B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2008127659A (en) | Non-oriented electromagnetic steel sheet with less anisotropy | |
JP4358550B2 (en) | Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface | |
JP7253054B2 (en) | Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method | |
JP2005120403A (en) | Non-oriented electrical steel sheet with low core loss in high-frequency region | |
JP2910508B2 (en) | Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics | |
JP6123234B2 (en) | Electrical steel sheet | |
JP4855221B2 (en) | Non-oriented electrical steel sheet for split core | |
JP4568999B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2005002401A (en) | Method for producing non-oriented silicon steel sheet | |
JP5560923B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction | |
JP5826284B2 (en) | Wire rods, steel wires having excellent magnetic properties, and methods for producing them | |
JP2004104929A (en) | Magnetic steel plate for rotary equipment having split core form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111018 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111026 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4855222 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |