JP2008103536A - Semiconductor package and manufacturing method thereof - Google Patents

Semiconductor package and manufacturing method thereof Download PDF

Info

Publication number
JP2008103536A
JP2008103536A JP2006285000A JP2006285000A JP2008103536A JP 2008103536 A JP2008103536 A JP 2008103536A JP 2006285000 A JP2006285000 A JP 2006285000A JP 2006285000 A JP2006285000 A JP 2006285000A JP 2008103536 A JP2008103536 A JP 2008103536A
Authority
JP
Japan
Prior art keywords
hole
inorganic core
semiconductor package
base wiring
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006285000A
Other languages
Japanese (ja)
Other versions
JP5171009B2 (en
Inventor
Ryuichi Matsuki
隆一 松木
Keisuke Ueda
啓介 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2006285000A priority Critical patent/JP5171009B2/en
Publication of JP2008103536A publication Critical patent/JP2008103536A/en
Application granted granted Critical
Publication of JP5171009B2 publication Critical patent/JP5171009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor package, along with its manufacturing method, capable of reducing difference in thermal expansion from that of a semiconductor chip by using an inorganic core, for extended life of a semiconductor device. <P>SOLUTION: A semiconductor package 100 has a multilayer wiring structure consisting of a base wiring layer with a metal plate 14 processed and a build-up wiring layer 22 thereon, on both surfaces of an inorganic core 10. The base wiring layers on both surfaces are connected together by jointing machined projections 16 of the metal plate, on both surfaces, within a through hole 12 of the inorganic core or by jointing the metal plate on both surfaces and both ends of a separate metal pin penetrating the through hole of the inorganic core. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、搭載する半導体チップとの熱膨張差を低減して半導体装置の寿命を向上できる半導体パッケージおよびその製造方法に関する。   The present invention relates to a semiconductor package capable of reducing the difference in thermal expansion from a semiconductor chip to be mounted and improving the life of a semiconductor device, and a method for manufacturing the same.

現在、CPU、MPUの半導体パッケージ、特にプラスチック・パッケージで使用されているコア材料の主流は、ガラスクロスにエポキシ系樹脂を含浸させたガラスエポキシ基板を代表とする有機コアである。このコアの両面または片面に、サブトラクティブ法、アデティブ法、セミアデティブ法によってビルドアップ配線層を形成して多層配線構造の半導体パッケージとしている。半導体装置の高速化、高集積化に対応するために、コアを薄くしたり、コアレス構造とすることが行なわれている。   At present, the mainstream of core materials used in CPU and MPU semiconductor packages, particularly plastic packages, is an organic core typified by a glass epoxy substrate in which an epoxy resin is impregnated into a glass cloth. A build-up wiring layer is formed on both or one side of the core by a subtractive method, an additive method, or a semi-additive method to form a semiconductor package having a multilayer wiring structure. In order to cope with higher speed and higher integration of semiconductor devices, the core is made thinner or has a coreless structure.

このような状況下において、搭載する半導体チップと半導体パッケージとの熱膨張差によって両者の接合部で熱応力の発生を避けられない。この熱応力は接合部から更にチップ内配線層(ILD)に応力(チップ応力)として作用するため、接合部のみでなく半導体チップ自体の破壊により半導体装置寿命に致命的な影響を及ぼす虞がある。   Under such circumstances, generation of thermal stress is inevitable at the junction between the semiconductor chip and the semiconductor package to be mounted due to the difference in thermal expansion. Since this thermal stress further acts as stress (chip stress) from the bonded portion to the in-chip wiring layer (ILD), there is a possibility that not only the bonded portion but also the semiconductor chip itself may have a fatal effect on the life of the semiconductor device. .

特に、半導体チップは高速化、高集積化に伴い機械的に脆くなることが避けられないため、半導体装置の寿命向上にはチップ応力を低減することが極めて重要になってきた。   In particular, since it is inevitable that semiconductor chips become mechanically fragile with higher speed and higher integration, it is extremely important to reduce chip stress in order to improve the life of semiconductor devices.

熱応力を低減するには、半導体チップと半導体パッケージの熱膨張差を低減する必要があるが、半導体チップの主体であるシリコンの熱膨張係数3.4ppm/℃に対して、ガラスエポキシコアの熱膨張係数は低くても10ppm/℃程度はあり、ガラスエポキシコアを用いている限り改良に限界がある。   In order to reduce the thermal stress, it is necessary to reduce the difference in thermal expansion between the semiconductor chip and the semiconductor package. However, the thermal expansion coefficient of silicon, which is the main component of the semiconductor chip, is 3.4 ppm / ° C. Even if the expansion coefficient is low, it is about 10 ppm / ° C., and there is a limit to improvement as long as the glass epoxy core is used.

そこで、従来のガラスエポキシ基板のような有機コアに替えて無機コアを用いることが考えられる。すなわち、無機コアとしては、半導体チップの材料と同じシリコンや、シリコンと同等の熱膨張係数を持つガラスやセラミクスを用いることにより、従来の有機コアに比べて熱膨張係数を半導体チップに近づけることができる。   Therefore, it is conceivable to use an inorganic core instead of an organic core such as a conventional glass epoxy substrate. In other words, by using the same silicon as the semiconductor chip material, or glass or ceramics having a thermal expansion coefficient equivalent to that of silicon as the inorganic core, the thermal expansion coefficient can be made closer to that of the semiconductor chip than the conventional organic core. it can.

しかし、このような無機コアを用いた場合、ビルドアップ層の樹脂との接合や表面配線および貫通配線の形成はこれまで行なわれておらず、そのための新たな技術開発が必要とされていた。   However, when such an inorganic core is used, bonding of the build-up layer to the resin and formation of surface wiring and through wiring have not been performed so far, and new technical development for that purpose has been required.

特許文献1には、樹脂を用いた有機コアの両面に金属配線板を配し、有機コアの貫通孔を介して両金属板を局部的に接合して貫通配線を形成する方法が提示されている。しかしこれでは、相変わらず有機コアを用いているため半導体チップとの熱膨張差を低減することはできないし、無機コアを用いた際のビルドアップ層の樹脂との接合や表面配線および貫通配線の形成に寄与する新たな示唆は何らなされていない。   Patent Document 1 proposes a method in which a metal wiring board is arranged on both surfaces of an organic core using a resin, and both the metal plates are locally joined through a through hole of the organic core to form a through wiring. Yes. However, since the organic core is still used, the difference in thermal expansion from the semiconductor chip cannot be reduced. In addition, when the inorganic core is used, the build-up layer is bonded to the resin, and surface wiring and through wiring are formed. There is no new suggestion that contributes to.

特開平11−251705号公報Japanese Patent Laid-Open No. 11-251705

本発明は、無機コアを用いたことにより半導体チップとの熱膨張差を低減して半導体装置の寿命向上を可能とする半導体パッケージおよびその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor package and a method for manufacturing the same that can reduce the difference in thermal expansion from a semiconductor chip by using an inorganic core and thereby improve the life of a semiconductor device.

上記の目的を達成するために、第1発明の半導体パッケージは、無機コアの両面に、金属板を加工したベース配線層とその上のビルドアップ配線層とから成る多層配線構造を備え、(1)上記無機コアの貫通孔内での上記両面の金属板の加工突起同士の接合により、または(2)上記無機コアの貫通孔内を貫通した別体の金属ピンの両端と上記両面の金属板との接合により、上記両面のベース配線層同士が接続されていることを特徴とする。   In order to achieve the above object, a semiconductor package according to a first aspect of the present invention includes a multilayer wiring structure including a base wiring layer processed with a metal plate and a build-up wiring layer formed thereon on both surfaces of an inorganic core. ) By joining the processed projections of the metal plates on both sides in the through hole of the inorganic core, or (2) both ends of separate metal pins penetrating the inside of the through hole of the inorganic core and the metal plates on both sides The above-described base wiring layers on both sides are connected to each other by bonding.

上記の目的を達成するために、第1発明の半導体パッケージを製造する方法として、第2発明によれば下記A、B、Cの方法が提供される。   In order to achieve the above object, the following methods A, B, and C are provided according to the second invention as a method of manufacturing the semiconductor package of the first invention.

<方法A>
第1発明の半導体パッケージを製造する方法であって、
無機コアに貫通孔を開ける工程、
金属板を板面内の平面パターンに加工してベース配線層を形成する工程、
上記貫通孔を開けた無機コアを、上記加工した2枚の金属板で両面から挟んだ状態に保持し、上記無機コアの貫通孔の位置で上記両面の金属板をプレス加工して加工突起を形成すると共に該貫通孔内で両方の加工突起同士をカシメおよび/または溶接することにより該両面のベース配線層同士を相互に接合して第1発明の(1)の接合状態とする工程、
を含むことを特徴とする半導体パッケージの製造方法。
<Method A>
A method for manufacturing a semiconductor package of a first invention, comprising:
A process of opening a through hole in an inorganic core,
Forming a base wiring layer by processing a metal plate into a planar pattern in the plate surface;
The inorganic core having the through hole is held between the two processed metal plates from both sides, and the metal plate on both sides is pressed at the position of the through hole of the inorganic core to form a processed projection. A step of forming and joining the base wiring layers on both sides to each other by crimping and / or welding the two processing projections in the through-hole and forming the joining state of (1) of the first invention,
A method for manufacturing a semiconductor package, comprising:

<方法B>
第1発明の半導体パッケージを製造する方法であって、
無機コアに貫通孔を開ける工程、
第1の金属板を板面内の平面パターンに加工してベース配線層を形成すると共に、上記貫通孔に対応した位置にプレス加工により雄型の加工突起を形成する工程、
第2の金属板を平面パターンに加工してベース配線層を形成すると共に、上記貫通孔に対応した位置に、プレス加工により頭部雌型の加工突起を形成する工程、
上記貫通孔を開けた無機コアを、上記加工した第1、第2の金属板の上記雄型と頭部雌型の加工突起を該貫通孔に位置合わせして両面から挟んだ状態に保持し、プレス加工により上記雄型と頭部雌型の加工突起同士をカシメ接合して第1発明の(1)の接合状態とする工程、
を含むことを特徴とする半導体パッケージの製造方法。
<Method B>
A method for manufacturing a semiconductor package of a first invention, comprising:
A process of opening a through hole in an inorganic core,
Forming a base wiring layer by processing the first metal plate into a planar pattern in the plate surface, and forming a male processing protrusion by pressing at a position corresponding to the through hole;
Forming a base wiring layer by processing the second metal plate into a planar pattern, and forming a female projection on the head by pressing at a position corresponding to the through hole;
The inorganic core having the through hole is held in a state in which the processed projections of the male and head female molds of the processed first and second metal plates are aligned with the through hole and sandwiched from both sides. , The step of crimping the processing projections of the male mold and the female head mold to form the joined state of (1) of the first invention,
A method for manufacturing a semiconductor package, comprising:

<方法C>
第1発明の半導体パッケージを製造する方法であって、
無機コアに貫通孔を開ける工程、
金属板を、上記貫通孔に対応する位置の開口を含む板面内の平面パターンに加工してベース配線層を形成する工程、
上記貫通孔を開けた無機コアを、上記加工した2枚の金属板の上記開口を該貫通孔に位置合わせして両面から挟んだ状態に保持し、該開口を介して該貫通孔に金属ピンを挿入し、プレス加工または溶接により上記金属ピンの両端と上記2枚の金属板の上記開口部とを接合して第1発明の(2)の接合状態とする工程、
を含むことを特徴とする半導体パッケージの製造方法。
<Method C>
A method for manufacturing a semiconductor package of a first invention, comprising:
A process of opening a through hole in an inorganic core,
Forming a base wiring layer by processing a metal plate into a planar pattern in a plate surface including an opening at a position corresponding to the through hole;
The inorganic core having the through hole is held in a state in which the openings of the two processed metal plates are aligned with the through hole and sandwiched from both sides, and the metal pin is inserted into the through hole through the opening. And joining both ends of the metal pin and the opening of the two metal plates by press working or welding to obtain the joined state of (2) of the first invention,
A method for manufacturing a semiconductor package, comprising:

第1発明の半導体パッケージにおいては、有機コアに比べて低熱膨張の無機コアを用いたことにより、半導体チップとの熱膨張差を従来の有機コアを用いた半導体パッケージに比べて大幅に低減できる。   In the semiconductor package of the first invention, by using an inorganic core having a low thermal expansion compared to the organic core, the difference in thermal expansion from the semiconductor chip can be greatly reduced as compared with the conventional semiconductor package using the organic core.

第2発明の半導体パッケージの製造方法においては、プレス加工を用い、必要に応じて溶接も用いたことにより、上下両面の金属板配線層を無機コアの貫通孔内で電気的および機械的に強固に接合でき、無機コアの低熱膨張を半導体パッケージ全体に反映させることができる。   In the method for manufacturing a semiconductor package of the second invention, the metal plate wiring layers on the upper and lower surfaces are electrically and mechanically strengthened in the through hole of the inorganic core by using press working and welding as necessary. The low thermal expansion of the inorganic core can be reflected in the entire semiconductor package.

本発明の半導体パッケージは、(1)無機コアの貫通孔内での上記両面の金属板の加工突起同士の接合により、または(2)無機コアの貫通孔内を貫通した別体の金属ピンの両端と上記両面の金属板との接合により、上記両面のベース配線層同士が接続されているので、両面のベース配線層およびその上に形成されるビルドアップ配線層の熱膨張は、無機コアの熱膨張によって拘束され、半導体パッケージ全体として無機コアに近い熱膨張を発現するため、搭載した半導体チップとの熱膨張差を大幅に低減できる。   The semiconductor package of the present invention comprises (1) bonding of the processing protrusions of the metal plates on both sides in the through hole of the inorganic core, or (2) separate metal pins penetrating through the through hole of the inorganic core. Since the base wiring layers on both sides are connected to each other by bonding the both ends and the metal plates on both sides, the thermal expansion of the base wiring layers on both sides and the build-up wiring layer formed thereon is Constrained by thermal expansion and exhibiting thermal expansion close to that of the inorganic core as a whole semiconductor package, the thermal expansion difference from the mounted semiconductor chip can be significantly reduced.

本発明の製造方法は、プレス加工を用い、必要に応じて溶接も用い、上下両面の金属板配線層を無機コアの貫通孔内で接合することにより、電気的な接合を良好に確保できると同時に、機械的にも高い強度および剛性を有する接合部が形成できるので、無機コア上のビルドアップ配線層の熱膨張を無機コアにより有効に拘束して半導体パッケージ全体として半導体チップとの熱膨張差を大幅に低減でき、半導体装置の寿命を向上させることができる。   When the manufacturing method of the present invention uses press working, welding is also used as necessary, and by joining the metal plate wiring layers on the upper and lower surfaces within the through-holes of the inorganic core, it is possible to ensure good electrical bonding. At the same time, joints with high strength and rigidity can be formed mechanically, so that the thermal expansion of the build-up wiring layer on the inorganic core is effectively constrained by the inorganic core, and the thermal expansion difference from the semiconductor chip as a whole semiconductor package Can be significantly reduced, and the lifetime of the semiconductor device can be improved.

本発明に用いる無機コアは、典型的には下記の材質から選択できる。   The inorganic core used in the present invention can typically be selected from the following materials.

<本発明の無機コアの材質例>
〔材質〕 〔熱膨張係数(CTE)〕
シリコン 3.4ppm/℃ (半導体チップのシリコンと同じ)
ガラス 4〜6ppm/℃
セラミクス
アルミナ 5〜7ppm/℃
窒化アルミニウム 4.5ppm/℃
チタン酸バリウム 6ppm/℃
酸化チタン 7ppm/℃
上記は代表的な一例であり、半導体チップのシリコンと近い熱膨張係数を有する無機材料であればよい。
<Example of the material of the inorganic core of the present invention>
[Material] [Coefficient of thermal expansion (CTE)]
Silicon 3.4ppm / ° C (same as silicon of semiconductor chip)
Glass 4-6ppm / ° C
Ceramics Alumina 5-7ppm / ° C
Aluminum nitride 4.5ppm / ℃
Barium titanate 6ppm / ° C
Titanium oxide 7ppm / ℃
The above is a typical example, and any inorganic material having a thermal expansion coefficient close to that of silicon of a semiconductor chip may be used.

〔実施例1〕
図1を参照して、本発明の方法Aの望ましい一形態により半導体パッケージを製造する工程の一例を説明する。
[Example 1]
With reference to FIG. 1, an example of a process for manufacturing a semiconductor package according to a desirable embodiment of the method A of the present invention will be described.

工程(1A)において、代表的には前述した材質の無機コア10を用意する。   In the step (1A), the inorganic core 10 made of the material described above is typically prepared.

工程(2A)において、無機コア10に、ドリル、レーザー、反応性イオンエッチングRIE、ボッシュプロセスなどにより、所定の貫通孔12を開ける。   In the step (2A), a predetermined through-hole 12 is opened in the inorganic core 10 by a drill, laser, reactive ion etching RIE, Bosch process or the like.

並行して、工程(1B)において、ベース配線層を形成するための金属板としてリードフレーム14を用意する。リードフレーム14の材質は特に限定する必要はなく、従来用いられているCu、Ni−Fe合金などであってよい。   In parallel, in the step (1B), the lead frame 14 is prepared as a metal plate for forming the base wiring layer. The material of the lead frame 14 is not particularly limited, and may be a conventionally used Cu, Ni—Fe alloy, or the like.

工程(2B)において、リードフレーム14をスタンピングやエッチングによりパターニングしてベース配線層とする。   In the step (2B), the lead frame 14 is patterned by stamping or etching to form a base wiring layer.

次に、工程(3)において、貫通孔12の開いた無機コア10を、パターニングされた2枚のリードフレーム14で上下両面から挟んで保持する。   Next, in the step (3), the inorganic core 10 having the through-holes 12 is held by being sandwiched from above and below by two patterned lead frames 14.

工程(4)において、上記の状態で、無機コア10の貫通孔12の位置でリードフレーム14にポンチP(工程(3)の図に示す)でスタンピングを行い、貫通孔12内で上下のリードフレーム14の加工突起部16同士をカシメ接合(または溶着)する。   In the step (4), in the above state, the lead frame 14 is stamped by the punch P (shown in the drawing of the step (3)) at the position of the through hole 12 of the inorganic core 10, and the upper and lower leads are formed in the through hole 12. The processed projections 16 of the frame 14 are caulked and joined (or welded).

ここまでの工程により、無機コア10の両面にリードフレーム14から成るベース配線層が形成され、両面のベース配線層14同士は、無機コア10の貫通孔12内で加工突起16同士の接合により電気的および機械的に接続された構造が得られる。   Through the steps so far, the base wiring layers composed of the lead frames 14 are formed on both surfaces of the inorganic core 10, and the base wiring layers 14 on both surfaces are electrically connected to each other by bonding of the processing protrusions 16 in the through holes 12 of the inorganic core 10. And a mechanically and mechanically connected structure is obtained.

以下、工程(5)〜工程(7)に示すビルドアップ工程により絶縁層18の形成(工程(5))、ビア穴20の開口(工程(6))、配線層22の形成(工程(7))を必要回数繰返して、所定の多層配線層を形成した後に、工程(8)でソルダーレジスト層24を形成して半導体パッケージ100が完成する。   Hereinafter, formation of the insulating layer 18 (step (5)), opening of the via hole 20 (step (6)), and formation of the wiring layer 22 (step (7) by the build-up process shown in steps (5) to (7). )) Is repeated as many times as necessary to form a predetermined multilayer wiring layer, and then the solder resist layer 24 is formed in step (8) to complete the semiconductor package 100.

工程(8)の図中に仮想線で示したように、半導体パッケージ100上に半導体チップ200を搭載する。これは、半導体チップ200の電極端子202を半導体パッケージ100に接合し、アンダーフィル204を充填することによって行なう。   The semiconductor chip 200 is mounted on the semiconductor package 100 as indicated by the phantom line in the drawing of the step (8). This is performed by bonding the electrode terminal 202 of the semiconductor chip 200 to the semiconductor package 100 and filling the underfill 204.

図2に、半導体パッケージ100上に半導体チップ200を搭載した半導体装置300を示す。同図中の各部の代表的な寸法および寸法範囲の一例は下記のとおりである。   FIG. 2 shows a semiconductor device 300 in which the semiconductor chip 200 is mounted on the semiconductor package 100. An example of typical dimensions and dimension ranges of each part in the figure is as follows.

無機コア10:厚さ200μm(5μm〜5mm)
リードフレーム14:厚さ50μm(3μm〜300μm)
絶縁層18:厚さ20μm(3μm〜300μm)
ソルダーレジスト層24:厚さ15μm(5μm〜50μm)
スルーホール径T:300μm(10μm〜5mm)
半導体パッケージサイズX:50mm(1mm〜200mm)
半導体チップサイズY:25mm(1mm〜150mm)
半導体パッケージ100は、全体として無機コア10によって熱膨張を拘束された状態なので、無機コア10と同等の熱膨張係数を発現するため、搭載された半導体チップ200に近い熱膨張係数となる。すなわち、半導体パッケージ100と半導体チップ200との熱膨張差に起因する熱応力を顕著に低減することができるので、両者の接合部およびチップ内配線への応力負荷による破壊を効果的に防止することができ、半導体装置の寿命を大幅に向上させることができる。
Inorganic core 10: thickness 200 μm (5 μm to 5 mm)
Lead frame 14: thickness 50 μm (3 μm to 300 μm)
Insulating layer 18: thickness 20 μm (3 μm to 300 μm)
Solder resist layer 24: thickness 15 μm (5 μm to 50 μm)
Through-hole diameter T: 300 μm (10 μm to 5 mm)
Semiconductor package size X: 50 mm (1 mm to 200 mm)
Semiconductor chip size Y: 25 mm (1 mm to 150 mm)
Since the semiconductor package 100 is in a state in which the thermal expansion is constrained by the inorganic core 10 as a whole, it exhibits a thermal expansion coefficient equivalent to that of the inorganic core 10, and thus has a thermal expansion coefficient close to that of the mounted semiconductor chip 200. That is, since the thermal stress caused by the difference in thermal expansion between the semiconductor package 100 and the semiconductor chip 200 can be significantly reduced, it is possible to effectively prevent the damage due to the stress load on the joint portion between them and the wiring in the chip. And the lifetime of the semiconductor device can be significantly improved.

なお、完成した半導体パッケージ100はリードフレーム14上に保持された状態なので、リードフレームと共にリール・ツウ・リールによる搬送および処理が可能になる。もちろん半導体パッケージ100をリールから個片化して樹脂基板に配置してやることで、プラスチック基板工程で使用する大判サイズのシートで搬送および処理することも可能である。そのため、プロセスの高速化、分業化、コストダウンを図ることができる、という副次的な効果も得られる。   Since the completed semiconductor package 100 is held on the lead frame 14, it can be conveyed and processed by a reel-to-reel together with the lead frame. Of course, by separating the semiconductor package 100 from the reel and arranging it on the resin substrate, it is possible to convey and process the large-sized sheet used in the plastic substrate process. Therefore, the secondary effect that the process can be speeded up, divided into labor, and cost can be reduced is also obtained.

〔実施例2〕
図3を参照して、本発明の方法Bの望ましい一形態により半導体パッケージを製造する工程の一例を説明する。
[Example 2]
With reference to FIG. 3, an example of a process for manufacturing a semiconductor package according to a desirable embodiment of the method B of the present invention will be described.

工程(1A)において、代表的には前述した材質の無機コア10を用意する。   In the step (1A), the inorganic core 10 made of the material described above is typically prepared.

工程(2A)において、無機コア10に、ドリル、レーザー、反応性イオンエッチングRIE、ボッシュプロセスなどにより、所定の貫通孔12を開ける。   In the step (2A), a predetermined through-hole 12 is opened in the inorganic core 10 by a drill, laser, reactive ion etching RIE, Bosch process or the like.

並行して、工程(1B)において、ベース配線層を形成するための金属板としてリードフレーム14を用意する。リードフレーム14の材質は特に限定する必要はなく、従来用いられているCu、Ni−Fe合金などであってよい。   In parallel, in the step (1B), the lead frame 14 is prepared as a metal plate for forming the base wiring layer. The material of the lead frame 14 is not particularly limited, and may be a conventionally used Cu, Ni—Fe alloy, or the like.

工程(2B)において、リードフレーム14Xをスタンピングやエッチングによりパターニングしてベース配線層を形成すると共に、無機コア10の貫通孔12に対応した位置にプレス加工により雄型の加工突起26Xを形成する。同様に、リードフレーム14Yをスタンピングやエッチングによりパターニングしてベース配線層を形成すると共に、無機コア10の貫通孔12に対応した位置に、プレス加工により頭部が雌型の加工突起26Yを形成する(工程(3)の図を参照)。   In step (2B), the lead frame 14X is patterned by stamping or etching to form a base wiring layer, and a male processing protrusion 26X is formed by pressing at a position corresponding to the through hole 12 of the inorganic core 10. Similarly, the lead frame 14Y is patterned by stamping or etching to form a base wiring layer, and at the position corresponding to the through hole 12 of the inorganic core 10, a processing protrusion 26Y having a female head is formed by pressing. (See figure in step (3)).

次に、工程(3)において、貫通孔12の開いた無機コア10を、リードフレーム14X、14Yの雄型の加工突起26Xと頭部雌型の加工突起26Yを貫通孔12に位置合わせして上下両面から挟んだ状態に保持する。   Next, in the step (3), the inorganic core 10 having the through hole 12 is aligned with the through hole 12 by aligning the male processing protrusion 26X of the lead frames 14X and 14Y and the female processing protrusion 26Y of the head. Hold between the top and bottom surfaces.

そして工程(4)において、プレス加工により雄型の加工突起26Xと頭部雌型の加工突起26Yとを嵌め合わせてカシメ接合する。   Then, in the step (4), the male processing projections 26X and the head female processing projections 26Y are fitted to each other by press working and crimped.

ここまでの工程により、無機コア10の両面にそれぞれリードフレーム14X、14Yから成るベース配線層が形成され、両面のベース配線層14Xと14Yとは、無機コア10の貫通孔12内で加工突起26Xと26Yとの接合により電気的および機械的に接続された構造が得られる。   Through the steps so far, the base wiring layers composed of the lead frames 14X and 14Y are formed on both surfaces of the inorganic core 10, respectively. The base wiring layers 14X and 14Y on both surfaces are formed into the processing protrusions 26X in the through holes 12 of the inorganic core 10. And 26Y are joined together electrically and mechanically.

以下、図1に示した実施例1の工程(5)〜工程(7)と同様のビルドアップ工程により、絶縁層18、ビア20、配線層22の形成を必要回数繰返して、所定の多層配線層を形成した後に、ソルダーレジスト層24を形成して半導体パッケージ110が完成する。   Thereafter, the formation of the insulating layer 18, the via 20, and the wiring layer 22 is repeated as many times as necessary by a build-up process similar to the steps (5) to (7) of the first embodiment shown in FIG. After forming the layer, the solder resist layer 24 is formed to complete the semiconductor package 110.

本実施例で作製した半導体パッケージ110は、実施例1の半導体パッケージ100とは、貫通孔12内での接合形態が異なる以外は同じ構造である。   The semiconductor package 110 manufactured in this example has the same structure as the semiconductor package 100 of Example 1 except that the bonding form in the through hole 12 is different.

〔実施例3〕
図4を参照して、本発明の方法Bの望ましい一形態により半導体パッケージを製造する工程の一例を説明する。
Example 3
With reference to FIG. 4, an example of a process for manufacturing a semiconductor package according to a desirable embodiment of the method B of the present invention will be described.

工程(1A)において、代表的には前述した材質の無機コア材料10を用意する。   In the step (1A), typically, the inorganic core material 10 having the above-described material is prepared.

工程(2A)において、無機コア10に、ドリル、レーザー、反応性イオンエッチングRIE、ボッシュプロセスなどにより、所定の貫通孔12を開ける。   In the step (2A), a predetermined through-hole 12 is opened in the inorganic core 10 by a drill, laser, reactive ion etching RIE, Bosch process or the like.

並行して、工程(1B)において、ベース配線層を形成するための金属板としてリードフレーム14を用意する。リードフレーム14の材質は特に限定する必要はなく、従来用いられているCu、Ni−Fe合金などであってよい。   In parallel, in the step (1B), the lead frame 14 is prepared as a metal plate for forming the base wiring layer. The material of the lead frame 14 is not particularly limited, and may be a conventionally used Cu, Ni—Fe alloy, or the like.

工程(2B)において、リードフレーム14をスタンピングやエッチングによりパターニングして、無機コア10の貫通孔12に対応する位置の開口28を含む平面パターンのベース配線層とする。   In the step (2B), the lead frame 14 is patterned by stamping or etching to form a base wiring layer having a planar pattern including the opening 28 at a position corresponding to the through hole 12 of the inorganic core 10.

次に、工程(3)において、貫通孔12の開いた無機コア10を、上記加工した2枚のリードフレーム14の開口28を貫通孔12に位置合わせして両面から挟んだ状態に保持する。その際、貫通孔12の位置に接合用の金属ピン30を配置する。   Next, in the step (3), the inorganic core 10 having the through holes 12 is held in a state where the openings 28 of the two processed lead frames 14 are aligned with the through holes 12 and sandwiched from both sides. At that time, a metal pin 30 for bonding is disposed at the position of the through hole 12.

そして工程(4)において、開口28を介して貫通孔12に金属ピン30を挿入し、プレス加工(ピン30の頭つぶし)または溶接により金属ピン30の両端と2枚のリードフレーム14の開口部28とを接合する。   In step (4), the metal pins 30 are inserted into the through holes 12 through the openings 28, and both ends of the metal pins 30 and the openings of the two lead frames 14 are formed by pressing (crushing the heads of the pins 30) or welding. 28 is joined.

ここまでの工程により、無機コア10の貫通孔12内を貫通した別体の金属ピン30の両端と無機コア10両面のリードフレーム14との接合により、両面のベース配線層14同士が電気的および機械的に接続された構造が得られる。   Through the steps so far, the base wiring layers 14 on both sides are electrically connected to each other by joining the both ends of separate metal pins 30 penetrating through the through holes 12 of the inorganic core 10 and the lead frames 14 on both sides of the inorganic core 10. A mechanically connected structure is obtained.

以下、図1に示した実施例1の工程(5)〜工程(7)と同様のビルドアップ工程により、絶縁層18、ビア20、配線層22の形成を必要回数繰返して、所定の多層配線層を形成した後に、ソルダーレジスト層24を形成して半導体パッケージ120が完成する。   Thereafter, the formation of the insulating layer 18, the via 20, and the wiring layer 22 is repeated as many times as necessary by a build-up process similar to the steps (5) to (7) of the first embodiment shown in FIG. After forming the layers, the solder resist layer 24 is formed to complete the semiconductor package 120.

本実施例で作製した半導体パッケージ120は、実施例1の半導体パッケージ100とは、貫通孔12を介したベース配線層14同士の接合形態が異なる以外は同じ構造である。   The semiconductor package 120 manufactured in this example has the same structure as the semiconductor package 100 of Example 1 except that the bonding configuration of the base wiring layers 14 via the through holes 12 is different.

以上の実施例において、リードフレームによりベース配線層14を形成したが、リードフレームに限定する必要はなく、ベース配線層14を形成するのに適した金属板や金属箔であればよい。   In the above embodiment, the base wiring layer 14 is formed by the lead frame. However, the base wiring layer 14 is not limited to the lead frame, and any metal plate or metal foil suitable for forming the base wiring layer 14 may be used.

本発明によれば、無機コアを用いたことにより半導体チップとの熱膨張差を低減して半導体装置の寿命向上を可能とする半導体パッケージおよびその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor package which reduces the thermal expansion difference with a semiconductor chip and enables the lifetime improvement of a semiconductor device by using an inorganic core, and its manufacturing method are provided.

本発明の方法Aの望ましい実施形態により、無機コアを用いた本発明の半導体パッケージを製造する工程の一例を示す断面図。Sectional drawing which shows an example of the process of manufacturing the semiconductor package of this invention using an inorganic core by desirable embodiment of the method A of this invention. 図1の製造工程により製造した半導体パッケージに半導体チップを搭載した状態を示す断面図。Sectional drawing which shows the state which mounted the semiconductor chip in the semiconductor package manufactured by the manufacturing process of FIG. 本発明の方法Bの望ましい実施形態により、無機コアを用いた本発明の半導体パッケージを製造する工程の一例を示す断面図。Sectional drawing which shows an example of the process of manufacturing the semiconductor package of this invention using an inorganic core by desirable embodiment of the method B of this invention. 本発明の方法Cの望ましい実施形態により、無機コアを用いた本発明の半導体パッケージを製造する工程の一例を示す断面図。Sectional drawing which shows an example of the process of manufacturing the semiconductor package of this invention using an inorganic core by desirable embodiment of the method C of this invention.

符号の説明Explanation of symbols

10 無機コア
12 貫通孔
14、14X、14Y リードフレーム
16 加工突起
18 絶縁層
20 ビア(ビア穴)
22 配線層
24 ソルダーレジスト層
26X 雄型の加工突起
26Y 頭部が雌型の加工突起
28 開口
30 金属ピン
100、110、120 半導体パッケージ
200 半導体チップ
202 電極端子
204 アンダーフィル
300 半導体装置
DESCRIPTION OF SYMBOLS 10 Inorganic core 12 Through-hole 14, 14X, 14Y Lead frame 16 Process protrusion 18 Insulating layer 20 Via (via hole)
DESCRIPTION OF SYMBOLS 22 Wiring layer 24 Solder-resist layer 26X Male process protrusion 26Y Female head process protrusion 28 Opening 30 Metal pin 100,110,120 Semiconductor package 200 Semiconductor chip 202 Electrode terminal 204 Underfill 300 Semiconductor device

Claims (6)

無機コアの両面に、金属板を加工したベース配線層とその上のビルドアップ配線層とから成る多層配線構造を備え、(1)上記無機コアの貫通孔内での上記両面のベース配線層の加工突起同士の接合により、または(2)上記無機コアの貫通孔内を貫通した別体の金属ピンの両端と上記両面のベース配線層との接合により、上記両面のベース配線層同士が接続されていることを特徴とする半導体パッケージ。   A multilayer wiring structure comprising a base wiring layer obtained by processing a metal plate and a build-up wiring layer thereon is provided on both surfaces of the inorganic core, and (1) the base wiring layers on both surfaces in the through-hole of the inorganic core. The two-sided base wiring layers are connected to each other by joining the processing protrusions or (2) joining both ends of a separate metal pin penetrating through the through-hole of the inorganic core and the two-sided base wiring layers. A semiconductor package characterized by that. 請求項1において、上記無機コアは、シリコン、セラミクス、ガラスから選択した無機材料から成ることを特徴とする半導体パッケージ。   2. The semiconductor package according to claim 1, wherein the inorganic core is made of an inorganic material selected from silicon, ceramics, and glass. 請求項1または2において、上記金属板はリードフレームであることを特徴とする半導体パッケージ。   3. The semiconductor package according to claim 1, wherein the metal plate is a lead frame. 請求項1から3までのいずれか1項記載の半導体パッケージを製造する方法であって、
無機コアに貫通孔を開ける工程、
金属板を板面内の平面パターンに加工してベース配線層を形成する工程、
上記貫通孔を開けた無機コアを、上記加工した2枚の金属板で両面から挟んだ状態に保持し、上記無機コアの貫通孔の位置で上記両面の金属板をプレス加工して加工突起を形成すると共に該貫通孔内で両方の加工突起同士をカシメおよび/または溶接することにより該両面のベース配線層同士を相互に接合する工程、
を含むことを特徴とする半導体パッケージの製造方法。
A method for manufacturing a semiconductor package according to any one of claims 1 to 3,
A process of opening a through hole in an inorganic core,
Forming a base wiring layer by processing a metal plate into a planar pattern in the plate surface;
The inorganic core having the through hole is held between the two processed metal plates from both sides, and the metal plate on both sides is pressed at the position of the through hole of the inorganic core to form a processed projection. Forming and joining the base wiring layers on both sides by caulking and / or welding the two processing projections in the through-hole,
A method for manufacturing a semiconductor package, comprising:
請求項1から3までのいずれか1項記載の半導体パッケージを製造する方法であって、
無機コアに貫通孔を開ける工程、
第1の金属板を板面内の平面パターンに加工してベース配線層を形成すると共に、上記貫通孔に対応した位置にプレス加工により雄型の加工突起を形成する工程、
第2の金属板を板面内の平面パターンに加工してベース配線層を形成すると共に、上記貫通孔に対応した位置に、プレス加工により頭部雌型の加工突起を形成する工程、
上記貫通孔を開けた無機コアを、上記加工した第1、第2の金属板の上記雄型と頭部雌型の加工突起を該貫通孔に位置合わせして両面から挟んだ状態に保持し、プレス加工により上記雄型と頭部雌型の加工突起同士をカシメ接合する工程、
を含むことを特徴とする半導体パッケージの製造方法。
A method for manufacturing a semiconductor package according to any one of claims 1 to 3,
A process of opening a through hole in an inorganic core,
Forming a base wiring layer by processing the first metal plate into a planar pattern in the plate surface, and forming a male processing projection by pressing at a position corresponding to the through hole;
Forming a base wiring layer by processing the second metal plate into a planar pattern in the plate surface, and forming a female projection on the head by pressing at a position corresponding to the through hole;
The inorganic core having the through hole is held in a state in which the processed projections of the male and head female molds of the processed first and second metal plates are aligned with the through hole and sandwiched from both sides. , The step of caulking and joining the projections of the male and head female molds by pressing,
A method for manufacturing a semiconductor package, comprising:
請求項1から3までのいずれか1項記載の半導体パッケージを製造する方法であって、
無機コアに貫通孔を開ける工程、
金属板を、上記貫通孔に対応する位置の開口を含む板面内の平面パターンに加工してベース配線層を形成する工程、
上記貫通孔を開けた無機コアを、上記加工した2枚の金属板の上記開口を該貫通孔に位置合わせして両面から挟んだ状態に保持し、該開口を介して該貫通孔に金属ピンを挿入し、プレス加工または溶接により上記金属ピンの両端と上記2枚の金属板の上記開口部とを接合する工程、
を含むことを特徴とする半導体パッケージの製造方法。
A method for manufacturing a semiconductor package according to any one of claims 1 to 3,
A process of opening a through hole in an inorganic core,
Forming a base wiring layer by processing a metal plate into a planar pattern in a plate surface including an opening at a position corresponding to the through hole;
The inorganic core having the through hole is held in a state in which the openings of the two processed metal plates are aligned with the through hole and sandwiched from both sides, and the metal pin is inserted into the through hole through the opening. And joining both ends of the metal pin and the opening of the two metal plates by press working or welding,
A method for manufacturing a semiconductor package, comprising:
JP2006285000A 2006-10-19 2006-10-19 Semiconductor package and manufacturing method thereof Active JP5171009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285000A JP5171009B2 (en) 2006-10-19 2006-10-19 Semiconductor package and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285000A JP5171009B2 (en) 2006-10-19 2006-10-19 Semiconductor package and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008103536A true JP2008103536A (en) 2008-05-01
JP5171009B2 JP5171009B2 (en) 2013-03-27

Family

ID=39437646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285000A Active JP5171009B2 (en) 2006-10-19 2006-10-19 Semiconductor package and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5171009B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564416B2 (en) 2015-02-13 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
US9653443B2 (en) 2014-02-14 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal performance structure for semiconductor packages and method of forming same
KR101770464B1 (en) * 2014-06-13 2017-08-22 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Device packages and method for forming same
US9768090B2 (en) 2014-02-14 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9780072B2 (en) 2010-02-26 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
US9935090B2 (en) 2014-02-14 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10026671B2 (en) 2014-02-14 2018-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10056267B2 (en) 2014-02-14 2018-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120909A (en) * 1986-11-11 1988-05-25 京セラ株式会社 Mounting method to insulating substrate of metallic pin
JPH06120634A (en) * 1992-10-01 1994-04-28 Mitsubishi Materials Corp Through hole structure for ceramic board and production thereof
JPH1012988A (en) * 1996-06-24 1998-01-16 Matsushita Electric Ind Co Ltd Circuit board
JP2000151110A (en) * 1998-11-13 2000-05-30 Mitsui High Tec Inc Method of forming via hole in multilayer wiring board and multilayer wiring board
JP2001233679A (en) * 2000-02-24 2001-08-28 Kyocera Corp Structure for joining ceramic substrate to metal pin
JP2003133673A (en) * 2001-10-30 2003-05-09 Kyocera Corp Ceramic circuit board
JP2004327932A (en) * 2003-04-28 2004-11-18 Ibiden Co Ltd Multilayer printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120909A (en) * 1986-11-11 1988-05-25 京セラ株式会社 Mounting method to insulating substrate of metallic pin
JPH06120634A (en) * 1992-10-01 1994-04-28 Mitsubishi Materials Corp Through hole structure for ceramic board and production thereof
JPH1012988A (en) * 1996-06-24 1998-01-16 Matsushita Electric Ind Co Ltd Circuit board
JP2000151110A (en) * 1998-11-13 2000-05-30 Mitsui High Tec Inc Method of forming via hole in multilayer wiring board and multilayer wiring board
JP2001233679A (en) * 2000-02-24 2001-08-28 Kyocera Corp Structure for joining ceramic substrate to metal pin
JP2003133673A (en) * 2001-10-30 2003-05-09 Kyocera Corp Ceramic circuit board
JP2004327932A (en) * 2003-04-28 2004-11-18 Ibiden Co Ltd Multilayer printed wiring board

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780072B2 (en) 2010-02-26 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
US10446520B2 (en) 2010-02-26 2019-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
US9768090B2 (en) 2014-02-14 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9935090B2 (en) 2014-02-14 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10026671B2 (en) 2014-02-14 2018-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10056267B2 (en) 2014-02-14 2018-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9653443B2 (en) 2014-02-14 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal performance structure for semiconductor packages and method of forming same
US10714359B2 (en) 2014-02-14 2020-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10867949B2 (en) 2014-02-14 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US11158614B2 (en) 2014-02-14 2021-10-26 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal performance structure for semiconductor packages and method of forming same
KR101770464B1 (en) * 2014-06-13 2017-08-22 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Device packages and method for forming same
US9564416B2 (en) 2015-02-13 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
US9859267B2 (en) 2015-02-13 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same

Also Published As

Publication number Publication date
JP5171009B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5171009B2 (en) Semiconductor package and manufacturing method thereof
JP5100081B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP6083152B2 (en) Wiring board and method of manufacturing wiring board
JPH0936549A (en) Printed board for bare chip mounting use
US9899235B2 (en) Fabrication method of packaging substrate
JP2007293800A (en) Semiconductor device and memory card using the same
JP2010205877A (en) Method of manufacturing semiconductor device, semiconductor device, and electronic device
JP2009267421A (en) Circuit board and circuit module
JP2003309213A (en) Wiring board
JP2014045025A (en) Wiring board and wiring board manufacturing method
JP5539453B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
TW202142057A (en) Circuit board structure
JP4708915B2 (en) Manufacturing method of encapsulated printed circuit board
JP4637720B2 (en) Semiconductor device and manufacturing method thereof
US20010020535A1 (en) Circuit pack, multilayer printed wiring board, and device
JP2008270303A (en) Multilayer semiconductor device
US20130049197A1 (en) Semiconductor package structure and manufacturing method thereof
JP2007242908A (en) Ceramic package for housing electronic components
JP2005167072A (en) Semiconductor device and its manufacturing method
US20220159824A1 (en) Package carrier and manufacturing method thereof
JP2848346B2 (en) Electronic component mounting method
JP2003243562A (en) Resin sealed board and its manufacturing method, intermediate product of board and its manufacturing method
TWI416685B (en) Package substrate and fabrication method thereof
JP2008311508A (en) Electronic component package and manufacturing method thereof
JP2008135483A (en) Substrate incorporating electronic component and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150