JP2008076500A - Liquid crystal cell and device for laminating liquid crystal cell - Google Patents

Liquid crystal cell and device for laminating liquid crystal cell Download PDF

Info

Publication number
JP2008076500A
JP2008076500A JP2006252609A JP2006252609A JP2008076500A JP 2008076500 A JP2008076500 A JP 2008076500A JP 2006252609 A JP2006252609 A JP 2006252609A JP 2006252609 A JP2006252609 A JP 2006252609A JP 2008076500 A JP2008076500 A JP 2008076500A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
adhesive
substrates
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006252609A
Other languages
Japanese (ja)
Inventor
Toshimichi Hagitani
利道 萩谷
Toshiaki Tokita
才明 鴇田
Yukiko Hirano
由希子 平野
Yumi Matsuki
ゆみ 松木
Hiroshi Fujimura
浩 藤村
Masanori Kobayashi
正典 小林
Keishin Aisaka
敬信 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006252609A priority Critical patent/JP2008076500A/en
Publication of JP2008076500A publication Critical patent/JP2008076500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell structure which prevents the reduction in optical performance of a liquid crystal cell by reducing internal stress during initial gap formation, which is brought about in a substrate, and reducing the occurrence of distortion due to aging, and a cell substrate laminating device for manufacturing the liquid crystal cell. <P>SOLUTION: In the liquid crystal cell constituted by laminating a pair of substrates provided with transparent electrodes to each other by a first adhesive having a granular spacer mixed in an adhesive material and then enclosing a liquid crystal material into a space between the pair of substrates, the first adhesive is applied to at least three positions like spots in an outer peripheral part of an optical effective range formed by the transparent electrodes, and an outermost peripheral part of the pair of substrates is provided with a seal member having an enclosing hole through which the liquid crystal material is charged. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液晶セル及びその貼り合わせ装置に関し、特に基板に発生する歪の発生を低減して光学的性能低下を防止する液晶セル及びその貼り合わせ装置に関する。   The present invention relates to a liquid crystal cell and a bonding apparatus for the same, and more particularly to a liquid crystal cell and a bonding apparatus for the same that reduce the occurrence of distortion in a substrate and prevent deterioration of optical performance.

液晶セルには、モノクローム、カラー、アクティブ型、パッシブ型、TN型、STN型、強誘電型、反強誘電型等の様々な方式があり、これらの方式の違いにより構造が異なる。通常セルは内側に透明電極パターンを有する一対の基板を、シール部材を介して貼り合わせて構成される。また、この一対の基板の間隔均一にするために、セルの光学的有効範囲にスペーサを配し、さらに、シール部材内にもスペーサを混入することが一般的である。
しかしながら、このセル構成では、透明電極パターン上に内部スペーサが存在するので、液晶材料の光学的効果が得られない部分が存在することとなる。さらには、前記内部スペーサ周辺で液晶材料の配向乱れを生じさせ、液晶セルとしての機能を著しく低下させてしまう。
There are various types of liquid crystal cells such as monochrome, color, active type, passive type, TN type, STN type, ferroelectric type, and antiferroelectric type, and the structure differs depending on the difference between these types. Usually, a cell is configured by bonding a pair of substrates having a transparent electrode pattern on the inside via a seal member. In order to make the distance between the pair of substrates uniform, a spacer is generally provided in the optically effective range of the cell, and the spacer is generally mixed in the seal member.
However, in this cell configuration, since the internal spacer exists on the transparent electrode pattern, there is a portion where the optical effect of the liquid crystal material cannot be obtained. Furthermore, alignment disorder of the liquid crystal material occurs around the inner spacer, and the function as a liquid crystal cell is significantly reduced.

そこで、これらの問題を解決するために、内部スペーサをセル内に選択的に分布させ、透明電極パターン上にスペーサを配置しない液晶セルや、シール部材内のスペーサだけで基板間の間隔を保持して液晶セルを製造する方法がある。しかし、この方法によった場合、シール部材が印刷段階の寸法よりも硬化収縮するために基板対の間で歪みが発生して、基板がセルの内側にへこんでしまい、この状態で液晶を封入してもセルの内圧と、外圧が同じであるために基板の歪みは完全に矯正する事ができず、液晶セルとしての機能を著しく低下させてしまうと言う不具合がある。
特許文献1では、この問題を解決するために液晶封孔装置として、真空吸着台と他方の真空吸着台により、一対のセルの基板をそれぞれ吸着した状態で液晶を注入し、注入孔を封孔する装置が開示されている。
特開2003−287761公報
Therefore, in order to solve these problems, the internal spacers are selectively distributed in the cells, and the spacing between the substrates is maintained only by the liquid crystal cells in which the spacers are not arranged on the transparent electrode pattern or the spacers in the seal member. There is a method of manufacturing a liquid crystal cell. However, when this method is used, the seal member cures and shrinks more than the dimensions in the printing stage, causing distortion between the pair of substrates, causing the substrate to dent inside the cell, and encapsulating the liquid crystal in this state. However, since the internal pressure and the external pressure of the cell are the same, the distortion of the substrate cannot be completely corrected, and there is a problem that the function as the liquid crystal cell is remarkably deteriorated.
In Patent Document 1, in order to solve this problem, as a liquid crystal sealing device, liquid crystal is injected while a substrate of a pair of cells is adsorbed by a vacuum suction table and the other vacuum suction table, and the injection hole is sealed. An apparatus is disclosed.
JP 2003-287761 A

しかしながら、このような方式では基板の平面度を無視して無理に基板間の間隔を確保するため、以下の様な不具合が発生する。すなわち、シール部材との接着時に、基板を無理にシール材の厚みにならわせてしまうため、基板に応力が発生し、基板に内部応力ひずみが発生してしまうことがある。また、液晶を封入する時、基板を真空吸着するために、基板に応力が発生し、基板に内部応力ひずみが発生することがある。さらに、液晶封入後、環境温度の変化により、液晶や基板の体積が膨張、収縮をするため基盤にひずみが発生してしまうことがある。このように様々な問題が生じる。
以上のように無理に基板を変形させて接着及び真空吸着させているため、基板に内部応力が発生し、仮にギャップ成形時に所定のギャップを確保できたとしても、基盤そのものには内部応力がある為、経時的に温度や湿度の環境変化の伴い、所定のギャップが変化してしまう可能性が大きい。且つ、液晶封入後の液晶の体積変化によっても基板に応力が発生し液晶セルとしての機能を著しく低下させてしまう。
However, in such a system, since the flatness of the substrates is ignored and the interval between the substrates is forcibly secured, the following problems occur. That is, when the substrate is bonded to the sealing member, the substrate is forced to have the same thickness as the sealing material, so that stress is generated on the substrate and internal stress strain may be generated on the substrate. In addition, when the liquid crystal is sealed, since the substrate is vacuum-sucked, stress is generated on the substrate, and internal stress strain may be generated on the substrate. Furthermore, after encapsulating the liquid crystal, the volume of the liquid crystal and the substrate expands and contracts due to changes in the environmental temperature, which may cause distortion in the substrate. Thus, various problems arise.
As described above, since the substrate is forcibly deformed and bonded and vacuum-adsorbed, internal stress is generated in the substrate, and even if a predetermined gap can be secured during gap forming, the substrate itself has internal stress. Therefore, there is a high possibility that the predetermined gap will change with the environmental changes in temperature and humidity over time. In addition, a change in the volume of the liquid crystal after the liquid crystal is encapsulated causes a stress on the substrate, which significantly reduces the function of the liquid crystal cell.

また、真空吸着する場合、真空吸着台の平面度は高精度が要求されるが、3〜5μm以下の平面度加工は極めて困難であり、維持管理も容易ではない。例えば、微小な塵埃(2〜3μm程度)や油などが真空吸着台に付着しても、液晶セルのギャップに影響を及ぼす可能性が大きく、性能低下につながる事が考えられる。特にセルギャップが5μm程度の数μmのギャップを必要とする液晶セルの場合は、顕著に性能劣化が発生すると考えられる。
以上のような問題点を解決するために、本発明は、基板に発生する初期ギャップ形成時の内部応力を低減し、且つ、経時変化(温湿度環境変化など)にともなう歪の発生を低減することにより、光学的性能低下を防止した液晶セルと、かかる液晶セルを製造するための液晶セル貼り合わせ装置を提供することを目的とする。
When vacuum suction is performed, high accuracy is required for the flatness of the vacuum suction table, but flatness processing of 3 to 5 μm or less is extremely difficult, and maintenance is not easy. For example, even if minute dust (about 2 to 3 μm) or oil adheres to the vacuum suction table, it is highly likely that the gap of the liquid crystal cell will be affected, leading to performance degradation. In particular, in the case of a liquid crystal cell that requires a gap of several μm with a cell gap of about 5 μm, it is considered that the performance is significantly deteriorated.
In order to solve the above-described problems, the present invention reduces internal stress at the time of forming an initial gap generated in a substrate, and also reduces the occurrence of strain due to changes over time (such as changes in temperature and humidity environment). Accordingly, it is an object of the present invention to provide a liquid crystal cell in which a decrease in optical performance is prevented and a liquid crystal cell bonding apparatus for producing such a liquid crystal cell.

上記目的を達成するために、請求項1記載の発明は、透明電極を備える一対の基板を、接着材料中に粒状のスペーサを混入した第1の接着剤により貼付し、貼り付け後の前記一対の基板間の間隙に液晶材料を封入して構成される液晶セルにおいて、前記第1の接着剤を、前記透明電極が形成する光学的有効範囲外周部に少なくとも3箇所へスポット状に塗布し、前記一対の基板の最外周部に、液晶材料を注入する封入孔を有するシール部材を設けた液晶セルを特徴とする。
請求項2記載の発明は、請求項1記載の液晶セルにおいて、前記シール部材は粘弾性を備えた液晶セルを特徴とする。
請求項3記載の発明は、請求項1又は2記載の液晶セルにおいて、前記シール部材近傍に前記スペーサを含有しない接着材料から成る第2の接着剤を少なくとも2箇所へ塗布し、前記第2の接着剤の塗布中心を結ぶ円の中心は、前記第1の接着剤の少なくとも3箇所を通る円周の中心と同一である液晶セルを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that a pair of substrates provided with transparent electrodes are pasted with a first adhesive in which granular spacers are mixed in an adhesive material, and the pair after pasting. In a liquid crystal cell configured by enclosing a liquid crystal material in a gap between the substrates, the first adhesive is applied in spots to at least three places on the outer periphery of the optical effective range formed by the transparent electrode, The liquid crystal cell is characterized in that a sealing member having a sealing hole for injecting a liquid crystal material is provided on the outermost peripheral portions of the pair of substrates.
According to a second aspect of the present invention, in the liquid crystal cell according to the first aspect, the sealing member is a liquid crystal cell having viscoelasticity.
According to a third aspect of the present invention, in the liquid crystal cell according to the first or second aspect, a second adhesive made of an adhesive material not containing the spacer is applied to at least two locations in the vicinity of the seal member, and the second The center of a circle connecting the application centers of the adhesive is characterized by a liquid crystal cell that is the same as the center of the circumference passing through at least three locations of the first adhesive.

請求項4記載の発明は、請求項1又は2記載の液晶セルにおいて、前記第1の接着剤は、前記光学的有効範囲外周部に円周状に塗布した液晶セルを特徴とする。
請求項5記載の発明は、請求項1乃至3の何れか一項記載の液晶セルを貼り合わせる液晶セル貼り合わせ装置であって、凸球面形状部を下部に備え上面に前記一対の基板を載置する受け台と、凹形状を有し前記凸面形状部を嵌合して前記受け台を固定する固定台と、前記受け台に対向し前記一対の基板に塗布した第1の接着剤を加圧することで前記一対の基板を貼り合わせる加圧部とを備え、前記受け台上面及び前記加圧部は、前記第1の接着剤と対応する位置に少なくとも3箇所に凸部を設けた液晶セル貼り合わせ装置を特徴とする。
According to a fourth aspect of the present invention, in the liquid crystal cell according to the first or second aspect, the first adhesive is a liquid crystal cell coated circumferentially around the outer periphery of the optical effective range.
A fifth aspect of the present invention is a liquid crystal cell bonding apparatus for bonding the liquid crystal cell according to any one of the first to third aspects, wherein the pair of substrates are mounted on an upper surface having a convex spherical shape portion at a lower portion. A pedestal to be placed, a fixed base having a concave shape and fitting the convex shape portion to fix the cradle, and a first adhesive applied to the pair of substrates facing the cradle. A liquid crystal cell including a pressurizing unit for bonding the pair of substrates by pressing, wherein the upper surface of the cradle and the pressurizing unit are provided with convex portions at least at three positions corresponding to the first adhesive. Features a bonding device.

請求項6記載の発明は、請求項4記載の液晶セルを貼り合わせる液晶セル貼り合わせ装置であって、凸球面形状部を下面に備え上面に前記一対の基板を載置する受け台と、凹形状を有し凸面形状の前記受け台下面を嵌合して前記受け台を固定する固定台と、前記受け台に対向し前記一対の基板に円周状に塗布した前記第1の接着剤を加圧することで前記一対の基板を貼り合わせる加圧部とを備え、前記受け台上面及び前記加圧部は、前記第1の接着剤と対応する位置に円筒状の凸部を設けた液晶セル貼り合わせ装置を特徴とする。
請求項7記載の発明は請求項5又は6記載の液晶セル貼り合わせ装置において、前記受け台上面又は前記加圧部に設けた前記凸部に孔を設け、該孔から紫外線光を照射する紫外線照射手段を備えた液晶セル貼り合わせ装置を特徴とする。
A sixth aspect of the present invention is a liquid crystal cell laminating apparatus for laminating a liquid crystal cell according to the fourth aspect of the present invention, wherein a convex spherical shape portion is provided on the lower surface and a cradle for placing the pair of substrates on the upper surface, and a concave portion. A fixed base that fits the bottom surface of the base having a convex shape and fixes the base; and the first adhesive that is applied to the pair of substrates in a circumferential manner so as to face the base. A liquid crystal cell including a pressurizing unit that bonds the pair of substrates by pressurization, and the upper surface of the cradle and the pressurizing unit are provided with a cylindrical convex portion at a position corresponding to the first adhesive. Features a bonding device.
According to a seventh aspect of the present invention, in the liquid crystal cell bonding apparatus according to the fifth or sixth aspect, an ultraviolet ray is formed by providing a hole in the convex portion provided on the upper surface of the cradle or the pressing portion, and irradiating ultraviolet light from the hole A liquid crystal cell laminating apparatus provided with irradiation means is characterized.

本発明のセル構造及びセル基板貼り合わせ装置により、セル基板の反りを低減でき、且つ基板の初期歪の低減や経時的な歪を低減でき、長期間にわたり所定の均一な狙いのセルギャップに精度良く保持し、液晶セルの性能を確保することが可能となる。   The cell structure and the cell substrate bonding apparatus of the present invention can reduce the warpage of the cell substrate, reduce the initial strain of the substrate, and reduce the strain over time, and can accurately achieve a predetermined uniform target cell gap over a long period of time. It can be held well and the performance of the liquid crystal cell can be ensured.

以下、本発明の実施の形態について図を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施例における液晶セルを示す図である。
図1(a)は、液晶セル20の概略を示す正面図、図1(b)は、図1(a)の概略断面図、図1(c)は、スペーサを含有する第1の接着剤2の説明図である。なお、図1(c)に示す第1の接着剤2の構成は以下の実施例において同様とする。
図1(a)に示すように、第1の実施例による液晶セル20は、一対のガラス基板1を、スペーサ6と接着材料16からなる第1の接着剤2によって接着し、ガラス基板1対の間隙に液晶材料を注入して構成される液晶セルにおいて、第1の接着剤2を液晶セル20の光学的有効範囲(図示しない透明電極を設置した領域)3の外周部にスポット状に少なくとも3箇所設け、ガラス基板1の最外周部を図示しない液晶材料を注入する封入孔4を有するシール部材5で封止した構造からなっている。
また、シール部材5はシリコンなどの粘弾性を有する材料からなるシール部材である。
FIG. 1 is a diagram showing a liquid crystal cell in a first embodiment of the present invention.
1A is a front view showing an outline of the liquid crystal cell 20, FIG. 1B is a schematic sectional view of FIG. 1A, and FIG. 1C is a first adhesive containing a spacer. FIG. The configuration of the first adhesive 2 shown in FIG. 1C is the same in the following examples.
As shown in FIG. 1A, the liquid crystal cell 20 according to the first embodiment has a pair of glass substrates 1 bonded to each other by a first adhesive 2 made of a spacer 6 and an adhesive material 16. In the liquid crystal cell constructed by injecting a liquid crystal material into the gap, the first adhesive 2 is at least spot-shaped on the outer periphery of the optically effective range 3 of the liquid crystal cell 20 (a region where a transparent electrode (not shown) is provided). Three locations are provided, and the outermost peripheral portion of the glass substrate 1 is sealed with a sealing member 5 having a sealing hole 4 for injecting a liquid crystal material (not shown).
The seal member 5 is a seal member made of a viscoelastic material such as silicon.

図1に示す液晶セル20を得るには、まずガラス基板1における、液晶セルの光学的有効範囲3に対応する領域(図示しない透明電極の設置領域)の外周部に、図1(c)に示すようなスペーサ6を含有する第1の接着剤2をスポット状に滴下する。第1の接着剤2のスポット径は光学的有効範囲3の面積により最適な大きさを検討する必要があるが、あまりに接着剤2のスポット径が大きいと、第1の接着剤2の部分で光学的有効範囲3のガラス基板1に歪みが生じてしまうので、必要な接着強度を確保できる範囲で極力小径にするのが望ましい。
ちなみに第1の接着剤2の接着強度から、光学的有効範囲がφ30mm程度の場合は接着剤2のスポット径はφ1mmからφ2mm程度が望ましい。
In order to obtain the liquid crystal cell 20 shown in FIG. 1, first, in the outer peripheral portion of the region corresponding to the optically effective range 3 of the liquid crystal cell (installation region of a transparent electrode not shown) on the glass substrate 1, FIG. A first adhesive 2 containing a spacer 6 as shown is dropped in a spot shape. The spot size of the first adhesive 2 needs to be examined based on the area of the optical effective range 3, but the spot size of the adhesive 2 is too large. Since the glass substrate 1 in the optically effective range 3 is distorted, it is desirable to make the diameter as small as possible within a range in which necessary adhesive strength can be secured.
Incidentally, from the adhesive strength of the first adhesive 2, when the optical effective range is about 30 mm, the spot diameter of the adhesive 2 is desirably about 1 mm to 2 mm.

一対のガラス基板1は必要な平面度が確保されるよう事前に研磨された平面基板を用いる。
三点で一対のガラス基板1を接着して保持する事により一対のガラス基板の平行度が接着により損なわれることは無い。
また、液晶セルの環境温度が変化した場合、接着剤は3点で設けられているため、液晶セルの光学的有効範囲3の中心を基準として液晶セルの平面内で収縮、膨張する。したがって、3点のスポット状の接着剤2も光学的有効範囲3の中心を基準として、収縮、膨張するため、ガラス基板1が凸または凹方向(液晶セルの光学的有効範囲に垂直な方向)へ反ってガラス基板1の平行度を損なうことは発生しにくくなる。
As the pair of glass substrates 1, planar substrates polished in advance so as to ensure necessary flatness are used.
By bonding and holding the pair of glass substrates 1 at three points, the parallelism of the pair of glass substrates is not impaired by the bonding.
Further, when the environmental temperature of the liquid crystal cell changes, the adhesive is provided at three points, and therefore contracts and expands in the plane of the liquid crystal cell with the center of the optical effective range 3 of the liquid crystal cell as a reference. Accordingly, since the three-point spot-like adhesive 2 also contracts and expands with respect to the center of the optical effective range 3, the glass substrate 1 is in a convex or concave direction (a direction perpendicular to the optical effective range of the liquid crystal cell). It is difficult for the glass substrate 1 to be warped and the parallelism of the glass substrate 1 is impaired.

特にスポット状に接着剤を滴下する理由としては、工程上、滴下するとスポット状になりやすいと言う点もあるが、接着剤2の三点を一対のガラス基板1の外側から押さえて、スペーサを含む接着剤2を硬化させるとき、セルギャップ(ガラス基板1間の距離)を均一に確保しつつ、3点での押圧力を、対照的に、且つ均一に分散できる効果があり、接着剤2の中心位置付近を押さえれば、ガラス基板1に発生する歪みを低減できるという効果がある。
外周部を粘弾性を有するシリコンのようなシール部材5で封止することにより、一対のガラス基板1には平行度を悪化させるような応力が働かないため、シール後もガラス基板の平行度を確保することが可能となる。
In particular, the reason for dripping the adhesive in a spot shape is that it is likely to become a spot shape when dripped in the process, but the three points of the adhesive 2 are pressed from the outside of the pair of glass substrates 1, and the spacer is removed. When the adhesive 2 is cured, there is an effect that the pressing force at the three points can be distributed in a contrasting and uniform manner while ensuring a uniform cell gap (distance between the glass substrates 1). If the vicinity of the center position is pressed, there is an effect that distortion generated in the glass substrate 1 can be reduced.
By sealing the outer periphery with a sealing member 5 such as silicon having viscoelasticity, stress that deteriorates the parallelism does not act on the pair of glass substrates 1, so that the parallelism of the glass substrate is maintained even after sealing. It can be secured.

さらに粘弾性を有するシール部材5を用いる事で、封入孔4から液晶を封入した後、温度環境変化で液晶が収縮膨張したとしても、シール部材5の変形により液晶材料の体積変化が吸収されるため、セルの光学的有効範囲の、ガラス基板1と垂直な方向への歪みは低減される。
即ち、基板の面内膨張、収縮、及びセル内の液晶体積変化が発生しても、シール部材2が容易に変形して体積変化を吸収するために、液晶セルの光学的有効範囲の平面度を維持することが可能となる。
Further, by using the sealing member 5 having viscoelasticity, even after the liquid crystal is sealed from the sealing hole 4, even if the liquid crystal contracts and expands due to a change in temperature environment, the volume change of the liquid crystal material is absorbed by the deformation of the sealing member 5. Therefore, the distortion of the optically effective range of the cell in the direction perpendicular to the glass substrate 1 is reduced.
That is, even if in-plane expansion and contraction of the substrate and liquid crystal volume change in the cell occur, the sealing member 2 is easily deformed to absorb the volume change. Can be maintained.

以上、説明したように、三点のスポット状の接着剤と外周部の粘弾性を有するシール部材を用いることにより、無理やり押さえ込まなくても基板単品での平面度を確保しつつ接着が可能であるため、接着による基板の歪みを低減できる。また、3点接着の場合、スペーサを含む接着剤に無理やり平面度を合わせるわけではないため、ガラス基板1に無理な力を加えず、少ない押さえ力で一対のガラス基板を接合できる。したがって、経時的に接着剤の厚みが変化したとしても、基板に掛かる内部応力は少なく、信頼性も確保することが可能となる。   As described above, by using a three-point spot-like adhesive and a seal member having viscoelasticity at the outer periphery, it is possible to bond while ensuring flatness with a single substrate without forcibly holding it down. Therefore, the distortion of the substrate due to adhesion can be reduced. In addition, in the case of three-point bonding, the flatness is not forcibly matched with the adhesive including the spacer, so that a pair of glass substrates can be joined with a small pressing force without applying an excessive force to the glass substrate 1. Therefore, even if the thickness of the adhesive changes with time, the internal stress applied to the substrate is small and reliability can be ensured.

図2は、本発明における液晶セルの第2の例を示す図である。図2(a)は、本実施例にかかる液晶セル30の正面図、図2(b)は概略断面図である。
図2における液晶セル30は、図1の液晶セル20において、第1の接着剤1を液晶セルの光学的有効範囲3の外周部に円周状に設けたものであり、ガラス基盤の最外周部を、液晶材料を注入する封入孔4を有するシール部材5で封止した液晶セルである。
接着剤2を設ける基本的な工程は図1に示したスポット状接着剤の3点接着の場合と同じである。ガラス基板1の温度変化に伴う収縮膨張は円周の中心を基準として変化するため、基板の反りは発生しない。また押圧する面は三点でも同じ効果が期待できる。
FIG. 2 is a diagram showing a second example of the liquid crystal cell in the present invention. FIG. 2A is a front view of the liquid crystal cell 30 according to the present embodiment, and FIG. 2B is a schematic cross-sectional view.
The liquid crystal cell 30 in FIG. 2 is the same as the liquid crystal cell 20 in FIG. 1 except that the first adhesive 1 is provided circumferentially on the outer periphery of the optical effective range 3 of the liquid crystal cell. This is a liquid crystal cell in which a portion is sealed with a sealing member 5 having a sealing hole 4 for injecting a liquid crystal material.
The basic process of providing the adhesive 2 is the same as that of the three-point adhesion of the spot adhesive shown in FIG. Since the shrinkage and expansion associated with the temperature change of the glass substrate 1 changes with the center of the circumference as a reference, no warpage of the substrate occurs. Moreover, the same effect can be expected even when the pressing surface has three points.

このように光学的有効範囲3の外周部に円周上に接着剤2を設けたことで、光学的有効範囲のみに液晶を封入できるため、封入する液晶の量を削減できる。
またセル外周部は粘弾性のシール部材5でシールするため図1において記載したように、基板の収縮、膨張による移動を吸収できるため、基板の反りは発生しない。
以上のように構成することで、封入する液晶の量を削減でき、コストが低減でき、且つ、液晶の膨張による体積変化も、シール部材5に粘弾性部材を用いるために吸収でき、セルの凸変形や凹変形を防止できることで、液晶セルの光学性能劣化を防止できる。
Thus, by providing the adhesive 2 on the circumference on the outer periphery of the optically effective range 3, liquid crystal can be sealed only in the optically effective range, so that the amount of liquid crystal to be sealed can be reduced.
Further, since the outer periphery of the cell is sealed by the viscoelastic seal member 5, as described in FIG. 1, the movement due to the contraction and expansion of the substrate can be absorbed, so that the substrate is not warped.
With the configuration described above, the amount of liquid crystal to be sealed can be reduced, the cost can be reduced, and the volume change due to the expansion of the liquid crystal can be absorbed because the viscoelastic member is used for the seal member 5, and the convexity of the cell can be absorbed. By preventing deformation and concave deformation, it is possible to prevent deterioration of the optical performance of the liquid crystal cell.

図3は、本発明における液晶セルの第3の例を示す図である。図3(a)は、本実施例にかかる液晶セル40の正面図、図3(b)は概略断面図である。
図3における液晶セル40は、図1の液晶セル20において、最外周部のシール部材5近傍の少なくとも2箇所にスペーサを含有しない第2の接着剤13を設け、前記第2の接着剤13の塗布中心を結ぶ円の中心(接着剤13が2箇所の場合は2点の中心)は接着剤2の少なくとも3箇所の接着剤塗布部を通る円の中心と同一とした液晶セルである。
このような構成とすることで、一対のガラス基板1内で、温度変化などによる収縮膨張が発生したとしても、光学的有効範囲3外周部の第1の接着剤2と外周部のシール部材5近傍の接着剤13各々の塗布位置はセルの光学的有効範囲の中心に対してラジアル方向に同じ距離だけが収縮、膨張するため、光学的有効範囲2に対して凸凹方向の反りは発生しない。
FIG. 3 is a diagram showing a third example of the liquid crystal cell in the present invention. FIG. 3A is a front view of the liquid crystal cell 40 according to the present embodiment, and FIG. 3B is a schematic cross-sectional view.
The liquid crystal cell 40 in FIG. 3 is provided with the second adhesive 13 that does not contain a spacer in at least two locations in the vicinity of the seal member 5 at the outermost periphery in the liquid crystal cell 20 in FIG. The center of the circle connecting the application centers (the center of two points when there are two adhesives 13) is a liquid crystal cell that is the same as the center of the circle passing through at least three adhesive application portions of the adhesive 2.
With such a configuration, even if shrinkage and expansion occur due to a temperature change or the like in the pair of glass substrates 1, the first adhesive 2 in the outer peripheral portion of the optical effective range 3 and the seal member 5 in the outer peripheral portion. Since the application position of each of the adjacent adhesives 13 contracts and expands only by the same distance in the radial direction with respect to the center of the optical effective range of the cell, warpage in the uneven direction does not occur with respect to the optical effective range 2.

なお、外周部の接着剤13にスペーサを含まないのは、ガラス基板1のギャップの均一化は第1の接着剤2を設けた光学的有効範囲3外周部のみで行い、シール部材近傍の接着剤はスペーサを含まないようにすることで、ガラス基板1のギャップ方向の歪みを防止する為である。光学的有効範囲3の外周部とシール部材5近傍の両方にスペーサを設けると内側(光学的有効範囲3の外周部)と外側(シール部材5近傍)でスペーサの寸法ばらつきにより歪みが発生してしまうため、外周部の接着剤13にはスペーサを設けるべきではないからである。   Note that the spacer 13 is not included in the outer peripheral adhesive 13 because the gap of the glass substrate 1 is made uniform only in the outer peripheral part of the optically effective range 3 provided with the first adhesive 2, and in the vicinity of the seal member. This is because the agent does not include a spacer to prevent distortion of the glass substrate 1 in the gap direction. If spacers are provided both on the outer periphery of the optical effective range 3 and in the vicinity of the seal member 5, distortion occurs due to dimensional variations of the spacer on the inner side (outer peripheral portion of the optical effective range 3) and the outer side (near the seal member 5). For this reason, spacers should not be provided on the adhesive 13 on the outer peripheral portion.

図1、図2に示す液晶セルにおいては、例えば液晶セルの外周部でセルを装置に取り付ける場合、セルの厚み方向に留め金等でとめることにより、外周部でのセル厚みが薄くなる方向に力がかかってしまうが、このときセルの外周部でセルを薄くする方向に力が働くと、液晶セルの中心部(光学的有効範囲)は凸方向に反ってしまい液晶セルの光学性能が劣化してしまうということになる。
ここで外周部に接着剤13を設けたことにより、外周でのセルの厚み方向に力が加わったとしても、有効範囲での反りは発生しにくくなり、有効範囲での基板の平面度が確保できる。
以上説明したように、外周部に接着剤13を設けることでセルの厚み方向の強度を上げ、装置に固定した場合においても光学的有効範囲の基板平面精度を確保することが可能である。また、接着剤2と13を同心円状に配置したことで、基板の熱収縮、膨張による凸凹状の反りが防止でき信頼性を確保することが容易である。
In the liquid crystal cell shown in FIGS. 1 and 2, for example, when the cell is attached to the device at the outer peripheral portion of the liquid crystal cell, the cell thickness at the outer peripheral portion is reduced by fastening it with a clasp in the thickness direction of the cell. If force is applied in the direction of making the cell thinner at the outer periphery of the cell at this time, the center of the liquid crystal cell (optically effective range) is warped in the convex direction and the optical performance of the liquid crystal cell deteriorates. It will be done.
Here, by providing the adhesive 13 on the outer peripheral portion, even if a force is applied in the thickness direction of the cell on the outer periphery, warping in the effective range is less likely to occur, and the flatness of the substrate in the effective range is ensured. it can.
As described above, by providing the adhesive 13 on the outer peripheral portion, it is possible to increase the strength in the thickness direction of the cell and ensure the substrate plane accuracy within the optically effective range even when it is fixed to the apparatus. Further, by arranging the adhesives 2 and 13 concentrically, it is possible to prevent uneven warpage due to thermal contraction and expansion of the substrate, and it is easy to ensure reliability.

図4は、本発明の第1の液晶セル貼り合わせ装置を示す概略図である。
液晶セル貼り合わせ装置50の受け台7の上面は平面であり、下面には凸球面状部8を有している。この凸球面8と篏合する凹球面形状部を有する固定台9を図示しない加圧装置に設置し、受け台7上面と対向する加圧部11で加圧することにより、一対のガラス基板1を貼り合わせる。
このとき、加圧部11と、受け台7上面には、ガラス基板1にスポット状に設けた接着剤2に対応する位置に凸部10を設けている。
FIG. 4 is a schematic view showing a first liquid crystal cell bonding apparatus of the present invention.
The upper surface of the cradle 7 of the liquid crystal cell bonding apparatus 50 is a flat surface, and has a convex spherical surface portion 8 on the lower surface. A fixed base 9 having a concave spherical shape portion that mates with the convex spherical surface 8 is installed in a pressure device (not shown), and is pressurized by a pressure portion 11 that opposes the upper surface of the cradle 7, whereby a pair of glass substrates 1 are attached. to paste together.
At this time, the convex part 10 is provided in the position corresponding to the adhesive agent 2 provided in the glass substrate 1 at spot shape on the pressurization part 11 and the cradle 7 upper surface.

加圧部11が下方に移動して、加圧部側の凸部10が、受け台7上に載置されたガラス基板1と接触すると、前記凸球面状部8が凹球面部内でスライドして、受け台7は加圧部と平行になり均一の方向で接着剤2の三点を加圧することができる。
したがって、上記したセル構造において、少ない加圧力で、且つ一対のセル基板を精度良く平行に保持することが可能となる。
なお固定台9の凹球面は特に球面に限定せず、円錐面や単なる円筒形状の凹形状であっても、受け台の凸球面がスライドして加圧面に平行になるものであればよく、また、図4の加圧部11に設けられた凸部10を加圧方向に摺動自在なピンとして、スプリングなどをピンと組み合わせて加圧するのでも良い。
When the pressing part 11 moves downward and the convex part 10 on the pressing part side comes into contact with the glass substrate 1 placed on the cradle 7, the convex spherical part 8 slides in the concave spherical part. Thus, the cradle 7 is parallel to the pressurizing portion and can pressurize the three points of the adhesive 2 in a uniform direction.
Therefore, in the cell structure described above, it is possible to hold the pair of cell substrates in parallel with high accuracy with a small applied pressure.
The concave spherical surface of the fixing base 9 is not particularly limited to a spherical surface, but may be a conical surface or a simple cylindrical concave shape as long as the convex spherical surface of the cradle slides and becomes parallel to the pressure surface. Moreover, the convex part 10 provided in the pressurizing part 11 of FIG. 4 may be used as a pin slidable in the pressurizing direction, and may be pressurized in combination with a spring or the like.

以上の様な構成とすることで、ガラス基板1の貼り合わせ時に、加圧力を低減し且つ、加圧部11と受け台7の平行度を高精度に確保することができるため、セルギャップを均一にでき且つガラス基板1に発生する応力を低減できる。
また、接着剤2中にビーズなどのスペーサ6を含有させ、スペーサ6を含む接着剤2の位置を加圧するため、スペーサ6の寸法によってセルギャップ(ガラス基板1間の距離)は狙いのギャップ寸法に、均一に保たれる。また、3点の接着剤スポット範囲以外のガラス基板1の面は押されないため基板を撓ませる応力は働かない。
よって、ガラス基板1は単品での平面度を確保しつつ、狙いのセルギャップを均一に確保することが可能となる。
By adopting the above-described configuration, the pressure force can be reduced and the parallelism between the pressurizing unit 11 and the cradle 7 can be secured with high accuracy when the glass substrate 1 is bonded. It can be made uniform and the stress generated in the glass substrate 1 can be reduced.
In addition, since a spacer 6 such as a bead is included in the adhesive 2 and the position of the adhesive 2 including the spacer 6 is pressurized, the cell gap (distance between the glass substrates 1) depends on the dimension of the spacer 6. And kept uniform. Further, since the surface of the glass substrate 1 other than the adhesive spot range of the three points is not pressed, the stress that bends the substrate does not work.
Therefore, the glass substrate 1 can ensure the target cell gap uniformly while ensuring the flatness of a single product.

図2の液晶セル30を貼り合わせる装置としては、上述した液晶セル貼り合わせ装置50おいて、加圧部11及び受け台7上面の、光学的有効範囲3外周部に円周状に設けた接着剤2と対応する位置に、接着剤2の形状に合わせた円筒状の凸部を設ければよい。
基本的な構成は、図2の加圧部11と受け台7にスポット状の接着剤2の位置にあわせた凸部10を設けたものと同じであり、作用効果も同じである。
円周状の接着剤2の中には複数のスペーサ部材が接着剤に含まれるが、スペーサには寸法のばらつきがある。したがって、複数のスペーサ中の大きなスペーサの3点でセルギャップが規制されることになる。ただし、スペーサが円周状の接着剤2の中で、どのように配置されるかは塗布するごとに配置が変わってしまい、その位置を規制することは困難である。図4の貼付装置のように、3点の凸部で押圧すると、大きなスペーサの位置と凸部との位置がずれてしまい、基板に応力を発生させてしまうことになる。
As an apparatus for laminating the liquid crystal cell 30 of FIG. 2, in the liquid crystal cell laminating apparatus 50 described above, adhesion is provided circumferentially on the outer periphery of the optically effective range 3 on the upper surface of the pressure unit 11 and the cradle 7. A cylindrical convex portion matching the shape of the adhesive 2 may be provided at a position corresponding to the agent 2.
The basic configuration is the same as that in which the pressing portion 11 and the cradle 7 shown in FIG. 2 are provided with the convex portion 10 that matches the position of the spot-like adhesive 2, and the operational effects are also the same.
The circumferential adhesive 2 includes a plurality of spacer members in the adhesive, but the spacers have dimensional variations. Therefore, the cell gap is restricted at three points of the large spacer among the plurality of spacers. However, the arrangement of the spacers in the circumferential adhesive 2 changes every time it is applied, and it is difficult to regulate the position. When the pressing is performed with three convex portions as in the sticking device of FIG. 4, the position of the large spacer is shifted from the position of the convex portion, and stress is generated on the substrate.

このような場合、円筒状の凸部で押圧することにより、ガラス基板1が反ることを避けることが可能となり、基板に応力を発生せずに接着することができる。さらに、図4におけるように固定部と受け台が球面でスライドして、一対のガラス基板1が平行な状態で加圧できる構成とすれば、おのずと大きなスペーサ3点の寸法にならってギャップを成形し、一対のガラス基板1の平行度を確保することが可能となる。
また、ガラス基板1に対する押圧力を少なくできるため基板に応力を発生させることなく、一対のガラス基板1の平行度を確保でき、温度変化による体積変化でも応力が掛かっていないため平行度の変化は少なく、信頼性確保が容易となる。
In such a case, the glass substrate 1 can be prevented from warping by being pressed by the cylindrical convex portion, and can be bonded to the substrate without generating stress. Further, as shown in FIG. 4, if the fixing portion and the cradle slide on a spherical surface and the pair of glass substrates 1 can be pressurized in a parallel state, the gap is formed according to the dimensions of three large spacers. And it becomes possible to ensure the parallelism of a pair of glass substrate 1.
Further, since the pressing force on the glass substrate 1 can be reduced, the parallelism of the pair of glass substrates 1 can be secured without generating stress on the substrates, and the change in parallelism is not affected by the volume change due to the temperature change. There are few, and it becomes easy to ensure reliability.

図5は、本発明に係る第2の液晶セル貼り合わせ装置60の概略図である。
光学的有効範囲2外周部にスポット状または円周状に設けた接着剤2、接着剤13に対応して設けた、加圧部11及び受け台7上面またはどちらか一方の凸部中心には孔14を設けている。
ここでは、加圧部11側の凸部に孔14を設けた例をしめしている。
加圧部11に、孔14から紫外線光を照射する手段(紫外線照射手段)15を設けている。
一対のガラス基板1の接着剤塗布位置を凸部で加圧するが、このとき紫外線を接着剤に照射するため、接着剤を有効硬化させる事ができる。
FIG. 5 is a schematic view of a second liquid crystal cell bonding apparatus 60 according to the present invention.
Optically effective range 2 Adhesive 2 provided in a spot or circumferential manner on the outer periphery of the optically effective range 2, and provided on the upper surface of the pressurizing part 11 and the cradle 7 corresponding to the adhesive 13 or at the center of either convex part. A hole 14 is provided.
Here, the example which provided the hole 14 in the convex part by the side of the pressurization part 11 is shown.
The pressurizing unit 11 is provided with means (ultraviolet irradiation means) 15 for irradiating ultraviolet light from the holes 14.
The adhesive application position of the pair of glass substrates 1 is pressed by the convex portions, and at this time, the adhesive is irradiated with ultraviolet rays, so that the adhesive can be effectively cured.

図2の液晶セル30に用いる場合は、円周上に接着剤2が塗布されているが、円筒状の凸部の均等分割された位置に紫外線照射用の孔14を設け、紫外線照射硬化後貼り合わせ装置からセルをはずし、その後に円周上の接着剤全体を基板垂直方向から紫外線を照射し、硬化していない部分の接着剤を硬化させれば良い。同じようにスポット状の接着剤塗布位置もいったん硬化後さらに装置からはずして紫外線を照射すれば硬化もれはない。
以上のように接着剤塗布位置において、接着剤中心部から接着剤を硬化することができ、接着の硬化収縮時に基板に応力が働かないため、基板の平面度を確保することが容易である。
In the case of using the liquid crystal cell 30 in FIG. 2, the adhesive 2 is applied on the circumference, but the holes 14 for ultraviolet irradiation are provided at equally divided positions on the cylindrical convex portion, and after the ultraviolet irradiation curing. The cell may be removed from the bonding apparatus, and then the entire adhesive on the circumference may be irradiated with ultraviolet rays from the direction perpendicular to the substrate to cure the uncured portion of the adhesive. Similarly, if the spot-like adhesive application position is once cured and then removed from the apparatus and irradiated with ultraviolet rays, no curing will occur.
As described above, the adhesive can be cured from the central portion of the adhesive at the adhesive application position, and stress is not exerted on the substrate when the adhesive is cured and contracted. Therefore, it is easy to ensure the flatness of the substrate.

外周部からの紫外線照射ではギャップは非常に狭いため、十分な光が接着剤塗布部に照射できず、また照射方向からの接着剤の硬化が外周部からギャップの面内方向からの照射しかできないため、照射方向から接着剤の硬化が始まり、基板に反りを発生させてしまう。基板垂直方向から紫外線を照射できるため、接着剤の中心部から硬化が始まり、基板に応力を発生せず基板の反りを防止できるという効果がある。   Since the gap is very narrow when irradiated with ultraviolet rays from the outer periphery, sufficient light cannot be applied to the adhesive-applied part, and curing of the adhesive from the irradiation direction can only be performed from the outer peripheral part from the in-plane direction of the gap. For this reason, the curing of the adhesive starts from the irradiation direction, and the substrate is warped. Since ultraviolet rays can be irradiated from the vertical direction of the substrate, curing starts from the center of the adhesive, and there is an effect that warpage of the substrate can be prevented without generating stress on the substrate.

本発明における液晶セルの第1の例を示す図。The figure which shows the 1st example of the liquid crystal cell in this invention. 本発明における液晶セルの第2の例を示す図The figure which shows the 2nd example of the liquid crystal cell in this invention. 本発明における液晶セルの第3の例を示す図。The figure which shows the 3rd example of the liquid crystal cell in this invention. 本発明の第1の液晶セル貼り合わせ装置を示す概略図。Schematic which shows the 1st liquid crystal cell bonding apparatus of this invention. 本発明の第2の液晶セル貼り合わせ装置を示す概略図。Schematic which shows the 2nd liquid crystal cell bonding apparatus of this invention.

符号の説明Explanation of symbols

1 基板、2 第1の接着剤、3 光学的有効範囲、4 封入孔、5 シール部材、6 スペーサ、7 受け台、8 凸球面状部、9 固定台、10 凸部、11 加圧部、13 第2の接着剤、14 孔、15 紫外線光を照射する手段、20、30、40 液晶セル、50、60 液晶セル貼り付け装置   DESCRIPTION OF SYMBOLS 1 Board | substrate, 2 1st adhesive agent, 3 Optical effective range, 4 Enclosure hole, 5 Seal member, 6 Spacer, 7 Base, 8 Convex spherical surface part, 9 Fixing base, 10 Convex part, 11 Pressurizing part, 13 Second adhesive, 14 holes, 15 means for irradiating ultraviolet light, 20, 30, 40 liquid crystal cell, 50, 60 liquid crystal cell pasting device

Claims (7)

透明電極を備える一対の基板を、接着材料中に粒状のスペーサを混入した第1の接着剤により貼付し、貼り付け後の前記一対の基板間の間隙に液晶材料を封入して構成される液晶セルにおいて、
前記第1の接着剤を、前記透明電極が形成する光学的有効範囲外周部に少なくとも3箇所へスポット状に塗布し、前記一対の基板の最外周部に、液晶材料を注入する封入孔を有するシール部材を設けたことを特徴とした液晶セル。
A pair of substrates each having a transparent electrode is pasted with a first adhesive in which granular spacers are mixed in an adhesive material, and a liquid crystal is formed by enclosing a liquid crystal material in a gap between the pair of substrates after the pasting In the cell
The first adhesive is spot-applied to at least three spots on the outer periphery of the optically effective range formed by the transparent electrode, and has a sealing hole for injecting a liquid crystal material on the outermost periphery of the pair of substrates. A liquid crystal cell provided with a sealing member.
請求項1記載の液晶セルにおいて、前記シール部材は粘弾性を備えることを特徴とした液晶セル。   2. The liquid crystal cell according to claim 1, wherein the seal member has viscoelasticity. 請求項1又は2記載の液晶セルにおいて、前記シール部材近傍に前記スペーサを含有しない接着材料からなる第2の接着剤を少なくとも2箇所塗布し、前記第2の接着剤の塗布中心を結ぶ円の中心は、前記第1の接着剤の少なくとも3箇所を通る円周の中心と同一であることを特徴とする液晶セル。   3. The liquid crystal cell according to claim 1, wherein at least two second adhesives made of an adhesive material not containing the spacer are applied in the vicinity of the seal member, and a circle connecting the application centers of the second adhesives. The center of the liquid crystal cell is characterized in that the center is the same as the center of the circumference passing through at least three portions of the first adhesive. 請求項1又は2記載の液晶セルにおいて、前記第1の接着剤は、前記光学的有効範囲外周部に円周状に塗布したことを特徴とする液晶セル。   3. The liquid crystal cell according to claim 1, wherein the first adhesive is applied circumferentially to the outer periphery of the optically effective range. 4. 請求項1乃至3の何れか一項記載の液晶セルを貼り合わせる液晶セル貼り合わせ装置であって、凸球面形状部を下部に備え上面に前記一対の基板を載置する受け台と、凹形状を有し前記凸面形状部を嵌合して前記受け台を固定する固定台と、前記受け台に対向し前記一対の基板に塗布した第1の接着剤を加圧することで前記一対の基板を貼り合わせる加圧部とを備え、前記受け台上面及び前記加圧部は、前記第1の接着剤と対応する位置に少なくとも3箇所に凸部を設けたことを特徴とする液晶セル貼り合わせ装置。   A liquid crystal cell bonding apparatus for bonding a liquid crystal cell according to any one of claims 1 to 3, wherein a convex spherical shape portion is provided at a lower portion and a pedestal for placing the pair of substrates on an upper surface, and a concave shape. A fixed base that fits the convex shape portion and fixes the cradle, and pressurizes the first adhesive applied to the pair of substrates so as to face the cradle. A liquid crystal cell laminating apparatus comprising: a pressure unit to be bonded, wherein the upper surface of the cradle and the pressure unit are provided with convex portions at least at three positions corresponding to the first adhesive. . 請求項4記載の液晶セルを貼り合わせる液晶セル貼り合わせ装置であって、凸球面形状部を下部に備え上面に前記一対の基板を載置する受け台と、凹形状を有し前記凸面形状部を嵌合して前記受け台を固定する固定台と、前記受け台に対向し前記一対の基板に円周状に塗布した前記第1の接着剤を加圧することで前記一対の基板を貼り合わせる加圧部とを備え、前記受け台上面及び前記加圧部は、前記第1の接着剤と対応する位置に円筒状の凸部を設けたことを特徴とする液晶セル貼り合わせ装置。   5. A liquid crystal cell laminating apparatus for laminating a liquid crystal cell according to claim 4, wherein a convex spherical shape portion is provided at a lower portion, a cradle for placing the pair of substrates on an upper surface, and a concave shape having the convex surface shape portion. And the pair of substrates are bonded together by pressurizing the first adhesive applied circumferentially to the pair of substrates so as to face the cradle. A liquid crystal cell bonding apparatus, comprising: a pressing portion, wherein the upper surface of the cradle and the pressing portion are provided with a cylindrical convex portion at a position corresponding to the first adhesive. 請求項5又は6記載の液晶セル貼り合わせ装置において、前記受け台上面又は前記加圧部に設けた前記凸部に孔を設け、該孔から紫外線光を照射する紫外線照射手段を備えたことを特徴とする液晶セル貼り合わせ装置。   The liquid crystal cell laminating apparatus according to claim 5 or 6, further comprising an ultraviolet irradiation means for irradiating ultraviolet light from the hole provided in the convex portion provided on the upper surface of the cradle or the pressurizing portion. A liquid crystal cell bonding apparatus.
JP2006252609A 2006-09-19 2006-09-19 Liquid crystal cell and device for laminating liquid crystal cell Pending JP2008076500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252609A JP2008076500A (en) 2006-09-19 2006-09-19 Liquid crystal cell and device for laminating liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252609A JP2008076500A (en) 2006-09-19 2006-09-19 Liquid crystal cell and device for laminating liquid crystal cell

Publications (1)

Publication Number Publication Date
JP2008076500A true JP2008076500A (en) 2008-04-03

Family

ID=39348673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252609A Pending JP2008076500A (en) 2006-09-19 2006-09-19 Liquid crystal cell and device for laminating liquid crystal cell

Country Status (1)

Country Link
JP (1) JP2008076500A (en)

Similar Documents

Publication Publication Date Title
KR20000035483A (en) Method of manufacturing liquid crystal display device
KR100814649B1 (en) Substrate gap adjusting device, substrate gap adjusting method, and method of manufacturing liquid crystal display device
KR100356772B1 (en) Bonding method and bonding device of substrates and manufacturing method of a liquid crystal display device
JP2001255542A (en) Method and device for laminating substrate and method and device for manufacturing liquid crystal display device
US10330976B2 (en) Liquid crystal backlight device
JP4854728B2 (en) Method and apparatus for manufacturing liquid crystal display panel
KR100343084B1 (en) Stress-free liquid crystal cell assembly
JP2004094195A (en) Method for fablicating liquid crystal display panel
JPWO2004083950A1 (en) Display device manufacturing method and display device manufacturing apparatus
EP3615318A1 (en) Method for manufacturing an optical article
US7491580B2 (en) Method of manufacturing electro-optical device
JP2008076500A (en) Liquid crystal cell and device for laminating liquid crystal cell
JPH10274946A (en) Production of liquid crystal panel
JP3847743B2 (en) Liquid crystal display device manufacturing method
JPH06337429A (en) Press and alignment device for liquid crystal cell
TW200535526A (en) Apparatus and method for manufacturing laminated substrate
JP4266505B2 (en) Method of bonding microlens substrate and counter substrate of liquid crystal display element
JP2000147526A (en) Substrate sticking method and jig and device used for it
KR20160039193A (en) Attachment jig and production method of electronic device
CN115064077B (en) Display device and attaching method thereof
JP2000010097A (en) Liquid crystal display device and its manufacture
JPH08114789A (en) Liquid crystal display device and its production
JP4731345B2 (en) Optical filter bonding device
KR100909782B1 (en) Non-contact hot press device of liquid crystal display and method
JP2016063109A (en) Optical sensor and manufacturing method of the same