JP2007315853A - Strain gauge - Google Patents

Strain gauge Download PDF

Info

Publication number
JP2007315853A
JP2007315853A JP2006144074A JP2006144074A JP2007315853A JP 2007315853 A JP2007315853 A JP 2007315853A JP 2006144074 A JP2006144074 A JP 2006144074A JP 2006144074 A JP2006144074 A JP 2006144074A JP 2007315853 A JP2007315853 A JP 2007315853A
Authority
JP
Japan
Prior art keywords
electrode
strain
coil
insulating support
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006144074A
Other languages
Japanese (ja)
Inventor
Hidetaka Nishida
秀高 西田
Isao Shiromaru
功 四郎丸
Hiroshi Imaike
宏 今池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006144074A priority Critical patent/JP2007315853A/en
Publication of JP2007315853A publication Critical patent/JP2007315853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a strain gauge for preventing baking out, and measuring a strain in a wide measurement range. <P>SOLUTION: The strain gauge is configured so as to change the electrostatic capacitance of a capacitor, formed by electrodes 12a, 12b when the second electrode 12b is reciprocated from/to an interior of the first electrode 12a, according to the strain in a measured object 3. A first insulating support 14a is extended toward the second electrode 12b from the first electrode 12a, an extended part is provided with a through-hole that communicates with the internal space of the first electrode 12a, and the second electrode 12b is guided and inserted into the through-hole. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は歪測定装置の機械的構造に関する。   The present invention relates to a mechanical structure of a strain measuring device.

例えば火力発電所における、ボイラやタービンあるいはそれらの配管など、熱影響を受けやすい金属溶接部などの余寿命を検査する方法の一つとして、歪測定法が知られている。この歪測定法は、測定対象物表面の歪から金属溶接部などの余寿命を検査するものであるが、これらの計測対象面が表面温度600℃以上の高温になるため、高温下での測定が可能な歪計が必要である。   For example, a strain measurement method is known as one of methods for inspecting the remaining life of heat-sensitive metal welds such as boilers, turbines, and their piping in thermal power plants. This strain measurement method is for inspecting the remaining life of a metal welded part etc. from the strain on the surface of the object to be measured. However, since these surfaces to be measured have a surface temperature of 600 ° C. or higher, the measurement is performed at a high temperature. It is necessary to have a strain gauge capable of

従来、このような高温下での歪測定は、例えば図1及び図2に示すような歪計1を用いて行われていた(非特許文献1参照)。以下、この歪計1の概要を説明する。   Conventionally, such strain measurement at a high temperature has been performed using a strain gauge 1 as shown in FIGS. 1 and 2, for example (see Non-Patent Document 1). The outline of the strain gauge 1 will be described below.

図1は、歪計1の平面模式図であり、図2は、同歪計1の断面模式図である。これらの図に示すように、歪計1は、アーチ状に湾曲させた2枚の矩形金属板(5a,5b)を、隙間を隔てて重ね合わせた構造となっている。これら2枚の金属板(5a,5b)の間にはコンデンサを形成する1対の電極板(7a,7b)が対向配置されている。かかる構成によれば、測定対象物3表面が伸縮するのに応じて、電極板(7a,7b)の間の距離が変わるので、電極板(7a,7b)で構成されるコンデンサの静電容量が変化する。従って、このコンデンサの静電容量を検知することで測定対象物表面の歪を測定できる。
REMNANT LIFE MONITORING, APPLICATIONS REPORT, AUTOMATIC SYSTEMS LABORATORIES LTD; JULY 1972, Vol, 119, No7
FIG. 1 is a schematic plan view of the strain gauge 1, and FIG. 2 is a schematic sectional view of the strain gauge 1. As shown in these drawings, the strain gauge 1 has a structure in which two rectangular metal plates (5a, 5b) curved in an arch shape are overlapped with a gap therebetween. Between these two metal plates (5a, 5b), a pair of electrode plates (7a, 7b) forming a capacitor are disposed opposite to each other. According to such a configuration, the distance between the electrode plates (7a, 7b) changes as the surface of the measuring object 3 expands and contracts, so that the capacitance of the capacitor formed by the electrode plates (7a, 7b). Changes. Therefore, the strain on the surface of the measurement object can be measured by detecting the capacitance of the capacitor.
REMNANT LIFE MONITORING, APPLICATIONS REPORT, AUTOMATIC SYSTEMS LABORATORIES LTD; JULY 1972, Vol, 119, No7

しかしながら、上述のように対向する電極板(7a,7b)の間隔変化を検出する構成は、測定可能なレンジ幅が小さいため、広い歪範囲に亘って歪を測定することができなかった。これに対して、広い範囲の歪を測定するべく、一方の電極を他方の電極に対して変位可能に案内し、測定対象面の歪に応じて電極が相対変位して両電極の対向面積が変わることにより、電極間の静電容量が変化する構成とすることが考えられる。この構成では、測定装置が高温下に置かれた場合に、電極を変位可能に案内する摺動部分に焼き付きが生ずるおそれがある。   However, the configuration that detects the change in the distance between the opposing electrode plates (7a, 7b) as described above has a small measurable range width, and thus cannot measure strain over a wide strain range. On the other hand, in order to measure a wide range of strain, one electrode is guided so as to be displaceable with respect to the other electrode, and the electrode is relatively displaced according to the strain on the surface to be measured so that the opposing area of both electrodes It can be considered that the capacitance between the electrodes changes due to the change. With this configuration, when the measuring device is placed at a high temperature, there is a possibility that seizure may occur at the sliding portion that guides the electrode in a displaceable manner.

本発明は上記の点に鑑みてなされたものであり、焼き付けを防止しつつ、広い測定範囲で歪を測定できる歪測定装置を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a strain measuring apparatus capable of measuring strain in a wide measuring range while preventing burning.

上記課題を解決するため、請求項1に記載の発明は、筒状に構成された第一の電極と、該第一の電極の内側へ進退可能とされ、前記第一の電極と共にコンデンサを構成する第二の電極と、前記第一の電極を支持するセラミック製の第一の絶縁支持体と、前記第二の電極を支持する第二の絶縁支持体と、前記第一及び第二の絶縁支持体を測定対象物に夫々取付ける取付部材と、を備え、前記測定対象物の歪に応じて前記第二の電極が前記第一の電極の内側へ進退移動することにより前記コンデンサの静電容量が変化するように構成され、前記第一の絶縁支持体は、前記第一の電極よりも前記第二の電極側へ延出し、この延出部分に前記第一の電極の内側空間に連通する貫通穴が設けられ、この貫通穴に前記第二の電極が挿通されて案内されることを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 is a first electrode configured in a cylindrical shape, and is capable of moving back and forth inside the first electrode, and constitutes a capacitor together with the first electrode. A second electrode that supports the first electrode; a second insulating support that supports the second electrode; and the first and second insulations. An attachment member for attaching each of the supports to the measurement object, and the capacitance of the capacitor by moving the second electrode forward and backward inward of the first electrode according to the strain of the measurement object. The first insulating support extends to the second electrode side of the first electrode and communicates with the inner space of the first electrode at the extended portion. A through hole is provided, and the second electrode is inserted into the through hole and guided. The features.

本発明によれば、セラミック製の第一の絶縁支持体が第二の電極を案内するように構成されているので、高温下で使用したときに絶縁支持体と第二の電極とが焼き付くのを防止できる。さらに、測定対象物表面の歪量に応じて第二の電極が第一の電極に対して第一の絶縁支持体で案内されながら進退する構造なので、第一の電極と第二の電極が重なっている長さまで測定できるため測定範囲を広くすることもできる。   According to the present invention, since the first insulating support made of ceramic is configured to guide the second electrode, the insulating support and the second electrode are seized when used at a high temperature. Can be prevented. Furthermore, since the second electrode advances and retracts while being guided by the first insulating support relative to the first electrode according to the amount of strain on the surface of the measurement object, the first electrode and the second electrode overlap. Since it is possible to measure up to a certain length, the measurement range can be widened.

また、請求項2に記載の発明は、コイルと、このコイルの内側へ進退可能な金属体と、これらコイル及び金属体を夫々支持する絶縁支持体と、前記絶縁支持体を測定対象物に夫々取付ける取付部材と、を備え、前記金属体が前記コイルに対して進退移動することにより前記コイルの電気的特性が変化するように構成した歪測定装置であって、前記コイルを支持する第一の絶縁支持体は、前記コイルよりも前記金属体側へ延出し、この延出部分に前記コイルの内側空間に連通する貫通穴が設けられ、この貫通穴に前記金属体が挿通されて案内されることを特徴とする。   According to the second aspect of the present invention, a coil, a metal body capable of moving back and forth inside the coil, an insulating support that supports the coil and the metal body, respectively, and the insulating support as a measurement object, respectively. A strain measuring device configured to change electrical characteristics of the coil by moving the metal body forward and backward relative to the coil, the first member supporting the coil. The insulating support extends to the metal body side of the coil, and a through-hole communicating with the inner space of the coil is provided in the extended portion, and the metal body is inserted and guided through the through-hole. It is characterized by.

本発明によれば、焼き付けを防止しつつ、広い測定範囲で歪を測定できる歪測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the distortion measuring apparatus which can measure distortion in a wide measurement range can be provided, preventing baking.

以下、本発明の好ましい実施形態につき、添付図面を参照して詳細に説明する。本発明に係る歪測定装置は、例えば、火力発電所のボイラの溶接部分や各種蒸気管などのように、高温下に晒されて熱影響を受けやすい金属材料溶接部などの歪を測定するのに用いられる。まず、この歪測定装置の概略、及び測定原理を説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The strain measuring device according to the present invention measures strain of a metal material welded portion that is exposed to high temperatures and is easily affected by heat, such as a welded portion of a boiler of a thermal power plant and various steam pipes. Used for. First, the outline of the strain measuring apparatus and the measurement principle will be described.

図3は、歪測定装置10の概略図である。同図に示すように、歪測定装置10は、筒状の第一電極12aと、この第一電極12aの中空部内に挿入される第二電極12bとを備えている。第一電極12aの内周面と第二電極12bの外周面との間には所定の間隔が設けられており、両電極(12a,12b)はコンデンサを形成している。電極(12a,12b)には静電容量測定回路15が接続され、この静電容量測定回路15により前記コンデンサの静電容量が測定される。そして、測定された静電容量から歪検出回路17により歪が求められ、表示装置18に表示される。電極(12a,12b)は、それぞれ絶縁支持体(14a,14b)に支持されて、取付部材16により測定対象物3の表面に固定されている。   FIG. 3 is a schematic diagram of the strain measuring apparatus 10. As shown in the figure, the strain measuring device 10 includes a cylindrical first electrode 12a and a second electrode 12b inserted into the hollow portion of the first electrode 12a. A predetermined interval is provided between the inner peripheral surface of the first electrode 12a and the outer peripheral surface of the second electrode 12b, and both electrodes (12a, 12b) form a capacitor. A capacitance measuring circuit 15 is connected to the electrodes (12a, 12b), and the capacitance of the capacitor is measured by the capacitance measuring circuit 15. Then, strain is obtained from the measured capacitance by the strain detection circuit 17 and displayed on the display device 18. The electrodes (12a, 12b) are respectively supported by the insulating supports (14a, 14b), and are fixed to the surface of the measurement object 3 by the attachment member 16.

第一電極12aを支持するセラミック製の絶縁支持体14aは、第一電極12aよりも第二電極12b側へ延出している。この延出部分には、第一電極12aの内側空間に連通する貫通穴13が設けられ、この貫通穴13に第二電極12bが挿通されて案内される。   The ceramic insulating support 14a that supports the first electrode 12a extends from the first electrode 12a toward the second electrode 12b. A through hole 13 communicating with the inner space of the first electrode 12a is provided in the extended portion, and the second electrode 12b is inserted into the through hole 13 and guided.

以上の構成によれば、測定対象物3表面に歪が生じたときに、電極(12a,12b)の進退移動によって第一電極12aと第二電極12bの重なり長さが変化する。このため、電極(12a,12b)の対向面積が変化するので、これら電極(12a,12b)で構成される静電容量も変化する。従って、静電容量測定回路15で測定した静電容量から歪検出回路17により歪を求めることができる。   According to the above configuration, when the surface of the measurement object 3 is distorted, the overlap length of the first electrode 12a and the second electrode 12b is changed by the advance / retreat movement of the electrodes (12a, 12b). For this reason, since the opposing area of the electrodes (12a, 12b) changes, the electrostatic capacitance formed by these electrodes (12a, 12b) also changes. Therefore, the strain can be obtained by the strain detection circuit 17 from the capacitance measured by the capacitance measurement circuit 15.

また、第一電極12aを支持するセラミック製の第一絶縁支持体14aが第二電極12bの軸受けとなるように構成されているため、高温下で使用しても第二電極12bが焼き付けを起こすことがない。さらに、測定対象物表面の歪量に応じて第二電極12bが第一電極12aに対して第一絶縁支持体14aで案内されながら進退する構造なので、測定範囲を広くすることもできる。   In addition, since the ceramic first insulating support 14a that supports the first electrode 12a is configured to serve as a bearing for the second electrode 12b, the second electrode 12b is seized even when used at a high temperature. There is nothing. Furthermore, since the second electrode 12b advances and retreats while being guided by the first insulating support 14a with respect to the first electrode 12a according to the amount of strain on the surface of the measurement object, the measurement range can be widened.

歪測定装置10により検出された歪データは、様々な態様で利用できる。例えば、表示装置18で画面に表示して担当者が目視で歪を読み取ることができるようにしてもよいし、或いは、歪データを無線あるいは有線の通信回線を介してサーバーに送信して自動的にコンピューターに入力、及び解析できるようにしてもよい。   The strain data detected by the strain measuring device 10 can be used in various ways. For example, it may be displayed on the screen by the display device 18 so that the person in charge can visually read the distortion, or the distortion data is automatically transmitted to the server via a wireless or wired communication line. It may be possible to input to a computer and analyze it.

また、図4は第一電極12a、及び第二電極12bの位置関係を一定としたときの歪検出回路17の出力電圧の温度変化を示している。歪測定装置10は、同図のような温度特性があるので、これを補償するように補償回路(図示せず)を備えてもよい。   FIG. 4 shows the temperature change of the output voltage of the strain detection circuit 17 when the positional relationship between the first electrode 12a and the second electrode 12b is constant. Since the strain measuring apparatus 10 has the temperature characteristics as shown in the figure, a compensation circuit (not shown) may be provided to compensate for the temperature characteristics.

次に、歪測定装置10を構成する材料について説明する。まず、電極(12a,12b)を構成する材料としては、高温下で使用しても酸化しない金属材料を用いる。なお、本明細書中で酸化しないとは、例えば500℃以上の高温度下でも金属内部まで酸化が進行しないことを意味する。   Next, the material which comprises the distortion measuring apparatus 10 is demonstrated. First, as a material constituting the electrodes (12a, 12b), a metal material that does not oxidize even when used at a high temperature is used. In this specification, not oxidizing means that the oxidation does not proceed to the inside of the metal even at a high temperature of, for example, 500 ° C. or higher.

電極(12a,12b)を高温下で酸化しない金属材料で構成すれば、高温度下で長時間使用しても電極(12a,12b)の性状変化が少なくなるので、酸化による電極表面の誘電率の変化による影響を受けにくくなり、従って、測定誤差を小さくすることができる。   If the electrodes (12a, 12b) are made of a metal material that does not oxidize at high temperatures, the change in properties of the electrodes (12a, 12b) is reduced even when used for a long time at high temperatures. Therefore, the measurement error can be reduced.

500℃以上の高温下で酸化しない金属材料としては、例えば、ニッケル基合金、クロム基合金、コバルト基合金や、Crを9%以上含有するSUH21,SUH409,SUH409L,SUH446,SUS405,SUS410L,SUS430,SUS430JIL,SUS436JIL,SUH1,SUH3,SUH4,SUH11,SUH600,SUH616,SUS403,SUS410,SUS410JI,SUS431,SUH31,SUH35,SUH36,SUH37,SUH38,SUH309,SUH310,SUH330,SUH660,SUH661,SUS302B,SUS304,SUS309S,SUS310S,SUS316,SUS316Ti,SUS317,SUS321,SUS347,SUSXM14JI,SUS630,SUS631などの耐熱鋼を挙げることができる。   Examples of the metal material that does not oxidize at a high temperature of 500 ° C. or higher include a nickel base alloy, a chromium base alloy, a cobalt base alloy, and SUH21, SUH409, SUH409L, SUH446, SUS405, SUS410L, SUS430, containing 9% or more of Cr. SUS430JIL, SUS436JIL, SUH1, SUH3, SUH4, SUH11, SUH600, SUH616, SUS403, SUS410, SUS410JI, SUS431, SUH31, SUH35, SUH36, SUH37, SUH38, SUH309, SUH309, SUH309, SUH309, SUH309, SUH309, SUH309, SUH309, SUH309 SUS310S, SUS316, SUS316Ti, SUS317, SUS321, SUS347, S SXM14JI, SUS630, may be mentioned heat-resistant steel such as SUS 631.

また、本実施形態に係る歪測定装置10は、電極(12a,12b)を支持する絶縁支持体14を構成する材料として、例えば純度90%以上のセラミックス材料を用いる。セラミックス材料の材質としては、例えばアルミナ、サファイアなどがある。   Moreover, the strain measuring apparatus 10 according to the present embodiment uses, for example, a ceramic material having a purity of 90% or more as a material constituting the insulating support 14 that supports the electrodes (12a, 12b). Examples of the ceramic material include alumina and sapphire.

このように、絶縁支持体14として純度の高いセラミックス材料を使用すれば、高温度下でも電極(12a,12b)と取付部材16との間の電気的絶縁を確保することができる。セラミックス材料の純度は、例えば90%以上であれば常温では十分な電気絶縁を実現できるが、温度500℃付近でも5MΩ程度の絶縁抵抗を実現できるよう、純度99%以上であることが好ましい。より好ましくは、純度99.7%以上であれば、例えば温度600℃付近でも40MΩ程度の絶縁抵抗を実現することができる。   Thus, if a ceramic material with high purity is used as the insulating support 14, electrical insulation between the electrodes (12 a, 12 b) and the mounting member 16 can be ensured even at a high temperature. For example, if the purity of the ceramic material is 90% or more, sufficient electrical insulation can be realized at room temperature, but it is preferable that the purity is 99% or more so that an insulation resistance of about 5 MΩ can be realized even at a temperature near 500 ° C. More preferably, if the purity is 99.7% or more, for example, an insulation resistance of about 40 MΩ can be realized even at a temperature near 600 ° C.

また、第一絶縁支持体14a、及びその中空部の形状については、第二電極12bを支持できればよく、特に限定されない。例えば、円筒状でもよく、角柱状でもよい。図5にその一例を示す。同図によれば、第一絶縁支持体14aの中空部側に設けた溝状のガイド部19と、第二電極12b側に設けた凸部とが嵌合するような形状を示しているが、第二電極12b側に設けた凸部と、第一絶縁支持体14aの中空部側に設けた溝状のガイド部19とが嵌合するようにしてもよい。このように、ガイド部19に沿って第二電極12bを挿入できるようにすれば、第二電極12bを安定的に案内することが可能である。   Moreover, about the shape of the 1st insulation support body 14a and its hollow part, it should just support the 2nd electrode 12b, and it is not specifically limited. For example, it may be cylindrical or prismatic. An example is shown in FIG. According to the figure, although the groove-shaped guide part 19 provided in the hollow part side of the 1st insulating support body 14a and the convex part provided in the 2nd electrode 12b side are shown, it has shown the shape. The convex portion provided on the second electrode 12b side and the groove-shaped guide portion 19 provided on the hollow portion side of the first insulating support 14a may be fitted. Thus, if the 2nd electrode 12b can be inserted along the guide part 19, it is possible to guide the 2nd electrode 12b stably.

また、ガイド部19は複数設けてもよい。ガイド部19の態様は、例えば図6から図8に断面図を示すように、様々な変形及び工夫が想定できる。このようにガイド部19を設ければ、測定対象物3が伸縮しても第一電極12aが軸受け内を移動しやすくなるので、第一電極12aが応力を受けて破断することがなくなる。さらに、第一電極12aが安定的に固定できるので、例えば振動が加わりやすい環境であっても精度の高い測定を行うことができる。   A plurality of guide portions 19 may be provided. As for the mode of the guide portion 19, various modifications and devices can be assumed, for example, as shown in cross-sectional views in FIGS. If the guide portion 19 is provided in this way, the first electrode 12a can easily move in the bearing even if the measuring object 3 expands and contracts, so that the first electrode 12a does not break due to stress. Furthermore, since the first electrode 12a can be stably fixed, for example, highly accurate measurement can be performed even in an environment where vibration is likely to be applied.

表1は、絶縁支持体の高温特性を比較した結果を示す表である。表1によれば、アルミナ(材質記号A−479,純度99.5%)は、500℃程度の高温下における特性がよく、600℃における絶縁抵抗は5MΩであった。また、アルミナ(材質記号A−480S,純度99.7%)は、600℃程度の高温下においても特性がよく、40MΩの絶縁抵抗を示した。従って、高純度アルミナを絶縁材として使用すれば、高温でも歪測定が可能であることが明らかとなった。

Figure 2007315853
Table 1 is a table showing the results of comparing the high temperature characteristics of the insulating supports. According to Table 1, alumina (material symbol A-479, purity 99.5%) had good characteristics at a high temperature of about 500 ° C., and the insulation resistance at 600 ° C. was 5 MΩ. Alumina (material symbol A-480S, purity 99.7%) had good characteristics even at a high temperature of about 600 ° C., and showed an insulation resistance of 40 MΩ. Therefore, it was revealed that if high-purity alumina is used as an insulating material, strain can be measured even at high temperatures.
Figure 2007315853

図9は、本発明の別の実施形態であるコイル型歪測定装置100の断面図である。コイル型歪測定装置100は、コイル20と、このコイル20の内側へ進退可能な金属体22と、これらコイル20を支持する第一絶縁支持体24aと、金属体22を支持する第二絶縁支持体24bと、この絶縁支持体(24a,24b)を測定対象物3表面に固定する取付部材(26a,26b)とを備えて構成されている。そして、金属体22は第一絶縁支持体24aに設けられた貫通穴13に挿通されて、軸方向に変位可能に案内される。   FIG. 9 is a cross-sectional view of a coil-type strain measuring apparatus 100 that is another embodiment of the present invention. The coil-type strain measuring device 100 includes a coil 20, a metal body 22 that can advance and retreat inside the coil 20, a first insulating support 24 a that supports the coil 20, and a second insulating support that supports the metal body 22. The body 24b and mounting members (26a, 26b) for fixing the insulating support (24a, 24b) to the surface of the measuring object 3 are configured. And the metal body 22 is penetrated by the through-hole 13 provided in the 1st insulation support body 24a, and is guided so that a displacement in an axial direction is possible.

従って、測定対象物3表面に歪が発生すれば、それに応じて金属体22がコイル20の内側へ進退移動し、コイル20に生じるインダクタンスが変化する。すなわち、コイル型歪測定装置100は、この金属体22の進退移動により発生するコイル20の電気的特性変化に基づいて、測定対象物3の歪を測定することができる。   Therefore, if distortion occurs on the surface of the measuring object 3, the metal body 22 moves forward and backward in the coil 20 accordingly, and the inductance generated in the coil 20 changes. That is, the coil-type strain measuring apparatus 100 can measure the strain of the measuring object 3 based on the change in the electrical characteristics of the coil 20 generated by the forward / backward movement of the metal body 22.

以上の構成によれば、広範囲の歪を測定できるとともに、金属体22がセラミック製の第一絶縁支持体24aで案内されるので、上記第一実施形態と同様に高温下で使用した場合に焼き付きが起きるのを防止できる。また、第一絶縁支持体24aにガイド部を設ければ、金属体22がコイル20内側を移動しやすくなり応力を受けて破断することがなくなるとともに、金属体22を安定的に固定することができるので、精度の高い測定を行うことができるようになる。   According to the above configuration, a wide range of strain can be measured, and the metal body 22 is guided by the first insulating support 24a made of ceramic, so that it is seized when used at a high temperature as in the first embodiment. Can be prevented. Further, if the first insulating support 24a is provided with a guide portion, the metal body 22 can easily move inside the coil 20 and is not broken due to stress, and the metal body 22 can be stably fixed. Therefore, it becomes possible to perform highly accurate measurement.

なお、上記実施形態では、本発明の歪測定装置が火力発電所のボイラの溶接部分や各種蒸気管の歪測定に適用される場合を例として説明したが、本発明はこれに限らず、例えば、自動車エンジンの振動測定にも適用が可能である。すなわち、自動車、特に高級乗用車ではエンジンの静寂性が重要な要素となるのであるが、エンジンが発する微振動を測定し、これと逆位相の変位を与えることにより微振動を打ち消して、エンジンの静寂性を向上できる。これまでは、非常に高温となるエンジンの振動変位を測定できる装置が存在しなかったため、このような機能を有する自動車は実現されていなかったが、本発明の歪測定装置により、エンジンの振動変位の測定が可能となり、上記機能を実現することが可能となる。また、エンジンの振動を打ち消すことで、ボルトナット類の緩みが抑えられるという効果も期待できる。   In the above embodiment, the case where the strain measuring device of the present invention is applied to strain measurement of a welded part of a boiler of a thermal power plant and various steam pipes is described as an example, but the present invention is not limited thereto, for example, It can also be applied to vibration measurement of automobile engines. In other words, the quietness of the engine is an important factor in automobiles, particularly high-end passenger cars. However, the engine's quietness is canceled by measuring the slight vibration generated by the engine and applying a displacement in the opposite phase to this. Can be improved. Until now, there was no device that could measure the vibration displacement of the engine that would be very hot, so an automobile having such a function has not been realized. However, with the strain measurement device of the present invention, the vibration displacement of the engine has not been realized. Measurement is possible, and the above functions can be realized. Moreover, the effect of suppressing loosening of bolts and nuts can be expected by canceling engine vibration.

歪計の平面模式図である。It is a plane schematic diagram of a strain gauge. 歪計の断面模式図である。It is a cross-sectional schematic diagram of a strain gauge. 歪測定装置の概略図である。It is the schematic of a distortion measuring device. 歪測定装置の温度特性を示す図である。It is a figure which shows the temperature characteristic of a distortion measuring device. 支持部材の断面形状1を示す図である。It is a figure which shows the cross-sectional shape 1 of a supporting member. 支持部材の断面形状2を示す図である。It is a figure which shows the cross-sectional shape 2 of a supporting member. 支持部材の断面形状3を示す図である。It is a figure which shows the cross-sectional shape 3 of a supporting member. 支持部材の断面形状4を示す図である。It is a figure which shows the cross-sectional shape 4 of a supporting member. コイル型歪測定装置の断面模式図である。It is a cross-sectional schematic diagram of a coil type distortion measuring apparatus.

符号の説明Explanation of symbols

1 歪計 3 測定対象物
5a,5b 金属板 7a,7b 電極板
10 歪測定装置 12a,12b 電極
13 貫通穴 14a,14b 絶縁支持体
15 静電容量測定回路 16 取付部材
17 歪検出回路 18 表示装置
19 ガイド部 20 コイル
22 金属体 24a,24b 絶縁支持体
26a,26b 取付部材 100 コイル型歪測定装置
DESCRIPTION OF SYMBOLS 1 Strain meter 3 Measuring object 5a, 5b Metal plate 7a, 7b Electrode plate 10 Strain measuring device 12a, 12b Electrode 13 Through hole 14a, 14b Insulating support 15 Capacitance measuring circuit 16 Mounting member 17 Strain detecting circuit 18 Display device DESCRIPTION OF SYMBOLS 19 Guide part 20 Coil 22 Metal body 24a, 24b Insulation support body 26a, 26b Mounting member 100 Coil type distortion measuring apparatus

Claims (2)

筒状に構成された第一の電極と、
該第一の電極の内側へ進退可能とされ、前記第一の電極と共にコンデンサを構成する第二の電極と、
前記第一の電極を支持するセラミック製の第一の絶縁支持体と、
前記第二の電極を支持する第二の絶縁支持体と、
前記第一及び第二の絶縁支持体を測定対象物に夫々取付ける取付部材と、を備え、
前記測定対象物の歪に応じて前記第二の電極が前記第一の電極の内側へ進退移動することにより前記コンデンサの静電容量が変化するように構成され、
前記第一の絶縁支持体は、前記第一の電極よりも前記第二の電極側へ延出し、この延出部分に前記第一の電極の内側空間に連通する貫通穴が設けられ、この貫通穴に前記第二の電極が挿通されて案内されることを特徴とする歪測定装置。
A first electrode configured in a tubular shape;
A second electrode that is movable back and forth to the inside of the first electrode and constitutes a capacitor together with the first electrode;
A first insulating support made of ceramic that supports the first electrode;
A second insulating support for supporting the second electrode;
An attachment member for attaching the first and second insulating supports to the object to be measured,
The capacitance of the capacitor is changed by moving the second electrode forward and backward inward of the first electrode according to the strain of the measurement object,
The first insulating support extends to the second electrode side from the first electrode, and a through-hole communicating with the inner space of the first electrode is provided in the extended portion. A strain measuring apparatus, wherein the second electrode is guided through a hole.
コイルと、このコイルの内側へ進退可能な金属体と、これらコイル及び金属体を夫々支持する絶縁支持体と、前記絶縁支持体を測定対象物に夫々取付ける取付部材と、を備え、
前記金属体が前記コイルに対して進退移動することにより前記コイルの電気的特性が変化するように構成した歪測定装置であって、
前記コイルを支持する絶縁支持体は、前記コイルよりも前記金属体側へ延出し、この延出部分に前記コイルの内側空間に連通する貫通穴が設けられ、この貫通穴に前記金属体が挿通されて案内されることを特徴とする歪測定装置。

A coil, a metal body capable of advancing and retracting to the inside of the coil, an insulating support for supporting the coil and the metal body, and an attachment member for attaching the insulating support to a measurement object,
A strain measuring device configured to change the electrical characteristics of the coil by moving the metal body forward and backward relative to the coil;
The insulating support that supports the coil extends to the metal body side of the coil, and a through hole that communicates with the inner space of the coil is provided in the extended portion, and the metal body is inserted into the through hole. A strain measuring apparatus characterized by being guided.

JP2006144074A 2006-05-24 2006-05-24 Strain gauge Pending JP2007315853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144074A JP2007315853A (en) 2006-05-24 2006-05-24 Strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144074A JP2007315853A (en) 2006-05-24 2006-05-24 Strain gauge

Publications (1)

Publication Number Publication Date
JP2007315853A true JP2007315853A (en) 2007-12-06

Family

ID=38849851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144074A Pending JP2007315853A (en) 2006-05-24 2006-05-24 Strain gauge

Country Status (1)

Country Link
JP (1) JP2007315853A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162679A (en) * 2008-01-09 2009-07-23 Chugoku Electric Power Co Inc:The System, device and method for calibrating strain gauge
JP2010237064A (en) * 2009-03-31 2010-10-21 Japan Fine Ceramics Center Displacement detection device and pipe displacement detection method using the same
JP2011080924A (en) * 2009-10-09 2011-04-21 Dai Ichi High Frequency Co Ltd Optical fiber sensor for high-temperature environment
JP2011089936A (en) * 2009-10-23 2011-05-06 Chugoku Electric Power Co Inc:The Mounting structure of strain gauge, and mounting method of strain gauge
JP2012202953A (en) * 2011-03-28 2012-10-22 Chugoku Electric Power Co Inc:The Strain measurement device
JP2013156074A (en) * 2012-01-27 2013-08-15 Chugoku Electric Power Co Inc:The Distortion measuring apparatus
WO2014125630A1 (en) * 2013-02-15 2014-08-21 株式会社島津製作所 Discharge ionization current detector
US9784714B2 (en) 2013-02-15 2017-10-10 Shimadzu Corporation Discharge ionization current detector and tuning method for the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295365A (en) * 1965-01-04 1967-01-03 Monsanto Co Extensometer
JPS5018061A (en) * 1973-06-18 1975-02-26
US4197753A (en) * 1970-04-30 1980-04-15 The Boeing Company Strain gage
JPS5821540A (en) * 1981-07-31 1983-02-08 Shimadzu Corp Measuring device for deformation amount of sample
JPS60100607A (en) * 1983-11-02 1985-06-04 Sumitomo Metal Ind Ltd Supporting device for blast furnace shell
JPS61140945A (en) * 1984-12-12 1986-06-28 Ricoh Co Ltd Printing plate material for electrophotographic process
JPS61288137A (en) * 1985-06-10 1986-12-18 シーメンス、アクチエンゲゼルシヤフト High temperature-resistant elongation measuring device made of ceramic material
JPS62153504A (en) * 1985-12-26 1987-07-08 Toshiba Corp Shrouding segment
US4944181A (en) * 1988-08-30 1990-07-31 Hitec Products, Inc. Capacitive strain gage having fixed capacitor plates
JPH03225203A (en) * 1990-01-30 1991-10-04 Kubota Corp Electrostatic capacity type expanded position detector for cylinder
JPH04310802A (en) * 1991-04-09 1992-11-02 Kawaguchiko Seimitsu Kk Capacitance type length measuring machine
JPH05340979A (en) * 1991-11-27 1993-12-24 Philips Gloeilampenfab:Nv Capacitive sensor
JP2000161985A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Noncontact-type position sensor
JP2000337809A (en) * 1999-05-28 2000-12-08 Nippon Steel Corp Differential type eddy current range finder
JP2002071301A (en) * 2000-08-30 2002-03-08 Tokyo Seimitsu Co Ltd Capacitive displacement sensor
JP2006010409A (en) * 2004-06-23 2006-01-12 Shimadzu Corp Extensometer

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295365A (en) * 1965-01-04 1967-01-03 Monsanto Co Extensometer
US4197753A (en) * 1970-04-30 1980-04-15 The Boeing Company Strain gage
JPS5018061A (en) * 1973-06-18 1975-02-26
JPS5821540A (en) * 1981-07-31 1983-02-08 Shimadzu Corp Measuring device for deformation amount of sample
JPS60100607A (en) * 1983-11-02 1985-06-04 Sumitomo Metal Ind Ltd Supporting device for blast furnace shell
JPS61140945A (en) * 1984-12-12 1986-06-28 Ricoh Co Ltd Printing plate material for electrophotographic process
JPS61288137A (en) * 1985-06-10 1986-12-18 シーメンス、アクチエンゲゼルシヤフト High temperature-resistant elongation measuring device made of ceramic material
JPS62153504A (en) * 1985-12-26 1987-07-08 Toshiba Corp Shrouding segment
US4944181A (en) * 1988-08-30 1990-07-31 Hitec Products, Inc. Capacitive strain gage having fixed capacitor plates
JPH03225203A (en) * 1990-01-30 1991-10-04 Kubota Corp Electrostatic capacity type expanded position detector for cylinder
JPH04310802A (en) * 1991-04-09 1992-11-02 Kawaguchiko Seimitsu Kk Capacitance type length measuring machine
JPH05340979A (en) * 1991-11-27 1993-12-24 Philips Gloeilampenfab:Nv Capacitive sensor
JP2000161985A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Noncontact-type position sensor
JP2000337809A (en) * 1999-05-28 2000-12-08 Nippon Steel Corp Differential type eddy current range finder
JP2002071301A (en) * 2000-08-30 2002-03-08 Tokyo Seimitsu Co Ltd Capacitive displacement sensor
JP2006010409A (en) * 2004-06-23 2006-01-12 Shimadzu Corp Extensometer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162679A (en) * 2008-01-09 2009-07-23 Chugoku Electric Power Co Inc:The System, device and method for calibrating strain gauge
JP2010237064A (en) * 2009-03-31 2010-10-21 Japan Fine Ceramics Center Displacement detection device and pipe displacement detection method using the same
JP2011080924A (en) * 2009-10-09 2011-04-21 Dai Ichi High Frequency Co Ltd Optical fiber sensor for high-temperature environment
JP2011089936A (en) * 2009-10-23 2011-05-06 Chugoku Electric Power Co Inc:The Mounting structure of strain gauge, and mounting method of strain gauge
JP2012202953A (en) * 2011-03-28 2012-10-22 Chugoku Electric Power Co Inc:The Strain measurement device
JP2013156074A (en) * 2012-01-27 2013-08-15 Chugoku Electric Power Co Inc:The Distortion measuring apparatus
WO2014125630A1 (en) * 2013-02-15 2014-08-21 株式会社島津製作所 Discharge ionization current detector
CN104995504A (en) * 2013-02-15 2015-10-21 株式会社岛津制作所 Discharge ionization current detector
JP5987969B2 (en) * 2013-02-15 2016-09-07 株式会社島津製作所 Discharge ionization current detector
US9784714B2 (en) 2013-02-15 2017-10-10 Shimadzu Corporation Discharge ionization current detector and tuning method for the same
US10585073B2 (en) 2013-02-15 2020-03-10 Shimadzu Corporation Discharge ionization current detector

Similar Documents

Publication Publication Date Title
JP2007315853A (en) Strain gauge
JP5685701B2 (en) Temperature sensor device and assembly method
EP2105671A2 (en) Glow plug
US10422701B2 (en) Temperature sensor
EP2141470B1 (en) Temperature sensor
JP6069591B2 (en) Device for detecting combustion chamber pressure in an internal combustion engine
JP4926543B2 (en) Strain measuring device
EP2348298A1 (en) Combustion pressure sensor
KR20120040631A (en) Thermo-couple for temperature measurement and method of manufacturing the same
JP2015190902A (en) temperature sensor
KR20100099689A (en) Method of measuring the internal surface temperature of a pipe and associated device
EP2679905B1 (en) Glow plug with pressure sensor
CN108204863A (en) High-temperature exhaust air sensor
JP2012202953A (en) Strain measurement device
JP4948426B2 (en) Strain gauge calibration system, strain gauge calibration device, and strain gauge calibration method
JP4638934B2 (en) Pressure sensor
US9739487B2 (en) Glow plug
JP5468626B2 (en) Strain measuring device
JP6783819B2 (en) Sensor
KR20220168174A (en) Temperature sensor device with insulating housing
CN102384714B (en) Temperature deformation self-compensating micro-displacement sensor
CN102331305A (en) Temperature sensor
JP7119388B2 (en) Ovality measurement sensor
JP2010112727A (en) Contact type temperature sensor
JP6560601B2 (en) Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Effective date: 20110104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Effective date: 20110621

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108