JP2007308551A - Thermoplastic resin composition and molded article - Google Patents

Thermoplastic resin composition and molded article Download PDF

Info

Publication number
JP2007308551A
JP2007308551A JP2006137432A JP2006137432A JP2007308551A JP 2007308551 A JP2007308551 A JP 2007308551A JP 2006137432 A JP2006137432 A JP 2006137432A JP 2006137432 A JP2006137432 A JP 2006137432A JP 2007308551 A JP2007308551 A JP 2007308551A
Authority
JP
Japan
Prior art keywords
meth
copolymer
thermoplastic resin
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006137432A
Other languages
Japanese (ja)
Other versions
JP4969911B2 (en
Inventor
Takahiro Ikebe
孝浩 池辺
Nobumitsu Fukuyama
信光 福山
Yoshihiro Nakai
義博 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
UMG ABS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMG ABS Ltd filed Critical UMG ABS Ltd
Priority to JP2006137432A priority Critical patent/JP4969911B2/en
Publication of JP2007308551A publication Critical patent/JP2007308551A/en
Application granted granted Critical
Publication of JP4969911B2 publication Critical patent/JP4969911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition which is excellent in weather resistance, impact resistance, and flowability, and has a wide molding condition width giving a good matted appearance. <P>SOLUTION: This thermoplastic resin composition comprises a specific amount of a graft copolymer (A) obtained by grafting graft chains containing aromatic vinylic monomer units and vinyl cyanide-based monomer units to a (meth)acrylate-based rubbery polymer (G) and a specified amount of a vinylic copolymer (B) containing aromatic vinylic monomer units and vinyl cyanide-based monomer units, wherein the (meth)acrylate-based rubbery polymer (G) is obtained by expanding an un-expanded (meth)acrylate-based rubbery polymer (g) with an acid group-containing copolymer latex (K), and a difference (GA-BA) between the content (GA) of the vinyl cyanide monomer units and the content (BA) of the vinyl cyanide monomer units in the vinylic copolymer (B) is 8 to 25 pts.wt. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、艶消し外観を有する成形品を得るための熱可塑性樹脂組成物、艶消し外観を有する成形品に関する。   The present invention relates to a thermoplastic resin composition for obtaining a molded article having a matte appearance, and a molded article having a matte appearance.

樹脂材料の耐衝撃性を向上させることは、樹脂材料の用途を拡大させるだけでなく成形品の薄肉化や大型化への対応を可能にするなど、工業的な有用性が非常に高いため、樹脂材料の耐衝撃性向上させる手法については様々なものが提案されてきた。
樹脂材料の耐衝撃性向上させる手法のうち、ゴム状重合体と硬質樹脂とを組み合わせる手法は広く工業化されている。ゴム状重合体と硬質樹脂とを組み合わせた樹脂材料としては、例えば、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ハイインパクトポリスチレン(HIPS)樹脂、変性PPE樹脂およびMBS樹脂強化ポリ塩化ビニル樹脂などが挙げられる。
これらの樹脂材料はゴム状重合体としてポリブタジエンを含んでいるが、ポリブタジエンは不飽和二重結合を有するため、耐候性が低いという問題があった。
そこで、耐候性が求められる場合には、ゴム状重合体としてポリブタジエンの代わりに飽和ゴム、例えば、(メタ)アクリル酸エステル系ゴム状重合体、(メタ)アクリル酸エステル系ゴム状重合体とポリオルガノシロキサンとの複合ゴム、エチレン−プロピレン系ゴムが用いられる。
Improving the impact resistance of resin materials not only expands the applications of resin materials, but also makes it possible to respond to the reduction in thickness and size of molded products. Various techniques for improving the impact resistance of resin materials have been proposed.
Of the techniques for improving the impact resistance of resin materials, a technique for combining a rubbery polymer and a hard resin has been widely industrialized. Examples of the resin material combining the rubber-like polymer and the hard resin include acrylonitrile-butadiene-styrene (ABS) resin, high impact polystyrene (HIPS) resin, modified PPE resin, and MBS resin reinforced polyvinyl chloride resin. It is done.
These resin materials contain polybutadiene as a rubbery polymer. However, since polybutadiene has an unsaturated double bond, there is a problem that weather resistance is low.
Therefore, when weather resistance is required, instead of polybutadiene as a rubbery polymer, a saturated rubber such as a (meth) acrylate rubber polymer, a (meth) acrylate rubber polymer and a polybutadiene is used. A composite rubber with an organosiloxane and an ethylene-propylene rubber are used.

最近、ダッシュボードやインストルメントパネル等の自動車内装用部品や住宅用樹脂化建材等の分野を主体に、光沢が著しく低減された材料、いわゆる艶消し材料に対する需要が高まりつつある。
艶消しにする方法としては、例えば、熱可塑性樹脂組成物中に架橋硬質重合体を配合する方法が提案されている(特許文献1〜3参照)。特許文献1〜3に記載の方法によれば、耐候性は向上するものの、耐衝撃性の低下が著しく、得られる熱可塑性樹脂組成物の利用分野が限られるという問題があった。
そこで、耐衝撃性の低下を防止しつつ艶消しにする方法として、ゴム状重合体として粒子径の大きいものを使用する方法が提案されている(例えば、特許文献4〜6参照)。
特許文献4〜6に記載の方法では、耐衝撃性の低下は防止できるが、艶消し外観の発現が成形条件に依存しやすく、良好な艶消し外観を得るための成形条件幅が狭くなるため、成形品の部位によって光沢に違いが生じ易く、光沢斑が起こり易い傾向にあった。
良好な艶消し外観を得るための成形条件幅を広くし、斑の発生を少なくする方法としては、反応性の官能基を含有する重合体を配合する方法が提案されている(例えば、特許文献7〜9参照)。
しかしながら、反応性の官能基を含有する重合体を配合して得た熱可塑性樹脂組成物は流動性が低く、成形加工に支障を生じることがあった。
特開昭63−297449号公報 特開平08−199027号公報 特開2000−212293号公報 特開平09−194656号公報 特開2000−198905号公報 特開2002−194034号公報 特開昭61−236850号公報 特開昭63−156847号公報 特開平10−219079号公報
Recently, there has been an increasing demand for materials with significantly reduced gloss, so-called matte materials, mainly in the fields of automotive interior parts such as dashboards and instrument panels and resin-based building materials for housing.
As a method for matting, for example, a method of blending a crosslinked hard polymer in a thermoplastic resin composition has been proposed (see Patent Documents 1 to 3). According to the methods described in Patent Documents 1 to 3, although the weather resistance is improved, there is a problem that the impact resistance is remarkably lowered, and the application field of the obtained thermoplastic resin composition is limited.
Thus, as a method for matting while preventing a decrease in impact resistance, a method using a rubbery polymer having a large particle size has been proposed (see, for example, Patent Documents 4 to 6).
In the methods described in Patent Documents 4 to 6, it is possible to prevent a decrease in impact resistance, but the appearance of a matte appearance is likely to depend on molding conditions, and the molding condition width for obtaining a good matte appearance is narrowed. The gloss tends to vary depending on the part of the molded product, and glossy spots tend to occur.
As a method of widening the molding condition range for obtaining a good matte appearance and reducing the occurrence of spots, a method of blending a polymer containing a reactive functional group has been proposed (for example, patent document). 7-9).
However, the thermoplastic resin composition obtained by blending a polymer containing a reactive functional group has low fluidity, which may hinder molding processing.
JP-A 63-297449 Japanese Patent Laid-Open No. 08-199027 JP 2000-212293 A JP 09-194656 A JP 2000-198505 A JP 2002-194034 A JP-A-61-236850 JP-A 63-156847 Japanese Patent Laid-Open No. 10-219079

以上のことより、耐候性、耐衝撃性、流動性のいずれもが優れる上に、良好な艶消し外観が得られる成形条件幅が広い熱可塑性樹脂組成物が強く求められていた。
本発明は、前記事情を鑑みてなされたものであり、耐候性、耐衝撃性、流動性のいずれもが優れる上に、良好な艶消し外観が得られる成形条件幅が広い熱可塑性樹脂組成物を提供することを目的とする。また、耐候性、耐衝撃性、流動性に優れる上に、良好な艶消し外観を有する成形品を提供することを目的とする。
In view of the above, there has been a strong demand for a thermoplastic resin composition having a wide molding condition range in which all of weather resistance, impact resistance, and fluidity are excellent and a good matte appearance can be obtained.
The present invention has been made in view of the above circumstances, and is excellent in all of weather resistance, impact resistance, and fluidity, and has a wide molding condition range in which a good matte appearance can be obtained. The purpose is to provide. Another object of the present invention is to provide a molded article having excellent weather resistance, impact resistance, and fluidity and having a good matte appearance.

本発明者らは、(メタ)アクリル酸エステル系ゴム状重合体として酸基含有共重合体ラテックスにより肥大化処理したものを用いた上で、グラフト鎖中のシアン化ビニル共重合体単位の含有量とビニル系共重合体中のシアン化ビニル系単量体単位の含有量との差を特定範囲にすることにより上記課題を解決できることを見出し、以下の熱可塑性樹脂組成物および成形品を発明した。   The inventors of the present invention have used a (meth) acrylic ester-based rubbery polymer that has been subjected to an enlargement treatment with an acid group-containing copolymer latex, and the inclusion of vinyl cyanide copolymer units in the graft chain. And found that the above-mentioned problems can be solved by making the difference between the amount of vinyl cyanide monomer units in the vinyl copolymer within a specific range, and invented the following thermoplastic resin composition and molded article did.

すなわち、本発明の熱可塑性樹脂組成物は、(メタ)アクリル酸エステル系ゴム状重合体(G)に、芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位を含むグラフト鎖がグラフトしたグラフト共重合体(A)20〜80質量部と、芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位を含むビニル系共重合体(B)80〜20質量部とを含有し、
(メタ)アクリル酸エステル系ゴム状重合体(G)は、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)が酸基含有共重合体ラテックス(K)により肥大化処理されたものであり、
グラフト共重合体(A)におけるグラフト鎖中のシアン化ビニル単量体単位の含有量(GA)と、ビニル系共重合体(B)中のシアン化ビニル単量体単位の含有量(BA)との差(GA−BA)が8〜25質量部であることを特徴とする。
本発明の成形品は、上述した熱可塑性樹脂組成物が成形されてなることを特徴とする。
本発明の成形品においては、熱可塑性樹脂組成物が押出成形されたものであり、シート成形品または異形成形品である場合に、本発明の効果をとりわけ発揮する。
That is, the thermoplastic resin composition of the present invention has a graft chain containing an aromatic vinyl monomer unit and a vinyl cyanide monomer unit on the (meth) acrylate rubber polymer (G). 20-80 parts by mass of grafted graft copolymer (A) and 80-20 parts by mass of vinyl copolymer (B) containing an aromatic vinyl monomer unit and a vinyl cyanide monomer unit Contains,
The (meth) acrylic acid ester rubbery polymer (G) was subjected to an enlargement treatment of the non-hypertrophic (meth) acrylic acid ester rubbery polymer (g) with the acid group-containing copolymer latex (K). Is,
Content (GA) of vinyl cyanide monomer units in the graft chain in the graft copolymer (A) and content (BA) of vinyl cyanide monomer units in the vinyl copolymer (B) The difference (GA-BA) is 8 to 25 parts by mass.
The molded article of the present invention is characterized in that the above-mentioned thermoplastic resin composition is molded.
In the molded article of the present invention, the effect of the present invention is exhibited particularly when the thermoplastic resin composition is extruded and is a sheet molded article or a deformed article.

本発明の熱可塑性樹脂組成物は、耐候性、耐衝撃性、流動性のいずれもが優れる上に、良好な艶消し外観が得られる成形条件幅が広い。しかも、耐候性、耐衝撃性、流動性のバランスに優れる。このような熱可塑性樹脂組成物は、各種工業用材料としての利用価値が極めて高い。
本発明の成形品は、耐候性、耐衝撃性、流動性に優れる上に、良好な艶消し外観を有する。
The thermoplastic resin composition of the present invention is excellent in all of weather resistance, impact resistance, and fluidity, and has a wide range of molding conditions for obtaining a good matte appearance. In addition, the balance of weather resistance, impact resistance, and fluidity is excellent. Such a thermoplastic resin composition has extremely high utility value as various industrial materials.
The molded article of the present invention is excellent in weather resistance, impact resistance and fluidity, and has a good matte appearance.

(熱可塑性樹脂組成物)
本発明の熱可塑性樹脂組成物は、(メタ)アクリル酸エステル系ゴム状重合体(G)にグラフト鎖がグラフトしたグラフト共重合体(A)と、ビニル系共重合体(B)とを含有するものである。
(Thermoplastic resin composition)
The thermoplastic resin composition of the present invention contains a graft copolymer (A) in which a graft chain is grafted to a (meth) acrylic ester rubber-like polymer (G), and a vinyl copolymer (B). To do.

<グラフト共重合体(A)>
[(メタ)アクリル酸エステル系ゴム状重合体(G)]
グラフト共重合体(A)を構成する(メタ)アクリル酸エステル系ゴム状重合体(G)は、(メタ)アクリル酸エステル単量体単位を含有する重合体である。
(メタ)アクリル酸エステル単量体としては、炭素数が1〜12のアルキル基を有する(メタ)アクリル酸エステル単量体を用いることが好ましい。炭素数が1〜12のアルキル基を有する(メタ)アクリル酸エステル単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル等のメタクリル酸アルキルエステル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸−2−エチルヘキシル等のアクリル酸エステルなどが挙げられる。これら(メタ)アクリル酸エステル単量体は1種を単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、得られる熱可塑性樹脂組成物の耐衝撃性がより高くなることから、アクリル酸n−ブチルおよび/またはアクリル酸−2−エチルヘキシルが好ましい。
<Graft copolymer (A)>
[(Meth) acrylic ester rubbery polymer (G)]
The (meth) acrylic acid ester rubbery polymer (G) constituting the graft copolymer (A) is a polymer containing a (meth) acrylic acid ester monomer unit.
As the (meth) acrylic acid ester monomer, it is preferable to use a (meth) acrylic acid ester monomer having an alkyl group having 1 to 12 carbon atoms. Examples of the (meth) acrylic acid ester monomer having an alkyl group having 1 to 12 carbon atoms include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, methacryl Examples include methacrylic acid alkyl esters such as lauryl acid, and acrylic acid esters such as methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate. These (meth) acrylic acid ester monomers may be used individually by 1 type, and may use 2 or more types together.
Among these, n-butyl acrylate and / or 2-ethylhexyl acrylate are preferable because the resulting thermoplastic resin composition has higher impact resistance.

(メタ)アクリル酸エステル系ゴム状重合体(G)中の(メタ)アクリル酸エステル単量体単位の含有量は、得られる熱可塑性樹脂組成物の耐衝撃性がより優れることから、(メタ)アクリル酸エステル系ゴム状重合体(G)100質量部に対して50質量部であることが好ましく、60質量部であることがより好ましく、70質量部以上であることが特に好ましい。   The content of the (meth) acrylic acid ester monomer unit in the (meth) acrylic acid ester-based rubbery polymer (G) is more excellent in impact resistance of the resulting thermoplastic resin composition. ) It is preferably 50 parts by weight, more preferably 60 parts by weight, and particularly preferably 70 parts by weight or more based on 100 parts by weight of the acrylate-based rubbery polymer (G).

(メタ)アクリル酸エステル系ゴム状重合体(G)中には、(メタ)アクリル酸エステル単量体単位以外に他の単量体単位が含まれてもよい。他の単量体としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン等の芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物、メタクリル酸2−ヒドロキシエチルやメタクリル酸グリシジル、メタクリル酸N、N−ジメチルアミノエチル等の官能基を有する他の(メタ)アクリル酸エステル、ブタジエン、クロロプレン、イソプレン等のジエン系化合物、アクリルアミドやメタクリルアミド、無水マレイン酸、N−置換マレイミドなどが挙げられる。これらは目的に応じて1種を単独で使用してもよいし、2種以上を併用してもよい。   In the (meth) acrylate rubber-based polymer (G), other monomer units may be contained in addition to the (meth) acrylate monomer units. Other monomers include, for example, aromatic alkenyl compounds such as styrene, α-methylstyrene, vinyl toluene, vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, 2-hydroxyethyl methacrylate, glycidyl methacrylate, methacryl Other (meth) acrylic acid esters having a functional group such as acid N and N-dimethylaminoethyl, diene compounds such as butadiene, chloroprene and isoprene, acrylamide, methacrylamide, maleic anhydride, N-substituted maleimide and the like It is done. These may be used individually by 1 type according to the objective, and may use 2 or more types together.

また、(メタ)アクリル酸エステル系ゴム状重合体(G)は、得られる熱可塑性樹脂組成物の耐衝撃性と艶消し性とのバランスが良くなる傾向にあることから、架橋剤単位とグラフト交叉剤単位の各々1種以上を含有することが好ましい。
架橋剤およびグラフト交叉剤としては、例えば、メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル等のアリル化合物、ジビニルベンゼン等のジビニル化合物、ジメタクリル酸エチレングリコールジエステル、ジメタクリル酸プロピレングリコールジエステル、ジメタクリル酸1,3−ブチレングリコールジエステル、ジメタクリル酸1,4−ブチレングリコールジエステル等のジ(メタ)アクリル酸エステル化合物が挙げられる。これらのうちの2種類以上を併用し、1種を架橋剤として用い、1種をグラフト交叉剤として用いる。
好ましい組み合わせは、グラフト交叉剤としてアリル化合物を用い、架橋剤としてジ(メタ)アクリル酸エステル化合物を用いる組合せであり、より好ましい組み合わせは、グラフト交叉剤としてメタクリル酸アリルまたはシアヌル酸トリアリルを用い、架橋剤としてジメタクリル酸1,3−ブチレングリコールジエステルを用いる組合せである。
架橋剤単位およびグラフト交叉剤単位の合計の含有量は、(メタ)アクリル酸エステル系ゴム状重合体100質量部に対して0.1〜3質量部であることが好ましく、0.1〜1質量部であることがより好ましい。
In addition, the (meth) acrylic ester rubber-like polymer (G) tends to improve the balance between the impact resistance and the matte property of the resulting thermoplastic resin composition. It is preferable to contain one or more kinds of crossing agent units.
Examples of the crosslinking agent and the graft crossing agent include allyl compounds such as allyl methacrylate, triallyl cyanurate and triallyl isocyanurate, divinyl compounds such as divinylbenzene, dimethacrylic acid ethylene glycol diester, dimethacrylic acid propylene glycol diester, and dimethacrylic acid. Examples thereof include di (meth) acrylic acid ester compounds such as acid 1,3-butylene glycol diester and dimethacrylic acid 1,4-butylene glycol diester. Two or more of these are used in combination, one is used as a crosslinking agent, and one is used as a graft crossing agent.
A preferred combination is a combination using an allyl compound as a graft crossing agent and a di (meth) acrylate compound as a cross-linking agent, and a more preferable combination is using allyl methacrylate or triallyl cyanurate as a cross-linking agent and crosslinking. It is a combination using dimethacrylic acid 1,3-butylene glycol diester as an agent.
The total content of the crosslinking agent unit and the graft crossing agent unit is preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the (meth) acrylic ester rubber-like polymer. More preferably, it is part by mass.

この(メタ)アクリル酸エステル単量体は、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)が酸基含有共重合体ラテックス(K)により肥大化処理されたものである。
未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)は、例えば、上述した(メタ)アクリル酸エステル単量体と、架橋剤と、グラフト交叉剤とを乳化重合することにより得られる。
This (meth) acrylic acid ester monomer is a non-hypertrophic (meth) acrylic acid ester-based rubbery polymer (g) subjected to an enlargement treatment with an acid group-containing copolymer latex (K).
The non-hypertrophic (meth) acrylate rubber-like polymer (g) is obtained, for example, by emulsion polymerization of the above-described (meth) acrylate monomer, a crosslinking agent, and a graft crossing agent. .

乳化重合時に使用される乳化剤としては、ラテックスの安定性が優れ、重合率を高めることができることから、サルコシン酸ナトリウム、脂肪酸カリウム、脂肪酸ナトリウム、アルケニルコハク酸ジカリウム、ロジン酸石鹸等の各種カルボン酸塩、アルキル硫酸エステル、アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウムなどのアニオン系乳化剤が好ましい。
また、乳化重合時に使用されるラジカル重合開始剤としては、有機または無機の過酸化物、アゾ系開始剤などが挙げられる。
Various emulsifiers such as sodium sarcosine, fatty acid potassium, fatty acid sodium, alkenyl succinate dipotassium, rosin acid soap, etc., as the emulsifier used at the time of emulsion polymerization are excellent in latex stability and can increase the polymerization rate Anionic emulsifiers such as alkyl sulfate, sodium alkylbenzene sulfonate, sodium polyoxyethylene nonylphenyl ether sulfate are preferable.
Examples of the radical polymerization initiator used during emulsion polymerization include organic or inorganic peroxides, azo initiators, and the like.

乳化重合により得られた未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)のラテックスにおいては、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)の質量平均粒子径が30〜250nmであることが好ましく、40〜200nmであることがより好ましく、50〜150nmであることが特に好ましい。未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)の質量平均粒子径が250nm以下であれば、酸基含有共重合体ラテックス(K)により容易に肥大化し、その結果、得られる熱可塑性樹脂組成物において良好な艶消し外観がより得られやすくなる。一方、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)の質量平均粒子径が30nm以上であれば、効率的に肥大化できる。   In the latex of the non-hypertrophic (meth) acrylic ester rubber polymer (g) obtained by emulsion polymerization, the mass average particle diameter of the non-hypertrophic (meth) acrylic ester rubber polymer (g) Is preferably 30 to 250 nm, more preferably 40 to 200 nm, and particularly preferably 50 to 150 nm. If the mass average particle diameter of the non-hypertrophic (meth) acrylic ester rubber polymer (g) is 250 nm or less, it is easily enlarged by the acid group-containing copolymer latex (K), and is obtained as a result. In the thermoplastic resin composition, a good matte appearance is more easily obtained. On the other hand, if the mass average particle diameter of the non-hypertrophic (meth) acrylic ester rubber polymer (g) is 30 nm or more, it can be efficiently enlarged.

また、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)のラテックスにおいては、pHが7以上であることが好ましく、8以上であることがより好ましく、9以上であることが特に好ましい。pHを7以上に調節する方法としては、例えば、該ラテックスに、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム等のアルカリ性物質を添加する方法などが挙げられる。   Further, in the latex of the non-hypertrophic (meth) acrylic ester rubber polymer (g), the pH is preferably 7 or more, more preferably 8 or more, and particularly preferably 9 or more. preferable. Examples of the method of adjusting the pH to 7 or more include a method of adding an alkaline substance such as sodium carbonate, potassium carbonate, sodium hydroxide to the latex.

肥大化剤として用いられる酸基含有共重合体ラテックス(K)とは、酸基含有単量体単位と(メタ)アクリル酸エステル単量体単位とを有する酸基含有共重合体のラテックスである。
酸基含有単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸およびクロトン酸等が挙げられる。
(メタ)アクリル酸エステルとしては、炭素数が1〜12のアルキル基を有する(メタ)アクリル酸エステルが好ましい。この(メタ)アクリル酸エステルは、(メタ)アクリル酸エステル系ゴム状重合体(G)の製造に用いたものと同様のものが使用できるが、中でも、アクリル酸エステル単量体が好ましく、さらに、炭素数が多いアクリル酸エステル単量体がより好ましい。酸基含有共重合体にアクリル酸エステル単量体単位が含まれていると、酸基含有共重合体のガラス転移温度(Tg)が低くなり、その結果、得られる熱可塑性樹脂組成物の耐衝撃性よび流動性をより高くでき、また、より良好な艶消し外観の成形品を得ることができる。
The acid group-containing copolymer latex (K) used as a thickening agent is an acid group-containing copolymer latex having an acid group-containing monomer unit and a (meth) acrylic acid ester monomer unit. .
Examples of the acid group-containing monomer include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid.
The (meth) acrylic acid ester is preferably a (meth) acrylic acid ester having an alkyl group having 1 to 12 carbon atoms. The (meth) acrylic acid ester can be the same as that used for the production of the (meth) acrylic acid ester-based rubbery polymer (G). Among them, an acrylic acid ester monomer is preferable. An acrylic acid ester monomer having a large number of carbon atoms is more preferred. If the acid group-containing copolymer contains an acrylate monomer unit, the glass transition temperature (Tg) of the acid group-containing copolymer is lowered, and as a result, the resulting thermoplastic resin composition has a resistance to resistance. The impact and fluidity can be further increased, and a molded article having a better matte appearance can be obtained.

酸基含有共重合体中の(メタ)アクリル酸エステルの含有量は、酸基含有共重合体を100質量部とした際の0.1〜30質量部であることが好ましく、10〜25質量部であることがより好ましい。酸基含有共重合体中の(メタ)アクリル酸エステルの含有量が前記範囲であれば、得られる(メタ)アクリル酸エステル系ゴム状重合体(G)の質量平均粒子径を制御しやすく、得られる熱可塑性樹脂組成物の艶消し外観をより良好にできる。   The content of the (meth) acrylic acid ester in the acid group-containing copolymer is preferably 0.1 to 30 parts by mass when the acid group-containing copolymer is 100 parts by mass, and 10 to 25 parts by mass. More preferably, it is a part. If the content of the (meth) acrylic acid ester in the acid group-containing copolymer is in the above range, it is easy to control the mass average particle diameter of the resulting (meth) acrylic acid ester-based rubbery polymer (G), The matte appearance of the resulting thermoplastic resin composition can be made better.

酸基含有重合体ラテックス中の酸基含有重合体の質量平均粒子径は50〜250nmであることが好ましい。酸基含有重合体ラテックス中の酸基含有重合体の質量平均粒子径が前記範囲であれば、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)を肥大化させる際のラテックスの安定性を高くできる。また、肥大化により得られる(メタ)アクリル酸エステル系ゴム(G)の質量平均粒子径を制御しやすく、しかも得られる熱可塑性樹脂組成物の艶消し外観をより良好にできる。   The mass average particle size of the acid group-containing polymer in the acid group-containing polymer latex is preferably 50 to 250 nm. If the mass average particle diameter of the acid group-containing polymer in the acid group-containing polymer latex is within the above range, the latex of the latex when the non-hypertrophic (meth) acrylate rubber polymer (g) is enlarged is used. Stability can be increased. Moreover, the mass average particle diameter of the (meth) acrylic ester rubber (G) obtained by enlargement can be easily controlled, and the matte appearance of the resulting thermoplastic resin composition can be improved.

未肥大の(メタ)アクリル酸エステル系ゴム重合体(g)を酸基含有共重合体ラテックス(K)により肥大化処理する方法は、例えば、特開昭50−25655号公報、特開昭58−61102号公報、特開昭59−149902号公報などに記載された公知の方法を適用できる。
肥大化処理における酸基含有共重合体ラテックス(K)の使用量としては、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)の性状や酸基含有共重合体ラテックス(K)の組成や性状にもよるが、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)100質量部(固形分換算)に対して0.1〜10質量部(固形分換算)であることが好ましく、0.3〜5質量部であることがより好ましい。酸基含有共重合体ラテックス(K)の使用量が0.1質量部未満であると、肥大化が進行しないばかりか、得られる熱可塑性樹脂組成物の艶消し性が低下し、しかも耐衝撃性が低下する傾向にある。また、10質量部を超えた場合でも、得られる熱可塑性樹脂組成物の艶消し性が低下する傾向にある。
For example, JP-A-50-25655 and JP-A-58 show a method for subjecting an unexpanded (meth) acrylic ester rubber polymer (g) to an enlargement treatment with an acid group-containing copolymer latex (K). Known methods described in JP-A-61102 and JP-A-59-149902 can be applied.
The amount of the acid group-containing copolymer latex (K) used in the enlargement treatment includes the properties of the non-hypertrophic (meth) acrylic ester rubber polymer (g) and the acid group-containing copolymer latex (K). Depending on the composition and properties of the above, it is 0.1 to 10 parts by mass (in terms of solid content) with respect to 100 parts by mass (in terms of solid content) of the non-hypertrophic (meth) acrylic acid ester rubber polymer (g). It is preferable that it is 0.3 to 5 parts by mass. When the amount of the acid group-containing copolymer latex (K) used is less than 0.1 parts by mass, not only the enlargement does not progress, but also the matte property of the resulting thermoplastic resin composition is lowered, and the impact resistance is increased. Tend to decrease. Moreover, even when it exceeds 10 mass parts, it exists in the tendency for the matte property of the thermoplastic resin composition obtained to fall.

肥大化処理の際には、肥大化がより進行しやすくなることから、少量の無機電解質を併用することが好ましい。
無機電解質としては、例えば、硫酸ナトリウム、塩化ナトリウム、塩化カリウム、炭酸カリウムなどの中性またはアルカリ性の無機電解質が好ましい。
無機電解質は、未肥大の(メタ)アクリル酸エステル系ゴム状重合体の重合前に予め含有させてもよいし、肥大化処理前に添加してもよい。
In the case of the enlargement process, it is preferable to use a small amount of an inorganic electrolyte because enlargement is more likely to proceed.
As the inorganic electrolyte, for example, neutral or alkaline inorganic electrolytes such as sodium sulfate, sodium chloride, potassium chloride, and potassium carbonate are preferable.
The inorganic electrolyte may be contained in advance before polymerization of the non-hypertrophic (meth) acrylic ester rubber-like polymer, or may be added before the enlargement treatment.

また、肥大化処理においては、(メタ)アクリル酸エステル系ゴム(G)中の、未肥大の(メタ)アクリル酸エステル系ゴム(g)の残存量が15質量部以下となるよう肥大化することが好ましい。未肥大の(メタ)アクリル酸エステル系ゴム(g)の残存量が15質量部以下とするためには、例えば、酸基含有共重合体ラテックス(K)の使用量や無機電解質の使用量を多くする方法が採られる。   Further, in the enlargement treatment, the remaining amount of the unexpanded (meth) acrylate rubber (g) in the (meth) acrylate rubber (G) is enlarged to 15 parts by mass or less. It is preferable. In order to make the remaining amount of unhypertrophic (meth) acrylic acid ester rubber (g) 15 parts by mass or less, for example, the amount of acid group-containing copolymer latex (K) used or the amount of inorganic electrolyte used Many ways are taken.

このような肥大化処理により得られた(メタ)アクリル酸エステル系ゴム状重合体(G)の質量平均粒子径は、得られる熱可塑性樹脂組成物の耐衝撃性と艶消し性とのバランスが優れることから、1000nm以下であることが好ましく、800nm以下であることがより好ましく、600nm以下であることが特に好ましい。
(メタ)アクリル酸エステル系ゴム状重合体(G)の質量平均粒子径は、使用した未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)の粒子径を下回らない範囲であればよく、具体的には200nm以上であることが好ましく、250nm以上であることがより好ましく、300nm以上であることが特に好ましい。
The mass average particle diameter of the (meth) acrylic ester rubber polymer (G) obtained by such enlargement treatment is such that the balance between the impact resistance and the matte property of the resulting thermoplastic resin composition is obtained. Since it is excellent, it is preferably 1000 nm or less, more preferably 800 nm or less, and particularly preferably 600 nm or less.
The mass average particle diameter of the (meth) acrylic acid ester-based rubbery polymer (G) is within a range that does not fall below the particle diameter of the used non-hypertrophic (meth) acrylic acid ester-based rubbery polymer (g). Specifically, it is preferably 200 nm or more, more preferably 250 nm or more, and particularly preferably 300 nm or more.

[グラフト鎖]
上述した(メタ)アクリル酸エステル系ゴム状重合体(G)にグラフトしたグラフト鎖は、芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位を含むものである。
ここで、芳香族ビニル系単量体としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン等のビニルトルエン類、p−クロルスチレン等のハロゲン化スチレン類、p−t−ブチルスチレン、ジメチルスチレン、ビニルナフタレン類などが挙げられる。これらの中でも、スチレンまたはα−メチルスチレンが好ましい。
シアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリル、シアン化ビニリデンなどが挙げられるが、これらの中でも、アクリロニトリルが好ましい。
[Graft chain]
The graft chain grafted onto the (meth) acrylic ester rubber polymer (G) described above contains an aromatic vinyl monomer unit and a vinyl cyanide monomer unit.
Here, examples of the aromatic vinyl monomer include vinyl toluenes such as styrene, α-methyl styrene and p-methyl styrene, halogenated styrenes such as p-chlorostyrene, pt-butyl styrene, Examples thereof include dimethyl styrene and vinyl naphthalenes. Among these, styrene or α-methylstyrene is preferable.
Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, vinylidene cyanide, and among these, acrylonitrile is preferable.

グラフト鎖におけるシアン化ビニル系単量体単位および芳香族ビニル系単量体単位の割合は、シアン化ビニル系単量体単位が10〜50質量%で芳香族ビニル系単量体単位が50〜90質量%であることが好ましく、シアン化ビニル系単量体単位が15〜45質量%で芳香族ビニル系単量体単位が55〜85質量%であることがより好ましい。
グラフト鎖におけるシアン化ビニル系単量体単位および芳香族ビニル系単量体単位の割合が前記範囲であれば、得られる熱可塑性樹脂組成物の耐衝撃性および流動性がより高くなる。
The ratio of the vinyl cyanide monomer unit and the aromatic vinyl monomer unit in the graft chain is 10 to 50% by mass of the vinyl cyanide monomer unit and 50 to 50% of the aromatic vinyl monomer unit. It is preferably 90% by mass, more preferably 15 to 45% by mass of vinyl cyanide monomer units and 55 to 85% by mass of aromatic vinyl monomer units.
If the ratio of the vinyl cyanide monomer unit and the aromatic vinyl monomer unit in the graft chain is within the above range, the impact resistance and fluidity of the resulting thermoplastic resin composition will be higher.

また、グラフト鎖には、目的に応じて、芳香族ビニル単量体およびシアン化ビニル系単量体以外の他の単量体(以下、他の単量体と略す。)単位が含まれてもよい。
他の単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸−n−ブチル、アクリル酸−2−エチルヘキシル、アクリル酸−n−ヘキシル、メタクリル酸メチル、メタクリル酸エチル等の不飽和カルボン酸エステル系単量体や、無水マレイン酸、無水イタコン酸、無水シトラコン酸等の不飽和ジカルボン酸無水物、マレイミド、N−メチルマレイミド、N−ブチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等の不飽和ジカルボン酸のイミド化合物などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
The graft chain contains other monomer units (hereinafter abbreviated as other monomers) other than the aromatic vinyl monomer and the vinyl cyanide monomer depending on the purpose. Also good.
Examples of other monomers include unsaturated acrylates such as methyl acrylate, ethyl acrylate, acrylic acid-n-butyl, acrylic acid-2-ethylhexyl, acrylic acid-n-hexyl, methyl methacrylate, and ethyl methacrylate. Carboxylic acid ester monomers, unsaturated dicarboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide And an imide compound of an unsaturated dicarboxylic acid. These may be used individually by 1 type and may use 2 or more types together.

グラフト鎖に他の単量体単位が含まれる場合には、その含有量は40質量%以下であることが好ましく、20質量%以下であることがより好ましい。   When other monomer units are contained in the graft chain, the content is preferably 40% by mass or less, and more preferably 20% by mass or less.

グラフト共重合体(A)は、例えば、(メタ)アクリル酸エステル系ゴム状重合体(G)に単量体成分を乳化グラフト重合させることにより得られる。
乳化グラフト重合させる際には、(メタ)アクリル酸エステル系ゴム状重合体(G)を10〜80質量部とし、単量体成分を90〜20質量部(ゴム状重合体と単量体成分の合計量が100質量部)とすることが好ましく、(メタ)アクリル酸エステル系ゴム状重合体(G)を30〜70質量部とし、単量体成分を70〜30質量部(ゴム状重合体と単量体成分の合計量が100質量部)とすることがより好ましい。単量体成分の量が10質量部以上であれば、得られる熱可塑性樹脂組成物の耐衝撃性および流動性がより高くなり、80質量部以下である場合にも耐衝撃性がより高くなり、また、艶消し外観をより良好にできる。
The graft copolymer (A) can be obtained, for example, by subjecting a (meth) acrylic ester rubber-like polymer (G) to emulsion graft polymerization of a monomer component.
When emulsion graft polymerization is performed, the (meth) acrylic acid ester-based rubbery polymer (G) is used in an amount of 10 to 80 parts by mass, and the monomer component is 90 to 20 parts by mass (the rubbery polymer and the monomer component). Is preferably 100 parts by mass), 30 to 70 parts by mass of the (meth) acrylic ester rubber polymer (G), and 70 to 30 parts by mass of the monomer component (rubber-like weight). More preferably, the total amount of the coalescence and the monomer component is 100 parts by mass). When the amount of the monomer component is 10 parts by mass or more, the resulting thermoplastic resin composition has higher impact resistance and fluidity, and when it is 80 parts by mass or less, the impact resistance becomes higher. Also, the matte appearance can be improved.

乳化グラフト重合に用いる乳化剤としては、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)を得る際と同様に、ラテックスの安定性が優れ、重合率を高めることができることから、サルコシン酸ナトリウム、脂肪酸カリウム、脂肪酸ナトリウム、アルケニルコハク酸ジカリウム、ロジン酸石鹸等の各種カルボン酸塩、アルキル硫酸エステル、アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウムなどのアニオン系乳化剤を用いることが好ましい。なお、乳化剤は、乳化グラフト重合時にあらたに添加せず、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)の重合時に用いた乳化剤をそのまま利用しても構わない。
ラジカル重合開始剤としては、例えば、過酸化物、アゾ系化合物、またはこれらに酸化剤・還元剤を組み合わせたレドックス系開始剤を用いることができる。これらの中でも、レドックス系開始剤が好ましく、特に、硫酸第一鉄・ピロリン酸ナトリウム・ブドウ糖・ハイドロパーオキサイドの組み合わせ、硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩・ロンガリット・ハイドロパーオキサイドの組み合わせが好ましい。
また、乳化グラフト重合の際には、グラフト率やグラフト鎖の質量平均分子量を制御するために、連鎖移動剤を添加してもよい。
As an emulsifier used for emulsion graft polymerization, as in the case of obtaining an unhypertrophic (meth) acrylate rubber polymer (g), the stability of the latex is excellent, and the polymerization rate can be increased. Use anionic emulsifiers such as sodium carboxylate, fatty acid potassium, fatty acid sodium, dipotassium alkenyl succinate, rosin acid soap, alkyl sulfate, sodium alkylbenzene sulfonate, sodium polyoxyethylene nonylphenyl ether sulfate Is preferred. The emulsifier may not be newly added at the time of emulsion graft polymerization, and the emulsifier used at the time of polymerization of the non-hypertrophic (meth) acrylic ester rubber polymer (g) may be used as it is.
As the radical polymerization initiator, for example, a peroxide, an azo compound, or a redox initiator obtained by combining these with an oxidizing agent / reducing agent can be used. Among these, a redox initiator is preferable, and a combination of ferrous sulfate, sodium pyrophosphate, glucose, hydroperoxide, a combination of ferrous sulfate, ethylenediaminetetraacetic acid disodium salt, longalite, hydroperoxide is particularly preferable. preferable.
In emulsion graft polymerization, a chain transfer agent may be added in order to control the graft rate and the weight average molecular weight of the graft chain.

乳化グラフト重合では、グラフト共重合体(A)がラテックスの状態で得られる。グラフト共重合体(A)のラテックスからグラフト共重合体(A)を回収する方法としては、例えば、凝固剤が含まれる熱水中に、グラフト共重合体(A)のラテックスを添加してグラフト共重合体(A)を凝固させ、その凝固物を分離回収する方法などが挙げられる。
凝固剤としては、硫酸、塩酸、リン酸、硝酸等の無機酸や、塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等の金属塩等を用いることができる。ここで、凝固剤の種類は、重合の際に使用した乳化剤の種類に応じて選択することが好ましい。例えば、重合時に脂肪酸石鹸やロジン酸石鹸等のカルボン酸石鹸のみを使用した場合には、いずれの凝固剤を用いてもグラフト共重合体(A)を回収できるが、アルキルベンゼンスルホン酸ナトリウムなどの酸性領域でも安定な乳化力を示す乳化剤を使用した場合には、金属塩を用いることが好ましい。
分離回収したグラフト共重合体(A)は、再び水または温水中に再分散させてスラリー状とし、グラフト共重合体(A)中に残存する乳化剤残渣を水中に溶出させて、洗浄することが好ましい。洗浄後は、スラリーを脱水機等で脱水し、得られた固形物を気流乾燥機等で乾燥することにより、粉体状または粒子状のグラフト共重合体(A)を得ることができる。
In the emulsion graft polymerization, the graft copolymer (A) is obtained in a latex state. As a method for recovering the graft copolymer (A) from the latex of the graft copolymer (A), for example, the latex of the graft copolymer (A) is added to hot water containing a coagulant and grafted. Examples thereof include a method of coagulating the copolymer (A) and separating and recovering the coagulated product.
As the coagulant, inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid, and metal salts such as calcium chloride, calcium acetate and aluminum sulfate can be used. Here, the type of coagulant is preferably selected according to the type of emulsifier used in the polymerization. For example, when only a carboxylic acid soap such as fatty acid soap or rosin acid soap is used at the time of polymerization, the graft copolymer (A) can be recovered using any coagulant, but an acid such as sodium alkylbenzene sulfonate can be recovered. When an emulsifier exhibiting stable emulsifying power in the region is used, it is preferable to use a metal salt.
The separated and recovered graft copolymer (A) is re-dispersed again in water or warm water to form a slurry, and the emulsifier residue remaining in the graft copolymer (A) is eluted in water and washed. preferable. After washing, the slurry is dehydrated with a dehydrator or the like, and the obtained solid is dried with an air dryer or the like, whereby the powdery or particulate graft copolymer (A) can be obtained.

<ビニル系共重合体(B)>
ビニル系共重合体(B)は、芳香族ビニル系単量体単位およびシアン化ビニル系単量体を含むものである。また、ビニル系共重合体(B)には、芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位以外の他の単量体単位が含まれてもよい。
ビニル系共重合体(B)における芳香族ビニル系単量体単位、シアン化ビニル系単量体単位、芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位以外の他の単量体単位としては、グラフト共重合体(A)のグラフト鎖を構成するものと同様のものを使用できる。中でも、得られる熱可塑性樹脂組成物の耐衝撃性および流動性の点から、芳香族ビニル系単量体単位がスチレン単位、シアン化ビニル系単量体単位がアクリロニトリル単位であることが好ましい。
<Vinyl copolymer (B)>
The vinyl copolymer (B) contains an aromatic vinyl monomer unit and a vinyl cyanide monomer. The vinyl copolymer (B) may contain other monomer units other than the aromatic vinyl monomer unit and the vinyl cyanide monomer unit.
Other vinyl monomers other than aromatic vinyl monomer units, vinyl cyanide monomer units, aromatic vinyl monomer units and vinyl cyanide monomer units in vinyl copolymer (B) As the body unit, the same units as those constituting the graft chain of the graft copolymer (A) can be used. Among these, from the viewpoint of impact resistance and fluidity of the resulting thermoplastic resin composition, the aromatic vinyl monomer unit is preferably a styrene unit and the vinyl cyanide monomer unit is preferably an acrylonitrile unit.

ビニル系共重合体(B)における芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位の割合は、芳香族ビニル系単量体単位が40〜90質量%、シアン化ビニル系単量体単位が10〜60質量%であることが好ましく、芳香族ビニル系単量体単位が45〜85質量%、シアン化ビニル系単量体単位が15〜55質量%であることが好ましい。
グラフト鎖における芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位の割合が前記範囲であれば、得られる熱可塑性樹脂組成物の耐衝撃性および流動性がより高くなる。
また、ビニル系共重合体(B)に他の単量体単位が含まれる場合には、その含有量は50質量%以下であることが好ましく、20質量%以下であることがより好ましい。
The proportion of the aromatic vinyl monomer unit and the vinyl cyanide monomer unit in the vinyl copolymer (B) is 40 to 90% by mass of the aromatic vinyl monomer unit, and the vinyl cyanide monomer unit. The monomer unit is preferably 10 to 60% by mass, the aromatic vinyl monomer unit is preferably 45 to 85% by mass, and the vinyl cyanide monomer unit is preferably 15 to 55% by mass.
If the ratio of the aromatic vinyl monomer unit and the vinyl cyanide monomer unit in the graft chain is within the above range, the impact resistance and fluidity of the resulting thermoplastic resin composition will be higher.
Moreover, when another monomer unit is contained in a vinyl-type copolymer (B), it is preferable that the content is 50 mass% or less, and it is more preferable that it is 20 mass% or less.

[熱可塑性樹脂組成物の配合]
本発明の熱可塑性樹脂組成物では、グラフト共重合体(A)20〜80質量部と、ビニル系共重合体(B)80〜20質量部とを含有する。熱可塑性樹脂組成物中のグラフト共重合体(A)の含有量が20質量部以上であることにより、耐衝撃性を高くでき、グラフト共重合体(A)の含有量が80質量部以下であることにより、流動性を高くできる。
[Formulation of thermoplastic resin composition]
The thermoplastic resin composition of the present invention contains 20 to 80 parts by mass of the graft copolymer (A) and 80 to 20 parts by mass of the vinyl copolymer (B). When the content of the graft copolymer (A) in the thermoplastic resin composition is 20 parts by mass or more, impact resistance can be increased, and the content of the graft copolymer (A) is 80 parts by mass or less. By being, fluidity can be increased.

また、この熱可塑性樹脂組成物においては、グラフト共重合体(A)におけるグラフト鎖中のシアン化ビニル単量体単位の含有量(GA)と、ビニル系共重合体(B)中のシアン化ビニル単量体単位の含有量(BA)との差(GA−BA)が8〜25質量部であり、10〜20質量部であることが好ましい。
(GA−BA)が8質量部以上であることにより、得られる熱可塑性樹脂組成物は、良好な艶消し外観が得られる成形条件を広くでき、その結果、安定した艶消し外観が得られる。また、(GA−BA)が25質量部以下であることにより、光沢の斑を抑制でき、しかも耐衝撃性を向上させることができる。
Further, in this thermoplastic resin composition, the content (GA) of the vinyl cyanide monomer unit in the graft chain in the graft copolymer (A) and the cyanation in the vinyl copolymer (B). The difference (GA-BA) from the vinyl monomer unit content (BA) is 8 to 25 parts by mass, preferably 10 to 20 parts by mass.
When (GA-BA) is 8 parts by mass or more, the obtained thermoplastic resin composition can widen the molding conditions for obtaining a good matte appearance, and as a result, a stable matte appearance can be obtained. Moreover, when (GA-BA) is 25 parts by mass or less, glossy spots can be suppressed, and impact resistance can be improved.

本発明の熱可塑性樹脂組成物においては、その性能を損なわない範囲でグラフト共重合体(A)およびビニル系共重合体(B)以外の他の熱可塑性樹脂(C)が含まれてもよい。
他の熱可塑性樹脂(C)としては、例えば、ポリメタクリル酸メチル、ポリカーボネート、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン−ブタジエン−スチレン(SBS)、スチレン−ブタジエン(SBR)、水素添加SBS、スチレン−イソプレン−スチレン(SIS)等のスチレン系エラストマー、各種オレフィン系エラストマー、各種ポリエステル系エラストマー、ポリスチレン、メタクリル酸メチル−スチレン共重合体(MS樹脂)、ポリアセタール、変性ポリフェニレンエーテル(変性PPE樹脂)、エチレン−酢酸ビニル共重合体、ポリフェニレンスルフィド(PPS)、ポリエーテルスルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリアリレート、液晶ポリエステル樹脂、ポリアミド(ナイロン)等が挙げられる。これら熱可塑性樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、耐候性向上の点からは、メタクリル酸メチル−スチレン共重合体(MS樹脂)、ポリメタクリル酸メチルが好ましく、耐衝撃性向上の点からは、ポリカーボネートが好ましく、耐薬品性向上の点から、ポリブチレンテレフタレート(PBT)が好ましく、成形加工性向上の点からは、ポリエチレンテレフタレート(PET)、ポリスチレンが好ましく、耐熱性向上の点からは、変性ポリフェニレンエーテル(変性PPE)、ポリアミドが好ましい。
これら他の熱可塑性樹脂(C)が含まれる場合には、その含有量が、熱可塑性樹脂組成物100質量部に対して0〜60質量部であることが好ましい。
In the thermoplastic resin composition of the present invention, other thermoplastic resins (C) other than the graft copolymer (A) and the vinyl copolymer (B) may be contained within a range not impairing the performance. .
Examples of the other thermoplastic resin (C) include polymethyl methacrylate, polycarbonate, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyolefins such as polyvinyl chloride, polyethylene, and polypropylene, styrene-butadiene-styrene ( SBS), styrene-butadiene (SBR), hydrogenated SBS, styrene elastomers such as styrene-isoprene-styrene (SIS), various olefin elastomers, various polyester elastomers, polystyrene, methyl methacrylate-styrene copolymer (MS Resin), polyacetal, modified polyphenylene ether (modified PPE resin), ethylene-vinyl acetate copolymer, polyphenylene sulfide (PPS), polyether sulfone (PES) Polyetheretherketone (PEEK), polyarylate, liquid crystal polyester resins, polyamide (nylon) and the like. These thermoplastic resins may be used individually by 1 type, and may use 2 or more types together.
Among these, from the viewpoint of improving weather resistance, methyl methacrylate-styrene copolymer (MS resin) and polymethyl methacrylate are preferable. From the viewpoint of improving impact resistance, polycarbonate is preferable, and chemical resistance is improved. From the viewpoint, polybutylene terephthalate (PBT) is preferable. From the viewpoint of improving moldability, polyethylene terephthalate (PET) and polystyrene are preferable. From the viewpoint of improving heat resistance, modified polyphenylene ether (modified PPE) and polyamide are preferable. .
When these other thermoplastic resins (C) are included, the content is preferably 0 to 60 parts by mass with respect to 100 parts by mass of the thermoplastic resin composition.

また、熱可塑性樹脂組成物には、必要に応じて、顔料や染料等の着色剤、熱安定剤、光安定剤、補強剤、充填材、難燃剤、発泡剤、滑剤、可塑剤、帯電防止剤、加工助剤等が含まれてもよい。   In addition, if necessary, the thermoplastic resin composition may include a colorant such as a pigment or a dye, a heat stabilizer, a light stabilizer, a reinforcing agent, a filler, a flame retardant, a foaming agent, a lubricant, a plasticizer, or an antistatic agent. Agents, processing aids and the like may be included.

本発明の熱可塑性樹脂組成物は、例えば、グラフト共重合体(A)とビニル系共重合体(B)、必要に応じて他の熱可塑性樹脂(C)とを、V型ブレンダーやヘンシェルミキサー等の混合装置で混合し、その混合装置により得た混合物を溶融混練することで製造される。その溶融混練の際には、単軸または二軸の押出機、バンバリーミキサー、加熱ニーダー、ロール等の混練機などが用いられる。   The thermoplastic resin composition of the present invention includes, for example, a graft copolymer (A), a vinyl copolymer (B), and if necessary, another thermoplastic resin (C), a V-type blender or a Henschel mixer. It mixes with mixing apparatuses, such as, and it manufactures by melt-kneading the mixture obtained with the mixing apparatus. In the melt-kneading, a single-screw or twin-screw extruder, a Banbury mixer, a heating kneader, a kneader such as a roll, or the like is used.

上述したように、本発明の熱可塑性樹脂組成物は、グラフト共重合体(A)を構成する(メタ)アクリル酸エステル系ゴム状重合体(G)が、未肥大の(メタ)アクリル酸エステル系ゴム状重合体を酸基含有共重合体ラテックス(K)で肥大化処理したものである。また、グラフト鎖中のシアン化ビニル共重合体単位の含有量とビニル系共重合体中のシアン化ビニル系単量体単位の含有量との差が特定範囲のものである。このような熱可塑性樹脂組成物は、耐候性、耐衝撃性、流動性のいずれもが優れる上に、良好な艶消し外観が得られる成形条件幅が広い。   As described above, in the thermoplastic resin composition of the present invention, the (meth) acrylic ester rubber-like polymer (G) constituting the graft copolymer (A) is not enlarged (meth) acrylic ester. System rubber-like polymer is enlarged by acid group-containing copolymer latex (K). The difference between the content of the vinyl cyanide copolymer unit in the graft chain and the content of the vinyl cyanide monomer unit in the vinyl copolymer is within a specific range. Such a thermoplastic resin composition is excellent in all of weather resistance, impact resistance, and fluidity, and has a wide range of molding conditions for obtaining a good matte appearance.

(成形品)
本発明の成形品は、上述した熱可塑性樹脂組成物が成形されてなるものである。
熱可塑性樹脂組成物の成形方法としては、例えば、射出成形法、押出成形法、ブロー成形法、圧縮成形法、カレンダー成形法、インフレーション成形法などが挙げられる。これらの中でも、上記熱可塑性樹脂組成物が発揮する効果が特に有用になることから、押出成形法が好ましく、また、押出成形法により得る成形品としては、シート成形品または異形成形品が好ましい。
(Molding)
The molded product of the present invention is formed by molding the above-described thermoplastic resin composition.
Examples of the molding method of the thermoplastic resin composition include an injection molding method, an extrusion molding method, a blow molding method, a compression molding method, a calendar molding method, and an inflation molding method. Among these, since the effect exhibited by the thermoplastic resin composition is particularly useful, the extrusion molding method is preferable, and the molded product obtained by the extrusion molding method is preferably a sheet molded product or a deformed product.

本発明の成形品は、他の樹脂や金属等で被覆されてもよい。ここで、被覆に使用される他の樹脂としては、例えば、上述した他の熱可塑性樹脂(C)や、ABS樹脂やハイインパクトポリスチレン樹脂(HIPS)等のゴム変性熱可塑性樹脂、フェノール樹脂やメラミン樹脂などの熱硬化性樹脂などが挙げられる。   The molded product of the present invention may be coated with other resins, metals, and the like. Here, as other resin used for coating, for example, other thermoplastic resins (C) described above, rubber-modified thermoplastic resins such as ABS resin and high impact polystyrene resin (HIPS), phenol resin, and melamine are used. Examples thereof include thermosetting resins such as resins.

本発明の成形品は、上述した熱可塑性樹脂組成物が成形されてなるものであるため、耐候性、耐衝撃性、流動性に優れる上に、良好な艶消し外観を有する。
このような成形品は様々な用途で使用することができる。例えば、工業的用途として、車両部品、特に無塗装で使用される各種外装・内装部品、壁材、窓枠等の建材部品、食器、玩具、掃除機ハウジング、テレビジョンハウジング、エアコンハウジング等の家電部品、インテリア部材、船舶部材および通信機器ハウジング、ノートパソコンハウジング、PDAハウジング、液晶プロジェクターハウジング等の電機機器ハウジングなどに好適に使用される。
Since the molded article of the present invention is formed by molding the above-described thermoplastic resin composition, it has excellent weather resistance, impact resistance and fluidity, and also has a good matte appearance.
Such a molded article can be used for various purposes. For example, for industrial use, automobile parts, especially various exterior / interior parts used without painting, wall materials, building material parts such as window frames, tableware, toys, vacuum cleaner housings, television housings, air conditioner housings, etc. It is suitably used for parts, interior members, ship members, communication equipment housings, notebook computer housings, PDA housings, electrical equipment housings such as liquid crystal projector housings, and the like.

以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の例に限定されない。なお、以下の例における「%」および「部」は明記しない限りは質量基準である。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to the following examples. In the following examples, “%” and “part” are based on mass unless otherwise specified.

[製造例1]未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g−1)の製造
攪拌装置および温度制御ジャケット付き10リットルのステンレス製オートクレーブに、脱イオン水(以下、水と略す。)400部、アルケニルコハク酸ジカリウム(花王(株)製ラテムルASK)1.0部、硫酸ナトリウム0.3部、アクリル酸n−ブチル97部、アクリロニトリル3部、シアヌル酸トリアリル0.8部、ジメタクリル酸1,3−ブチレングリコールジエステル0.3部を攪拌下で仕込んだ。次いで、オートクレーブ内を窒素置換後、温度制御ジャケットによりオートクレーブ内を55℃に昇温した。
次いで、内温55℃にて、過硫酸カリウム0.2部および水5部を含む開始剤水溶液を添加して重合を開始させた。重合発熱が確認された後、ジャケット温度を50℃とし、重合発熱が確認されなくなるまで重合を継続した。そして、重合開始から3時間後に冷却して、固形分濃度が19.9%、質量平均粒子径が75nm、pHが8.6の未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g−1)ラテックスを得た。
[Production Example 1] Production of non-hypertrophic (meth) acrylic ester rubber polymer (g-1) In a 10 liter stainless steel autoclave with a stirrer and a temperature control jacket, deionized water (hereinafter abbreviated as water) .) 400 parts, 1.0 part of dipotassium alkenyl succinate (Latemul ASK manufactured by Kao Corporation), 0.3 part of sodium sulfate, 97 parts of n-butyl acrylate, 3 parts of acrylonitrile, 0.8 part of triallyl cyanurate, 0.3 parts of 1,3-butylene glycol diester dimethacrylic acid was charged with stirring. Subsequently, after the inside of the autoclave was replaced with nitrogen, the temperature inside the autoclave was raised to 55 ° C. by a temperature control jacket.
Next, at an internal temperature of 55 ° C., an initiator aqueous solution containing 0.2 part of potassium persulfate and 5 parts of water was added to initiate polymerization. After the polymerization exotherm was confirmed, the jacket temperature was set to 50 ° C., and the polymerization was continued until no polymerization exotherm was confirmed. And it cooled after 3 hours from superposition | polymerization, solid content density | concentration is 19.9%, a mass mean particle diameter is 75 nm, pH is 8.6 non-hypertrophic (meth) acrylic acid ester rubber-like polymer (g -1) A latex was obtained.

[製造例2]未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g−2)の製造
製造例1において、ジメタクリル酸1,3−ブチレングリコールジエステルを使用しなかったこと以外は製造例1と同様の方法で重合して、固形分濃度が19.9%、質量平均粒子径が80nm、pHが8.4の未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g−2)ラテックスを得た。
[Production Example 2] Production of non-hypertrophic (meth) acrylic acid ester rubber polymer (g-2) Production in Production Example 1 except that dimethacrylic acid 1,3-butylene glycol diester was not used. Polymerization was carried out in the same manner as in Example 1, and a non-hypertrophic (meth) acrylate rubber polymer (g-) having a solid content concentration of 19.9%, a mass average particle size of 80 nm and a pH of 8.4. 2) A latex was obtained.

[製造例3]未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g−3)の製造
製造例1において、シアヌル酸トリアリルを使用しなかったこと以外は製造例1と同様の方法で重合して、固形分濃度が20.0%、質量平均粒子径が75nm、pHが8.5の未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g−3)ラテックスを得た。
[Production Example 3] Production of unhypertrophic (meth) acrylic ester rubber polymer (g-3) In Production Example 1, the same method as in Production Example 1 except that triallyl cyanurate was not used. Polymerization was performed to obtain a non-hypertrophic (meth) acrylic ester rubber polymer (g-3) latex having a solid content concentration of 20.0%, a mass average particle diameter of 75 nm, and a pH of 8.5.

[製造例4]酸基含有共重合体ラテックス(K)の調製
試薬注入容器、冷却管、ジャケット加熱機および攪拌装置を備えた反応器内に、ナトリウム2.5部、ナトリウムホルムアルデヒドスルホキシレート二水和物0.3部、水200部、オレイン酸カリウム2.2部、ジオクチルスルホコハク酸、硫酸第一鉄七水塩0.003部、エチレンジアミン四酢酸二ナトリウム0.009部を窒素気流下で仕込んだ後、反応器内を60℃に昇温した。
60℃になった時点から、アクリル酸n−ブチル81.5部、メタクリル酸18.5部、クメンヒドロパーオキシド0.5部からなる混合物を120分かけて反応器内に連続的に滴下した。滴下終了後、さらに2時間60℃のまま保持して、固形分濃度が33.0%、重合転化率が99%、質量平均粒子径が145nmの酸基含有共重合体ラテックス(K)を得た。
[Production Example 4] Preparation of acid group-containing copolymer latex (K) In a reactor equipped with a reagent injection vessel, a condenser, a jacket heater and a stirrer, 2.5 parts of sodium, sodium formaldehyde sulfoxylate Hydrate 0.3 part, water 200 part, potassium oleate 2.2 part, dioctylsulfosuccinic acid, ferrous sulfate heptahydrate 0.003 part, ethylenediaminetetraacetic acid disodium 0.009 part under nitrogen stream After charging, the temperature in the reactor was raised to 60 ° C.
When the temperature reached 60 ° C., a mixture consisting of 81.5 parts of n-butyl acrylate, 18.5 parts of methacrylic acid, and 0.5 part of cumene hydroperoxide was continuously dropped into the reactor over 120 minutes. . After completion of the dropwise addition, the mixture was kept at 60 ° C. for 2 hours to obtain an acid group-containing copolymer latex (K) having a solid content concentration of 33.0%, a polymerization conversion rate of 99%, and a mass average particle diameter of 145 nm. It was.

[製造例5](メタ)アクリル酸エステル系ゴム状重合体(G−1a〜1c,G−2,G−3)の製造
製造例1〜3で得た各未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g−1)〜(g−3)に、1%水酸化ナトリウム水溶液を添加してラテックスのpHを9〜10に調節した。
次いで、温度65℃にて、pHが調節された(メタ)アクリル酸エステル系ゴム状重合体(g−1)〜(g−3)に、表1に示す量の酸基含有共重合体ラテックス(K)を一括で添加し、その温度を保ちながら30分間攪拌を継続して、肥大化された(メタ)アクリル酸エステル系ゴム状重合体(G−1a)〜(G−1c)、(G−2)、(G−3)ラテックスを得た。
得られた(メタ)アクリル酸エステル系ゴム状重合体(G−1a〜1c,G−2,G−3)の質量平均粒子径を測定した。その結果を表1に示す。
なお、質量平均粒子径は、マテック・アプライド・サイエンス社製サブミクロン粒度分布測定器CHDF−2000を用いて測定した。
[Production Example 5] Production of (meth) acrylic acid ester-based rubbery polymers (G-1a to 1c, G-2, G-3) Each non-hypertrophic (meth) acrylic acid obtained in Production Examples 1 to 3 A 1% aqueous sodium hydroxide solution was added to the ester rubber-like polymers (g-1) to (g-3) to adjust the pH of the latex to 9-10.
Next, the acid group-containing copolymer latex in the amount shown in Table 1 was added to the (meth) acrylic ester rubber-like polymers (g-1) to (g-3) whose pH was adjusted at a temperature of 65 ° C. (K) was added all at once, and the stirring was continued for 30 minutes while maintaining the temperature, and the enlarged (meth) acrylic acid ester rubbery polymers (G-1a) to (G-1c), ( G-2) and (G-3) latex were obtained.
The mass average particle diameter of the obtained (meth) acrylic acid ester rubbery polymer (G-1a to 1c, G-2, G-3) was measured. The results are shown in Table 1.
The mass average particle diameter was measured using a submicron particle size distribution analyzer CHDF-2000 manufactured by Matec Applied Science.

Figure 2007308551
Figure 2007308551

[製造例6]大粒子径(メタ)アクリル酸エステル系ゴム状重合体(Z−1)の製造
製造例1において、アルケニルコハク酸ジカリウムの量を0.2部とし、重合終了後にさらに0.8部を追添加したこと以外は製造例1と同様にして重合して、固形分濃度が19.4%、質量平均粒子径が370nm、pHが8.7の大粒子径の(メタ)アクリル酸エステル系ゴム状重合体(Z−1)ラテックスを得た。
[Production Example 6] Production of large particle size (meth) acrylic acid ester-based rubbery polymer (Z-1) In Production Example 1, the amount of dipotassium alkenyl succinate was 0.2 parts, and after the completion of polymerization, the amount was further reduced to 0. Polymerization was carried out in the same manner as in Production Example 1 except that 8 parts were additionally added, and a (meth) acryl with a large particle size having a solid content concentration of 19.4%, a mass average particle size of 370 nm and a pH of 8.7. An acid ester rubbery polymer (Z-1) latex was obtained.

[製造例7] グラフト共重合体(A−1)の製造
試薬注入容器、冷却管、ジャケット加熱機および攪拌装置を備えた反応器に、(メタ)アクリル酸エステル系ゴム状重合体(G−1a)ラテックス50部(固形分換算)、水((メタ)アクリル酸エステル系ゴム状重合体ラテックス中の水も含む)170部、ロンガリット0.15部、アルケニルコハク酸ジカリウム0.5部を仕込み、攪拌しつつ窒素気流下で反応器内を75℃に昇温した。
次いで、アクリロニトリル(表2中ではANと表記する。)5部、スチレン(表2中ではStと表記する。)15部、t−ブチルハイドロパーオキサイド0.08部の混合液を1時間にわたって反応器内に滴下して重合させた。滴下終了後、温度75℃の状態を1時間保持した後、硫酸第一鉄七水塩0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.15部、イオン交換水10部からなる酸化・還元剤水溶液を添加した。
次いで、アクリロニトリル7.5部、スチレン22.5部、t−ブチルハイドロパーオキサイド0.2部からなる混合物を1.5時間にわたって反応器内に滴下し、反応器内の温度が80℃を超えないようにして重合させた。
滴下終了後、温度80℃の状態を30分間保持した後、冷却して、グラフト共重合体(A−1)ラテックスを得た。
次いで、1.2%硫酸水溶液150部を75℃に加熱し、この加熱した硫酸水溶液を攪拌しながら、グラフト共重合体(A−1)ラテックス100部を徐々に滴下して凝固させ、さらに90℃に昇温して5分間保持して凝固物を得た。次いで、得られた凝固物を脱水、洗浄、乾燥して、白色粉末状のグラフト共重合体(A−1)を得た。
[Production Example 7] Production of graft copolymer (A-1) A reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer was charged with a (meth) acrylate rubber polymer (G- 1a) 50 parts of latex (in terms of solid content), 170 parts of water (including water in the (meth) acrylate rubber-based polymer latex), 0.15 part of Rongalite, 0.5 part of dipotassium alkenyl succinate are charged. While stirring, the temperature in the reactor was raised to 75 ° C. under a nitrogen stream.
Next, a mixed solution of 5 parts of acrylonitrile (indicated as AN in Table 2), 15 parts of styrene (indicated as St in Table 2), and 0.08 part of t-butyl hydroperoxide was reacted for 1 hour. The solution was dropped into the vessel and polymerized. After completion of dropping, the temperature is maintained at 75 ° C. for 1 hour, and then ferrous sulfate heptahydrate 0.001 part, ethylenediaminetetraacetic acid disodium salt 0.003 part, Rongalite 0.15 part, ion-exchanged water 10 parts An aqueous oxidizing / reducing agent solution consisting of
Next, a mixture of 7.5 parts of acrylonitrile, 22.5 parts of styrene, and 0.2 parts of t-butyl hydroperoxide was dropped into the reactor over 1.5 hours, and the temperature in the reactor exceeded 80 ° C. Polymerization was carried out in such a way that
After completion of the dropping, the temperature of 80 ° C. was maintained for 30 minutes and then cooled to obtain a graft copolymer (A-1) latex.
Subsequently, 150 parts of a 1.2% sulfuric acid aqueous solution was heated to 75 ° C., and 100 parts of the graft copolymer (A-1) latex was gradually dropped and solidified while stirring the heated aqueous sulfuric acid solution. The temperature was raised to ° C. and held for 5 minutes to obtain a coagulated product. Subsequently, the obtained solidified product was dehydrated, washed and dried to obtain a white powdery graft copolymer (A-1).

得られたグラフト共重合体(A−1)におけるグラフト鎖中のシアン化ビニル単量体単位の含有量(GA)、アセトン不溶分、還元粘度(ηsp/C)を測定した。それらの結果を表2に示す。
なお、グラフト鎖中のシアン化ビニル単量体単位の含有量(表2中ではGAと表記する。)は、熱分解ガスクロマトグラフィー(島津製作所製、GC−14A)を用いて測定した。
また、還元粘度は、まず、アセトン可溶分0.2gを100cmのN,N−ジメチルホルムアミドに溶解させ、その溶液の粘度を自動粘度計(サン電子工業(株)製)を用いて25℃で測定し、また、同条件で測定した溶媒の粘度を測定した。そして、溶液の粘度および溶媒の粘度よりアセトン可溶分の還元粘度を求めた。
In the obtained graft copolymer (A-1), the content (GA) of vinyl cyanide monomer units in the graft chain, acetone insoluble matter, and reduced viscosity (η sp / C) were measured. The results are shown in Table 2.
In addition, content (it describes with GA in Table 2) of the vinyl cyanide monomer unit in a graft chain was measured using the pyrolysis gas chromatography (The Shimadzu Corporation make, GC-14A).
Further, the reduced viscosity is obtained by first dissolving 0.2 g of acetone-soluble matter in 100 cm 3 of N, N-dimethylformamide, and measuring the viscosity of the solution using an automatic viscometer (manufactured by Sun Electronics Co., Ltd.). The viscosity of the solvent was measured at 0 ° C. and measured under the same conditions. And the reduced viscosity of acetone soluble part was calculated | required from the viscosity of the solution, and the viscosity of the solvent.

Figure 2007308551
Figure 2007308551

[製造例8〜14]グラフト共重合体(A−2)〜(A−8)の製造
製造例7記載の例において、(メタ)アクリル酸エステル系ゴム状重合体(G−1a)を(G−1b)、(G−1c)、(G−2)、(G−3)に各々変更し、また、グラフト重合に使用した単量体組成比を表2のように変更したこと以外は製造例7と同様にして重合を行って、グラフト共重合体(A−2)〜(A−8)を得た。
グラフト共重合体(A−2)〜(A−8)について、製造例7と同様にして、グラフト鎖中のシアン化ビニル単量体単位の含有量(GA)、アセトン不溶分、還元粘度を測定した。それらの結果を表2に示す。
[Production Examples 8 to 14] Production of Graft Copolymers (A-2) to (A-8) In the example described in Production Example 7, (meth) acrylate rubber polymer (G-1a) is ( G-1b), (G-1c), (G-2), and (G-3) were each changed, and the monomer composition ratio used for graft polymerization was changed as shown in Table 2. Polymerization was performed in the same manner as in Production Example 7 to obtain graft copolymers (A-2) to (A-8).
For the graft copolymers (A-2) to (A-8), in the same manner as in Production Example 7, the content (GA) of vinyl cyanide monomer units in the graft chain, the acetone insoluble content, and the reduced viscosity were determined. It was measured. The results are shown in Table 2.

[製造例8]グラフト共重合体(A−9)の製造
製造例7において、(メタ)アクリル酸エステル系ゴム状重合体(G−1a)を酸基含有共重合体(K)によって肥大化されていない(Z−1)に変更したこと以外は製造例7と同様にして重合を行ってグラフト共重合体(A−9)を得た。
グラフト共重合体(A−9)について、製造例7と同様にして、グラフト鎖中のシアン化ビニル単量体単位の含有量(GA)、アセトン不溶分、還元粘度を測定した。それらの結果を表2に示す。
[Production Example 8] Production of graft copolymer (A-9) In Production Example 7, the (meth) acrylic ester rubber-like polymer (G-1a) is enlarged by an acid group-containing copolymer (K). Polymerization was carried out in the same manner as in Production Example 7 except that it was changed to (Z-1) which was not carried out to obtain a graft copolymer (A-9).
For the graft copolymer (A-9), in the same manner as in Production Example 7, the content (GA) of vinyl cyanide monomer units in the graft chain, acetone insoluble matter, and reduced viscosity were measured. The results are shown in Table 2.

[製造例9]ビニル系共重合体(B−1)
アクリロニトリル27部およびスチレン73部を懸濁重合して、N,N−ジメチルホルムアミド溶液における還元粘度(25℃で測定)が0.61dl/gのアクリロニトリル−スチレン共重合体(B−1)を得た。
得られたビニル系共重合体(B−1)におけるシアン化ビニル単量体単位の含有量(表3中ではBAと表記する。)をグラフト共重合体のグラフト鎖と同様にして測定した。その結果を表3に示す。
[Production Example 9] Vinyl-based copolymer (B-1)
27 parts of acrylonitrile and 73 parts of styrene are subjected to suspension polymerization to obtain an acrylonitrile-styrene copolymer (B-1) having a reduced viscosity (measured at 25 ° C.) of 0.61 dl / g in an N, N-dimethylformamide solution. It was.
The content of vinyl cyanide monomer units (indicated as BA in Table 3) in the obtained vinyl copolymer (B-1) was measured in the same manner as the graft chain of the graft copolymer. The results are shown in Table 3.

Figure 2007308551
Figure 2007308551

[製造例10]ビニル系共重合体(B−2)〜(B−4)
アクリロニトリルおよびスチレンの仕込み組成比を表3のように変更したこと以外は製造例9と同様に重合してビニル系共重合体(B−2)〜(B−4)を得た。
得られたビニル系共重合体(B−2)〜(B−4)におけるシアン化ビニル単量体単位の含有量(BA)を製造例9と同様にして測定した。その結果を表3に示す。
[Production Example 10] Vinyl copolymers (B-2) to (B-4)
Polymerization was carried out in the same manner as in Production Example 9 except that the charged composition ratios of acrylonitrile and styrene were changed as shown in Table 3, and vinyl copolymers (B-2) to (B-4) were obtained.
The vinyl cyanide monomer unit content (BA) in the obtained vinyl copolymers (B-2) to (B-4) was measured in the same manner as in Production Example 9. The results are shown in Table 3.

[製造例11]ビニル系共重合体(B−5)
アクリロニトリル26部およびα−メチルスチレン74部を懸濁重合して、N,N−ジメチルホルムアミド溶液における還元粘度(25℃で測定)が0.51dl/gのアクリロニトリル−α−メチルスチレン共重合体(B−5)を得た。
得られたビニル系共重合体(B−5)におけるシアン化ビニル単量体単位の含有量(BA)を製造例9と同様にして測定した。その結果を表3に示す。
[Production Example 11] Vinyl copolymer (B-5)
26 parts of acrylonitrile and 74 parts of α-methylstyrene were subjected to suspension polymerization, and an acrylonitrile-α-methylstyrene copolymer having a reduced viscosity (measured at 25 ° C.) in an N, N-dimethylformamide solution of 0.51 dl / g ( B-5) was obtained.
The vinyl cyanide monomer unit content (BA) in the obtained vinyl copolymer (B-5) was measured in the same manner as in Production Example 9. The results are shown in Table 3.

[製造例12]ビニル系共重合体(B−6)
アクリロニトリル27部、スチレン30部、メタクリル酸メチル43部を懸濁重合して、N,N−ジメチルホルムアミド溶液における還元粘度(25℃で測定)が0.52dl/gのアクリロニトリル−スチレン−メタクリル酸メチル三元共重合体(B−6)を得た。
得られたビニル系共重合体(B−6)におけるシアン化ビニル単量体単位の含有量(BA)を製造例9と同様にして測定した。その結果を表3に示す。
[Production Example 12] Vinyl copolymer (B-6)
27 parts of acrylonitrile, 30 parts of styrene and 43 parts of methyl methacrylate are subjected to suspension polymerization, and acrylonitrile-styrene-methyl methacrylate having a reduced viscosity (measured at 25 ° C.) in an N, N-dimethylformamide solution of 0.52 dl / g. A ternary copolymer (B-6) was obtained.
The vinyl cyanide monomer unit content (BA) in the obtained vinyl copolymer (B-6) was measured in the same manner as in Production Example 9. The results are shown in Table 3.

[製造例13]ビニル系共重合体(B−7)
メタクリル酸メチル99部およびアクリル酸メチル1部を懸濁重合して、N,N−ジメチルホルムアミド溶液における還元粘度(25℃で測定)が0.25dl/gのアクリル樹脂(B−7)を得た。
得られたビニル系共重合体(B−7)におけるシアン化ビニル単量体単位の含有量(BA)を製造例9と同様にして測定した。その結果を表3に示す。
[Production Example 13] Vinyl-based copolymer (B-7)
99 parts of methyl methacrylate and 1 part of methyl acrylate are subjected to suspension polymerization to obtain an acrylic resin (B-7) having a reduced viscosity (measured at 25 ° C.) of 0.25 dl / g in an N, N-dimethylformamide solution. It was.
The vinyl cyanide monomer unit content (BA) in the obtained vinyl copolymer (B-7) was measured in the same manner as in Production Example 9. The results are shown in Table 3.

[実施例1〜実施例14、比較例1〜比較例7]熱可塑性樹脂組成物の製造
グラフト共重合体(A−1)〜(A−9)、ビニル系共重合体(B−1)〜(B−7)を、表4〜表6に示す割合で配合し、さらにエチレンビスステアリルアミド0.4部、光安定剤(旭電化工業(株)製「アデカスタブLA−63P」0.2部、紫外線吸収剤(旭電化工業(株)製、「アデカスタブLA−36」)0.2部、着色剤である酸化チタン(石原産業(株)製「CR60−2」)3部を添加した。これにより得た混合物をヘンシェルミキサーにより混合した後、バレル温度230℃に加熱した脱気式二軸押出機(池貝鉄工(株)製「PCM−30」)で賦形し、ペレットを作製した。
得られたペレットを、幅60mmのTダイを取り付けた中央機器(株)製40mmφ単軸押出機により、バレル温度190℃または250℃、冷却ロール温度55℃の条件で、押出成形して、幅200mmのシートを得た。その際、巻き取り速度を調節することによって厚みを約1.0mmに調節した。
[Example 1 to Example 14, Comparative Example 1 to Comparative Example 7] Production of Thermoplastic Resin Composition Graft Copolymers (A-1) to (A-9), Vinyl Copolymer (B-1) To (B-7) in the proportions shown in Tables 4 to 6, and 0.4 parts of ethylene bisstearylamide, a light stabilizer ("ADK STAB LA-63P" 0.2 by Asahi Denka Kogyo Co., Ltd.) Part, 0.2 part of an ultraviolet absorber (Asahi Denka Kogyo Co., Ltd., “Adeka Stub LA-36”), 3 parts of titanium oxide (“CR60-2” manufactured by Ishihara Sangyo Co., Ltd.) as a colorant were added. After the mixture thus obtained was mixed with a Henschel mixer, it was shaped with a degassing twin-screw extruder (“PCM-30” manufactured by Ikekai Tekko Co., Ltd.) heated to a barrel temperature of 230 ° C. to produce pellets. .
The obtained pellets were extruded using a 40 mmφ single-screw extruder manufactured by Chuo Kikai Co., Ltd., to which a T-die with a width of 60 mm was attached, under the conditions of a barrel temperature of 190 ° C. or 250 ° C. and a cooling roll temperature of 55 ° C. A 200 mm sheet was obtained. At that time, the thickness was adjusted to about 1.0 mm by adjusting the winding speed.

Figure 2007308551
Figure 2007308551

Figure 2007308551
Figure 2007308551

Figure 2007308551
Figure 2007308551

各実施例および各比較例で得られた熱可塑性樹脂組成物および成形品を、下記の評価方法により評価した。評価結果を表7〜表9に示す。
(i)シャルピー衝撃強度(耐衝撃性)
ISO 179に準拠し、23℃の環境下で12時間以上放置したノッチあり試験片を用いて測定した。
(ii)メルトボリュームレート(流動性)
ISO 1133に準拠し、バレル温度220℃、加重98Nの条件で測定した。
(iii)成形品の光沢およびその成形温度依存性
光沢度は入射光60°の反射率として測定した。
また、バレル温度190℃の条件で得たシートの光沢度とバレル温度250℃の条件で得たシートの光沢度を下記式(1)に代入して光沢差を求めた。この光沢差が大きい程、光沢が成形温度に依存しやすく、艶消し外観が得られる成形条件幅が狭いことを示す。
(光沢差(%))=(バレル温度250℃でのシートの光沢度)−(バレル温度190℃でのシートの光沢度)・・・式(1)
(iv)成形品外観の目視評価
成形品を目視により観察し、その艶消し性、フィッシュアイやダイラインの発生状態、表面のきめの細かさから外観を以下のように評価した。
○:外観に不良がなかった。
△:外観に不良がわずかに見られたが、実用上問題ない。
×:外観に不良が多数見られ、実用に耐えない。
(v)耐候性(加速曝露試験)
得られたシートを、サンシャインウェザーメーター(スガ試験機(株)製)でブラックパネル温度63℃、サイクル条件60分(降雨:12分)にて1,000時間処理した。そして、処理後のシートと未処理のシートとを色差計により色相を測定し、処理前後の変色度△Eを求めた。△Eが小さい程、耐候性に優れることを示す。
The thermoplastic resin compositions and molded articles obtained in each Example and each Comparative Example were evaluated by the following evaluation methods. The evaluation results are shown in Tables 7-9.
(i) Charpy impact strength (impact resistance)
In accordance with ISO 179, measurement was performed using a test piece with a notch that was allowed to stand for 12 hours or more in an environment of 23 ° C.
(ii) Melt volume rate (fluidity)
In accordance with ISO 1133, measurement was performed under conditions of a barrel temperature of 220 ° C. and a load of 98N.
(iii) Gloss of molded product and its dependency on molding temperature Gloss was measured as a reflectance of incident light of 60 °.
Further, the gloss difference was obtained by substituting the glossiness of the sheet obtained under the barrel temperature condition of 190 ° C. and the glossiness of the sheet obtained under the barrel temperature condition of 250 ° C. into the following formula (1). The larger the gloss difference, the more easily the gloss depends on the molding temperature, and the narrower the molding condition width for obtaining a matte appearance.
(Gloss difference (%)) = (Glossiness of sheet at barrel temperature 250 ° C.) − (Glossiness of sheet at barrel temperature 190 ° C.) Formula (1)
(Iv) Visual Evaluation of Appearance of Molded Product The molded product was visually observed, and the appearance was evaluated as follows from the matteness, the appearance of fish eyes and die lines, and the fineness of the surface texture.
○: There was no defect in appearance.
Δ: Slightly poor appearance was observed, but there is no practical problem.
X: Many defects are seen in the appearance and cannot be practically used.
(v) Weather resistance (accelerated exposure test)
The obtained sheet was treated with a sunshine weather meter (manufactured by Suga Test Instruments Co., Ltd.) for 1,000 hours at a black panel temperature of 63 ° C. and a cycle condition of 60 minutes (rainfall: 12 minutes). Then, the hue of the treated sheet and the untreated sheet was measured with a color difference meter, and the color change degree ΔE before and after the treatment was obtained. It shows that it is excellent in a weather resistance, so that (DELTA) E is small.

Figure 2007308551
Figure 2007308551

Figure 2007308551
Figure 2007308551

Figure 2007308551
Figure 2007308551

実施例および比較例より、次のことが明らかとなった。
(1)特定のグラフト共重合体(A)とビニル系共重合体(B)とを特定の条件で含有する実施例1〜14の熱可塑性樹脂組成物は、シャルピー衝撃強度とメルトボリュームレートが共に高く、成形温度190℃と250℃において良好な艶消し性を示した。さらにサンシャインウェザーメーターによる耐候性試験で変色が小さかった。すなわち、これらの熱可塑性樹脂組成物は、耐候性、耐衝撃性、流動性のいずれもが優れる上に、良好な艶消し外観が得られる成形条件幅が広かった。このような熱可塑性樹脂組成物は、工業用材料としての利用価値が高い。
(2)(GA−BA)が特定の範囲の下限未満であった比較例1〜4の熱可塑性樹脂組成物は、成形温度190℃における艶消し性は比較的良好であるものの、成形温度250℃において光沢が著しく向上して艶消し性が不充分であった。すなわち、これらの熱可塑性樹脂組成物は、良好な艶消し外観が得られる成形条件幅が狭かった。このような熱可塑性樹脂組成物は、工業用材料としての利用価値が低い。
(3)(GA−BA)が特定の範囲の上限を超えていた比較例5の熱可塑性樹脂組成物は、成形品の外観が著しく悪く、成形品の部位によって光沢斑が発生していた。このような熱可塑性樹脂組成物は、工業用材料としての利用価値が低い。
(3)ビニル系共重合体(B)がシアン化ビニル単量体単位を含まない比較例6の熱可塑性樹脂組成物は、耐候性は良好であり、また、成形温度190℃における艶消し性は比較的良好であるものの、成形温度250℃において艶消し性が不充分であった。すなわち、これらの熱可塑性樹脂組成物は、良好な艶消し外観が得られる成形条件幅が狭かった。このような熱可塑性樹脂組成物は、工業用材料としての利用価値が低い。
(4)グラフト共重合体の(メタ)アクリル酸エステル系ゴム状重合体(G)が酸基含有共重合体ラテックス(K)により肥大化されたものではない比較例7の熱可塑性樹脂組成物は、成形温度190℃および250℃のいずれの条件においても艶消し性が得られなかった。このような熱可塑性樹脂組成物は、工業用材料としての利用価値が低い。
From the examples and comparative examples, the following became clear.
(1) The thermoplastic resin compositions of Examples 1 to 14 containing a specific graft copolymer (A) and a vinyl copolymer (B) under specific conditions have Charpy impact strength and melt volume rate. Both were high and showed good matting properties at molding temperatures of 190 ° C and 250 ° C. Furthermore, discoloration was small in a weather resistance test using a sunshine weather meter. That is, these thermoplastic resin compositions were excellent in all of weather resistance, impact resistance, and fluidity, and had a wide range of molding conditions for obtaining a good matte appearance. Such a thermoplastic resin composition has a high utility value as an industrial material.
(2) The thermoplastic resin compositions of Comparative Examples 1 to 4 in which (GA-BA) was less than the lower limit of the specific range have relatively good matte properties at a molding temperature of 190 ° C, but a molding temperature of 250. The gloss was remarkably improved at 0 ° C. and the matte property was insufficient. In other words, these thermoplastic resin compositions had a narrow range of molding conditions for obtaining a good matte appearance. Such a thermoplastic resin composition has low utility value as an industrial material.
(3) In the thermoplastic resin composition of Comparative Example 5 in which (GA-BA) exceeded the upper limit of the specific range, the appearance of the molded product was remarkably poor, and gloss spots were generated depending on the site of the molded product. Such a thermoplastic resin composition has low utility value as an industrial material.
(3) The thermoplastic resin composition of Comparative Example 6 in which the vinyl copolymer (B) does not contain a vinyl cyanide monomer unit has good weather resistance, and has a matte property at a molding temperature of 190 ° C. Was relatively good, but the matte property was insufficient at a molding temperature of 250 ° C. In other words, these thermoplastic resin compositions had a narrow range of molding conditions for obtaining a good matte appearance. Such a thermoplastic resin composition has low utility value as an industrial material.
(4) The thermoplastic resin composition of Comparative Example 7 in which the (meth) acrylic ester rubber-like polymer (G) of the graft copolymer is not enlarged by the acid group-containing copolymer latex (K) No matte property was obtained at any of molding temperatures of 190 ° C. and 250 ° C. Such a thermoplastic resin composition has low utility value as an industrial material.

Claims (3)

(メタ)アクリル酸エステル系ゴム状重合体(G)に、芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位を含むグラフト鎖がグラフトしたグラフト共重合体(A)20〜80質量部と、芳香族ビニル系単量体単位およびシアン化ビニル系単量体単位を含むビニル系共重合体(B)80〜20質量部とを含有し、
(メタ)アクリル酸エステル系ゴム状重合体(G)は、未肥大の(メタ)アクリル酸エステル系ゴム状重合体(g)が酸基含有共重合体ラテックス(K)により肥大化処理されたものであり、
グラフト共重合体(A)におけるグラフト鎖中のシアン化ビニル単量体単位の含有量(GA)と、ビニル系共重合体(B)中のシアン化ビニル単量体単位の含有量(BA)との差(GA−BA)が8〜25質量部であることを特徴とする熱可塑性樹脂組成物。
Graft copolymer (A) 20-80 in which a graft chain containing an aromatic vinyl monomer unit and a vinyl cyanide monomer unit is grafted to the (meth) acrylic ester rubber polymer (G). Containing 80 to 20 parts by mass of a vinyl copolymer (B) containing a mass part and an aromatic vinyl monomer unit and a vinyl cyanide monomer unit;
The (meth) acrylic acid ester rubbery polymer (G) was subjected to an enlargement treatment of the non-hypertrophic (meth) acrylic acid ester rubbery polymer (g) with the acid group-containing copolymer latex (K). Is,
Content (GA) of vinyl cyanide monomer units in the graft chain in the graft copolymer (A) and content (BA) of vinyl cyanide monomer units in the vinyl copolymer (B) The thermoplastic resin composition, wherein the difference (GA-BA) is 8 to 25 parts by mass.
請求項1に記載の熱可塑性樹脂組成物が成形されてなることを特徴とする成形品。   A molded article, wherein the thermoplastic resin composition according to claim 1 is molded. 熱可塑性樹脂組成物が押出成形されたものであり、シート成形品または異形成形品であることを特徴とする請求項2に記載の成形品。   The molded article according to claim 2, wherein the thermoplastic resin composition is extruded and is a sheet molded article or a deformed article.
JP2006137432A 2006-05-17 2006-05-17 Thermoplastic resin composition and molded article Expired - Fee Related JP4969911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137432A JP4969911B2 (en) 2006-05-17 2006-05-17 Thermoplastic resin composition and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137432A JP4969911B2 (en) 2006-05-17 2006-05-17 Thermoplastic resin composition and molded article

Publications (2)

Publication Number Publication Date
JP2007308551A true JP2007308551A (en) 2007-11-29
JP4969911B2 JP4969911B2 (en) 2012-07-04

Family

ID=38841714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137432A Expired - Fee Related JP4969911B2 (en) 2006-05-17 2006-05-17 Thermoplastic resin composition and molded article

Country Status (1)

Country Link
JP (1) JP4969911B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106249A (en) * 2008-10-29 2010-05-13 Cheil Industries Inc Low glossy and weather-resistant thermoplastic resin and method for producing the same
WO2011090200A1 (en) * 2010-01-25 2011-07-28 テクノポリマー株式会社 Resin composition for irregular shape extrusion molding and irregularly shaped extrusion molded resin article
JP2011168777A (en) * 2010-01-25 2011-09-01 Techno Polymer Co Ltd Resin composition for profile extrusion molding, and profile extrusion resin molded article
JP2011168778A (en) * 2010-01-25 2011-09-01 Techno Polymer Co Ltd Resin composition for profile extrusion molding, and profile extrusion resin molded article
JP2011195757A (en) * 2010-03-23 2011-10-06 Umg Abs Ltd Resin composition for melt fabrication and molded article thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216987A (en) * 1996-02-09 1997-08-19 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin composition
JPH11116767A (en) * 1997-10-16 1999-04-27 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin composition excellent in coloring property
JP2000186124A (en) * 1998-12-22 2000-07-04 Kanegafuchi Chem Ind Co Ltd Graft copolymer and resin composition
JP2002284959A (en) * 2001-03-22 2002-10-03 Ube Cycon Ltd Thermoplastic resin composition
JP2003020377A (en) * 2001-07-05 2003-01-24 Ube Cycon Ltd Composite resin composition
JP2003049042A (en) * 2001-08-09 2003-02-21 Mitsubishi Rayon Co Ltd Thermoplastic resin composition excellent in delustering and molded product obtained by using the same
JP2004346237A (en) * 2003-05-23 2004-12-09 Umg Abs Ltd Thermoplastic resin composition and molded product
JP2006176583A (en) * 2004-12-21 2006-07-06 Umg Abs Ltd Thermoplastic resin composition and resin molded product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216987A (en) * 1996-02-09 1997-08-19 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin composition
JPH11116767A (en) * 1997-10-16 1999-04-27 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin composition excellent in coloring property
JP2000186124A (en) * 1998-12-22 2000-07-04 Kanegafuchi Chem Ind Co Ltd Graft copolymer and resin composition
JP2002284959A (en) * 2001-03-22 2002-10-03 Ube Cycon Ltd Thermoplastic resin composition
JP2003020377A (en) * 2001-07-05 2003-01-24 Ube Cycon Ltd Composite resin composition
JP2003049042A (en) * 2001-08-09 2003-02-21 Mitsubishi Rayon Co Ltd Thermoplastic resin composition excellent in delustering and molded product obtained by using the same
JP2004346237A (en) * 2003-05-23 2004-12-09 Umg Abs Ltd Thermoplastic resin composition and molded product
JP2006176583A (en) * 2004-12-21 2006-07-06 Umg Abs Ltd Thermoplastic resin composition and resin molded product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106249A (en) * 2008-10-29 2010-05-13 Cheil Industries Inc Low glossy and weather-resistant thermoplastic resin and method for producing the same
WO2011090200A1 (en) * 2010-01-25 2011-07-28 テクノポリマー株式会社 Resin composition for irregular shape extrusion molding and irregularly shaped extrusion molded resin article
JP2011168777A (en) * 2010-01-25 2011-09-01 Techno Polymer Co Ltd Resin composition for profile extrusion molding, and profile extrusion resin molded article
JP2011168778A (en) * 2010-01-25 2011-09-01 Techno Polymer Co Ltd Resin composition for profile extrusion molding, and profile extrusion resin molded article
CN102770489A (en) * 2010-01-25 2012-11-07 大科能树脂有限公司 Resin composition for irregular shape extrusion molding and irregularly shaped extrusion molded resin article
JP2011195757A (en) * 2010-03-23 2011-10-06 Umg Abs Ltd Resin composition for melt fabrication and molded article thereof

Also Published As

Publication number Publication date
JP4969911B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
KR101524057B1 (en) Acrylic rubber-based graft copolymer and thermoplastic resin composition
KR101225559B1 (en) Method for producing enlarged rubber, graft copolymer, thermoplastic resin composition and molded article
JP4969911B2 (en) Thermoplastic resin composition and molded article
WO2002051935A1 (en) Graft copolymer and thermoplastic resin composition
JP3913098B2 (en) Resin composition and molded article using the same
EP3556813A1 (en) Thermoplastic resin composition for hot plate welding, molded article thereof, and resin conjugate
JP2004346237A (en) Thermoplastic resin composition and molded product
JP2003049042A (en) Thermoplastic resin composition excellent in delustering and molded product obtained by using the same
JP2002194034A (en) Graft copolymer, thermoplastic resin composition and molded product using the composition
JPH1160931A (en) Polycarbonate resin composition
JP2000017170A (en) Thermoplastic resin composition
JP2006016524A (en) Thermoplastic resin composition and molded product thereof
JP7200542B2 (en) Acrylic rubber graft copolymer and thermoplastic resin composition
JP5106725B2 (en) Graft copolymer, and thermoplastic resin composition and molded article using the same
JP4907949B2 (en) Thermoplastic resin composition and molded article
JP2005307074A (en) Thermoplastic resin composition and molded artice
JP2004352841A (en) Thermoplastic resin composition and molded article
JP2005343925A (en) Thermoplastic resin composition and molded article using the same
JP2003160624A (en) Graft copolymer and thermoplastic resin composition containing the same
JP2007070393A (en) Thermoplastic resin composition and its molding
JP2007297536A (en) Acrylic rubber latex, its manufacturing method, composite rubber graft copolymer, and thermoplastic resin composition
JP2006143924A (en) Bulked rubbery polymer, rubber-containing graft copolymer, their producing methods, thermoplastic resin composition, and molded product from the same
JP3970599B2 (en) Multi-layer sheet
JP2005272699A (en) Thermoplastic resin composition and molded article produced by using the same
JP4060061B2 (en) Graft copolymer and thermoplastic resin composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees