JP2007240292A - Sound simulation system for building - Google Patents
Sound simulation system for building Download PDFInfo
- Publication number
- JP2007240292A JP2007240292A JP2006062056A JP2006062056A JP2007240292A JP 2007240292 A JP2007240292 A JP 2007240292A JP 2006062056 A JP2006062056 A JP 2006062056A JP 2006062056 A JP2006062056 A JP 2006062056A JP 2007240292 A JP2007240292 A JP 2007240292A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- sound source
- temporary
- building
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
建物の音シミュレーションであって、壁の透過を考慮した結果を出力しうるシステムに関するものである。 This is a sound simulation of a building, and relates to a system that can output a result in consideration of wall penetration.
従来から、コンピュータを用いた音の伝達シミュレーションが行われてきている。 Conventionally, sound transmission simulation using a computer has been performed.
音の伝達をシミュレートする方法として大きく、差分法(FDM)、有限要素法(FEM)、境界要素法(BEM)、境界積分方程式法(BIEM)という波動的解析手法と、音の波動性を無視して単純な音線(Sound Rays)もしくは音粒子(SoundParticle)として計算する幾何学的解析手法、の2つとして発展してきた。 As a method for simulating the transmission of sound, the wave analysis method of difference method (FDM), finite element method (FEM), boundary element method (BEM), boundary integral equation method (BIEM) and the wave nature of sound It has been developed as a geometric analysis method that ignores and calculates as simple sound rays (Sound Rays) or sound particles (SoundParticles).
特に波動的解析手法は音の波動性を忠実に計算するため、複雑な問題に対する解を得るという目的のために発展してきたが、演算の為には膨大なコンピュータ資源を使用する必要があるという問題がある。 In particular, wave analysis methods have been developed for the purpose of obtaining solutions to complex problems in order to faithfully calculate the wave nature of sound, but it is necessary to use enormous computer resources for computation. There's a problem.
音の回折や透過性を無視した幾何学的解析手法は、空間の解を近似的に手っ取り早く求めるという事で有効な手段として発展してきたが、計算構造上、ホールなど単純な単一空間における解を求める事しかできないという問題がある。幾何学的解析手法は、一般的に音線法と呼ばれ、音線追跡法や虚像法として発展してきた。 Geometric analysis methods ignoring sound diffraction and transmission have been developed as effective means of finding spatial solutions in an approximate and quick manner. There is a problem that only a solution in space can be obtained. The geometric analysis method is generally called a sound ray method and has been developed as a sound ray tracking method or a virtual image method.
音線追跡法は、通常設定された点音源から全空間に多数の音線を放射し、その反射履歴とエネルギー、入射方向のデータとして順次計算していく方法であり、虚像法は、あらかじめ音線の反射面経路を探索し虚音源を設けることによって音線の反射履歴を算出し計算をして行く方法である。虚像法は音線追跡法に比べ方向や相対的なインテンシティ、到達時間が正確にも止まるが、反射次数の増加に伴い、虚音源の総数が指数的に増加するため、高次の反射まで計算することが困難である。 The ray tracing method is a method in which a large number of ray rays are radiated from a set point sound source to the entire space, and the reflection history, energy, and incident direction data are sequentially calculated. This is a method of calculating and calculating the reflection history of the sound ray by searching for the reflection surface path of the line and providing an imaginary sound source. The virtual image method is more accurate in direction, relative intensity, and arrival time than the ray tracing method, but the total number of imaginary sound sources increases exponentially as the reflection order increases, so even higher-order reflections can be achieved. It is difficult to calculate.
しかし、音線法は波動解析を行う方法に較べ、計算が簡易であり、かつ計算量も少ないため、音環境のシミュレートを行う上で有効な手段であることが知られている。特に、単純な閉空間の解析を手っ取り早く行う事に向いており、例えば特開平6−11386などのように虚像法との併用で簡易でありかつ良好なシミュレーション結果を得ることが可能となっている。 However, the sound ray method is known to be an effective means for simulating the sound environment because the calculation is simple and the amount of calculation is small compared to the wave analysis method. In particular, it is suitable for quick and simple analysis of a closed space. For example, it is possible to obtain a simple and good simulation result in combination with the virtual image method as disclosed in JP-A-6-11386. It has become.
しかし、音線法は前述のとおり原則として反射により音の伝達を求めるものであって、音の波動性を無視している。このため、閉空間のシミュレーションには適しているが、壁などの障壁が空間内に存在した場合、音線がその障壁を越えることができない。 However, the sound ray method, as described above, seeks to transmit sound by reflection in principle, and ignores the wave nature of sound. For this reason, although it is suitable for the simulation of a closed space, when a barrier such as a wall exists in the space, the sound ray cannot cross the barrier.
一方、住宅における音の伝達をシミュレーションする場合を考えると、ホールなどの単純な空間と異なり住宅には壁や間仕切りなどの障壁が多い複雑な空間であるため、音線法をそのまま適用することは出来ない。 On the other hand, considering the simulation of sound transmission in a house, unlike a simple space such as a hall, a house is a complex space with many barriers such as walls and partitions. I can't.
その為、従来は住宅など複雑な空間では波動的解析手法がとられていたが、計算負荷の低さから、音線法において障壁を透過して解析するための提案はなされている。例えば、いちど障壁をないものとして音線の経路を演算し、その後に障壁と音線の交点から反射する音線の経路を演算する。そして、反射による音圧の減衰と同様に、透過による音圧の減衰を演算することにより、障壁を越えて伝達される音を算出することが考えられる。しかし、音は波動なのであるから、障壁を越えた時点で本来ならば音線のベクトルは失われているはずである。 For this reason, conventionally, wave analysis techniques have been used in complex spaces such as houses, but due to the low computational load, proposals have been made for analysis through a barrier in the sound ray method. For example, a sound ray path is calculated assuming that there is no barrier, and then a sound ray path reflected from the intersection of the barrier and the sound ray is calculated. Then, similarly to the attenuation of sound pressure due to reflection, it is conceivable to calculate the sound transmitted across the barrier by calculating the attenuation of sound pressure due to transmission. However, since the sound is a wave, the vector of the sound ray should have been lost when the barrier was crossed.
そこで、障壁と音線との交点(反射点)について、障壁の交点と反対側の面に仮音源を設定することが考えられる。しかし、通常一つの音源についても簡易とはいえそれなりの計算量であるのに、交点ごとに仮音源を設定し、通常の音源と同様に全方位の音線を演算することでは、計算量が劇的に増加し、計算が簡易であるという音線法の利点を著しく損なってしまう。 Therefore, it is conceivable to set a temporary sound source on the surface opposite to the intersection of the barriers at the intersection (reflection point) between the barrier and the sound ray. However, although it is usually a simple calculation for one sound source, setting a temporary sound source for each intersection and computing the omnidirectional sound ray in the same way as a normal sound source requires a large amount of calculation. The advantage of the ray method, which increases dramatically and is simple to calculate, is significantly impaired.
そこで本発明は、障壁の多い建物の音環境を、簡易に演算し、実測値に近い良好な結果を得ることができるシミュレーションシステムを提供することを目的としている。 Accordingly, an object of the present invention is to provide a simulation system that can easily calculate the sound environment of a building with many barriers and obtain a good result close to an actual measurement value.
上記課題を解決するために、本発明に係る建物の音シミュレーションシステムの第一の構成は、音源空間と透過空間との間に第1の障壁を有する建物情報と、音源情報と、受音点情報と、を入力する入力手段と、この入力手段により入力した情報に基づいて、前記音源空間において、音源から前記第1の障壁を分割した各々の基準面が受けるエネルギーを演算する第1の演算手段と、この第1の演算手段により演算した前記基準面の前記音源空間側が受けるエネルギーに基づいて、前記透過空間側の仮音源の音圧レベルを演算する第2の演算手段と、前記仮音源から放射される音線のエネルギーを演算する第3の演算手段と、を有することを特徴とする。 In order to solve the above problems, a first configuration of a building sound simulation system according to the present invention includes building information having a first barrier between a sound source space and a transmission space, sound source information, and a sound receiving point. And a first calculation for calculating energy received by each reference plane obtained by dividing the first barrier from the sound source in the sound source space based on the information input by the input means. Means, second computing means for computing the sound pressure level of the temporary sound source on the transmission space side based on the energy received by the sound source space side of the reference plane computed by the first computing means, and the temporary sound source And third calculating means for calculating the energy of the sound ray radiated from.
本発明に係る建物の音シミュレーションシステムの第二の構成は、前記第一の構成において、前記仮音源から前記透過空間の内面を複数に分割した第2の基準面の点と、前記仮音源から直接前記受音点と、に放射される音線のエネルギーを演算する第4の演算手段を有することを特徴とする。 According to a second configuration of the building sound simulation system of the present invention, in the first configuration, a point of a second reference plane obtained by dividing the inner surface of the transmission space from the temporary sound source into a plurality of points, and the temporary sound source. It has the 4th calculating means which calculates the energy of the sound ray radiated | emitted directly to the said sound receiving point, It is characterized by the above-mentioned.
本発明に係る建物の音シミュレーションシステムの第三の構成は、前記第二の構成において、前記第2の基準面で反射されて前記受音点に達する音線と、直接前記受音点に達する音線について、その経路に沿って音圧レベルを演算する第5の演算手段を有することを特徴とする。 According to a third configuration of the building sound simulation system of the present invention, in the second configuration, a sound ray that is reflected by the second reference plane and reaches the sound receiving point and directly reaches the sound receiving point. It has the 5th calculating means which calculates a sound pressure level along the path | route about a sound ray, It is characterized by the above-mentioned.
本発明に係る建物の音シミュレーションシステムの第四の構成は、前記第一から第三のいずれかの構成において、前記第1の障壁は、仮想設定した仮想障壁であり、前記音源空間と前記透過空間は仮に隔てられた仮想空間であることを特徴とする。 According to a fourth configuration of the building sound simulation system of the present invention, in any one of the first to third configurations, the first barrier is a virtual barrier set virtually, and the sound source space and the transmission The space is a virtual space that is temporarily separated.
本発明に係る建物の音シミュレーションシステムの第一の構成によれば、障壁の多い建物の音環境を、簡易に演算し、実測値に近い良好な結果を得ることができる。 According to the first configuration of the building sound simulation system of the present invention, it is possible to easily calculate the sound environment of a building with many barriers and obtain a good result close to an actual measurement value.
また、本発明に係る建物の音シミュレーションシステムの第二及び第三の構成によれば、さらに簡易に演算することができる。 Moreover, according to the 2nd and 3rd structure of the building sound simulation system which concerns on this invention, it can calculate still more easily.
また、本発明に係る建物の音シミュレーションシステムの第四の構成によれば、コの字型等の複雑な形状の建物の音環境を、簡易に演算し、実測値に近い良好な結果を得ることができる。 In addition, according to the fourth configuration of the building sound simulation system of the present invention, the sound environment of a building having a complicated shape such as a U-shape is simply calculated, and a good result close to an actual measurement value is obtained. be able to.
本発明に係る建物の音シミュレーションシステムについて説明する。図1は本実施形態に係る音シミュレーションシステムの概略構成図である。図2は本実施形態の特徴的な動作を説明するフローチャートである。図3は仮音源と音線を設定する例を示す図である。図4は透過率・反射率データベースの例を示す図である。 A building sound simulation system according to the present invention will be described. FIG. 1 is a schematic configuration diagram of a sound simulation system according to the present embodiment. FIG. 2 is a flowchart for explaining the characteristic operation of this embodiment. FIG. 3 is a diagram illustrating an example of setting a temporary sound source and a sound ray. FIG. 4 is a diagram showing an example of a transmittance / reflectance database.
(建物の音シミュレーションシステムの構成)
図1に示すように、建物の音シミュレーションシステムは、システム本体1、入力手段2、出力手段3を有している。入力手段2は演算に必要な情報を入力する手段であって、キーボードやマウスなどの入力装置、および記憶媒体、ネットワークなどが含まれる。出力手段3は演算結果を出力するものであり、画面表示するモニタ、印刷するプリンタ、およびデータとして保存する記録媒体などが含まれる。
(Configuration of building sound simulation system)
As shown in FIG. 1, the building sound simulation system includes a system
システム本体1の記憶領域11には、入力手段2から入力された音源空間と透過空間との間に第1の障壁を有する建物情報と、音源情報と、受音点情報が格納される。
The
建物情報は、部屋(音源空間30と透過空間31)の寸法や壁(第1の障壁32、第2の障壁33等)の厚さなどの空間座標情報、および壁(第1の障壁32、第2の障壁33等)の材質や種類などの障壁情報を含む。音源情報は、音源の空間座標(位置)、音源の特性(周波数特性、指向性、強度)を含む。受音点情報は、音圧を受ける空間座標(位置)を含む。
The building information includes spatial coordinate information such as the dimensions of the room (the
またシステム本体1は、図4に示すように、壁の材質や種類に対してその透過率を格納した透過率・反射率データベース12を備えている。なお、透過率・反射率データベース12は必ずしも本体内に組み込まれている必要はなく、必要に応じてネットワーク型やCDROMなどの記録媒体による供給も可能である。
Further, as shown in FIG. 4, the system
またシステム本体1は、第1〜第3の演算手段13〜15を有する。これらのシステム本体1の各要素はCPU10に接続され、所定の処理が行われる。なお、実際上は、記憶領域11はRAMまたはハードディスクなどの記憶手段であり、透過率・反射率データベース12は記憶手段に保存されたデータである。また第1〜第3の演算手段13〜15はプログラムによって実現されるモジュールであって、CPU10に読み込まれてハードウェアとして所定の動作をする。
Further, the system
第1の演算手段13は、入力手段2により入力した情報に基づいて、音源空間30において、音源34から第1の障壁32を分割した各々の基準面32aが受けるエネルギーを演算する。具体的な演算手法は、特に限定されるものではなく、音線法、虚像法等の演算手法を用いることができる。また、複雑な演算手法を省略して、各々の基準面32aが受けるエネルギーは、音源34や音源空間30と所定の関係を有する所定の値(例えば障壁の設定された透過率に基づく値)として算出してもよい。
Based on the information input by the input means 2, the first calculation means 13 calculates the energy received by each
また、基準面32aに変えて、内容を体積を持たない点、もしくは点を中心として一定の領域を持つ空間としてもよい。すなわち、基準面32aに変えて、音源34から第1の障壁32に設定した基準点が受けるエネルギーを演算してもよい。また、基準面32aに変えて、音源34から第1の障壁32に設定した基準空間が受けるエネルギーを演算してもよい。
Further, instead of the
また、図2では、第1の障壁32を4×4の16の基準面32aに分割しているが、分割数、方法はこれに限定されるものではない。例えば、4×8の32の基準面32aに分割してもよい。
In FIG. 2, the
音線法の演算手法については、既によく知られているため、ここでは詳細な説明を割愛する。簡略に説明すれば、音線法のみを用いる場合には、まず音源から所定の間隔で多数の音線を設定し、その音線のベクトルと壁との交点を割り出す。そしてベクトルと壁の角度に応じて反射する音線の方向を求め、次の交点を割り出す。反射があらかじめ定めた所定回数に到達していれば、それ以上の反射はさせない(音線の終端は壁との交点になる)。全ての音線について交点と経路が決定すると、距離による減衰と反射による減衰を考慮しつつ、それぞれの経路に沿って音圧レベルを計算する。なお、音圧レベルの計算は、経路の演算が全て終了する前に(例えば一つの音線経路が決定するごとに)行うことでも良い。 Since the calculation method of the sound ray method is already well known, a detailed description is omitted here. Briefly, when only the sound ray method is used, first, a large number of sound rays are set at predetermined intervals from the sound source, and the intersections of the sound ray vectors and the walls are determined. Then, the direction of the sound ray to be reflected is determined according to the angle of the vector and the wall, and the next intersection is determined. If the reflection reaches a predetermined number of times, no further reflection is made (the end of the sound ray is the intersection with the wall). When the intersections and paths are determined for all sound rays, the sound pressure level is calculated along each path while considering attenuation due to distance and attenuation due to reflection. The calculation of the sound pressure level may be performed before the calculation of all the paths is completed (for example, every time one sound ray path is determined).
ただし、音線法は、方向や相対的なインテンシティ、到達時間が正確に求まらないため、正確なインパルス応答の計算とドライソースの畳み込みを行うような場合、虚像法を用いる場合が多い。虚像法を用いた場合は、受音点を設定し、障壁に対称な位置に音源の虚像を作成し、この虚像と受音点を結ぶ音線と障壁の交わる点を交点(反射点)として求める。2回反射、3回反射を考える場合には、まず最初に反射しうる障壁に対称な位置に虚像を作成し、次に反射しうる障壁について虚像の虚像を作成し、このように反射回数に応じて重畳的な虚像を作成する。音圧レベルの計算については、上記と同様である。 However, since the sound ray method cannot accurately determine the direction, relative intensity, and arrival time, the virtual image method is often used when calculating the exact impulse response and convolving the dry source. . When the virtual image method is used, a sound receiving point is set, a virtual image of the sound source is created at a position symmetrical to the barrier, and the point where the sound ray connecting the virtual image and the sound receiving point intersects the barrier is defined as an intersection (reflection point). Ask. When considering two-time reflection and three-time reflection, first, a virtual image is created at a position symmetrical to the barrier that can be reflected, and then a virtual image of a virtual image is created for the barrier that can be reflected. In response, a superimposed virtual image is created. The calculation of the sound pressure level is the same as described above.
第2の演算手段14は、第1の演算手段13より演算した基準面32aの音源空間側が受けるエネルギーに基づいて、透過空間側の仮音源35のエネルギーを演算する。ここで仮音源とは、透過空間側31の演算を行うため壁面表面に設定された音源のことを指す。
The second calculation means 14 calculates the energy of the
例えば、図2のように、4枚の基準面32aの中心に仮音源35を設定する場合には、その仮音源35のエネルギーは、4枚の基準面32aが受けるエネルギーを合計したものを障壁32の透過率等を考慮した値となる。
For example, as shown in FIG. 2, when the
なお、本実施形態では4枚の基準面32aに対して1つの仮音源35を設けた構成について説明したが、本発明はかかる構成に限定されるものではない。例えば、5枚の基準面32aに対して2つの仮音源35を設定するなど、複数枚の基準面32aに対して基準面32aの枚数より少ない仮音源35を設定する構成であればよい。
In the present embodiment, the configuration in which one
これにより、1枚の基準面32aに対して1つの仮音源35を設定した場合に比べて、計算量を少なくすることができ、簡易に演算することができる。また、この場合でも実測値に近い良好な結果を得ることができる。
Thereby, compared with the case where one
第3の演算手段15は、仮音源35から放射されて受音点36に入射される音線Lの音圧レベルを演算する。第3の演算手段15は、第4及び第5の演算手段16、17を有している。
The third computing means 15 computes the sound pressure level of the sound ray L emitted from the
第4の演算手段16は、仮音源35から透過空間31の内面(第2の障壁33)を複数に分割した第2の基準面33aの点(第2の仮音源33a1)に放射される音線L1のエネルギーと、仮音源35から直接受音点36に放射される音線L2のエネルギーと、を演算する。
The fourth computing means 16 is a sound radiated from the
第5の演算手段17は、第2の基準面33aで反射されて(第2の仮音源33a1から放射されて)受音点36に達する音線L3と、直接受音点36に達する音線L2について、その経路に沿って音圧レベルを演算する。また、第5の演算手段17は、第2の基準面33aで反射され、さらに第2の基準面33a(透過空間内の第1の基準面32aも含む)で数回反射されて、受音点36に達する音線について、その経路に沿って音圧レベルを演算する。
The fifth computing means 17 includes a sound ray L3 that is reflected by the
(建物の音シミュレーションシステムの動作)
次に、図3を用いて、建物の音シミュレーションシステムの動作について説明する。図3に示すように、まずは音源がある音源空間30といくつかの透過空間31を判別する(S1)。そして第1の演算手段13を用いて、音源空間30において、音源34から各々の基準面32aが受けるエネルギーを演算する(S2)。
(Operation of building sound simulation system)
Next, the operation of the building sound simulation system will be described with reference to FIG. As shown in FIG. 3, first, a
次に第2の演算手段14を用いて、仮音源35を設定し(S3)、基準面32aが受けるエネルギー、仮音源35に対する基準面32aの数、障壁32の透過率に基づいて、仮音源35のエネルギーを演算する(S4)。
Next, the
次に第4の演算手段16を用いて、透過空間31の内面を複数に分割した第2の基準面33aの点を生成する(S5)。そして仮音源35と第2の基準面33aの点を結ぶ音線ベクトルL1と、仮音源35と受音点36を結ぶ音線ベクトルL2と、を生成する(S6)。
Next, the fourth calculation means 16 is used to generate a point of the
次に、生成した音線ベクトルL1、L2のうち、1つの音線ベクトルを特定し、前者の音線ベクトルL1か、後者の音線ベクトルL2かを判断する(S7)。 Next, of the generated sound ray vectors L1 and L2, one sound ray vector is specified, and it is determined whether it is the former sound ray vector L1 or the latter sound ray vector L2 (S7).
S7で後者の音線ベクトルL2と判断した場合には、後者の音線ベクトルL2の距離、空気減衰率、仮音源35のエネルギーに基づいて、各音線ベクトルのエネルギー(受音点36の受けるエネルギー)を演算し、積算し、その音線ベクトルL2についての演算を終了する(S7)。
When it is determined that the sound ray vector L2 is the latter in S7, the energy of each sound ray vector (received by the sound receiving point 36) is based on the distance of the latter sound ray vector L2, the air attenuation factor, and the energy of the
そして、全ての音線ベクトルについて演算を終了したか否かを判断する(S9)。 Then, it is determined whether or not the calculation has been completed for all sound ray vectors (S9).
S7で前者の音線ベクトルL1と判断した場合には、前者の音線ベクトルL1の距離、空気減衰率、障壁33の透過率・反射率、仮音源35のエネルギーに基づいて、各音線ベクトルのエネルギー(第2の基準面33aの受けるエネルギー)を演算し、積算していく(S10)。
If the former ray vector L1 is determined in S7, each ray vector is determined based on the distance of the former ray vector L1, the air attenuation rate, the transmittance / reflectance of the
そして、第5の演算手段17を用いて、第2の基準面33aの受けたエネルギー(積算値)が第2の基準面33aで反射する音線について計算すべき所定の値以上か否かを判断する(S11)。この際、例えば建物内部から外部に出る基準面32aの場合、33aを探索出来ないため、32a→33aへの演算は行わないこととなる。
Then, by using the fifth arithmetic means 17, it is determined whether or not the energy (integrated value) received by the
S11で所定の値以上と判断した場合には、第2の基準面33aの点を仮音源とし、S6に戻る。そして、この第2の基準面33aの点(仮音源)と他の第2の基準面33aの点とを結ぶ音線ベクトルと、第2の基準面33aの点(仮音源)と受音点36を結ぶ音線ベクトルと、を生成する(S6)。
If it is determined in S11 that the value is equal to or greater than the predetermined value, the point on the
S11で所定の値未満と判断した場合には、その音線ベクトルについての演算を終了する(S12)。そして、全ての音線ベクトルについて演算を終了したか否かを判断する(S9)。 If it is determined in S11 that the value is less than the predetermined value, the calculation for the sound ray vector is terminated (S12). Then, it is determined whether or not the calculation has been completed for all sound ray vectors (S9).
S9で全ての音線ベクトルについて演算を終了していないと判断した場合には、S6に戻り、演算の終了していない他の音線ベクトルについて演算を行う(S7)。 If it is determined in S9 that the calculation has not been completed for all sound ray vectors, the process returns to S6, and the calculation is performed for other sound ray vectors that have not been calculated (S7).
S9で全ての音線ベクトルについて演算を終了していると判断した場合には、受音点36の受けたエネルギーの積算値を音圧レベルに変換し、シミュレーションを終了する。
If it is determined in S9 that the calculation has been completed for all sound ray vectors, the integrated value of the energy received by the
なお、上記動作(S11)において、第2の基準面33aにおける音線の反射回数は、2の基準面33aの受けたエネルギー(積算値)で判断したが、本発明はかかる構成に限定されるものではなく、仮音源35からの反射回数が所定回数に至ったかどうかで判断してもよい。このように、S11の反射回数の制限があるため音線ベクトルは早期に増加が収束し、やがて演算は終了する。
In the above operation (S11), the number of reflections of the sound ray on the
なお、本実施形態は、音源空間と透過空間の2部屋について説明したが、本発明は部屋数を限定されるものではない。すなわち、第2の仮音源33a1は、仮音源35から放出された音線を反射させ、また別の部屋(透過空間)へ透過させる。そして、第2の演算手段は、第2の基準面33aの点(仮音源)の受けるエネルギーに基づいて、別の部屋(透過空間)側に仮音源を設定し、この仮音源のエネルギーを演算する。
In addition, although this embodiment demonstrated two rooms of sound source space and transmission space, this invention is not limited in the number of rooms. That is, the second temporary sound source 33a1 reflects the sound ray emitted from the
また、音源空間や透過空間は建物の外にあっても良い。すなわち、音源空間と透過空間はいずれか1つ以上が建物の外にあってもよい。 Further, the sound source space and the transmission space may be outside the building. That is, any one or more of the sound source space and the transmission space may be outside the building.
上述のごとく、第1の演算手段13より演算した基準面32aの音源空間側が受けるエネルギーに基づいて、透過空間側の仮音源35のエネルギーを演算する第2の演算手段14を設けた。これにより、障壁と音線との交点ごとにその反対側の面に仮音源を設定する方法に比べて計算量を少なくすることができ、障壁を越えた時点でベクトルを失った音線を仮音源35として再現することができる。従って、障壁の多い建物の音環境を、簡易に演算し、実測値に近い良好な結果を得ることができる。
As described above, the second calculating means 14 for calculating the energy of the
また、音線ベクトルは、仮音源35と受音点36及び第2の基準点の点を結ぶように配置し、第2の基準点の点と受音点36及び第2の基準点の点を結ぶように配置した。これにより、音線ベクトルを所定の角度で分散させる場合に比べて、音線の粗密を無くし、計算の効率を良くすることができる。すなわち、音線ベクトルが確実に受音点36に入るため、シュミレーション結果に反映されない無駄な計算を省略することができ、障壁の多い建物の音環境を、簡易に演算し、実測値に近い良好な結果を得ることができる。
The sound ray vector is arranged so as to connect the
本発明は、住宅など障壁の多い建物の音シミュレーションに利用することができる。 The present invention can be used for sound simulation of buildings with many barriers such as houses.
L …音線
1 …システム本体
2 …入力手段
3 …出力手段
11 …記憶領域
12 …透過率・反射率データベース
13〜17 …第1〜第5の演算手段
30 …音源空間
31 …透過空間
32、33 …障壁
32a、33a …第1及び第2の基準面
34 …音源
35、33a1 …仮音源
36 …受音点
L ...
11 ... Storage area
12… Transmission / Reflectance Database
13-17: First to fifth arithmetic means
30… Sound source space
31… Transparent space
32, 33… Barrier
32a, 33a ... 1st and 2nd reference plane
34… Sound source
35, 33a1 ... Temporary sound source
36… Sound receiving point
Claims (5)
この入力手段により入力した情報に基づいて、前記音源空間において、音源から前記第1の障壁を分割した各々の基準面が受けるエネルギーを演算する第1の演算手段と、
この第1の演算手段により演算した前記基準面の前記音源空間側が受けるエネルギーに基づいて、前記透過空間側の仮音源のエネルギーを演算する第2の演算手段と、
前記仮音源から受音点に入射される音線の音圧レベルを演算する第3の演算手段と、
を有することを特徴とする建物の音シミュレーションシステム。 Input means for inputting building information having a first barrier between the sound source space and the transmission space, sound source information, and sound receiving point information;
First computing means for computing energy received by each reference plane obtained by dividing the first barrier from the sound source in the sound source space based on the information input by the input means;
Second computing means for computing the energy of the temporary sound source on the transmission space side based on the energy received by the sound source space side of the reference plane computed by the first computing means;
Third calculating means for calculating the sound pressure level of the sound ray incident on the sound receiving point from the temporary sound source;
A building sound simulation system characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006062056A JP4877744B2 (en) | 2006-03-08 | 2006-03-08 | Building sound simulation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006062056A JP4877744B2 (en) | 2006-03-08 | 2006-03-08 | Building sound simulation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007240292A true JP2007240292A (en) | 2007-09-20 |
JP4877744B2 JP4877744B2 (en) | 2012-02-15 |
Family
ID=38585978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006062056A Active JP4877744B2 (en) | 2006-03-08 | 2006-03-08 | Building sound simulation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4877744B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012093907A (en) * | 2010-10-26 | 2012-05-17 | Fujitsu Ltd | Acoustic analysis program, acoustic analysis method and acoustic analyzer |
JP2014010173A (en) * | 2012-06-27 | 2014-01-20 | Taisei Corp | Acoustic design support method |
JP2014222479A (en) * | 2013-05-14 | 2014-11-27 | トヨタホーム株式会社 | Sound field simulation device |
BE1025849B1 (en) * | 2017-12-28 | 2019-07-30 | Buzzispace Nv | Method for acoustic evaluation and optimization of a room |
JP2022064407A (en) * | 2020-10-14 | 2022-04-26 | 大成建設株式会社 | Acoustic design support method and acoustic design support device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611386A (en) * | 1991-03-13 | 1994-01-21 | Yamaha Corp | Calculating method for route of reflected sound in closed-space sound field |
JPH06123653A (en) * | 1992-10-13 | 1994-05-06 | Matsushita Electric Ind Co Ltd | Analyzing method of sound environment |
JPH0728481A (en) * | 1993-07-12 | 1995-01-31 | Shimizu Corp | Interior sound environment evaluation system |
JPH0843189A (en) * | 1994-07-27 | 1996-02-16 | Ono Sokki Co Ltd | Method and apparatus for estimating sound field |
JPH09210760A (en) * | 1996-02-08 | 1997-08-15 | Hitachi Zosen Corp | Environmental noise evaluation method |
JPH11295138A (en) * | 1998-04-10 | 1999-10-29 | Shimizu Corp | Noise propagation predictive method |
-
2006
- 2006-03-08 JP JP2006062056A patent/JP4877744B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611386A (en) * | 1991-03-13 | 1994-01-21 | Yamaha Corp | Calculating method for route of reflected sound in closed-space sound field |
JPH06123653A (en) * | 1992-10-13 | 1994-05-06 | Matsushita Electric Ind Co Ltd | Analyzing method of sound environment |
JPH0728481A (en) * | 1993-07-12 | 1995-01-31 | Shimizu Corp | Interior sound environment evaluation system |
JPH0843189A (en) * | 1994-07-27 | 1996-02-16 | Ono Sokki Co Ltd | Method and apparatus for estimating sound field |
JPH09210760A (en) * | 1996-02-08 | 1997-08-15 | Hitachi Zosen Corp | Environmental noise evaluation method |
JPH11295138A (en) * | 1998-04-10 | 1999-10-29 | Shimizu Corp | Noise propagation predictive method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012093907A (en) * | 2010-10-26 | 2012-05-17 | Fujitsu Ltd | Acoustic analysis program, acoustic analysis method and acoustic analyzer |
JP2014010173A (en) * | 2012-06-27 | 2014-01-20 | Taisei Corp | Acoustic design support method |
JP2014222479A (en) * | 2013-05-14 | 2014-11-27 | トヨタホーム株式会社 | Sound field simulation device |
BE1025849B1 (en) * | 2017-12-28 | 2019-07-30 | Buzzispace Nv | Method for acoustic evaluation and optimization of a room |
JP2022064407A (en) * | 2020-10-14 | 2022-04-26 | 大成建設株式会社 | Acoustic design support method and acoustic design support device |
JP7394044B2 (en) | 2020-10-14 | 2023-12-07 | 大成建設株式会社 | Acoustic design support method and acoustic design support device |
Also Published As
Publication number | Publication date |
---|---|
JP4877744B2 (en) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10679407B2 (en) | Methods, systems, and computer readable media for modeling interactive diffuse reflections and higher-order diffraction in virtual environment scenes | |
US11353581B2 (en) | System and method for localization for non-line of sight sound source | |
US8959005B2 (en) | Building envelope determination | |
Lauterbach et al. | Interactive sound rendering in complex and dynamic scenes using frustum tracing | |
JP4269623B2 (en) | Blood flow visualization diagnostic device | |
Drumm et al. | The adaptive beam-tracing algorithm | |
Lim et al. | Physically based sensor modeling for a sonar map in a specular environment | |
US20150294041A1 (en) | Methods, systems, and computer readable media for simulating sound propagation using wave-ray coupling | |
JP4877744B2 (en) | Building sound simulation system | |
Mo et al. | Tracing analytic ray curves for light and sound propagation in non-linear media | |
US20150347651A1 (en) | System and Method for Determining Heat and Fluid Flow in or Around Objects | |
Mo et al. | Outdoor sound propagation with analytic ray curve tracer and Gaussian beam | |
JP4363528B2 (en) | Sound field simulation system | |
Charalampous et al. | Sound propagation in 3D spaces using computer graphics techniques | |
EP1685509B1 (en) | System, method, and computer program product for determining wall thickness in a graphic model | |
US20060129342A1 (en) | Method of evaluating a physical quantity representing an interaction between a wave and an obstacle | |
Sikora et al. | Beam tracing with refraction | |
Hu et al. | Voronoi cells of non-general position spheres using the GPU | |
KR102087076B1 (en) | Pre-prediction system for occlusion area in aviation survey using uav and optimal route determine method of uav using the same | |
Schulz et al. | Crashing in cyberspace-evaluating structural behaviour of car bodies in a virtual environment | |
Liu et al. | Visibility preprocessing suitable for virtual reality sound propagation with a moving receiver and multiple sources | |
Salleh et al. | 3D topological validation of compact abstract cell complexes (CACC) data structure for buildings in CityGML | |
JP2007003989A (en) | Sound environment analysis simulation system | |
Foucart et al. | High-order discontinuous Galerkin methods for nonhydrostatic ocean processes with a free surface | |
Dogaru et al. | An efficient sound propagation software simulator based on cellular automata |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080131 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4877744 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |