JP2007141167A - Lane detector, lane detection method, and lane detection program - Google Patents

Lane detector, lane detection method, and lane detection program Download PDF

Info

Publication number
JP2007141167A
JP2007141167A JP2005337502A JP2005337502A JP2007141167A JP 2007141167 A JP2007141167 A JP 2007141167A JP 2005337502 A JP2005337502 A JP 2005337502A JP 2005337502 A JP2005337502 A JP 2005337502A JP 2007141167 A JP2007141167 A JP 2007141167A
Authority
JP
Japan
Prior art keywords
straight line
lane
state
inclination
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005337502A
Other languages
Japanese (ja)
Inventor
Hiroaki Maruno
浩明 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2005337502A priority Critical patent/JP2007141167A/en
Publication of JP2007141167A publication Critical patent/JP2007141167A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lane detector, lane detection method, and lane detection program capable of suppressing throughput while maintaining high operating accuracy. <P>SOLUTION: White line edge candidate points are extracted from inside an image photographed with a camera 10. An approximate line to the white line edge is obtained from the extracted candidate points by Hough transformation. Here, in a status 1, the approximate line is obtained with an angular resolution of 9 degrees, for instance, and a wide range of inclination detection (0 to 179 degrees, for instance). When the approximate line is detected ten times, for instance, consecutively in the status 1, a shift is made to a status 2. In the status 2, the approximate line is detected with the angular resolution of 4 degrees, for instance, and a medium range of inclination detection (80 degrees, for instance) centered around the inclination of the approximate line obtained in the status 1. When the approximate line is detected 30 times consecutively in the status 2, a shift is made to a status 3. In the status 3, the approximate line is detected with the angular resolution of 2 degrees, for instance, and a narrow range of inclination detection (40 degrees, for instance) centered around the inclination of the approximate line obtained in the status 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、撮影した車両前方あるいは後方等の画像に対して車線を検出する車線検出装置、車線検出方法、車線検出プログラム、及び直線検出方法に関する。   The present invention relates to a lane detection device, a lane detection method, a lane detection program, and a straight line detection method for detecting a lane with respect to a photographed vehicle front or rear image.

従来から、画像中の直線を検出するアルゴリズムとして、ハフ(Hough)変換と呼ばれるものがある。ハフ変換により、画像中の点の集合を線分として抽出することができる。   Conventionally, there is an algorithm called Hough transform as an algorithm for detecting a straight line in an image. A set of points in the image can be extracted as a line segment by the Hough transform.

このようなハフ変換を用いた従来技術として、計測手段により計測した物体位置データをハフ変換して前方道路の曲率を推定し、推定した道路曲率により前方車両が自車両と同一車線に存在するか否かを判定する車両前方監視装置がある(例えば、以下の特許文献1)。
特開2001−167396号公報
As a conventional technique using such a Hough transform, the object position data measured by the measuring means is subjected to a Hough transform to estimate the curvature of the road ahead, and whether the vehicle ahead is in the same lane as the own vehicle by the estimated road curvature. There is a vehicle forward monitoring device that determines whether or not (for example, Patent Document 1 below).
JP 2001-167396 A

しかしながら、ハフ変換の処理過程では、抽出されたある点に対して全角度において直線を求めようとすると非常に多くの処理量が必要となる。   However, in the process of the Hough transform, if a straight line is to be obtained at all angles for an extracted point, a very large amount of processing is required.

一方で、全角度ではなく、ある角度間隔で直線を求めようとすると処理量はその分少なくなるものの、演算の精度が低くなり直線の精度の低下を招く。   On the other hand, when trying to find straight lines at a certain angle interval instead of all angles, the processing amount is reduced by that amount, but the calculation accuracy is lowered and the straight line accuracy is lowered.

ハフ変換を用いて車線を検出する車線検出装置においても同様の問題がある。特にこのような装置では、ハフ変換による処理以外にも種々の処理が行われるため、ハフ変換による処理のみに時間をかけることは難しい。   There is a similar problem in a lane detection device that detects a lane using Hough transform. In particular, in such an apparatus, since various processes are performed in addition to the process based on the Hough transform, it is difficult to spend time only on the process based on the Hough transform.

そこで、本発明は上記問題点に鑑みてなされたもので、その目的は、処理量を抑えるとともに演算精度を高精度に維持した車線検出装置やその方法及び車線検出プログラムを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a lane detection device, a method thereof, and a lane detection program that suppresses the processing amount and maintains high calculation accuracy.

上記目的を達成するために本発明は、抽出された画像中の候補点からハフ変換により車線を検出する車線検出装置において、前記候補点を通る直線であって前記各直線の隣り合う角度の角度分解能を状態遷移しながら上げるとともに、前記候補点を中心にした前記直線の傾きの範囲である傾き検出範囲を状態遷移しながら小さくして近似直線を得、当該近似直線により前記車線を検出する検出手段を備えることを特徴とする。   In order to achieve the above object, the present invention provides a lane detection device that detects a lane from a candidate point in an extracted image by Hough transform, and is a straight line passing through the candidate point and an angle between adjacent straight lines. Detection in which the resolution is increased while changing the state, the inclination detection range, which is the inclination range of the straight line centered on the candidate point, is reduced while changing the state to obtain an approximate straight line, and the lane is detected by the approximate straight line Means are provided.

また、本発明は前記車線検出装置において、前記検出手段は前記近似直線の傾きと切片とが所定範囲内にあるときに、現状態よりも前記角度分解能を上げ、前記傾き検出範囲の小さい次の状態に移行して前記近似直線を得ることを特徴とする。   Further, in the lane detection device according to the present invention, when the inclination and intercept of the approximate straight line are within a predetermined range, the detection means increases the angular resolution as compared with the current state, The approximate straight line is obtained by shifting to a state.

更に、本発明は前記車線検出装置において、前記検出手段は前状態で得た前記近似直線の結果を基準にして現状態の前記傾き検出範囲を限定することで前記傾き検出範囲を小さくすることを特徴とする。   Furthermore, the present invention provides the lane detection device, wherein the detection means reduces the inclination detection range by limiting the inclination detection range in the current state based on the result of the approximate straight line obtained in the previous state. Features.

更に、本発明は前記車線検出装置において、前記検出手段は前記画像の下部で抽出された候補点に上部で抽出された候補点よりも大きい重み付けを行い、前記近似直線を得ることを特徴とする。   Furthermore, the present invention is characterized in that, in the lane detection device, the detection unit weights the candidate points extracted at the lower part of the image larger than the candidate points extracted at the upper part to obtain the approximate straight line. .

更に、本発明は前記車線検出装置において、前記検出手段は前記画像の下部での候補点が上部の候補点よりも多く抽出して前記近似直線を得ることを特徴とする。   Furthermore, the present invention is characterized in that in the lane detecting device, the detecting means extracts more candidate points at the lower part of the image than the upper candidate points to obtain the approximate line.

更に、本発明は前記車線検出装置において、前記検出手段は前記画像を左右に分割し分割された左右の画像のうち抽出点の多い側で得た近似直線を基準にして他方の側の近似直線を得るようにすることを特徴とする。   Further, in the lane detecting device according to the present invention, the detecting means divides the image into left and right, and an approximate straight line on the other side is obtained with reference to an approximate straight line obtained on the side with a lot of extraction points among the divided left and right images. It is characterized by obtaining.

更に、本発明は前記車線検出装置において、前記検出手段は前状態で得た前記近似直線の近傍を前記候補点として抽出することを特徴とする。   Furthermore, the present invention is characterized in that, in the lane detecting device, the detecting means extracts the vicinity of the approximate straight line obtained in the previous state as the candidate point.

更に、本発明は前記車線検出装置において、前記検出手段は前記近似直線を連続して所定回数検知したときに、現状態よりも前記角度分解能を上げ、前記傾き検出範囲を小さくした次の状態に移行して前記近似直線を得ることを特徴とする。   Furthermore, in the lane detection device according to the present invention, when the detection unit continuously detects the approximate straight line a predetermined number of times, the angle resolution is increased from the current state and the inclination detection range is reduced to the next state. The approximate straight line is obtained by shifting.

更に、本発明は前記車線検出装置において、前記検出手段は現状態において前記近似直線を検出できなかったとき、前記状態のうち最も前記角度分解能が低く前記傾き検出範囲の大きい状態に移行することを特徴とする。   Furthermore, in the lane detecting device according to the present invention, when the detecting means cannot detect the approximate straight line in the current state, the state shifts to a state where the angular resolution is the lowest and the inclination detection range is large. Features.

更に、本発明は前記車線検出装置において、前記検出手段は前状態で得た前記近似直線の前記傾きを中心にして所定範囲内を前記傾き検出範囲とすることで前記傾き検出範囲を小さくすることを特徴とする。   Furthermore, the present invention provides the lane detection device, wherein the detection means reduces the inclination detection range by setting the inclination detection range within a predetermined range centered on the inclination of the approximate straight line obtained in the previous state. It is characterized by.

更に、本発明は前記車線検出装置において、前記検出手段は前記画像の下部で走査するライン数を上部よりも多くとることで前記画像の下部で抽出する候補点を上部よりも多く抽出することを特徴とする。   Further, in the lane detection device according to the present invention, the detection means may extract more candidate points to be extracted at the lower part of the image than at the upper part by taking more lines to scan at the lower part of the image than at the upper part. Features.

また、本発明は上記目的を達成するために、抽出された画像中の候補点からハフ変換により車線を検出する車線検出装置における車線検出方法において、前記候補点を通る直線であって前記各直線の隣り合う角度の角度分解能を状態遷移しながら上げるとともに、前記候補点を中心にした前記直線の傾きの範囲である傾き検出範囲を状態遷移しながら小さくして近似直線を得、当該近似直線により前記車線を検出することを特徴とする。   In order to achieve the above object, the present invention provides a lane detection method in a lane detection apparatus for detecting a lane from a candidate point in an extracted image by Hough transform, wherein each straight line passes through the candidate point. The angle resolution of adjacent angles is increased while changing the state, and the inclination detection range, which is the inclination range of the straight line centered on the candidate point, is reduced while changing the state to obtain an approximate straight line. The lane is detected.

更に、本発明は上記目的を達成するために、抽出された画像中の候補点からハフ変換により車線を検出する車線検出プログラムにおいて、前記候補点を通る直線であって前記各直線の隣り合う角度の角度分解能を状態遷移しながら上げるとともに、前記候補点を中心にした前記直線の傾きの範囲である傾き検出範囲を状態遷移しながら小さくして近似直線を得、当該近似直線により前記車線を検出する処理をコンピュータに実行させることを特徴とする。   Furthermore, in order to achieve the above object, the present invention provides a lane detection program for detecting a lane from a candidate point in an extracted image by a Hough transform, and a straight line passing through the candidate point and an angle adjacent to each straight line. The angle resolution is increased while changing the state, and the inclination detection range, which is the inclination range of the straight line centered on the candidate point, is reduced while changing the state to obtain an approximate line, and the lane is detected by the approximate line. It is characterized by causing a computer to execute the processing to be performed.

更に、本発明は上記目的を達成するために、抽出された画像中の候補点からハフ変換により画像中の直線を検出する直線検出装置における直線検出方法において、前記候補点を通る直線であって前記各直線の隣り合う角度の角度分解能を状態遷移しながら上げるとともに、前記候補点を中心にした前記直線の傾きの範囲である傾き検出範囲を状態遷移しながら小さくして近似直線を得、当該近似直線により前記画像中の直線を検出することを特徴とする。   Furthermore, in order to achieve the above object, the present invention provides a straight line detection method in a straight line detection apparatus for detecting a straight line in an image from a candidate point in an extracted image by Hough transform, wherein the straight line passes through the candidate point. While increasing the angle resolution of the adjacent angles of each straight line while making a state transition, an approximate straight line is obtained by reducing the slope detection range, which is the slope range of the straight line centered on the candidate point, while making a state transition, A straight line in the image is detected by an approximate straight line.

本発明によれば、処理量を抑えるとともに演算精度を高精度に維持した車線検出装置を提供することができる。   According to the present invention, it is possible to provide a lane detection device that suppresses the processing amount and maintains high calculation accuracy.

本発明を実施するための最良の形態について、以下図面を参照しながら説明する。図1は本発明にかかる車線検出装置1の構成例を示す図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of a lane detection device 1 according to the present invention.

車線検出装置1は、カメラ10と、マイコン20、及び車体制御部30から構成される。   The lane detection device 1 includes a camera 10, a microcomputer 20, and a vehicle body control unit 30.

カメラ10は車両前方の画像を撮影するためのものである。撮影した画像はマイコン20に出力される。   The camera 10 is for taking an image in front of the vehicle. The captured image is output to the microcomputer 20.

例えば、図2(A)に示すように、カメラ10は車両2の前方であって車両内部のインナーミラー付近に取り付けられている。このような位置で車両2前方を撮影すると、図2(B)に示すように、車両2前方の2つの車線(白線)3、4を含む画像を得る。   For example, as shown in FIG. 2A, the camera 10 is attached in front of the vehicle 2 and in the vicinity of the inner mirror inside the vehicle. When the front of the vehicle 2 is photographed at such a position, an image including two lanes (white lines) 3 and 4 in front of the vehicle 2 is obtained as shown in FIG.

マイコン20は、カメラ10からの画像が入力され、当該画像に対して白線3、4のエッジ部分の候補点を抽出してハフ変換を施し、白線3、4の近似直線を検出する。マイコン20は、近似直線を検出後、その位置と方向に関するデータを出力する。尚、マイコン20は他にも前方の車両を検出したり、障害物を検出したり等、種々の処理を行う。また、このマイコン20が車線の検出を行う検出手段となる。   The microcomputer 20 receives an image from the camera 10, extracts candidate points of the edge portions of the white lines 3 and 4 from the image, performs Hough transform, and detects an approximate straight line of the white lines 3 and 4. After detecting the approximate straight line, the microcomputer 20 outputs data regarding the position and direction. The microcomputer 20 performs various other processes such as detecting a vehicle ahead and detecting an obstacle. The microcomputer 20 serves as detection means for detecting a lane.

車体制御部30は、マイコン20からの白線3、4に関する近似直線の位置と方向に関するデータが入力されて、例えば、車両2の速度を制御する。車体制御部30は、車両2の種々の装置に接続される。マイコン20から車線の位置等のデータ以外、種々のデータが入力されて、それに応じて種々の装置を制御する。   The vehicle body control unit 30 is input with data on the position and direction of the approximate straight line related to the white lines 3 and 4 from the microcomputer 20, and controls the speed of the vehicle 2, for example. The vehicle body control unit 30 is connected to various devices of the vehicle 2. Various data other than data such as the position of the lane are input from the microcomputer 20, and various devices are controlled accordingly.

次にハフ変換について説明する。例えば、マイコン20はカメラ10からの画像に対して白線3、4のエッジとしてある候補点を抽出したとする。図3(A)に示すように、縦軸をy、横軸をxとし、その抽出点を(x1、y1)とする。このとき、この抽出点(x1、y1)を通る直線は、傾きをa、切片をbとして、   Next, the Hough transform will be described. For example, it is assumed that the microcomputer 20 extracts candidate points as edges of white lines 3 and 4 from the image from the camera 10. As shown in FIG. 3A, the vertical axis is y, the horizontal axis is x, and the extraction point is (x1, y1). At this time, the straight line passing through the extraction point (x1, y1) is assumed to have an inclination a and an intercept b.

Figure 2007141167
Figure 2007141167

で、表される。 Is represented.

今、傾きと切片の代わりに、図3(A)で示すように、原点から抽出点(x1、y1)を通る直線におろした垂線の長さをρ、垂線がx軸となす角をθとすると、直線の式は、   Now, instead of the slope and intercept, as shown in FIG. 3A, the length of the perpendicular drawn from the origin to the straight line passing through the extraction point (x1, y1) is ρ, and the angle between the perpendicular and the x axis is θ Then, the equation of the straight line is

Figure 2007141167
Figure 2007141167

で、表される。即ち、ある点(x1、y1)が与えられたとき、この点を通る全直線の集合は、横軸θ、縦軸ρの座標上における曲線(図3(B))で表される。言い換えると、この曲線上のある点が図3(A)で示す直線に対応する。 Is represented. That is, when a certain point (x1, y1) is given, a set of all straight lines passing through this point is represented by a curve (FIG. 3B) on the coordinates of the horizontal axis θ and the vertical axis ρ. In other words, a certain point on this curve corresponds to the straight line shown in FIG.

そして、図4(A)に示すように、複数の抽出点が得られたとき、各抽出点に対応する曲線を描くと図4(B)のように複数の曲線を得る。この曲線が最も多く交わる点が、各抽出点を通る近似直線(図4(A)の点線で示す直線)となる。この近似直線により白線3、4を検出する。   Then, as shown in FIG. 4A, when a plurality of extraction points are obtained, a plurality of curves are obtained as shown in FIG. 4B when a curve corresponding to each extraction point is drawn. The point where these curves intersect most often is an approximate straight line (straight line indicated by a dotted line in FIG. 4A) passing through each extraction point. White lines 3 and 4 are detected by this approximate straight line.

次に、ハフ変換による処理に際し、少ない処理量で演算の精度を高精度に維持するための手法について述べる。図5は、かかる手法を概念的に示した図である。   Next, a technique for maintaining high accuracy of calculation with a small amount of processing in processing by Hough transform will be described. FIG. 5 is a diagram conceptually showing such a method.

まず、状態1において、画像からある抽出点を抽出すると、角度分解能9°、傾き検出範囲を大(本実施例では、0°〜179°の範囲)として当該抽出点を通る全直線を演算する。   First, when an extraction point is extracted from the image in state 1, the angle resolution is 9 °, the inclination detection range is large (in this embodiment, a range of 0 ° to 179 °), and all straight lines passing through the extraction point are calculated. .

ここで、角度分解能とは、抽出点を通る直線であって隣り合う各直線の角度間隔のことである。従って、角度分解能9°とは9°間隔で抽出点を通る全直線を求めることになる。   Here, the angular resolution is an angle interval between adjacent straight lines passing through extraction points. Therefore, the angular resolution of 9 ° means that all straight lines passing through the extraction points at intervals of 9 ° are obtained.

また、傾き検出範囲とは、抽出点を通る直線の傾きの範囲のことである。従って、傾き検出範囲が0°〜179°とは、抽出点を通る直線を、抽出点を中心にして0°から179°の範囲に亘り求めることになる。   Further, the inclination detection range is a range of inclination of a straight line passing through the extraction point. Therefore, when the inclination detection range is 0 ° to 179 °, a straight line passing through the extraction point is obtained over a range from 0 ° to 179 ° centering on the extraction point.

状態1において、複数の抽出点から前述した図4(B)に示すような最多投票の組み合わせを求めて全ての抽出点を通るような近似直線を求める。本実施例ではこの近似直線が白線エッジとなる。このとき、連続して近似直線を検知した回数を求め、例えば10回以上連続して検知したとき、状態2に移行する。   In state 1, a combination of the most votes as shown in FIG. 4B described above is obtained from a plurality of extracted points, and an approximate straight line passing through all the extracted points is obtained. In this embodiment, this approximate straight line becomes a white line edge. At this time, the number of times that the approximate straight line has been detected continuously is obtained.

状態2では、再び抽出点から近似直線を求めることになるが、角度分解能は4°、傾き検出範囲を中(例えば、状態1で得た近似直線の傾きθに対して−40°≦θ≦+40°の、80°の範囲)として求める。状態1にて求めた近似直線を検出した後は、白線3、4の傾きは急激には変化しないため、前回の検知で得た結果を用いて計算を行う。この状態2は、状態1と比較して傾き検出範囲を限定し、角度分解能を上げている。分解能を上げて計算の処理量が増えるのを防止している。そして、状態2において近似直線を連続して、例えば30回以上検知したとき、状態3に移行する。 In state 2, an approximate straight line is obtained again from the extracted points, but the angle resolution is 4 °, and the inclination detection range is medium (for example, −40 ° ≦ θ with respect to the inclination θ 1 of the approximate straight line obtained in state 1) 1 ≦ + 40 °, 80 ° range). After detecting the approximate straight line obtained in state 1, the slopes of the white lines 3 and 4 do not change abruptly, so the calculation is performed using the results obtained in the previous detection. In this state 2, the inclination detection range is limited as compared with state 1, and the angular resolution is increased. The resolution is increased to prevent the calculation processing amount from increasing. When the approximate straight line is continuously detected in the state 2, for example, 30 times or more, the state 3 is entered.

状態3では、角度分解能2°、傾き検出範囲を小(例えば、状態2で得た近似直線の傾きθに対して、−20°≦θ≦+20°の、40°の範囲)として抽出点から近似直線を求める。状態2の場合と同様に急減に白線3、4の傾きは変化しないことを考慮して状態2で得た結果を利用している。状態3は、状態1や状態2と比較して更に傾き検出範囲を限定し、角度分解能を上げて近似直線の精度を高めている。分解能を上げて計算の処理量が増加するのを防いでいる。この状態3において近似直線を検知することができれば、精度の高い白線エッジを検出することができる。 In state 3, the angle resolution is 2 °, and the inclination detection range is small (for example, the range of −20 ° ≦ θ 2 ≦ + 20 ° and 40 ° with respect to the inclination θ 2 of the approximate line obtained in state 2). Find an approximate line from a point. As in the case of the state 2, the result obtained in the state 2 is used in consideration of the fact that the slopes of the white lines 3 and 4 do not change rapidly. State 3 further limits the tilt detection range as compared with state 1 and state 2 and increases the angular resolution to improve the accuracy of the approximate straight line. The resolution is increased to prevent the calculation processing amount from increasing. If an approximate straight line can be detected in this state 3, a highly accurate white line edge can be detected.

尚、各状態において近似直線の検知が1回でも失敗したときは、状態1に移行する。通常、道路の白線3、4はカメラ10からの画像に対して斜め方向に位置するが、例えば、垂直方向に近似直線を検知したり、白線3、4の幅がある間隔よりも大きくその幅を検知したとき、更に、前回求めた近似直線と今回求めた近似直線とをマッチングさせて大きく変化したとき等において、近似直線の検知が失敗したものとする。実際には、各場合において、ある閾値を設定してその閾値を超えて近似直線を検知したときに、近似直線の検知が失敗したものとする。   If detection of the approximate straight line fails even once in each state, the state shifts to state 1. Normally, the white lines 3 and 4 of the road are located obliquely with respect to the image from the camera 10. For example, an approximate straight line is detected in the vertical direction, or the width of the white lines 3 and 4 is larger than a certain interval. Furthermore, it is assumed that the detection of the approximate straight line has failed when the approximate straight line obtained last time and the approximate straight line obtained this time are matched and greatly changed. Actually, in each case, it is assumed that the detection of the approximate line fails when a certain threshold is set and the approximate line is detected exceeding the threshold.

次に、各状態でρ−θ座標上における曲線がどのように状態が変化するかについて説明する。図6は、その一例である。各状態における角度分解能の値は図5の例と同一である。   Next, how the state of the curve on the ρ-θ coordinate changes in each state will be described. FIG. 6 shows an example. The value of the angular resolution in each state is the same as in the example of FIG.

図6(A)に示すように、状態1では全傾き検出範囲(0°≦θ≦179°)で抽出点から近似直線を求める。ただし、角度分解能は9°なので、その曲線の横軸は9°間隔でプロットされる。複数の抽出点から複数の曲線が得られ、それらの曲線から最高投票位置(θとρ)、即ち近似直線を得る。これが、例えば10回成功すると、状態2に移行する。 As shown in FIG. 6A, in the state 1, an approximate straight line is obtained from the extraction points in the entire inclination detection range (0 ° ≦ θ ≦ 179 °). However, since the angular resolution is 9 °, the horizontal axis of the curve is plotted at 9 ° intervals. A plurality of curves are obtained from the plurality of extracted points, and the highest voting position (θ 1 and ρ 1 ), that is, an approximate line is obtained from these curves. If this is successful 10 times, for example, the state 2 is entered.

図6(B)に示すように、状態2では、傾き検出範囲が状態1で検出した近似直線の傾きθを中心にして±40°の範囲で抽出点から全直線を求める。この場合の角度分解能は4°なので、横軸は4°間隔でプロットされる。この状態2で複数の曲線から最高投票位置を求め、例えば、連続して30回近似直線の検出に成功すると状態3に移行する。 As shown in FIG. 6B, in state 2, the entire straight line is obtained from the extracted points in the range of ± 40 ° with the inclination detection range centering on the inclination θ 1 of the approximate straight line detected in state 1. Since the angular resolution in this case is 4 °, the horizontal axis is plotted at intervals of 4 °. In this state 2, the highest voting position is obtained from a plurality of curves. For example, when the detection of the approximate straight line is successful 30 times in succession, the state shifts to state 3.

図6(C)に示すように、状態3では、傾き検出範囲は状態2で検出した近似直線の傾きθに対して、±20°の範囲で全直線を求める。この場合、角度分解能は2°なので横軸は2°間隔でプロットされる。 As shown in FIG. 6C, in state 3, the inclination detection range is obtained for all straight lines in a range of ± 20 ° with respect to the inclination θ 2 of the approximate straight line detected in state 2. In this case, since the angular resolution is 2 °, the horizontal axis is plotted at intervals of 2 °.

図6(A)乃至図6(C)に示すように、状態1では直線の傾き範囲を全範囲で検出し、状態が状態1から状態3に移行するに従い、その範囲を狭めている。一方で、角度分解能は状態が状態1から状態3に移行するに従い、間隔が狭まっている。   As shown in FIG. 6A to FIG. 6C, in the state 1, the linear inclination range is detected in the entire range, and the range is narrowed as the state shifts from the state 1 to the state 3. On the other hand, the angular resolution decreases as the state shifts from state 1 to state 3.

即ち、ρ−θ座標上の曲線は状態が状態1から状態3に移行するに従い、検出範囲が狭まるとともに曲線は滑らからになっている。従って、除々に近似直線の精度が上がるものの検出範囲を狭めているため計算回数は増加しない。   That is, the curve on the [rho]-[theta] coordinate becomes smoother as the detection range becomes narrower as the state shifts from state 1 to state 3. Therefore, although the accuracy of the approximate straight line gradually increases, the number of calculations does not increase because the detection range is narrowed.

尚、図5と図6の例で示す数値は一例であって、状態1から状態3に移行するに伴い角度分解能は上がり、傾き検出範囲は狭くなるように値を設定すれば、上述した例と同様の作用効果を奏する。   Note that the numerical values shown in the examples of FIGS. 5 and 6 are examples, and if the values are set so that the angular resolution increases and the inclination detection range becomes narrower as the state 1 is shifted to the state 3, the example described above. Has the same effect as.

次に、以上の点を踏まえた上で、本車線検出装置1の近似直線検出のための動作について説明する。   Next, based on the above points, the operation for detecting the approximate straight line of the lane detection device 1 will be described.

図7はその動作を示すフローチャートの一例である。まず、マイコン20は本処理の動作を開始すると、白線エッジ候補点の抽出範囲を設定する(S11)。   FIG. 7 is an example of a flowchart showing the operation. First, when starting the operation of this processing, the microcomputer 20 sets an extraction range of white line edge candidate points (S11).

例えば、図9に示すように、マイコン20はカメラ10から得られた画像に対して水平方向に走査して候補点を抽出する。このとき、前回算出した近似直線(或いは予めマイコン20内のメモリに記憶された直線など)近傍の範囲で抽出範囲を設定する。例えば、前回算出した近似直線の走査方向に対して前後100画素の範囲を設定する。これにより、全画素の範囲で抽出するよりも処理量を減らすことができる。   For example, as shown in FIG. 9, the microcomputer 20 scans the image obtained from the camera 10 in the horizontal direction and extracts candidate points. At this time, the extraction range is set in the vicinity of the previously calculated approximate straight line (or a straight line stored in the memory in the microcomputer 20 in advance). For example, a range of 100 pixels before and after the previously calculated approximate straight line scanning direction is set. As a result, the processing amount can be reduced as compared with the extraction in the range of all pixels.

尚、走査により候補点を抽出する際にマイコン20は左側白線3と右側白線4を検知するため、画像を半分にして夫々において左側白線用の候補点と右側白線用の候補点を抽出する。   Since the microcomputer 20 detects the left white line 3 and the right white line 4 when extracting candidate points by scanning, the microcomputer 20 halves the left white line candidate point and the right white line candidate point.

抽出範囲を設定した後、マイコン20はその範囲で白線エッジ候補点の抽出を行う(S12)。このとき、マイコン20は画像に対して抽出するライン数を画像上部よりも画像下部の方を多くする。   After setting the extraction range, the microcomputer 20 extracts white line edge candidate points within the range (S12). At this time, the microcomputer 20 increases the number of lines extracted from the image in the lower part of the image than in the upper part of the image.

例えば、図10(A)に示すように、画像下部は車両2近傍であり白線3、4は太く、画像上部は車両2から遠い位置となるため白線3、4は細くなる。画像下部では白線3、4が太いため、この範囲で多くの候補点を抽出できれば、より確からしい近似直線を得ることができる。   For example, as shown in FIG. 10A, the lower part of the image is near the vehicle 2 and the white lines 3 and 4 are thick, and the upper part of the image is far from the vehicle 2, so the white lines 3 and 4 are thin. Since the white lines 3 and 4 are thick in the lower part of the image, if more candidate points can be extracted in this range, a more probable approximate straight line can be obtained.

即ち、抽出ライン数を画像下部の方を多くすることで、図10(A)に示すように、画像下部の2つの抽出点A1、A2は抽出でき、画像上部の抽出点A3は抽出できない。画像下部の抽出点から各曲線を求めると、図10(B)に示すように、各曲線は似通った形となる。その交点は1点で交わる可能性が高く、従って、より確からしい近似直線を得ることができる。   That is, by increasing the number of extraction lines at the bottom of the image, as shown in FIG. 10A, the two extraction points A1 and A2 at the bottom of the image can be extracted, and the extraction point A3 at the top of the image cannot be extracted. When each curve is obtained from the extracted points at the bottom of the image, each curve has a similar shape as shown in FIG. The intersection is highly likely to intersect at one point, and therefore a more probable approximate straight line can be obtained.

抽出ライン数を多くするには、例えば、図10(A)に示すように画像の対象領域を設定し、その対象領域では全ライン数を走査し、対象領域以外では10ラインごとに走査する、等するようにする。勿論、対象領域で走査するライン数をそれ以外の領域で走査するライン数より多くすれば、どのように設定してもよい。   In order to increase the number of extracted lines, for example, a target area of an image is set as shown in FIG. 10 (A), the total number of lines is scanned in the target area, and every 10 lines are scanned outside the target area. To be equal. Of course, any number of lines may be set as long as the number of lines scanned in the target area is larger than the number of lines scanned in the other areas.

図7に戻り、候補点を抽出した後、マイコン20は白線エッジ候補点の抽出数が所定数以上か否かを判断する(S13)。抽出数をある程度確保した上でハフ変換により近似直線を求めた方が得られる直線の信頼性が高いためである。所定数とは、例えば、「5」や「10」などの値である。勿論それ以外の値でもよい。   Returning to FIG. 7, after extracting the candidate points, the microcomputer 20 determines whether or not the number of white line edge candidate points extracted is equal to or greater than a predetermined number (S13). This is because the reliability of a straight line obtained by obtaining an approximate straight line by Hough transform after securing a certain number of extractions is high. The predetermined number is, for example, a value such as “5” or “10”. Of course, other values may be used.

抽出数が所定数より少ないとき(S13でNO)、マイコン20は連続抽出回数をクリアする(S15)。これまで、白線3、4の近似直線を連続して抽出してきた場合に、近似直線を検知できないとして抽出回数をクリアする。即ち、状態1に移行する。そして、処理は再びS11に移行して上述の処理を繰り返す。   When the number of extractions is less than the predetermined number (NO in S13), the microcomputer 20 clears the number of continuous extractions (S15). Up to now, when the approximate lines of the white lines 3 and 4 have been extracted continuously, the number of extraction is cleared because the approximate line cannot be detected. That is, the state 1 is transferred. And a process transfers to S11 again and repeats the above-mentioned process.

一方、抽出数が所定数以上のとき(S13でYES)、マイコン20はハフ変換で使用する角度分解能を設定する(S14)。状態に応じて、角度分解能を所定値、例えば9°に設定したり、4°に設定したり、2°に設定したりする。   On the other hand, when the number of extractions is equal to or greater than the predetermined number (YES in S13), the microcomputer 20 sets the angular resolution used in the Hough transform (S14). Depending on the state, the angular resolution is set to a predetermined value, for example, 9 °, 4 °, or 2 °.

次いで、マイコン20はハフ変換に必要な傾き検出角度の範囲を設定する(S17)。前述したように現在の状態に応じて、検出角度の範囲を設定する。状態2や状態3の場合は、前状態で求めた傾き検出角度を基準にして範囲を限定する。   Next, the microcomputer 20 sets the range of the tilt detection angle necessary for the Hough transform (S17). As described above, the detection angle range is set according to the current state. In the case of state 2 or state 3, the range is limited based on the tilt detection angle obtained in the previous state.

次いで、マイコン20は近似直線候補の投票を行う(S18)。各抽出点において、設定した角度分解能と傾き検出範囲に基づいてρ−θ座標上で曲線を求め、各曲線が最も多く交差する交点を求める。   Next, the microcomputer 20 performs voting for the approximate straight line candidate (S18). At each extraction point, a curve is obtained on the ρ-θ coordinate based on the set angle resolution and inclination detection range, and an intersection where each curve intersects most often is obtained.

この場合、ハフ変換の投票の際に候補点に対して重み付けをしておけば、交点が複数あったときに重み付けのした曲線の交点の方を選んで求めることができる。例えば、図11(A)、(B)に示すように、3点の候補点を抽出して、車両2に近い側の候補点A1の曲線に+3の重み付け、最も遠い候補点A3の曲線に+1の重み付け、中間にある候補点A2の曲線に+2の重み付けを行う。そして、各曲線の交点を求める際に、例えば図11(B)に示すように2つの交点X1、X2が存在したときに、抽出点A1とA3による交点X2ではなく、抽出点A1とA2による交点X1の方を選択するようにする。車両2に近い候補点の方が信頼性が高く、そのため実際の白線3、4のエッジに近似した正しい近似直線を得やすいからである。   In this case, if the candidate points are weighted when voting for the Hough transform, the intersection of the weighted curves can be selected and obtained when there are a plurality of intersections. For example, as shown in FIGS. 11A and 11B, three candidate points are extracted, the curve of the candidate point A1 closer to the vehicle 2 is weighted by +3, and the curve of the farthest candidate point A3 is used. A weight of +1 and a weight of +2 are applied to the curve of the candidate point A2 in the middle. Then, when obtaining the intersection of each curve, for example, as shown in FIG. 11B, when there are two intersections X1 and X2, it is not the intersection X2 by the extraction points A1 and A3 but the extraction points A1 and A2. The direction of the intersection point X1 is selected. This is because the candidate point closer to the vehicle 2 has higher reliability, and therefore, it is easier to obtain a correct approximate straight line approximating the edges of the actual white lines 3 and 4.

次いで、マイコン20は近似直線の検出を行う(図8のS19)。最多投票の組み合わせから、ρとθとが求められるため、この値を用いて近似直線を求める。即ち、数2から、   Next, the microcomputer 20 detects an approximate straight line (S19 in FIG. 8). Since ρ and θ are obtained from the combination of the most votes, an approximate straight line is obtained using these values. That is, from Equation 2,

Figure 2007141167
Figure 2007141167

を得、求めたρとθを代入することで近似直線を得る。   And an approximate straight line is obtained by substituting the obtained ρ and θ.

前述したように、候補点は1つの画像に対して左側と右側に分割して、夫々で近似直線を求める。この近似直線の検出に際して、左右の白線候補点においてより抽出点の多い側を基準としてもう一方の側の近似直線を検出する際の指標とする。   As described above, candidate points are divided into a left side and a right side with respect to one image, and approximate lines are obtained respectively. When detecting the approximate line, the left and right white line candidate points are used as an index for detecting the approximate line on the other side with reference to the side with more extracted points.

例えば、図12(A)に示すように、左側画像には5つの抽出点、右側画像には3つの抽出点があるときを考える。左側の抽出点から曲線を求めると、例えば図12(B)のように集中した交点が1点存在する。一方、右側の抽出点から曲線を求めると、例えば図12(C)のように抽出点が右側と比較して少ない分だけ集中した交点が得られ難い。従って、右側の近似直線を検出するときに左側で検出した近似直線を指標にして、例えば、左側の近似直線より最適な近似直線を選択するようにする。これにより、近似直線の精度を向上させることができる。   For example, as shown in FIG. 12A, consider the case where the left image has five extraction points and the right image has three extraction points. When a curve is obtained from the extracted points on the left side, for example, there is one concentrated intersection as shown in FIG. On the other hand, when a curve is obtained from the extracted points on the right side, for example, as shown in FIG. 12C, it is difficult to obtain an intersection where the extracted points are concentrated by a small amount compared to the right side. Accordingly, when the right approximate line is detected, the approximate straight line detected on the left side is used as an index, and for example, an optimal approximate line is selected from the left approximate line. Thereby, the accuracy of the approximate straight line can be improved.

次いで、マイコン20は近似直線の連続検出回数を検知する(S20)。前述したように、連続検出回数は近似直線の確からしさを判定する指標であり、これを基にして状態遷移が行われる。尚、求めた近似直線(S19)の傾きと切片がある値の範囲にあれば連続して近似直線が検出されたものとして判断してもよい。この場合、連続検出回数を検知するのでなくS19で求めた近似直線からその傾き等により確からしさを判断することになる。   Next, the microcomputer 20 detects the number of approximate straight line detections (S20). As described above, the number of consecutive detections is an index for determining the likelihood of the approximate straight line, and state transition is performed based on this. Note that if the slope and intercept of the obtained approximate straight line (S19) are within a certain range, it may be determined that the approximate straight line is continuously detected. In this case, instead of detecting the number of times of continuous detection, the certainty is determined from the approximate straight line obtained in S19 by its inclination or the like.

そして、白線エッジを検出したか否かを判断する(S21)。例えば、白線エッジを検出したか否かは、状態3において近似直線を求められたか否かにより判断してもよい。   Then, it is determined whether a white line edge is detected (S21). For example, whether or not a white line edge is detected may be determined based on whether or not an approximate straight line has been obtained in the state 3.

白線エッジを検出したときは(YES)、一連の処理が終了する(S22)。検出できないとき(S21でNO)、再びS11に処理が移行して前述の処理を繰り返す。   When a white line edge is detected (YES), a series of processing ends (S22). When it cannot be detected (NO in S21), the process proceeds to S11 again and the above-described process is repeated.

上述した例では、画像下部の候補点を上部より多く抽出したり(S12、図10(A)及び(B))、画像下部で抽出された候補点に重み付けしたり(S18、図11(A)及び(B))、更に、左右の画像での候補点で抽出数の多い側を他方の側の近似直線を検出するときの指標にする(S19、図12(A)及び(B))ことで、近似直線の演算精度を良くするようにした。また、上述した例では、候補点の探索範囲を前回算出した近似直線の近傍にする(S11、図9)ことで候補点の抽出時間を減らし処理量を抑制するようにした。これらの例は、すべて本処理の中で行われる必要はなく、いずれか1つ或いは2つ等が行われるようにしてもよい。かかる場合でも、状態遷移しながら近似直線の検出が行われるため、処理量を抑えて演算精度を十分に維持できるからである。   In the above-described example, more candidate points at the lower part of the image are extracted from the upper part (S12, FIGS. 10A and 10B), or the candidate points extracted at the lower part of the image are weighted (S18, FIG. 11A). ) And (B)), and the side with a large number of extractions at the candidate points in the left and right images is used as an index for detecting the approximate straight line on the other side (S19, FIGS. 12A and 12B). As a result, the calculation accuracy of the approximate straight line was improved. In the above-described example, the candidate point search range is set in the vicinity of the previously calculated approximate straight line (S11, FIG. 9) to reduce the candidate point extraction time and suppress the processing amount. All of these examples do not need to be performed in this processing, and any one or two of them may be performed. This is because even in such a case, the approximate straight line is detected while changing the state, so that the processing accuracy can be suppressed and the calculation accuracy can be sufficiently maintained.

また、上述した例では3つの状態を遷移して近似直線を得るようにしたが、例えば、2つの状態を遷移してもよいし、4つ以上の状態を遷移しながら近似直線を得るようにしてもよい。3つの状態の例と同様に直線の連続検知回数(或いはある状態で得た近似直線の傾きや切片)が所定回数に至ったとき(或いは所定範囲内にあるとき)に次の状態に移行して角度分解能を上げるとともに傾き検出範囲を小さくするようにすればよい。いずれの場合も、3つの状態の例と同様の作用効果を奏する。   In the example described above, an approximate straight line is obtained by transitioning three states. However, for example, two states may be transited, and an approximate straight line may be obtained while transitioning four or more states. May be. As in the case of the three states, when the number of continuous straight line detections (or the slope or intercept of the approximate straight line obtained in a certain state) reaches a predetermined number (or within a predetermined range), the next state is entered. Thus, it is only necessary to increase the angle resolution and reduce the tilt detection range. In either case, the same operational effects as the example of the three states are achieved.

更に、上述した例では検出すべき対象として車線を例にして説明した。他にも、駐車場における駐車範囲を示す線や、施設内における道案内の線等の画像中の直線を検出するようにしてもよい。上述した例と同様の構成で動作させることで、同様の作用効果を奏する。   Furthermore, in the above-described example, the lane is taken as an example of the target to be detected. In addition, a straight line in an image such as a line indicating a parking range in a parking lot or a road guide line in a facility may be detected. By operating with the same configuration as the above-described example, the same operational effects can be obtained.

本発明に係る車線検出装置の構成例を示す図である。It is a figure which shows the structural example of the lane detection apparatus which concerns on this invention. 図2(A)はカメラが取り付けられた車両の例を示し、図2(B)はカメラで撮影した画像の例を示す。2A shows an example of a vehicle to which a camera is attached, and FIG. 2B shows an example of an image photographed by the camera. 図3(A)は候補点を通る直線の例を示し、図3(B)はハフ変換後の曲線の例を示す。3A shows an example of a straight line passing through the candidate points, and FIG. 3B shows an example of a curve after the Hough transform. 図4(A)は複数の候補点を通る直線の例を示し、図4(B)は複数の候補点に対するハフ変換後の曲線を示す。FIG. 4A shows an example of a straight line passing through a plurality of candidate points, and FIG. 4B shows a curve after Hough transform for a plurality of candidate points. ハフ変換の際の状態遷移を示す図である。It is a figure which shows the state transition in the case of Hough conversion. ハフ変換の際の状態遷移を示す図である。It is a figure which shows the state transition in the case of Hough conversion. 近似直線を検出するためのフローチャートの一例である。It is an example of the flowchart for detecting an approximate straight line. 近似直線を検出するためのフローチャートの一例である。It is an example of the flowchart for detecting an approximate straight line. 候補点の抽出範囲を示す図である。It is a figure which shows the extraction range of a candidate point. 図10(A)は候補点の例を示し、図10(B)は候補点のハフ変換後の曲線を示す。FIG. 10A shows an example of candidate points, and FIG. 10B shows a curve after the Hough transform of candidate points. 図11(A)は候補点の例を示し、図11(B)は候補点のハフ変換後の曲線を示す。FIG. 11A shows an example of candidate points, and FIG. 11B shows a curve after the Hough transform of candidate points. 図12(A)は候補点の例を示し、図12(B)及び図12(C)は候補点のハフ変換後の曲線を示す。FIG. 12A shows an example of candidate points, and FIGS. 12B and 12C show curves of candidate points after Hough transform.

符号の説明Explanation of symbols

1:車線検出装置、2:車両、3:左側白線、4:右側白線、10:カメラ、20:マイコン、30:車体制御部、θ:直線の傾き、ρ:原点から直線におろした垂線の長さ、A1〜A3:候補点 1: Lane detection device, 2: Vehicle, 3: White line on the left side, 4: White line on the right side, 10: Camera, 20: Microcomputer, 30: Body control unit, θ: Straight line inclination, ρ: Vertical line drawn from the origin to a straight line Length, A1-A3: Candidate points

Claims (14)

抽出された画像中の候補点からハフ変換により車線を検出する車線検出装置において、
前記候補点を通る直線であって前記各直線の隣り合う角度の角度分解能を状態遷移しながら上げるとともに、前記候補点を中心にした前記直線の傾きの範囲である傾き検出範囲を状態遷移しながら小さくして近似直線を得、当該近似直線により前記車線を検出する検出手段、
を備えることを特徴とする車線検出装置。
In a lane detection device for detecting a lane by Hough transform from candidate points in the extracted image,
While increasing the angle resolution of the straight lines passing through the candidate points and adjacent angles of the respective lines while changing the state, changing the state of the inclination detection range that is the inclination range of the straight line centered on the candidate point Detecting means for obtaining an approximate straight line by reducing the lane by the approximate straight line;
A lane detection device comprising:
前記検出手段は前記近似直線の傾きと切片とが所定範囲内にあるときに、現状態よりも前記角度分解能を上げ、前記傾き検出範囲の小さい次の状態に移行して前記近似直線を得ることを特徴とする請求項1記載の車線検出装置。   When the inclination and intercept of the approximate straight line are within a predetermined range, the detection means increases the angular resolution from the current state, and shifts to the next state where the tilt detection range is small to obtain the approximate straight line. The lane detection device according to claim 1. 前記検出手段は前状態で得た前記近似直線の結果を基準にして現状態の前記傾き検出範囲を限定することで前記傾き検出範囲を小さくすることを特徴とする請求項1記載の車線検出装置。   2. The lane detection device according to claim 1, wherein the detection means reduces the inclination detection range by limiting the inclination detection range in the current state based on the result of the approximate straight line obtained in the previous state. . 前記検出手段は前記画像の下部で抽出された候補点に上部で抽出された候補点よりも大きい重み付けを行い、前記近似直線を得ることを特徴とする請求項1記載の車線検出装置。   2. The lane detection device according to claim 1, wherein the detection unit weights the candidate points extracted at the lower part of the image larger than the candidate points extracted at the upper part to obtain the approximate straight line. 前記検出手段は前記画像の下部での候補点が上部の候補点よりも多く抽出して前記近似直線を得ることを特徴とする請求項1記載の車線検出装置。   2. The lane detection device according to claim 1, wherein the detection means obtains the approximate straight line by extracting more candidate points in the lower part of the image than in the upper candidate point. 前記検出手段は前記画像を左右に分割し分割された左右の画像のうち抽出点の多い側で得た近似直線を基準にして他方の側の近似直線を得るようにすることを特徴とする請求項1記載の車線検出装置。   The detection means divides the image into left and right, and obtains an approximate straight line on the other side with reference to an approximate straight line obtained on the side with a large number of extraction points among the divided left and right images. Item 1. A lane detection device according to item 1. 前記検出手段は前状態で得た前記近似直線の近傍を前記候補点として抽出することを特徴とする請求項1記載の車線検出装置。   The lane detection device according to claim 1, wherein the detection unit extracts a vicinity of the approximate straight line obtained in a previous state as the candidate point. 前記検出手段は前記近似直線を連続して所定回数検知したときに、現状態よりも前記角度分解能を上げ、前記傾き検出範囲を小さくした次の状態に移行して前記近似直線を得ることを特徴とする請求項1記載の車線検出装置。   The detecting means, when detecting the approximate straight line a predetermined number of times, obtains the approximate straight line by moving to the next state in which the angle resolution is increased from the current state and the inclination detection range is reduced. The lane detection device according to claim 1. 前記検出手段は現状態において前記近似直線を検出できなかったとき、前記状態のうち最も前記角度分解能が低く前記傾き検出範囲の大きい状態に移行することを特徴とする請求項1又は8記載の車線検出装置。   9. The lane according to claim 1 or 8, wherein the detection means shifts to a state where the angular resolution is the lowest in the state and the inclination detection range is large when the approximate line cannot be detected in the current state. Detection device. 前記検出手段は前状態で得た前記近似直線の前記傾きを中心にして所定範囲内を前記傾き検出範囲とすることで前記傾き検出範囲を小さくすることを特徴とする請求項3記載の車線検出装置。   4. The lane detection according to claim 3, wherein the detection means reduces the inclination detection range by setting the inclination detection range within a predetermined range centering on the inclination of the approximate straight line obtained in the previous state. apparatus. 前記検出手段は前記画像の下部で走査するライン数を上部よりも多くとることで前記画像の下部で抽出する候補点を上部よりも多く抽出することを特徴とする請求項1記載の車線検出装置。   2. The lane detection device according to claim 1, wherein the detection means extracts more candidate points to be extracted at the lower part of the image than at the upper part by taking more lines to scan at the lower part of the image than at the upper part. . 抽出された画像中の候補点からハフ変換により車線を検出する車線検出装置における車線検出方法において、
前記候補点を通る直線であって前記各直線の隣り合う角度の角度分解能を状態遷移しながら上げるとともに、前記候補点を中心にした前記直線の傾きの範囲である傾き検出範囲を状態遷移しながら小さくして近似直線を得、当該近似直線により前記車線を検出することを特徴とする車線検出方法。
In the lane detection method in the lane detection device for detecting the lane by Hough transform from the candidate points in the extracted image,
While increasing the angle resolution of the straight lines passing through the candidate points and adjacent angles of the respective lines while changing the state, changing the state of the inclination detection range that is the inclination range of the straight line centered on the candidate point A lane detection method characterized by obtaining an approximate line by reducing the lane and detecting the lane by the approximate line.
抽出された画像中の候補点からハフ変換により車線を検出する車線検出プログラムにおいて、
前記候補点を通る直線であって前記各直線の隣り合う角度の角度分解能を状態遷移しながら上げるとともに、前記候補点を中心にした前記直線の傾きの範囲である傾き検出範囲を状態遷移しながら小さくして近似直線を得、当該近似直線により前記車線を検出する処理、
をコンピュータに実行させることを特徴とする車線検出プログラム。
In a lane detection program for detecting a lane by Hough transform from candidate points in the extracted image,
While increasing the angle resolution of the straight lines passing through the candidate points and adjacent angles of the respective lines while changing the state, changing the state of the inclination detection range that is the inclination range of the straight line centered on the candidate point A process of obtaining an approximate straight line and detecting the lane by the approximate straight line;
A lane detection program that causes a computer to execute the above.
抽出された画像中の候補点からハフ変換により画像中の直線を検出する直線検出装置における直線検出方法において、
前記候補点を通る直線であって前記各直線の隣り合う角度の角度分解能を状態遷移しながら上げるとともに、前記候補点を中心にした前記直線の傾きの範囲である傾き検出範囲を状態遷移しながら小さくして近似直線を得、当該近似直線により前記画像中の直線を検出することを特徴とする直線検出方法。
In the straight line detection method in the straight line detection device for detecting a straight line in the image by Hough transform from the candidate points in the extracted image,
While increasing the angle resolution of the straight lines passing through the candidate points and adjacent angles of the respective lines while changing the state, changing the state of the inclination detection range that is the inclination range of the straight line centered on the candidate point A straight line detection method, characterized in that an approximate straight line is obtained by reducing the size and a straight line in the image is detected by the approximate straight line.
JP2005337502A 2005-11-22 2005-11-22 Lane detector, lane detection method, and lane detection program Withdrawn JP2007141167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337502A JP2007141167A (en) 2005-11-22 2005-11-22 Lane detector, lane detection method, and lane detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337502A JP2007141167A (en) 2005-11-22 2005-11-22 Lane detector, lane detection method, and lane detection program

Publications (1)

Publication Number Publication Date
JP2007141167A true JP2007141167A (en) 2007-06-07

Family

ID=38203915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337502A Withdrawn JP2007141167A (en) 2005-11-22 2005-11-22 Lane detector, lane detection method, and lane detection program

Country Status (1)

Country Link
JP (1) JP2007141167A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227054A (en) * 2008-03-21 2009-10-08 Honda Motor Co Ltd Vehicle travel support device, vehicle, and vehicle travel support program
WO2011065399A1 (en) * 2009-11-25 2011-06-03 日本電気株式会社 Path recognition device, vehicle, path recognition method, and path recognition program
JP2013193545A (en) * 2012-03-19 2013-09-30 Nippon Soken Inc Parking support device
JP2016203817A (en) * 2015-04-23 2016-12-08 本田技研工業株式会社 Travel support system and travel support method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227054A (en) * 2008-03-21 2009-10-08 Honda Motor Co Ltd Vehicle travel support device, vehicle, and vehicle travel support program
WO2011065399A1 (en) * 2009-11-25 2011-06-03 日本電気株式会社 Path recognition device, vehicle, path recognition method, and path recognition program
US8867845B2 (en) 2009-11-25 2014-10-21 Nec Corporation Path recognition device, vehicle, path recognition method, and path recognition program
JP5716671B2 (en) * 2009-11-25 2015-05-13 日本電気株式会社 Runway recognition device, vehicle, runway recognition method, and runway recognition program
JP2013193545A (en) * 2012-03-19 2013-09-30 Nippon Soken Inc Parking support device
JP2016203817A (en) * 2015-04-23 2016-12-08 本田技研工業株式会社 Travel support system and travel support method

Similar Documents

Publication Publication Date Title
US6801244B2 (en) Obstacle detection apparatus and method
EP2767927A2 (en) Face information detection apparatus, vehicle device control system employing face information detection apparatus, and carrier medium of face information detection program
US20150367781A1 (en) Lane boundary estimation device and lane boundary estimation method
JP2005310140A (en) Method of recognizing and/or tracking objects
JP7077910B2 (en) Bound line detection device and lane marking method
JP2009029171A (en) Image processing device for vehicle
WO2014033936A1 (en) Image processing device, image processing method, and image processing program
JP2004144671A (en) Car-mounted radar device
JP2008045974A (en) Object-detecting apparatus
JP6139465B2 (en) Object detection device, driving support device, object detection method, and object detection program
JP2011022995A (en) Vanishing point estimation device and program
JP2011243161A (en) Lane boundary detection apparatus and lane boundary detection program
JP7095559B2 (en) Bound line detection device and lane marking method
JP5141599B2 (en) Lane recognition apparatus and method
JP4128837B2 (en) Road lane detection device
JP2013142972A (en) Travel path recognition device
JP6999022B2 (en) Imaging device
JPH10267618A (en) Distance measuring instrument
JP2007141167A (en) Lane detector, lane detection method, and lane detection program
WO2014054124A1 (en) Road surface markings detection device and road surface markings detection method
JP2009187204A (en) Image processing apparatus
JPH11259639A (en) Travel path recognizing device
JP2004252827A (en) Lane recognition device
JPH11219435A (en) White line detector for automobile
KR20150103605A (en) Method and apparatus for vanishing point detection

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203