JP2007074557A - 画像処理方法、画像処理装置、コンピュータプログラム、記憶媒体 - Google Patents
画像処理方法、画像処理装置、コンピュータプログラム、記憶媒体 Download PDFInfo
- Publication number
- JP2007074557A JP2007074557A JP2005261097A JP2005261097A JP2007074557A JP 2007074557 A JP2007074557 A JP 2007074557A JP 2005261097 A JP2005261097 A JP 2005261097A JP 2005261097 A JP2005261097 A JP 2005261097A JP 2007074557 A JP2007074557 A JP 2007074557A
- Authority
- JP
- Japan
- Prior art keywords
- image data
- image processing
- processing method
- parameter
- conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Color Image Communication Systems (AREA)
- Controls And Circuits For Display Device (AREA)
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
【課題】 人間が視覚順応する状態に即して色の変換を行う技術を提供する。
【解決手段】 本発明によれば、入力された画像データの色変換を行う画像処理方法であって、入力された前記画像データを第1のパラメータを含む情報に基づいてデバイス非依存の色空間上の画像データに変換する変換工程と、変換された前記画像データを第2のパラメータを含む情報に基づいてデバイス依存の色空間上の画像データ逆変換する逆変換工程と、を備え、更に、入力された前記画像データにおける所定の統計量に基づいて、前記第1及び第2のパラメータの少なくともいずれかを決定する決定工程を備えることを特徴とする画像処理方法が提供される。
【選択図】 図4
【解決手段】 本発明によれば、入力された画像データの色変換を行う画像処理方法であって、入力された前記画像データを第1のパラメータを含む情報に基づいてデバイス非依存の色空間上の画像データに変換する変換工程と、変換された前記画像データを第2のパラメータを含む情報に基づいてデバイス依存の色空間上の画像データ逆変換する逆変換工程と、を備え、更に、入力された前記画像データにおける所定の統計量に基づいて、前記第1及び第2のパラメータの少なくともいずれかを決定する決定工程を備えることを特徴とする画像処理方法が提供される。
【選択図】 図4
Description
本発明は画像処理技術に関し、特に、カラーマッチングを行う画像処理技術に関する。
近年、パーソナルコンピュータ(PC)やワークステーション(WS)等の情報処理装置の普及に伴い、デスクトップ・パブリッシング(DTP)やCADが広く一般に使用されるようになってきた。これに伴い、出力物の色を管理する、カラーマネージメント技術が重要となっている。例えばDTPにおいては、カラーモニタとカラープリンタとを有するコンピュータシステムにおいて、モニタ上にてカラー画像の作成/編集/加工等を行い、カラープリンタで出力する。モニタのデバイス色再現特性とプリンタのカラー特性は一般に異なるため、このようなシステムにおいては、モニタ上のカラー画像の色とプリンタ出力画像の色とを知覚的に一致させるカラーマッチングが要求される。
現在、広く用いられているカラーマッチング手法として、ICCプロファイル(色に対するデバイスの特性を記述したファイル)を用いたCMS(Color Management System)が知られている。このCMSにおいてはICCプロファイルを用いて、デバイス依存色(RGB/CMYK等)からデバイス独立色(XYZ/L*a*b*等)に変換してデバイス間で測色値を一致させる。より詳しく述べると、ソース側(入力側)デバイスでの独立色を(X1、Y1、Z1)とし、ディスティネーション側(出力側)デバイスでの独立色を(X2、Y2、Z2)としたとき、
X1=X2、Y1=Y2、Z1=Z2
とする手法である。この測色値を一致させる手法に拠れば、同一の照明光源下においてソース側デバイスとディスティネーション側デバイスとの両者に包含される色再現範囲内の色を正確に合わせることができる。
X1=X2、Y1=Y2、Z1=Z2
とする手法である。この測色値を一致させる手法に拠れば、同一の照明光源下においてソース側デバイスとディスティネーション側デバイスとの両者に包含される色再現範囲内の色を正確に合わせることができる。
しかしながら、それぞれ照明環境等が異なるデバイス間や、白色基準が異なるデバイス間等においては、上述の測色値を一致させるカラーマッチング手法を適用しても、良好な結果が得られないことが知られている。この原因は、人間は照明環境やデバイス白色が変化すると視覚的に順応している状態が変化する、即ち、視覚順応するために、たとえXYZ/L*a*b*上で測色値を一致させても、人間が知覚する色の見え方が異なってしまうからである。
係る問題を解決する為に観察する条件(白色輝度、色度、周囲の環境など)を考慮して、異なる観察条件下においても色が同じように見えるために、色知覚モデル(カラーアピアランスモデル)というモデルに基づく色の変換手法が提案されている。
例えば、CIECAM(CIE Color Appearance Model)02という色知覚モデルに基づく色の変換手法が知られている。CIECAM02は、照明光に対する順応の程度や背景による対比効果などの視覚現象を数式でモデル化したものである。CIECAM02は、ある色の三刺激値XYZから視環境のパラメータを考慮して、人間の感覚である色の見え方を表す属性(知覚明度J値、知覚彩度C値、知覚色相h値)により表現されるアピアランス色空間に変換して得られる。
図8は色知覚モデルCIECAM02の観察条件パラメータを例示的に示した図である。図8のように、CIECAM02に設定されるパラメータには、順応視野の輝度値、白色三刺激値、背景の相対輝度値、周囲の観察環境を表す係数等が含まれる。
CIECAM02に基づく色変換においては、ソース側とディスティネーション側とで観察条件のパラメータをそれぞれ設定し、アピアランス色空間上で値が一致するよう、ディスティネーション側へ逆変換を行う。これにより、三刺激値は異なるが同じ見え方を持つ色を求めることができる。
例えば、ソース側の観察条件VC1下でのサンプルのXYZ値を(X1,Y1,Z1)、ディスティネーション側の観察条件VC2下でのサンプルのXYZ値を(X2,Y2,Z2)とするとき、色知覚モデルによれば次の変換が行われる。
(X1,Y1,Z1)→[CIECAM02順変換]→(J,C,h)→[CIECAM02逆変換]→(X2,Y2,Z2)
この様に色知覚モデルを用いることで、人間の知覚による色の見え方をさらに近づけることができる。
(X1,Y1,Z1)→[CIECAM02順変換]→(J,C,h)→[CIECAM02逆変換]→(X2,Y2,Z2)
この様に色知覚モデルを用いることで、人間の知覚による色の見え方をさらに近づけることができる。
なお、特許文献1には、画像の撮像時データを用いて画像の補正内容を決定する技術が開示されている。
特開2000−175207号公報
前記色知覚モデルを用いた従来の構成では、観察条件パラメータの順応白色点としてデバイスの白色点を設定するのが一般的であった。例えば、CRTモニタであればRGB入力信号をそれぞれ最大とした際に管面上に表示される白色のXYZ値、あるいは印刷物であればD50光源で昭光した際の標準白色板のXYZ値を設定していた。しかしながら、実際の観察環境においては、実際に人間が順応している白色輝度が観察画像の輝度分布に応じて異なる場合がある。さらには観察画像が全体に色かぶりしているような場合には、実際に人間が順応している白色輝度がデバイス白色とは異なる場合がある。なお、順応白色とは、人間の順応視野における白色のことであり、順応視野とは、人間の順応に寄与する視野のことである。
本発明は上記問題に鑑みなされたものであり、人間が視覚順応する状態に即して色の変換を行う技術を提供することを目的とする。
上記目的を達成するため、本発明による画像処理方法は以下の構成を備える。即ち、
入力された画像データの色変換を行う画像処理方法であって、
入力された前記画像データを第1のパラメータを含む情報に基づいてデバイス非依存の色空間上の画像データに変換する変換工程と、
変換された前記画像データを第2のパラメータを含む情報に基づいてデバイス依存の色空間上の画像データ逆変換する逆変換工程と、を備え、
更に、入力された前記画像データにおける所定の統計量に基づいて、前記第1及び第2のパラメータの少なくともいずれかを決定する決定工程を備える。
入力された画像データの色変換を行う画像処理方法であって、
入力された前記画像データを第1のパラメータを含む情報に基づいてデバイス非依存の色空間上の画像データに変換する変換工程と、
変換された前記画像データを第2のパラメータを含む情報に基づいてデバイス依存の色空間上の画像データ逆変換する逆変換工程と、を備え、
更に、入力された前記画像データにおける所定の統計量に基づいて、前記第1及び第2のパラメータの少なくともいずれかを決定する決定工程を備える。
本発明によれば、人間が視覚順応する状態に即して色の変換を行う技術を提供することができる。
以下、添付図面を参照して本発明に係る実施の形態を詳細に説明する。ただし、この実施の形態に記載されている構成要素はあくまでも例示であり、本発明の範囲をそれらのみに限定する趣旨のものではない。
<<第1実施形態>>
(画像処理装置の構成)
図1は本実施形態に係る画像処理装置の構成を示したブロック図である。この構成において101はCPU、102はメインメモリ、103はSCSIインタフェイス、104はHDD、105はUSBコントローラである。また、106はプリンタ、107はスキャナ、108はディジタルカメラ、109はグラフィックアクセラレータ、110はモニタ、111はPCIバスである。本実施形態に係る画像処理装置は、例えば、PCやWS等で実現される。
(画像処理装置の構成)
図1は本実施形態に係る画像処理装置の構成を示したブロック図である。この構成において101はCPU、102はメインメモリ、103はSCSIインタフェイス、104はHDD、105はUSBコントローラである。また、106はプリンタ、107はスキャナ、108はディジタルカメラ、109はグラフィックアクセラレータ、110はモニタ、111はPCIバスである。本実施形態に係る画像処理装置は、例えば、PCやWS等で実現される。
CPU101は、HDD104に格納されているアプリケーションプログラム、オペレーティングシステム(OS)や制御プログラム等を実行し、メインメモリ102にプログラムの実行に必要な情報、ファイル等を一時的に格納する制御を行う。
メインメモリ102は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)等から構成される。ROMは、基本I/Oプログラム等のプログラム、画像処理の際に使用する各種データ等を記憶する読み出し専用メモリである。RAMは各種データを一時記憶するメモリであり、CPU101の主メモリ、ワークエリア等として機能する。
SCSI(Small Computer System Interface)インタフェイス103は、HDD104とPCIバスとの間のデータ転送を高速に行うバスである。HDD(Hard Disk Drive)104は大容量メモリとして機能する外部記憶装置であり、アプリケーションプログラム、OS、制御プログラム、関連プログラム等が格納される。
USB(Universal Serial Bus)コントローラ105はUSBインタフェイスによって接続される外部装置とのデータ転送を制御する。
プリンタ106は受け取った画像データに基づいて記録用紙に画像を形成する。スキャナ107は、例えば、記録用紙等に印刷された画像を光学的に読みとって、画像データを出力する。ディジタルカメラ108は撮像光学系により結像された被写体の光学像をCCDユニットで電気信号に変換し、画像データを出力する。
グラフィックアクセラレータ109は、受け取った画像データに基づいて描画処理を行い、描画処理後のデータをモニタ110に出力する。モニタ110は、グラフィックアクセラレータ109を経由して入力されたデータに基づいて、所定の描画処理を行う。
PCIバス111は画像処理装置内のデータの流れを司るものである。
(動作概要)
次に、上記構成におけるモニタ110と、プリンタ106に画像を出力する場合における画像出力の動作について述べる。
次に、上記構成におけるモニタ110と、プリンタ106に画像を出力する場合における画像出力の動作について述べる。
まず、HDD104に格納されている画像処理アプリケーションならびにソフトウェアが、CPU101からの指令に基づいて起動される。次に、画像処理アプリケーションの処理に応じて、CPU101は、HDD104に格納されている画像データが、SCSIインタフェイス103を介してPCIバス111経由によりメインメモリ102に転送されるように制御する。そして、メインメモリ102に保持されている画像データは、CPU101からの指令によりPCIバス111経由によってグラフィックアクセラレータ109に転送される。グラフィックアクセラレータ109は、画像データをD/A変換した後ディスプレイケーブルを通じてモニタ110に送信し、モニタ110上に画像データが表示される。
一方、ユーザが、画像処理アプリケーションにてメインメモリ102に保持されている画像をプリンタ106から出力するよう指令した場合は次の処理を行う。即ち、画像処理アプリケーションは後述する画像処理動作に基づき、ソース側デバイスより取得したRGB画像をソース側デバイスとディスティネーション側デバイスの観察条件と像順応を考慮した画像変換を施し、CMYK画像に変換する。そして、USBコントローラ105を介してCMYK画像データをプリンタ106へ送信する。以上一連の動作の結果として、プリンタ106よりCMYK画像が記録用紙に形成される。
(初期設定)
次に、上記構成において、画像処理アプリケーションが起動された後に行う初期設定について、図2を参照して説明する。図2はユーザが初期設定をために用いるユーザインタフェースを模式的に示した図である。初期設定には、ソース側、ディスティネーション側のデバイスの選択、並びに、デバイスに対応する入出力プロファイルの選択等が含まれる。なお、プロファイルは後述するように入力装置(デバイス)、又は、出力装置の特性を記述したファイルである。
次に、上記構成において、画像処理アプリケーションが起動された後に行う初期設定について、図2を参照して説明する。図2はユーザが初期設定をために用いるユーザインタフェースを模式的に示した図である。初期設定には、ソース側、ディスティネーション側のデバイスの選択、並びに、デバイスに対応する入出力プロファイルの選択等が含まれる。なお、プロファイルは後述するように入力装置(デバイス)、又は、出力装置の特性を記述したファイルである。
まず、HDD104に格納されている画像処理アプリケーションを起動すると、CPU101は、図2に示すウィンドウ200をモニタ110に表示する。図2のように、ウィンドウ200には、例えば、ソースデバイス選択ボタン201、ディスティネーションデバイス選択ボタン202、入力プロファイル読み込みボタン203、出力プロファイル読み込みボタン204、変換ボタン205を表示する。
ソースデバイス選択ボタン201は、ユーザがソース側デバイスを選択する為のボタンであり、ディスティネーションデバイス選択ボタン202は、ユーザがディスティネーション側デバイスを選択する為のボタンである。CPU101は、ユーザによりソースデバイス選択ボタン201が選択されると、例えば、プルダウンメニュー等のインタフェースを提供してユーザがソースデバイスを選択できるようにに制御する。ディスティネーションデバイス選択ボタン202が選択された場合も同様のインタフェースを提供してディスティネーションデバイスの選択を受け付ける。
入力プロファイル読み込みボタン203は、ユーザが入力プロファイルを選択して本実施形態に係る構成に読み込ませるためのボタンである。出力プロファイル読み込みボタン204は、ユーザが出力プロファイルを選択して本実施形態に係る構成に読み込ませるためのボタンである。入力プロファイル読み込みボタン203、又は、出力プロファイル読み込みボタン204が選択された場合は、例えば、ファイルシステムを閲覧できるようなインタフェースを提供してユーザがプロファイルを選択できるように制御する。
変換ボタン205は画像変換を施す為のボタンである。ユーザにより変換ボタン205が選択されると、CPU101はボタン201乃至204を介して設定された条件に基づいて後述の変換処理を開始する。
本実施形態では、このウィンドウ上でユーザはソースデバイス選択ボタン201を利用してモニタを選択し、ディスティネーションデバイス選択ボタン202を利用してプリンタを選択する場合を例示的に考える。デバイス選択後、ユーザは、入力プロファイル読み込みボタン203を利用してソースデバイスの特性を記述したプロファイルを読み込ませる。さらに、出力プロファイル読み込みボタン204を利用してディスティネーションデバイスの特性を記述したプロファイルを読み込ませる。最後に、変換ボタン205を利用して後述するソース側デバイスとディスティネーション側デバイスの観察条件と像順応を考慮した画像変換を行わせる。画像変換後、本実施形態に係る構成は、ディスティネーションデバイス選択ボタン202で指定されたディスティネーション側デバイスに変換画像を表示/出力する。
(画像変換の概要)
次に、本実施形態に係る構成が実行する画像変換の概要について図3を参照して説明する。図3は、画像処理アプリケーションが実行する画像変換処理を示すブロック図である。画像処理アプリケーションは、ソース側デバイスより取得したRGB画像に対して、ソース側デバイスとディスティネーション側デバイスの観察条件と像順応とを考慮した画像変換を施し、ディスティネーション側デバイスより出力する処理を行う。
次に、本実施形態に係る構成が実行する画像変換の概要について図3を参照して説明する。図3は、画像処理アプリケーションが実行する画像変換処理を示すブロック図である。画像処理アプリケーションは、ソース側デバイスより取得したRGB画像に対して、ソース側デバイスとディスティネーション側デバイスの観察条件と像順応とを考慮した画像変換を施し、ディスティネーション側デバイスより出力する処理を行う。
図3に示される各ブロックは、図1を参照して上述した画像処理装置のCPU101がメインメモリ102にロードされたプログラムを実行し、図1に示される各ハードウェアと協働することによって実現される。もちろん機能ブロックの一部或いは全てが専用のハードウェアで実現されてもよい。
まず、データ作成部301では、図2のUI上のボタン201で選択されたデバイスからRGB画像を読み込む。ここで、選択されたデバイスがモニタ110の場合には、HDD104に蓄積されたRGB画像ファイルを選択する旨の指示を表示して、ユーザが画像を選択させる。選択デバイスがスキャナ107の場合にはスキャナ107よりRGB画像をスキャンする。
次に、図2のUI上のボタン203で選択された入力プロファイル306をHDD104より読み込み、当該入力プロファイル306に基づき取得した画像に対してRGB→XYZ変換を行う。入力プロファイル306はデバイス依存色(RGB)からデバイス独立色(XYZ)の変換特性が記述されたファイルである。変換特性は例えば、RGBからXYZへのγ+3×3変換マトリクス、あるいは変換ルックアップテーブル(LUT:Look Up Table)として記述される。なお、本実施形態では変換LUTを使用するものとする。図9は変換LUTを例示した図である。図9の変換LUTには均等格子点に並んだRGB値とXYZ値との対応関係が記述されている。本実施形態に係る構成は、この対応関係に基づいて四面体補間することでRGB→XYZ変換を行う。
次に、順変換部302にて、観察条件パラメータ1(307)を設定し、色知覚モデル(CIECAM02)を用いてデバイス独立色から観察条件に依存しない知覚色(JCh)に変換する。このときに使用する色知覚モデルの変換式、および観察条件パラメータ1(307)の設定については後に詳述する。
次に、JCh色空間303を通して、逆変換部304にて、観察条件パラメータ2(308)を設定し、色知覚モデルを用いて知覚色からデバイス独立色に逆変換する。観察条件パラメータ2(308)の設定処理については後に詳述する。
次に、データ作成部305にて、データ作成部301と同様の処理で出力プロファイル309を用いてデバイス独立色からデバイス依存色へ変換を行った後、ボタン202で設定されたディスティネーションデバイスから画像を表示/印刷する。例えば図2のUI上のボタン202で選択されたデバイスがプリンタ106であった場合には、まずデバイス独立色(XYZ)からデバイス依存色(CMYK)への変換を行う。このときに用いる変換LUTは、CMYK→XYZの関係から、例えば、反復法などを用いて探索することで得られる。以上の処理によって得られたCMYK画像はメインメモリ102またはHDD104等の記憶装置に格納された後に、USBコントローラ105を介してプリンタ106に転送されて記録用紙に印刷される。
(CIECAM02の変換処理)
次に、上記構成における画像処理に用いる色視覚モデル(CIECAM02)の変換処理について説明する。ここでは、CIECAM02順変換の全体の処理フローを色順応、錐体応答、心理値変換の3つの変換ブロックに分けて説明する。図13はCIECAM02の変換処理を示したブロック図である。
次に、上記構成における画像処理に用いる色視覚モデル(CIECAM02)の変換処理について説明する。ここでは、CIECAM02順変換の全体の処理フローを色順応、錐体応答、心理値変換の3つの変換ブロックに分けて説明する。図13はCIECAM02の変換処理を示したブロック図である。
[色順応]
色順応部1301では、まず、数式1で変換対象の画像に係るXYZ値を錐体の分光感度に変換する。ただし、数式1中のMcat02は数式2の行列である。
色順応部1301では、まず、数式1で変換対象の画像に係るXYZ値を錐体の分光感度に変換する。ただし、数式1中のMcat02は数式2の行列である。
[数式1]
[数式2]
次に、次式で各錐体の信号を光源の白色点の値に基づいて正規化する。
Rc=[(YwD/Rw)+(1−D)]R
Gc=[(YwD/Gw)+(1−D)]G
Bc=[(YwD/Bw)+(1−D)]B
ただし、順応係数Dは数式3で算出される。また、Rw、Gw、Bwは、原条件における白色のR、G、B値である。Ywは図8のように原条件における白色の輝度成分である。
[数式2]
次に、次式で各錐体の信号を光源の白色点の値に基づいて正規化する。
Rc=[(YwD/Rw)+(1−D)]R
Gc=[(YwD/Gw)+(1−D)]G
Bc=[(YwD/Bw)+(1−D)]B
ただし、順応係数Dは数式3で算出される。また、Rw、Gw、Bwは、原条件における白色のR、G、B値である。Ywは図8のように原条件における白色の輝度成分である。
[数式3]
最後に数式4を用いて(Rc,Gc,Bc)を観察環境下の光源に対応したXYZ値(X'Y'Z')に変換する。ただし、数式4中のMcat02 -1は数式5の行列である。また、図8のように、Fは順応度合いを表すファクタ、Laは順応視野の輝度値をそれぞれ示している。
最後に数式4を用いて(Rc,Gc,Bc)を観察環境下の光源に対応したXYZ値(X'Y'Z')に変換する。ただし、数式4中のMcat02 -1は数式5の行列である。また、図8のように、Fは順応度合いを表すファクタ、Laは順応視野の輝度値をそれぞれ示している。
[数式8]
[数式9]
[数式10]
ただし、輝度順応ファクタである、k、FLは以下の通りである。
k=1/(5La+1)
FL=0.2k4(5La)+0.1(1−k4)2(5La)1/3
[心理値変換]
心理値変換部1303では、まず、以下の式を用いて錐体応答値を、視覚野での無彩色応答の信号値Aと反対色応答の信号値a、bに変換する。
A=[2Ra'+Ga'+(1/20)Ba'−0.305]Nbb
a=Ra'−12Ga'/11+Ba'/11
b=(1/9)(Ra'+Ga'−2Ba')
ただし、aは赤緑反対色応答、bは黄青反対色応答である。また、Nbbは次式で表される背景誘導ファクタである。
Nbb=Ncb=0.725(1/n)0.2
次に、信号値A、a、bを以下の式を用いて知覚明度J値、知覚彩度C値、知覚色相h値に変換する。
J=100(A/Aw)cz
[数式11]
h=tan-1(b/a)
ただし、Awは原条件における白色の無彩色応答である。また、図8のように、Ncは色誘導ファクタ、cは周辺の影響を表す係数である。また、zは次式で表される非線形変換の指数である。
[数式9]
[数式10]
ただし、輝度順応ファクタである、k、FLは以下の通りである。
k=1/(5La+1)
FL=0.2k4(5La)+0.1(1−k4)2(5La)1/3
[心理値変換]
心理値変換部1303では、まず、以下の式を用いて錐体応答値を、視覚野での無彩色応答の信号値Aと反対色応答の信号値a、bに変換する。
A=[2Ra'+Ga'+(1/20)Ba'−0.305]Nbb
a=Ra'−12Ga'/11+Ba'/11
b=(1/9)(Ra'+Ga'−2Ba')
ただし、aは赤緑反対色応答、bは黄青反対色応答である。また、Nbbは次式で表される背景誘導ファクタである。
Nbb=Ncb=0.725(1/n)0.2
次に、信号値A、a、bを以下の式を用いて知覚明度J値、知覚彩度C値、知覚色相h値に変換する。
J=100(A/Aw)cz
[数式11]
h=tan-1(b/a)
ただし、Awは原条件における白色の無彩色応答である。また、図8のように、Ncは色誘導ファクタ、cは周辺の影響を表す係数である。また、zは次式で表される非線形変換の指数である。
[数式14]
なお、CIECAM02逆変換部では観察環境により観察条件パラメータを設定し、順変換の工程で新たに無彩色応答Awを計算し、このAwとJCh値、かかる係数から順変換部の逆の処理を行うことで、XYZ値への変換が行われる。
なお、CIECAM02逆変換部では観察環境により観察条件パラメータを設定し、順変換の工程で新たに無彩色応答Awを計算し、このAwとJCh値、かかる係数から順変換部の逆の処理を行うことで、XYZ値への変換が行われる。
(パラメータ設定処理)
次に、色知覚モデルの観察条件パラメータの設定処理について図4を参照して説明する。図4は観察条件パラメータの設定処理の流れを示したフローチャートである。ここでは、ソースデバイスについての観察条件パラメータ1(307)と、ディスティネーションデバイスについての観察条件パラメータ2(308)を算出して、それぞれ順変換部302、逆変換部304に設定する処理を行う。以下、観察条件パラメータ1(307)の算出、設定の後、観察条件パラメータ2(308)の算出、設定を行う場合について述べる。
次に、色知覚モデルの観察条件パラメータの設定処理について図4を参照して説明する。図4は観察条件パラメータの設定処理の流れを示したフローチャートである。ここでは、ソースデバイスについての観察条件パラメータ1(307)と、ディスティネーションデバイスについての観察条件パラメータ2(308)を算出して、それぞれ順変換部302、逆変換部304に設定する処理を行う。以下、観察条件パラメータ1(307)の算出、設定の後、観察条件パラメータ2(308)の算出、設定を行う場合について述べる。
まず、ステップS401において、観察条件パラメータ1(307)と観察条件パラメータ2(308)に設定するパラメータを初期化する。初期化に用いるパラメータは図8に示すCIECAM02で推奨するパラメータを設定する。
次に、ステップS402において、変換対象の画像の輝度分布を示すヒストグラムを作成する。ヒストグラムの作成は図5を用いて後に詳述する。
次に、ステップS403において、ステップS402で作成したヒストグラムから観察条件パラメータを算出する。観察条件パラメータの算出処理は図6を用いて後に詳細に説明する。
次に、ステップS404において、ステップS403で算出した観察条件パラメータを観察条件パラメータ1(307)に設定する。
次に、ステップS405において、S402、S403と同様の処理を用いて観察条件パラメータを観察条件パラメータ2(308)に設定する。
(ヒストグラム作成処理)
次に、図4のステップS402で実行するヒストグラムの作成処理について、図5を用いて説明する。図5はヒストグラム作成処理の流れを示したフローチャートである。
次に、図4のステップS402で実行するヒストグラムの作成処理について、図5を用いて説明する。図5はヒストグラム作成処理の流れを示したフローチャートである。
まず、ステップS501において、観察条件パラメータ1(307)を設定する場合は入力プロファイル306を、観察条件パラメータ2(308)を設定する場合は出力プロファイル309を、それぞれHDD104から読み込む。
次に、ステップS502において、HDD104の画像バッファから変換対象の画像データを1画素分ずつ取り出す。
次に、ステップS503において、ステップS501で読み込んだプロファイルを用いて画像データのRGB値をXYZ値に変換し、このY値を当該画素の輝度とする。この変換は、例えば、LUTの参照やマトリックス演算によって行う。
次に、ステップS504において、ヒストグラム保持部(不図示)に格納されているヒストグラムを更新する。ただし、ヒストグラム保持部は、例えば、HDD104等の所定の記憶装置に設定される。ヒストグラム保持部は、上記計算した輝度YのヒストグラムHistYを保持している。初期状態ではすべて0である。ヒストグラムは下記の式に従って更新する。
HistY[Y]=HistY[Y]+1
ステップS505において、ステップS502乃至S504の処理を全画素について終了したか否かを判定する。終了している場合(ステップS505でYES)はヒストグラム作成処理を終了し、図4のステップS403へ進む。終了していない場合(ステップS505でNO)はステップS502に戻り更に処理を継続する。
HistY[Y]=HistY[Y]+1
ステップS505において、ステップS502乃至S504の処理を全画素について終了したか否かを判定する。終了している場合(ステップS505でYES)はヒストグラム作成処理を終了し、図4のステップS403へ進む。終了していない場合(ステップS505でNO)はステップS502に戻り更に処理を継続する。
図7はステップS501乃至S505の処理によって作成される、輝度YのヒストグラムHistYを例示的に示した図である。図7において、横軸は輝度Yの値、縦軸は対応する輝度を有する画素の度数(出現頻度)を示している。
(観察条件パラメータ算出処理)
次に、ヒストグラムから観察条件パラメータを算出する処理について、図6を用いて説明する。図6は、図4のステップS403において実行する観察条件パラメータ算出処理の流れを詳細に示したフローチャートである。
次に、ヒストグラムから観察条件パラメータを算出する処理について、図6を用いて説明する。図6は、図4のステップS403において実行する観察条件パラメータ算出処理の流れを詳細に示したフローチャートである。
まず、ステップS601において、作成したヒストグラムから順応輝度値AdpYを求める。順応輝度値AdpYは、所定の値以上の輝度値Yであって、ヒストグラムHistYにおいて出現頻度の最も高いものである。例えば、ヒストグラムHistYの輝度値の値が高い上位5%の領域における、出現頻度の最も高い輝度値Yを順応輝度値AdpYとする。
次に、ステップS602において、順応輝度値AdpYから観察条件パラメータを算出する。本実施形態では、図4のステップS401で初期化されている観察条件パラメータの中で順応視野の輝度と白色三刺激値についてパラメータの更新を行う。順応視野の輝度のパラメータは順応輝度値AdpYに基づいて算出する。例えば、順応輝度値AdpYの20%の値とする。白色三刺激値XwYwZwはYwが順応輝度値AdpYと同値になるようにスケーリングを行い算出する。
以上のように、本実施形態に係る構成においては、変換に係る画像における輝度分布(ヒストグラム)を調べ、当該分布に基づいて観察条件パラメータ(色知覚モデルの順応視野の輝度と白色三刺激値のパラメータ値等)を算出する。これにより、人間が視覚順応している状態をより実際に則して表現し、よりアピアランスとして一致する変換を行うことができる。つまり、人間が視覚順応している状態に即して色の変換を行うことができる。
<<第2実施形態>>
(ヒストグラムの作成処理)
第1実施形態における図5のヒストグラムの作成処理において、演算コストを低減するために次のような構成にすることができる。
(ヒストグラムの作成処理)
第1実施形態における図5のヒストグラムの作成処理において、演算コストを低減するために次のような構成にすることができる。
例えば、S502で画像バッファから画像データを取得する際に、変換に係る画像のサイズが所定値以上の場合は画素を間引いてサンプリングするようにしてもよい。例えば変換に係る画像のサイズが300万画素値以上の場合は10分の1の30万画素値に間引くようにしてもよい。これにより演算のコストを低減することができる。
また、S503で輝度値Yの計算において、プロファイルを用いずに近似式を用いて演算コストを低減することができる。例えば、下記の式のように近似的に算出することができる。
Y=(3×R+6×G+1×B)/10。
Y=(3×R+6×G+1×B)/10。
<<第3実施形態>>
(順応輝度値AdpYの算出処理)
第1実施形態では、S601において、順応輝度値AdpYとして、ヒストグラム上側5%において出現頻度の最も高い輝度値Yを用いる例を挙げたが、これに限られるわけではない。例えば、ヒストグラムの最大輝度値、ヒストグラム上側5%における平均輝度値等にしてもよい。また、ヒストグラム分布に応じて閾値を設けて、閾値以下のヒストグラム上側1%における平均輝度値または最大輝度値を順応輝度値AdpYとするように構成してもよい。用途や目的に応じて順応輝度値AdpYの算出を適切に選択することで、人間が視覚順応している状態により即した色の変換を行うことができる。
(順応輝度値AdpYの算出処理)
第1実施形態では、S601において、順応輝度値AdpYとして、ヒストグラム上側5%において出現頻度の最も高い輝度値Yを用いる例を挙げたが、これに限られるわけではない。例えば、ヒストグラムの最大輝度値、ヒストグラム上側5%における平均輝度値等にしてもよい。また、ヒストグラム分布に応じて閾値を設けて、閾値以下のヒストグラム上側1%における平均輝度値または最大輝度値を順応輝度値AdpYとするように構成してもよい。用途や目的に応じて順応輝度値AdpYの算出を適切に選択することで、人間が視覚順応している状態により即した色の変換を行うことができる。
<<第4実施形態>>
第1乃至第3実施形態に係る構成においては、画像を構成する画素毎の、順応視野の輝度値の分布(ヒストグラム)に基づいて観察条件パラメータを算出したが、これに限られない。本実施形態では、画像を構成する画素毎の、順応白色点の三刺激値(R、G、B)の分布(ヒストグラム)に基づいて観察条件パラメータを算出する。
第1乃至第3実施形態に係る構成においては、画像を構成する画素毎の、順応視野の輝度値の分布(ヒストグラム)に基づいて観察条件パラメータを算出したが、これに限られない。本実施形態では、画像を構成する画素毎の、順応白色点の三刺激値(R、G、B)の分布(ヒストグラム)に基づいて観察条件パラメータを算出する。
そこで、第1実施形態の構成と相違する、図4のS402におけるヒストグラムの作成処理と、図4のS403におけるヒストグラムから観察条件パラメータを算出する処理について説明する。特に言及しない限り、他の構成要素は第1乃至第3実施形態に係る構成と同様である。
(ヒストグラムの作成処理)
図4のS402におけるヒストグラムの作成処理の変更点について図10を用いて説明する。図10は本実施形態におけるヒストグラム作成処理の流れを示したフローチャートである。
図4のS402におけるヒストグラムの作成処理の変更点について図10を用いて説明する。図10は本実施形態におけるヒストグラム作成処理の流れを示したフローチャートである。
まず、ステップS1001において、HDD104より観察条件パラメータ1(307)を設定する場合は入力プロファイル306を、観察条件パラメータ2(308)を設定する場合は出力プロファイル309を読み込む。
次に、ステップS1002において、HDD104の画像バッファから変換する画像データを1画素分ずつ取り出す。
次に、ステップS1003において、ヒストグラム保持部(不図示)に格納されているヒストグラムを更新する。ヒストグラム保持部は、画素毎の、順応白色点の三刺激値(R、G、B)のヒストグラムHistR[R]、HistG[G]、HistB[B]を保持している。初期状態はすべて0である。ヒストグラムの更新は下記の式に従う。
HistR[R]=HistR[R]+R
HistG[G]=HistG[G]+G
HistB[B]=HistB[B]+B。
HistR[R]=HistR[R]+R
HistG[G]=HistG[G]+G
HistB[B]=HistB[B]+B。
次に、ステップS1004において、ステップS1002、S1003の処理を全画素について終了したか否かを判定する。終了している場合(ステップS1004でYES)はヒストグラム作成処理を終了し、図4のステップS403へ進む。終了していない場合(ステップS1004でNO)はステップS1002へ戻り更に処理を継続する。
図12はステップS1001乃至S1004の処理によって作成される、RGBのヒストグラムHistR[R]、HistG[G]、HistB[B]を例示的に示した図である。図12において、(a)はヒストグラムHistR[R]、(b)はヒストグラムHistG[G]、(c)はヒストグラムHistB[B]をそれぞれ例示している。図12の(a)(b)(c)それぞれについて、横軸は順応白色点の刺激値、縦軸は対応する刺激値を有する画素の度数(出現頻度)を示している。
(観察条件パラメータ算出処理)
次に、上記作成したヒストグラムから観察条件パラメータを算出する処理について図11を用いて説明する。これは、図4のS403の変更された処理内容、即ち、本実施形態における観察条件パラメータ算出処理の流れを示したフローチャートである。
次に、上記作成したヒストグラムから観察条件パラメータを算出する処理について図11を用いて説明する。これは、図4のS403の変更された処理内容、即ち、本実施形態における観察条件パラメータ算出処理の流れを示したフローチャートである。
まず、ステップS1101において、作成したヒストグラムから順応白色画素値AdpRGBを求める。順応白色画素値AdpRGBは、刺激値が所定の値以上の領域におけるヒストグラムの分布から求めることができる。例えば、所定の値以上の刺激値であってヒストグラムにおいて出現頻度の最も高いもの、或いは、ヒストグラムの、刺激値が所定の値以上の領域における刺激値の平均値とすることができる。前者の一例としては、ヒストグラムHistR[R]、HistG[G]、HistB[B]のそれぞれについて、刺激値の値が高い上位5%の領域における、出現頻度の最も高い刺激値R、G、Bを順応白色画素値AdpRGBとすることができる。後者の一例としては、ヒストグラムHistR[R]、HistG[G]、HistB[B]のそれぞれについて、刺激値の値が高い上位5%の領域における、刺激値の平均値とすることができる。
次に、ステップS1102において、ステップS1001で読み込んだプロファイルを用いて、順応白色画素値AdpRGBから順応白色点の三刺激値AdpXwYwZwを算出する。この変換は、例えば、LUTの参照やマトリックス演算によって行う。以上の処理で算出した順応白色点の三刺激値を観察条件パラメータの白色三刺激値XwYwZwに設定し、色知覚モデルCIECAM02の変換を行う。
以上のように、本実施形態に係る構成においては変換に係る画像における三刺激値のヒストグラムを作成し、当該ヒストグラムに基づいて観察条件パラメータを算出する。これにより、人間が視覚順応している状態をより実際に則して表現し、よりアピアランスとして一致する変換を行うことができる。つまり、人間が視覚順応している状態に即して色の変換を行うことができる。
<<その他の実施形態>>
以上、本発明の実施形態例について詳述したが、本発明は、例えば、システム、装置、方法、プログラムもしくは記憶媒体等としての実施態様を取ることが可能である。具体的には、複数の機器から構成されるシステムに適用しても良いし、また、一つの機器からなる装置に適用しても良い。
以上、本発明の実施形態例について詳述したが、本発明は、例えば、システム、装置、方法、プログラムもしくは記憶媒体等としての実施態様を取ることが可能である。具体的には、複数の機器から構成されるシステムに適用しても良いし、また、一つの機器からなる装置に適用しても良い。
尚、本発明は、前述した実施形態の機能を実現するプログラムを、システムあるいは装置に直接あるいは遠隔から供給し、そのシステムあるいは装置のコンピュータが該供給されたプログラムコードを読み出して実行することによっても達成される場合を含む。
従って、本発明の機能処理をコンピュータで実現するために、該コンピュータにインストールされるプログラムコード自体も本発明の技術的範囲に含まれる。つまり、本発明は、本発明の機能処理を実現するためのコンピュータプログラム自体も含む。
その場合、プログラムの機能を有していれば、オブジェクトコード、インタプリタにより実行されるプログラム、OSに供給するスクリプトデータ等の形態であっても良い。
プログラムを供給するための記録媒体としては、例えば、次のものが含まれる。即ち、フロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、MO、CD−ROM、CD−R、CD−RW、磁気テープ、不揮発性のメモリカード、ROM、DVD(DVD−ROM,DVD−R)等が含まれる。
その他、プログラムの供給形態としては、次のようなものも考えられる。即ち、クライアント装置のブラウザを用いてインターネットのホームページに接続し、該ホームページから本発明に係るコンピュータプログラム、或いは、圧縮され自動インストール機能を含むファイルをHD等の記録媒体にダウンロードする形態も考えられる。また、本発明のプログラムを構成するプログラムコードを複数のファイルに分割し、それぞれのファイルを異なるホームページからダウンロードすることによっても実現可能である。つまり、本発明の機能処理をコンピュータで実現するためのプログラムファイルを複数のユーザに対してダウンロードさせるWWWサーバも、本発明に含まれるものである。
また、次のような供給形態も考えられる。即ち、まず、本発明に係るプログラムを暗号化してCD−ROM等の記憶媒体に格納してユーザに配布する。そして、所定の条件をクリアしたユーザに対し、インターネットを介してホームページから暗号化を解く鍵情報をダウンロードさせ、その鍵情報の使用により暗号化されたプログラムを実行してコンピュータにインストールさせて本発明に係る構成を実現する。このような供給形態も可能である。
また、コンピュータが、読み出したプログラムを実行することによって、前述した実施形態の機能が実現される他次のような実現形態も想定される。即ち、そのプログラムの指示に基づき、コンピュータ上で稼動しているOSなどが、実際の処理の一部または全部を行ない、その処理によっても前述した実施形態の機能が実現され得る。
さらに、記録媒体から読み出されたプログラムが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムの指示に基づいも前述した実施形態の機能が実現される。即ち、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行ない、その処理によっても前述した実施形態の機能が実現される。
Claims (10)
- 入力された画像データの色変換を行う画像処理方法であって、
入力された前記画像データを第1のパラメータを含む情報に基づいて知覚色空間上の画像データに変換する変換工程と、
変換された前記画像データを第2のパラメータを含む情報に基づいてデバイス独立色空間上の画像データ逆変換する逆変換工程と、を備え、
更に、入力された前記画像データにおける所定の統計量に基づいて、前記第1及び第2のパラメータの少なくともいずれかを決定する決定工程を備えることを特徴とする画像処理方法。 - 前記所定の統計量は入力された前記画像データにおける所定の画像情報の分布を示すヒストグラムであり、
入力された前記画像データに基づいて前記ヒストグラムを作成する作成工程と、
作成された前記ヒストグラムに基づいて順応白色点におけるパラメータを導出する導出工程と、を更に備え、
前記決定工程は、前記第1及び第2のパラメータの少なくともいずれかを、導出された前記パラメータを含むように決定することを特徴とする請求項1に記載の画像処理方法。 - 前記導出工程において導出される、前記順応白色点におけるパラメータは、順応視野の輝度及び白色三刺激値の少なくともいずれかを含むことを特徴とする請求項2に記載の画像所処理方法。
- 前記導出工程は、前記ヒストグラムの、前記所定の画像情報が予め定められた閾値以上の領域内における、前記所定の画像情報の、最大値、平均値、最出頻度のいずれかに基づいて前記パラメータを導出することを特徴とする請求項2又は3に記載の画像所処理方法。
- 前記閾値は、前記領域に含まれる前記画像情報の度数が、前記ヒストグラムの全体に含まれる前記画像情報の度数に対して、予め定められた割合を占めるように設定されることを特徴とする請求項4に記載の画像処理方法。
- 前記所定の画像情報は、入力された前記画像データにおける順応視野の輝度値、又は、入力された前記画像データにおける順応白色点の三刺激値であることを特徴とする請求項2乃至5のいずれか1項に記載の画像所処理方法。
- 前記デバイス非依存の色空間はJCh色空間であることを特徴とする請求項1乃至6のいずれか1項に記載の画像処理方法。
- 入力された画像データの色変換を行う画像処理装置であって、
入力された前記画像データを第1のパラメータを含む情報に基づいてデバイス非依存の色空間上の画像データに変換する変換手段と、
変換された前記画像データを第2のパラメータを含む情報に基づいてデバイス依存の色空間上の画像データ逆変換する逆変換手段と、を備え、
更に、入力された前記画像データにおける所定の統計量に基づいて、前記第1及び第2のパラメータの少なくともいずれかを決定する決定手段を備えることを特徴とする画像処理装置。 - 請求項1乃至7のいずれか1項に記載の画像処理方法をコンピュータに実行させるためのコンピュータプログラム。
- 請求項9に記載のコンピュータプログラムを格納したコンピュータ読み取り可能な記憶媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005261097A JP2007074557A (ja) | 2005-09-08 | 2005-09-08 | 画像処理方法、画像処理装置、コンピュータプログラム、記憶媒体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005261097A JP2007074557A (ja) | 2005-09-08 | 2005-09-08 | 画像処理方法、画像処理装置、コンピュータプログラム、記憶媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007074557A true JP2007074557A (ja) | 2007-03-22 |
Family
ID=37935594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005261097A Withdrawn JP2007074557A (ja) | 2005-09-08 | 2005-09-08 | 画像処理方法、画像処理装置、コンピュータプログラム、記憶媒体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007074557A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012023691A (ja) * | 2010-07-16 | 2012-02-02 | Canon Inc | 画像処理装置、画像処理方法、およびプログラム |
JP2013021679A (ja) * | 2011-06-17 | 2013-01-31 | Canon Inc | 色処理装置およびその方法 |
US8934712B2 (en) | 2010-07-16 | 2015-01-13 | Canon Kabushiki Kaisha | Image processing apparatus, image processing method, and computer-readable medium |
US9002107B2 (en) | 2010-07-16 | 2015-04-07 | Canon Kabushiki Kaisha | Color balance correction based on skin color and highlight color |
-
2005
- 2005-09-08 JP JP2005261097A patent/JP2007074557A/ja not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012023691A (ja) * | 2010-07-16 | 2012-02-02 | Canon Inc | 画像処理装置、画像処理方法、およびプログラム |
US8842914B2 (en) | 2010-07-16 | 2014-09-23 | Canon Kabushiki Kaisha | Image processing apparatus, image processing method, and computer-readable medium |
US8934712B2 (en) | 2010-07-16 | 2015-01-13 | Canon Kabushiki Kaisha | Image processing apparatus, image processing method, and computer-readable medium |
US9002107B2 (en) | 2010-07-16 | 2015-04-07 | Canon Kabushiki Kaisha | Color balance correction based on skin color and highlight color |
US9406003B2 (en) | 2010-07-16 | 2016-08-02 | Canon Kabushiki Kaisha | Image processing with color balance correction |
JP2013021679A (ja) * | 2011-06-17 | 2013-01-31 | Canon Inc | 色処理装置およびその方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3634633B2 (ja) | 画像処理装置およびその方法 | |
JP4522346B2 (ja) | 色処理方法およびその装置 | |
JP3305265B2 (ja) | 画像処理装置およびその方法 | |
JP3832626B2 (ja) | 画像処理装置、画像処理方法、プログラムおよび記録媒体 | |
JP2007081586A (ja) | 画像処理装置及びその方法と、そのプログラム及び記憶媒体 | |
JP4899919B2 (ja) | 画像処理装置及び画像処理方法 | |
EP1085749B1 (en) | Image processing method and apparatus | |
JP2009071548A (ja) | 色処理装置およびその方法 | |
JP2007274584A (ja) | 色処理方法およびその装置 | |
JP2010050744A (ja) | 色処理装置およびその方法 | |
US8115978B2 (en) | Information processing method and information processing apparatus for simulating a result output from a first output device based on input data represented in a color space that is dependent on the input device by a second output device | |
US8730343B2 (en) | Color processing apparatus and method for performing color conversion using a color appearance model | |
JP3805247B2 (ja) | 画像処理装置およびその方法 | |
JP2007074557A (ja) | 画像処理方法、画像処理装置、コンピュータプログラム、記憶媒体 | |
JP2008271303A (ja) | 色処理方法および装置 | |
JP4948349B2 (ja) | 画像処理装置および画像処理方法 | |
JP2007174126A (ja) | 画像処理装置及び方法 | |
JP2000050088A (ja) | 画像処理装置およびその方法 | |
JP2001309198A (ja) | 画像処理方法 | |
JP2006238335A (ja) | 情報処理方法 | |
JP5112234B2 (ja) | 画像処理装置、画像処理方法、プログラムおよび記録媒体 | |
JP2006270517A (ja) | 画像処理方法及び画像処理システム | |
JP2003099026A (ja) | 画像処理装置、画像処理方法、プログラムおよび記録媒体 | |
JP2003274202A (ja) | 色信号変換テーブルの作成方法、色信号変換テーブル作成装置、画像処理方法、および画像処理装置 | |
JP3667171B2 (ja) | 画像処理方法、装置および記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |