JP2006344782A - Chip-type semiconductor element and manufacturing method thereof - Google Patents

Chip-type semiconductor element and manufacturing method thereof Download PDF

Info

Publication number
JP2006344782A
JP2006344782A JP2005169345A JP2005169345A JP2006344782A JP 2006344782 A JP2006344782 A JP 2006344782A JP 2005169345 A JP2005169345 A JP 2005169345A JP 2005169345 A JP2005169345 A JP 2005169345A JP 2006344782 A JP2006344782 A JP 2006344782A
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
semiconductor layer
semiconductor substrate
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005169345A
Other languages
Japanese (ja)
Inventor
Keijo Okamoto
景城 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005169345A priority Critical patent/JP2006344782A/en
Publication of JP2006344782A publication Critical patent/JP2006344782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip-type semiconductor element for enabling high-speed operation without hindering a voltage resistance characteristic of a high voltage resistance semiconductor element. <P>SOLUTION: A crystal defect is not exposed to the concentration of an electric field in an inverse bias state, and therefore an yielding phenomenon resulting from such crystal defect is not generated, thereby shortening trr by introducing a structure that the crystal defect distributed into the entire part of an internal p-type semiconductor layer 103 and a low concentration n-type epitaxial layer 102 is selectively formed more than an FLR 106 of a semiconductor substrate. In the semiconductor substrate, a low concentration n-type epitaxial layer 102 and a p-type semiconductor layer 103 extended into the layer from the surface of the epitaxial layer 102 are formed, and the circular FLR 106 is formed as isolated from the p-type semiconductor layer 103 for surrounding and extended into the layer from the surface of the low concentration n-type epitaxial layer 102 in the depth almost equal to that of almost p-type semiconductor layer 103. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、チップ型高耐圧半導体素子の高速化に関する。   The present invention relates to an increase in speed of a chip-type high voltage semiconductor device.

従来のチップ型高耐圧半導体素子としては、N型半導体基板の上層に低濃度N型エピタキシャル層が形成され、低濃度N型エピタキシャル層の表面から層内へ延在するP型半導体層が形成され、該エピタキシャル層の表面から層内へ延在して且つP型半導体層を取り囲んだ環状のP型半導体層であるFLR(フローティング・リミテッド・リング)が形成されているものがあった(例えば、特許文献1参照)。図4は、前記特許文献1に記載された従来のチップ型高耐圧半導体素子を示すものである。   As a conventional chip type high voltage semiconductor device, a low concentration N type epitaxial layer is formed on an upper layer of an N type semiconductor substrate, and a P type semiconductor layer extending from the surface of the low concentration N type epitaxial layer into the layer is formed. In some cases, an FLR (floating limited ring) that is an annular P-type semiconductor layer extending from the surface of the epitaxial layer into the layer and surrounding the P-type semiconductor layer is formed (for example, Patent Document 1). FIG. 4 shows a conventional chip type high voltage semiconductor device described in Patent Document 1. In FIG.

図4において、101はN型半導体基板、102は低濃度N型エピタキシャル層、103はP型半導体層、104はメタル電極、105は絶縁皮膜、106はFLR、107は裏面メタライズ層を各々示しており、N型半導体基板101の上層に低濃度N型エピタキシャル層102が形成され、N型エピタキシャル層102の表面から層内へ延在するP型半導体層103が形成され、該エピタキシャル層102の表面から層内へ延在して且つP型半導体層103から離間して該P型半導体層103を取り囲んだ環状のP型半導体層であるFLR106が形成され、該FLR106は各々と離間させてP型半導体層103と同心な環状に三箇所形成され、低濃度N型エピタキシャル層102とP型半導体層103とFLR106とで占められた半導体基板の第一主面をP型半導体層103表面の一部に窓開けされた絶縁皮膜105が覆って形成され、P型半導体層103の表面から絶縁皮膜105の表面周辺へ延在するメタル電極104が形成され、半導体基板の第二主面であるN型半導体基板101の表面に裏面メタライズ層107が覆って形成されている。   In FIG. 4, 101 is an N-type semiconductor substrate, 102 is a low-concentration N-type epitaxial layer, 103 is a P-type semiconductor layer, 104 is a metal electrode, 105 is an insulating film, 106 is an FLR, and 107 is a back metallization layer. A low-concentration N-type epitaxial layer 102 is formed on the N-type semiconductor substrate 101, a P-type semiconductor layer 103 extending from the surface of the N-type epitaxial layer 102 into the layer is formed, and the surface of the epitaxial layer 102 The FLR 106 is formed as an annular P-type semiconductor layer extending into the layer and spaced apart from the P-type semiconductor layer 103 and surrounding the P-type semiconductor layer 103, and the FLR 106 is spaced apart from each other to form the P-type semiconductor layer 103. Three concentric rings were formed concentrically with the semiconductor layer 103 and occupied by the low-concentration N-type epitaxial layer 102, the P-type semiconductor layer 103, and the FLR 106. A metal that extends from the surface of the P-type semiconductor layer 103 to the periphery of the surface of the insulating film 105 by covering the first main surface of the conductor substrate with a part of the surface of the P-type semiconductor layer 103 covered with an insulating film 105 An electrode 104 is formed, and a back metallization layer 107 is formed on the surface of the N-type semiconductor substrate 101 which is the second main surface of the semiconductor substrate.

かかる構成によれば、メタル電極104と裏面メタライズ層107との間に逆バイアスを掛けて行くと、低濃度N型エピタキシャル層102とP型半導体層103との界面より低濃度N型エピタキシャル層102層内へ空乏層がバイアス電圧と共に拡がり、やがて最近傍のFLR106と接すると、該FLR106を越えて空乏層が伸張し、更にバイアス電圧が高く成って行くと更に空乏層が拡がって行き、やがて全てのFLR106を包括する連続一体な空乏層と成る。   According to such a configuration, when a reverse bias is applied between the metal electrode 104 and the back surface metallized layer 107, the low concentration N-type epitaxial layer 102 is introduced from the interface between the low concentration N-type epitaxial layer 102 and the P-type semiconductor layer 103. When the depletion layer expands into the layer along with the bias voltage and eventually comes into contact with the nearest FLR 106, the depletion layer extends beyond the FLR 106, and when the bias voltage becomes higher, the depletion layer further expands and eventually all This is a continuous and integral depletion layer covering the FLR 106 of the above.

この際の空乏層の形状を考えると、FLR106が無い構成に比較してFLR106の存在分だけ空乏層が伸張されて空乏層の表面形状の曲率が緩やかに小さくなるので曲率部に掛る電界集中を緩和する作用が働いて電界集中に起因する降伏現象をより高電圧になるまで発生させず、高耐圧化する効果を有していた。   Considering the shape of the depletion layer at this time, the depletion layer is extended by the presence of FLR 106 and the curvature of the surface shape of the depletion layer is gradually reduced as compared with the configuration without FLR 106, so that the electric field concentration on the curvature portion is reduced. The relaxing action worked, and the breakdown phenomenon caused by the electric field concentration did not occur until the voltage became higher, and it had the effect of increasing the breakdown voltage.

また、従来の公知慣用のチップ型高速半導体素子としては、N型半導体基板の上層に低濃度N型エピタキシャル層が形成され、該エピタキシャル層の表面から層内へ延在するP型半導体層が形成され、N型半導体基板と低濃度N型エピタキシャル層とP型半導体層とを含む半導体基板全般に分布する結晶欠陥が形成されているものがあった。図5は、前記従来のチップ型高速半導体素子を示すものである。   Further, as a conventional well-known and conventional chip type high-speed semiconductor element, a low-concentration N-type epitaxial layer is formed on an N-type semiconductor substrate, and a P-type semiconductor layer extending from the surface of the epitaxial layer into the layer is formed. In some cases, crystal defects distributed over the entire semiconductor substrate including the N-type semiconductor substrate, the low-concentration N-type epitaxial layer, and the P-type semiconductor layer are formed. FIG. 5 shows the conventional chip type high-speed semiconductor device.

図5において、101はN型半導体基板、102は低濃度N型エピタキシャル層、103はP型半導体層、104はメタル電極、105は絶縁皮膜、107は裏面メタライズ層を各々示しており、N型半導体基板101の上層に低濃度N型エピタキシャル層102が形成され、該エピタキシャル層102の表面から層内へ延在するP型半導体層103が形成され、低濃度N型エピタキシャル層102とP型半導体層103とで占める半導体基板の第一主面に、P型半導体層103表面の一部に窓開けされた絶縁皮膜105が覆って形成され、P型半導体層103表面から絶縁皮膜105表面の周辺へ延在するメタル電極104が形成され、半導体基板の第二主面であるN型半導体基板101表面を裏面メタライズ層107が覆って形成され、N型半導体基板101と低濃度N型エピタキシャル層102とP型半導体層103とを含む半導体基板層内全般に分布する結晶欠陥(図示せず)が形成されている。   In FIG. 5, 101 is an N-type semiconductor substrate, 102 is a low-concentration N-type epitaxial layer, 103 is a P-type semiconductor layer, 104 is a metal electrode, 105 is an insulating film, and 107 is a back metallization layer. A low-concentration N-type epitaxial layer 102 is formed on the semiconductor substrate 101, and a P-type semiconductor layer 103 extending from the surface of the epitaxial layer 102 into the layer is formed. The low-concentration N-type epitaxial layer 102 and the P-type semiconductor are formed. A first main surface of the semiconductor substrate occupied by the layer 103 is formed so as to cover a part of the surface of the P-type semiconductor layer 103 with an insulating film 105 opened in a window, and from the surface of the P-type semiconductor layer 103 to the periphery of the surface of the insulating film 105 A metal electrode 104 extending to the surface is formed, and a surface of the N-type semiconductor substrate 101 which is the second main surface of the semiconductor substrate is covered with a back metallization layer 107, Type semiconductor substrate 101 and the crystal defects distributed in the semiconductor substrate layer in general including a low concentration N-type epitaxial layer 102 and the P-type semiconductor layer 103 (not shown) is formed.

かかる構成によれば、メタル電極104と裏面メタライズ層107との間に順方向バイアスを掛けて順方向電流を流している状態からバイアスを反転させてメタル電極104と裏面メタライズ層107との間を逆方向バイアスに切り換えた際に、半導体基板層内に残留するキャリアの影響で、該キャリアが半導体基板層内から流出して存在しなくなるまでの時間(以降、キャリアライフタイムと称する)は逆方向電流が流れ、その後に遮断状態に成るので逆バイアスに切り換わってから遮断状態になるまでにタイムラグ(逆方向回復時間であり以降、trrと称する)が存在する事を打ち消す作用が働く。   According to such a configuration, a forward bias is applied between the metal electrode 104 and the back surface metallized layer 107 to reverse the bias from a state in which a forward current flows, so that the gap between the metal electrode 104 and the back surface metallized layer 107 is reduced. When switching to the reverse bias, due to the influence of carriers remaining in the semiconductor substrate layer, the time until the carriers flow out from the semiconductor substrate layer and cease to exist (hereinafter referred to as carrier lifetime) is reverse. Since an electric current flows and then enters a cut-off state, there is an action to cancel out the existence of a time lag (reverse recovery time, hereinafter referred to as trr) from the switching to the reverse bias to the cut-off state.

即ち、メタル電極104と裏面メタライズ層107との間を逆バイアスに切り換えた際に、半導体基板層内に残留するキャリアを上述の結晶欠陥(図示せず)が捕らえて消滅させるキラーとして作用するので、キャリアライフタイムを短くすることによりtrrを短縮させて高速動作を可能とする効果を有していた。   That is, when switching between the metal electrode 104 and the back surface metallized layer 107 to a reverse bias, it acts as a killer for capturing and annihilating the carriers remaining in the semiconductor substrate layer by the crystal defects (not shown). In addition, shortening the carrier lifetime has the effect of shortening trr and enabling high-speed operation.

この様な結晶欠陥を有する半導体装置の製造方法としては、N型半導体基板101の上層に低濃度エピタキシャル層102をエピタキシャル成長させ、半導体基板の第一主面である低濃度N型エピタキシャル層102の表面上に熱酸化法にて酸化膜である絶縁皮膜105を形成し、該絶縁皮膜105にフォトリソグラフィーを用いた選択的エッチング除去を施して窓形成して低濃度N型エピタキシャル層102の一部表面を露出させ、少なくとも低濃度N型エピタキシャル層102の露出面上にP型ドーパントを含む膜を形成し、熱拡散法にて低濃度N型エピタキシャル層102表面から層内へ延在するP型半導体層103を選択的に形成し、P型半導体層103の露出面と絶縁皮膜105表面との全面に蒸着法にてメタル層を形成し、該メタル層に選択的エッチング除去を施してP型半導体層103表面から絶縁皮膜105表面の周辺へ延在するメタル電極104を形成し、半導体基板の第二主面であるN型半導体基板101表面に蒸着法にて裏面メタライズ層107を形成し、半導体基板の第一主面上方より該半導体基板全面を含む面に電子線照射を施して該電子線に半導体基板を透過させて半導体基板層内の全般に分布する結晶欠陥(図示せず)を形成させて、図5に示すチップ型高速半導体素子としていた。
特許第3221673号公報
As a method for manufacturing a semiconductor device having such crystal defects, a low-concentration epitaxial layer 102 is epitaxially grown on an upper layer of an N-type semiconductor substrate 101, and the surface of the low-concentration N-type epitaxial layer 102, which is the first main surface of the semiconductor substrate. An insulating film 105 which is an oxide film is formed on the surface by thermal oxidation, and selective etching removal using photolithography is performed on the insulating film 105 to form a window to form a partial surface of the low-concentration N-type epitaxial layer 102 A P-type semiconductor that forms a film containing a P-type dopant on at least the exposed surface of the low-concentration N-type epitaxial layer 102 and extends from the surface of the low-concentration N-type epitaxial layer 102 into the layer by a thermal diffusion method The layer 103 is selectively formed, and a metal layer is formed on the entire exposed surface of the P-type semiconductor layer 103 and the surface of the insulating film 105 by vapor deposition. The metal layer 104 is selectively etched away to form a metal electrode 104 extending from the surface of the P-type semiconductor layer 103 to the periphery of the surface of the insulating film 105, and is formed on the surface of the N-type semiconductor substrate 101, which is the second main surface of the semiconductor substrate A back metallized layer 107 is formed by vapor deposition, and a surface including the entire surface of the semiconductor substrate is irradiated with an electron beam from above the first main surface of the semiconductor substrate so that the electron beam is transmitted through the semiconductor substrate. Crystal defects (not shown) distributed in general are formed, and the chip type high-speed semiconductor device shown in FIG. 5 is obtained.
Japanese Patent No. 3221673

しかしながら、前記従来の構成では、高耐圧で且つ高速なチップ型半導体素子とする為に上述のチップ型高耐圧半導体素子に上述の結晶欠陥を形成して高速化を図ることを考えた場合、高耐圧半導体素子に高圧の逆バイアスを掛けた際の半導体基板層内の電界集中部分にも結晶欠陥が存在する事となるので該結晶欠陥に起因する降伏現象が起こり、高耐圧が妨げられて耐圧が低下する事となる課題を有していた。   However, in the conventional configuration, in order to obtain a high-breakdown-voltage and high-speed chip-type semiconductor element, the above-described chip-type high-breakdown-voltage semiconductor element is formed with the above-described crystal defects to increase the speed. Since a crystal defect also exists in the electric field concentration portion in the semiconductor substrate layer when a high voltage reverse bias is applied to the breakdown voltage semiconductor element, a breakdown phenomenon occurs due to the crystal defect, and the high breakdown voltage is hindered. Had a problem that would be reduced.

本発明は、前記従来の課題を解決するもので、高速動作が可能なチップ型高耐圧半導体素子とその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a chip type high voltage semiconductor device capable of high speed operation and a method for manufacturing the same.

前記従来の課題を解決するために、本発明のチップ型半導体素子は、半導体基板に結晶欠陥が選択的に分布形成され、逆方向バイアス時に結晶欠陥を起因とする降伏現象が生じない事を特徴とする。   In order to solve the above-described conventional problems, the chip type semiconductor device of the present invention is characterized in that crystal defects are selectively distributed and formed on a semiconductor substrate, and a breakdown phenomenon caused by crystal defects does not occur during reverse bias. And

具体的には、半導体基板に少なくとも低濃度第一導電型半導体層と第二導電型半導体層と第二導電型のFLRとを含み、低濃度第一導電型半導体層の表面から層内へ延在する第二導電型半導体層が形成され、第二導電型半導体層から離間して該半導体層を環状に取り囲んで低濃度第一導電型半導体層の表面から層内へ略第二導電型半導体層と同程度の深さに延在する第二導電型のFLRが形成され、該FLRに取り囲まれた内側の、低濃度第一導電型半導体層と第二導電型半導体層を含む半導体基板の第一主面から第二主面にかける範囲内で選択的に結晶欠陥が分布形成させれば良い。   Specifically, the semiconductor substrate includes at least a low-concentration first conductive semiconductor layer, a second conductive semiconductor layer, and a second conductive FLR, and extends from the surface of the low-concentration first conductive semiconductor layer into the layer. A second conductivity type semiconductor layer is formed, and is spaced apart from the second conductivity type semiconductor layer so as to surround the semiconductor layer in an annular shape, and from the surface of the low concentration first conductivity type semiconductor layer into the layer, the second conductivity type semiconductor A second conductivity type FLR extending to the same depth as the layer is formed, and a semiconductor substrate including a low-concentration first conductivity type semiconductor layer and a second conductivity type semiconductor layer inside surrounded by the FLR is formed. The crystal defects may be selectively distributed and formed within a range from the first main surface to the second main surface.

本発明の別のチップ型半導体素子は、半導体基板表面に電子線を遮蔽するマスクが形成され、該マスクを利用して半導体基板に選択的に電子線を照射する事で該半導体基板に結晶欠陥が選択的に分布形成され、逆方向バイアス時に結晶欠陥を起因とする降伏現象が生じない事を特徴とする。   In another chip type semiconductor device of the present invention, a mask for shielding an electron beam is formed on a surface of a semiconductor substrate, and the semiconductor substrate is selectively irradiated with an electron beam by using the mask to thereby cause crystal defects in the semiconductor substrate. Is selectively distributed and does not cause a breakdown phenomenon due to crystal defects during reverse bias.

具体的には、半導体基板に少なくとも低濃度第一導電型半導体層と第二導電型半導体層とを含み、低濃度第一導電型半導体層の上層に第二導電型半導体層が形成され、半導体基板の側面の少なくとも低濃度第一導電型半導体層と第二導電型半導体層とで成る側面はメサ形状を成し、半導体基板の側面の少なくとも低濃度第一導電型半導体層と第二導電型半導体層とから該半導体基板の第一主面周縁へ延在するマスクが形成させれば良い。   Specifically, the semiconductor substrate includes at least a low-concentration first conductive semiconductor layer and a second conductive semiconductor layer, and a second conductive semiconductor layer is formed over the low-concentration first conductive semiconductor layer. At least the low-concentration first conductive semiconductor layer and the second conductive semiconductor layer on the side surface of the substrate have a mesa shape, and at least the low-concentration first conductive semiconductor layer and the second conductive type on the side surface of the semiconductor substrate. A mask extending from the semiconductor layer to the periphery of the first main surface of the semiconductor substrate may be formed.

また、マスクが、鉛ガラスから成る事が好ましい。   The mask is preferably made of lead glass.

本発明のチップ型半導体素子の製造方法は、第一導電型半導体基板の上層に低濃度第一導電型エピタキシャル層をエピタキシャル成長させ、半導体基板の第一主面である低濃度第一導電型エピタキシャル層の主面を熱酸化法にて酸化膜である絶縁皮膜で覆って形成する初期酸化工程と、初期酸化工程終了後の絶縁皮膜にフォトリソグラフィーを用いた選択的エッチング除去を施して、第二導電型半導体層形成予定部上に位置する第二導電型半導体層拡散窓と、第二導電型半導体層形成予定部から離間して該第二導電型半導体層形成予定部を取り囲んだ環状のFLR形成予定部上に位置するFLR拡散窓とを形成し、該FLR形成予定部は各々と離間させて第二導電型半導体層形成予定部と同心な環状に一箇所または複数箇所形成し、第二導電型半導体層拡散窓とFLR拡散窓とに低濃度第一導電型エピタキシャル層を露出させる拡散窓形成工程と、拡散窓形成工程終了後の半導体基板第一主面側の少なくとも低濃度第一導電型エピタキシャル層露出面の上に第二導電型ドーパントを含む膜を形成し、熱拡散法にて低濃度第一導電型エピタキシャル層表面から層内へ延在する第二導電型のFLRと第二導電型半導体層とを形成する拡散層形成工程と、拡散層形成工程終了後の絶縁皮膜でFLR最内殻の内周面上に位置する絶縁皮膜を残して他の部分の該絶縁皮膜にフォトリソグラフィーを用いた選択的エッチング除去を施してFLR最内殻を含んだ外側の低濃度第一導電型エピタキシャル層とFLRとを露出させる絶縁皮膜除去工程と、絶縁皮膜除去工程終了後の低濃度第一導電型エピタキシャル層とFLRとを含む露出面に鉛成分を含むガラスパウダーを選択的に電着させた後に該ガラスパウダーを加熱焼成させてFLR最内殻を含んだ外側の該FLRと低濃度第一導電型エピタキシャル層との表面上に絶縁皮膜と接して鉛ガラスを形成する鉛ガラス形成工程と、鉛ガラス形成工程終了後の第二導電型半導体層上に位置する絶縁皮膜の一部分にフォトリソグラフィーを用いた選択的エッチング除去を施して第二導電型半導体層表面の一部分を露出させ、半導体基板の第一主面側を占める鉛ガラスと絶縁皮膜と第二導電型半導体層とを含む面に蒸着法にてメタル層を形成し、該メタル層にフォトリソグラフィーを用いた選択的エッチング除去を施して第二導電型半導体層表面から絶縁皮膜表面周辺へ延在するメタル電極を形成し、半導体基板の第二主面である第一導電型半導体基板表面を研削研磨して厚み調整の後に該半導体基板表面に蒸着法にて裏面メタライズ層を形成する外部電極形成工程と、外部電極形成工程終了後に半導体基板の第一主面の上方より、該半導体基板の第一主面に形成された鉛ガラスをマスクとして電子線を照射し、マスキングされていない部分の半導体基板に該電子線を透過させてメタル電極と絶縁皮膜との下に位置する第二導電型半導体層と低濃度第一導電型エピタキシャル層と第一導電型半導体基板との範囲内に分布する結晶欠陥を形成する電子線照射工程と、を含めれば良い。   The method for manufacturing a chip-type semiconductor element of the present invention comprises epitaxially growing a low-concentration first-conductivity-type epitaxial layer on a first-conductivity-type semiconductor substrate to form a low-concentration first-conductivity-type epitaxial layer that is the first main surface of the semiconductor substrate. An initial oxidation step in which the main surface of the substrate is covered with an insulating film that is an oxide film by a thermal oxidation method, and a selective etching removal using photolithography is performed on the insulating film after the completion of the initial oxidation step to form a second conductive layer. Second conductive type semiconductor layer diffusion window located on the type semiconductor layer formation planned part, and annular FLR formation spaced apart from the second type semiconductor layer formation planned part and surrounding the second type semiconductor layer formation planned part Forming an FLR diffusion window positioned on the planned portion, and forming the FLR diffusion planned portion in a ring shape concentrically with the second conductive type semiconductor layer forming planned portion spaced apart from each other; A diffusion window forming step of exposing the low concentration first conductive type epitaxial layer to the semiconductor layer diffusion window and the FLR diffusion window; and at least a low concentration first conductive type epitaxial layer on the first main surface side of the semiconductor substrate after the diffusion window forming step is completed. A film containing a second conductivity type dopant is formed on the layer exposed surface, and the second conductivity type FLR and the second conductivity type are extended into the layer from the surface of the low concentration first conductivity type epitaxial layer by a thermal diffusion method. A diffusion layer forming step for forming a semiconductor layer, and an insulating film located on the inner peripheral surface of the FLR innermost shell in the insulating film after completion of the diffusion layer forming step, and photolithography is applied to the other insulating film Insulating film removing step of exposing the outer low concentration first conductivity type epitaxial layer including FLR innermost shell and FLR by performing selective etching removal used, and low concentration first conductivity after completion of the insulating film removing step Type D A glass powder containing a lead component is selectively electrodeposited on the exposed surface including the taxi layer and the FLR, and then the glass powder is heated and fired to form the FLR outside the FLR innermost shell and the low-concentration first conductive material. Photolithography is applied to a part of the insulating film located on the second conductive type semiconductor layer after the lead glass forming process and the lead glass forming process for forming lead glass in contact with the insulating film on the surface of the type epitaxial layer A portion of the surface of the second conductive semiconductor layer is exposed by selective etching removal, and a vapor deposition method is performed on the surface including the lead glass, the insulating film, and the second conductive semiconductor layer occupying the first main surface side of the semiconductor substrate. A metal layer is formed by, and selective etching removal using photolithography is performed on the metal layer to form a metal electrode extending from the surface of the second conductivity type semiconductor layer to the periphery of the insulating film surface An external electrode forming step of grinding and polishing the surface of the first conductive semiconductor substrate, which is the second main surface of the semiconductor substrate, and adjusting the thickness to form a back metallized layer on the surface of the semiconductor substrate by vapor deposition; and an external electrode After completion of the forming process, an electron beam is irradiated from above the first main surface of the semiconductor substrate using the lead glass formed on the first main surface of the semiconductor substrate as a mask, and the electron beam is applied to the unmasked portion of the semiconductor substrate Forming crystal defects distributed within the range of the second conductive type semiconductor layer, the low-concentration first conductive type epitaxial layer, and the first conductive type semiconductor substrate located below the metal electrode and the insulating film. And a beam irradiation step.

本構成によって、耐圧特性を妨げることなく高速動作が可能なチップ型半導体素子とその製造方法とすることができる。   With this configuration, it is possible to provide a chip-type semiconductor element capable of high-speed operation without disturbing the withstand voltage characteristics and a manufacturing method thereof.

以上のように、本発明のチップ型半導体素子とその製造方法によれば、高耐圧で且つ高速なものとすることができる。   As described above, according to the chip-type semiconductor element and the manufacturing method thereof of the present invention, a high breakdown voltage and a high speed can be achieved.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるチップ型半導体素子の断面図である。図1において、図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a chip-type semiconductor element according to Embodiment 1 of the present invention. In FIG. 1, the same components as those in FIG.

図1において、10は鉛ガラス、101はN型半導体基板、102は低濃度N型エピタキシャル層、103はP型半導体層、104はメタル電極、105は絶縁皮膜、106はFLR、107は裏面メタライズ層を各々示しており、N型半導体基板101の上層に低濃度N型半導体である低濃度N型エピタキシャル層102が形成され、該エピタキシャル層102の表面から層内へ延在するP型半導体層103が形成され、低濃度N型エピタキシャル層102の表面から層内へ略P型半導体層103と同程度の深さに延在して且つP型半導体層103から離間して該P型半導体層103を取り囲んだ環状のP型半導体層であるFLR106が形成され、該FLR106は各々と離間させてP型半導体層103と同心な環状に一箇所または複数箇所(本実施形態では三箇所)形成され、低濃度N型エピタキシャル層102とP型半導体層103とFLR106とで占められた半導体基板の第一主面の内、FLR106最内殻の内周面をP型半導体層103表面の一部に窓開けされた酸化膜である絶縁皮膜105が覆って形成され、半導体基板の第一主面の内、絶縁皮膜105の外周面である低濃度N型エピタキシャル層102とFLR106との表面には絶縁皮膜105と接して鉛成分を含むガラスである鉛ガラス10が覆って形成され、P型半導体層103の表面から絶縁皮膜105の表面周辺へ延在するAl、Ag、Cr、Ni等の単体またはそれらを複数含むメタル電極104が形成され、半導体基板の第二主面であるN型半導体基板101の表面にAu、Ag、Ni、Cr、Sb等の単体またはそれらを複数含む裏面メタライズ層107が覆って形成され、メタル電極104と絶縁皮膜105との下に位置する半導体基板であるN型半導体基板101と低濃度N型エピタキシャル層102とP型半導体層103との全般に分布した結晶欠陥(図示せず)が形成されている。   In FIG. 1, 10 is lead glass, 101 is an N-type semiconductor substrate, 102 is a low-concentration N-type epitaxial layer, 103 is a P-type semiconductor layer, 104 is a metal electrode, 105 is an insulating film, 106 is an FLR, and 107 is a back metallization. A P-type semiconductor layer is shown in which a low-concentration N-type epitaxial layer 102 which is a low-concentration N-type semiconductor is formed on the N-type semiconductor substrate 101 and extends from the surface of the epitaxial layer 102 into the layer. 103 is formed, extends from the surface of the low-concentration N-type epitaxial layer 102 into the layer to substantially the same depth as the P-type semiconductor layer 103, and is spaced apart from the P-type semiconductor layer 103. FLR 106 which is an annular P-type semiconductor layer surrounding 103 is formed, and the FLR 106 is spaced apart from each other at one or more in an annular shape concentric with P-type semiconductor layer 103. Of the first main surface of the semiconductor substrate formed by the low concentration N-type epitaxial layer 102, the P-type semiconductor layer 103, and the FLR 106 (three locations in the present embodiment). Is formed by covering an insulating film 105 which is an oxide film having a window formed on a part of the surface of the P-type semiconductor layer 103, and is a low-concentration N-type which is an outer peripheral surface of the insulating film 105 in the first main surface of the semiconductor substrate. The surface of the epitaxial layer 102 and the FLR 106 is formed so as to cover the insulating film 105 so as to cover the lead glass 10 which is a glass containing a lead component, and extends from the surface of the P-type semiconductor layer 103 to the periphery of the surface of the insulating film 105. A single electrode such as Al, Ag, Cr, Ni, or a metal electrode 104 including a plurality of them is formed, and Au, Ag, Ni, Cr, and the like are formed on the surface of the N-type semiconductor substrate 101 which is the second main surface of the semiconductor substrate. an n-type semiconductor substrate 101 and a low-concentration N-type epitaxial layer 102, which are formed of a single substrate such as b or a back metallized layer 107 including a plurality of them and are located under the metal electrode 104 and the insulating film 105; Crystal defects (not shown) distributed in general with the P-type semiconductor layer 103 are formed.

かかる構成によれば、メタル電極104と裏面メタライズ層107との間に逆バイアスを掛けてバイアス電圧を高くしていく際に低濃度N型エピタキシャル層102層内に拡がる空乏層が、FLR106との作用で伸張して空乏層表面の曲率が緩やかに小さく成るので電界集中に起因する降伏現象をより高電圧域まで発生させず、高耐圧化する効果を有する。   According to such a configuration, when a reverse bias is applied between the metal electrode 104 and the back surface metallized layer 107 to increase the bias voltage, the depletion layer that spreads in the low-concentration N-type epitaxial layer 102 is formed with the FLR 106. Since the curvature of the surface of the depletion layer is gradually reduced by the action, the breakdown phenomenon due to the electric field concentration is not generated to a higher voltage range, and the effect of increasing the breakdown voltage is obtained.

一方、半導体基板に含まれる結晶欠陥(図示せず)の作用により、trrを短縮させて高速動作を可能とする効果を有するが、結晶欠陥(図示せず)はメタル電極104と絶縁皮膜105との下に位置する半導体基板であるP型半導体層103と低濃度N型エピタキシャル層102とN型半導体基板101とにのみ選択的に分布しており、逆バイアスが掛けられた際に電界集中が起こるFLR106の最内殻から外側には結晶欠陥が存在しないので結晶欠陥に起因する降伏現象が起こらないので高耐圧化が妨げられて耐圧が低下する事がない。   On the other hand, the effect of crystal defects (not shown) included in the semiconductor substrate has the effect of shortening trr and enabling high-speed operation. Is selectively distributed only to the P-type semiconductor layer 103, the low-concentration N-type epitaxial layer 102, and the N-type semiconductor substrate 101, which are semiconductor substrates located below the semiconductor substrate, and electric field concentration occurs when a reverse bias is applied. Since there is no crystal defect outside the innermost shell of the FLR 106 that occurs, the breakdown phenomenon caused by the crystal defect does not occur, so the high breakdown voltage is prevented and the breakdown voltage does not decrease.

ここで、例えば順方向電流が20A、耐電圧が300Vで、trrが20ns程度の特性を有するチップ型半導体素子とする場合は、N型半導体基板101の、比抵抗は0.005〜0.02Ω・cm程度、チップサイズは2.5〜3.5mm角程度で、低濃度N型エピタキシャル層102の、比抵抗は10〜30Ω・cm程度、厚さは22〜35μm程度で、P型半導体層103とFLR106の、濃度は5×1016〜1×1019cm-3程度、深さは2〜10μm程度で、P型半導体層103の表面径は2〜2.8mm程度で、FLR106の、幅は5〜20μm程度、ピッチは5〜20μm程度で、P型半導体層103とFLR106との離間距離は5〜20μm程度とすることが好ましい。 Here, for example, in the case of a chip-type semiconductor element having characteristics of a forward current of 20 A, a withstand voltage of 300 V, and trr of about 20 ns, the specific resistance of the N-type semiconductor substrate 101 is 0.005 to 0.02Ω. A P-type semiconductor layer having a thickness of about 10 to 30 Ω · cm and a thickness of about 22 to 35 μm. 103 and FLR 106, the concentration is about 5 × 10 16 to 1 × 10 19 cm −3 , the depth is about 2 to 10 μm, and the surface diameter of the P-type semiconductor layer 103 is about 2 to 2.8 mm. The width is preferably about 5 to 20 μm, the pitch is about 5 to 20 μm, and the separation distance between the P-type semiconductor layer 103 and the FLR 106 is preferably about 5 to 20 μm.

この様なチップ型半導体素子の製造方法は、図2を参考にできる。図2において、10は鉛ガラス、101はN型半導体基板、102は低濃度N型エピタキシャル層、103はP型半導体層、104はメタル層、105は絶縁皮膜、105aはFLR拡散窓、105bはP型半導体層拡散窓、106はFLR、107は裏面メタライズ層を各々示しており、図2(A)は、N型半導体基板101の上層に低濃度N型エピタキシャル層102をエピタキシャル成長させ、半導体基板の第一主面である102の主面に熱酸化法にて酸化膜である絶縁皮膜105で覆って形成する初期酸化工程終了時点を示す断面である。   A method for manufacturing such a chip-type semiconductor device can be referred to FIG. In FIG. 2, 10 is lead glass, 101 is an N-type semiconductor substrate, 102 is a low-concentration N-type epitaxial layer, 103 is a P-type semiconductor layer, 104 is a metal layer, 105 is an insulating film, 105a is an FLR diffusion window, and 105b is A P-type semiconductor layer diffusion window, 106 indicates an FLR, and 107 indicates a back metallization layer. FIG. 2A shows an epitaxial growth of a low-concentration N-type epitaxial layer 102 on the N-type semiconductor substrate 101. 2 is a cross-section showing the end of the initial oxidation step formed by covering the main surface of 102, which is the first main surface, with an insulating film 105, which is an oxide film, by thermal oxidation.

ここで、N型半導体基板101の、比抵抗は0.005〜0.02Ω・cm程度、厚さは300〜500μm程度、チップサイズは3mm角程度で、低濃度N型エピタキシャル層102の、濃度は1017〜1018cm-3程度、厚さは22〜35μm程度で、熱酸化時の温度は1000〜1200℃程度で、絶縁皮膜105の膜厚は0.5〜1.5μm程度とすることが好ましい。 Here, the specific resistance of the N-type semiconductor substrate 101 is about 0.005 to 0.02 Ω · cm, the thickness is about 300 to 500 μm, the chip size is about 3 mm square, and the concentration of the low-concentration N-type epitaxial layer 102 is Is about 10 17 to 10 18 cm −3 , the thickness is about 22 to 35 μm, the temperature during thermal oxidation is about 1000 to 1200 ° C., and the thickness of the insulating film 105 is about 0.5 to 1.5 μm. It is preferable.

図2(B)は、初期酸化工程終了後の絶縁皮膜105にフォトリソグラフィーを用いた選択的エッチング除去を施してP型半導体層103形成予定部上に位置するP型半導体層拡散窓105aと、P型半導体層103形成予定部から離間してP型半導体層103形成予定部を取り囲んだ環状のFLR106形成予定部上に位置するFLR拡散窓105bとを形成し、該FLR106形成予定部は各々と離間させてP型半導体層103形成予定部と同心な環状に一箇所または複数箇所(本実施形態では三箇所)形成し、P型半導体層拡散窓105aとFLR拡散窓105bとに低濃度N型エピタキシャル層102を露出させる拡散窓形成工程終了時点を示す断面である。   FIG. 2 (B) shows a P-type semiconductor layer diffusion window 105a located on a portion where the P-type semiconductor layer 103 is to be formed by performing selective etching removal using photolithography on the insulating film 105 after the completion of the initial oxidation step. An FLR diffusion window 105b is formed on the annular FLR 106 formation portion that is spaced apart from the P-type semiconductor layer 103 formation portion and surrounds the P-type semiconductor layer 103 formation portion. One or a plurality (three in this embodiment) of the P-type semiconductor layer 103 are formed in a ring concentric with the portion where the P-type semiconductor layer 103 is to be formed, and a low concentration N-type is formed in the P-type semiconductor layer diffusion window 105a and the FLR diffusion window 105b. 5 is a cross section showing the end of a diffusion window forming process for exposing an epitaxial layer 102;

ここで、P型半導体層拡散窓105aの直径は2.0〜2.8mm程度で、P型半導体層拡散窓105aとFLR拡散窓105bとの離間距離は5〜20μm程度で、FLR拡散窓105bの幅とピッチは各々5〜20μm程度が好ましい。   Here, the diameter of the P-type semiconductor layer diffusion window 105a is about 2.0 to 2.8 mm, the separation distance between the P-type semiconductor layer diffusion window 105a and the FLR diffusion window 105b is about 5 to 20 μm, and the FLR diffusion window 105b. The width and pitch of each are preferably about 5 to 20 μm.

図2(C)は、拡散窓形成工程終了後の半導体基板第一主面側の少なくとも低濃度N型エピタキシャル層102露出面の上にボロン等のP型ドーパントを含む膜を形成し、熱拡散法にて低濃度N型エピタキシャル層102表面から層内へ延在するP型のFLR106とP型半導体層103とを形成する拡散層形成工程終了時点を示す断面である。この時点で低濃度N型エピタキシャル層102の露出面は、熱拡散法による熱のために再び酸化膜が形成されて絶縁皮膜105で覆われる事となる。   FIG. 2C shows a thermal diffusion by forming a film containing a P-type dopant such as boron on at least the exposed surface of the low-concentration N-type epitaxial layer 102 on the first main surface side of the semiconductor substrate after the diffusion window forming step. 3 is a cross-sectional view showing the end of a diffusion layer forming step for forming a P-type FLR 106 and a P-type semiconductor layer 103 extending from the surface of the low-concentration N-type epitaxial layer 102 into the layer by a method. At this time, the exposed surface of the low-concentration N-type epitaxial layer 102 is covered with the insulating film 105 by forming an oxide film again due to heat by the thermal diffusion method.

ここで、拡散時の温度は1000〜1200℃で、P型半導体層103とFLR106の、濃度は1017〜1018cm-3程度、深さは2〜10μm程度とすることが好ましい。 Here, it is preferable that the temperature during diffusion is 1000 to 1200 ° C., the concentration of the P-type semiconductor layer 103 and the FLR 106 is about 10 17 to 10 18 cm −3 , and the depth is about 2 to 10 μm.

図2(D)は、拡散層形成工程終了後の絶縁皮膜105でFLR106最内殻の内周面上に位置する絶縁皮膜105を残して他の部分の絶縁皮膜105にフォトリソグラフィーを用いた選択的エッチング除去を施してFLR106最内殻を含んだ外側の低濃度N型エピタキシャル層102とFLR106とを露出させる絶縁皮膜除去工程終了時点を示す断面である。   FIG. 2D shows that the insulating film 105 after completion of the diffusion layer forming process is selected by using photolithography for the insulating film 105 in the other part while leaving the insulating film 105 positioned on the inner peripheral surface of the innermost shell of the FLR 106. 6 is a cross-sectional view showing the end of the insulating film removal step for exposing the outer low-concentration N type epitaxial layer 102 including the innermost shell of the FLR 106 and the FLR 106 by performing selective etching removal.

図2(E)は、絶縁皮膜除去工程終了後の低濃度N型エピタキシャル層102とFLR106とを含む露出面に鉛成分を含むガラスパウダーを選択的に電着させた後に該ガラスパウダーを加熱焼成させてFLR106最内殻を含んだ外側のFLR106と低濃度N型エピタキシャル層102との表面上に絶縁皮膜105と接して鉛ガラス10を形成する鉛ガラス形成工程終了時点を示す断面である。   FIG. 2E shows the glass powder containing lead component selectively deposited on the exposed surface including the low-concentration N-type epitaxial layer 102 and the FLR 106 after the insulating film removing step is completed, and then the glass powder is heated and fired. 5 is a cross section showing the end of the lead glass forming process in which the lead glass 10 is formed on the surface of the outer FLR 106 including the innermost shell of the FLR 106 and the low-concentration N-type epitaxial layer 102 in contact with the insulating film 105.

ここで、鉛ガラス10は、鉛の含有量30〜70%で、厚みは20μm以上とすることが好ましい。   Here, the lead glass 10 preferably has a lead content of 30 to 70% and a thickness of 20 μm or more.

図2(F)は、鉛ガラス形成工程終了後のP型半導体層103上に位置する絶縁皮膜105の一部分にフォトリソグラフィーを用いた選択的エッチング除去を施してP型半導体層103表面の一部分を露出させ、半導体基板の第一主面側を占める鉛ガラス10と絶縁皮膜105とP型半導体層103とを含む面に蒸着法にてAl、Ag、Cr、Ni等の単体またはそれらを複数含むメタル層を形成し、該メタル層にフォトリソグラフィーを用いた選択的エッチング除去を施してP型半導体層103表面から絶縁皮膜105表面周辺へ延在するメタル電極104を形成し、半導体基板の第二主面であるN型半導体基板101表面を研削研磨して厚み調整の後に該半導体基板101表面に蒸着法にてAu、Ag、Ni、Cr、Sb等の単体またはそれらを複数含む層を形成して裏面メタライズ層107とする外部電極形成工程終了時点を示す断面である。   FIG. 2F shows that a part of the surface of the P-type semiconductor layer 103 is removed by performing selective etching removal using photolithography on a part of the insulating film 105 located on the P-type semiconductor layer 103 after the lead glass forming process is completed. The surface including the lead glass 10, the insulating film 105, and the P-type semiconductor layer 103 that is exposed and occupies the first main surface side of the semiconductor substrate includes a single substance such as Al, Ag, Cr, Ni, or a plurality of them by vapor deposition. A metal layer is formed, and selective etching and removal using photolithography is performed on the metal layer to form a metal electrode 104 extending from the surface of the P-type semiconductor layer 103 to the periphery of the surface of the insulating film 105, so that the second of the semiconductor substrate is formed. After grinding and polishing the surface of the N-type semiconductor substrate 101 which is the main surface and adjusting the thickness, the surface of the semiconductor substrate 101 is made of a single substance such as Au, Ag, Ni, Cr, Sb or the like by vapor deposition. It is a cross-section showing the external electrode forming step at the end of the back metallization layer 107 to form a layer containing a plurality of these.

ここで、N型半導体基板101を研削研磨により半導体基板の全厚として200〜300μm程度とすることが好ましい。   Here, it is preferable that the total thickness of the N-type semiconductor substrate 101 is about 200 to 300 μm by grinding and polishing.

上述の外部電極形成工程終了後に半導体基板の第一主面の上方より、該半導体基板の第一主面に形成された電子線を遮断するマスクである鉛ガラス10をマスクとして電子線を照射し、マスキングされていない部分の半導体基板に該電子線を透過させてメタル電極104と絶縁皮膜105との下に位置するP型半導体層103と低濃度N型エピタキシャル層102とN型半導体基板101との全般に分布する結晶欠陥を形成する電子線照射工程(図示せず)を終了して、図1に示すチップ型半導体素子として完成させる(電子線照射は、図1参考)。   After the external electrode forming step is completed, an electron beam is irradiated from above the first main surface of the semiconductor substrate using the lead glass 10 that is a mask for blocking the electron beam formed on the first main surface of the semiconductor substrate as a mask. The P-type semiconductor layer 103, the low-concentration N-type epitaxial layer 102, and the N-type semiconductor substrate 101 that are located under the metal electrode 104 and the insulating film 105 by transmitting the electron beam to the unmasked portion of the semiconductor substrate, The electron beam irradiation step (not shown) for forming crystal defects distributed in the above is completed, and the chip type semiconductor device shown in FIG. 1 is completed (for electron beam irradiation, refer to FIG. 1).

ここで、電子線の照射量は、200〜1000kGy程度とすることが好ましい。   Here, the irradiation amount of the electron beam is preferably about 200 to 1000 kGy.

(実施の形態2)
図3は、本発明の実施の形態2のチップ型半導体素子の断面図である。図3において、図1および図4と同じ構成要素については同じ符号を用い、説明を省略する。図3において、10は鉛ガラス、101はN型半導体基板、102は低濃度N型エピタキシャル層、103はP型半導体層、104はメタル電極、107は裏面メタライズ層を各々示しており、N型半導体基板101の上層に低濃度N型半導体である低濃度N型エピタキシャル層102が形成され、該エピタキシャル層102の上層にP型半導体層103が形成され、半導体基板を成すN型半導体基板101と低濃度N型エピタキシャル層102とP型半導体層103との各層が積層する側面は、P型半導体層103上面を半導体基板の第一主面とした場合、N型半導体基板101側面の一部を含んで低濃度N型エピタキシャル層102側面とP型半導体層103側面とが連続で、半導体基板第一主面の終端からN型半導体基板101側面の一部にかけて滑らかな曲率を有する斜面であるメサ形状を成し、半導体基板のN型半導体基板101と低濃度N型エピタキシャル層102とP型半導体層103とを含む側面の斜面から第一主面の周縁へ延在する鉛ガラス10が形成され、該ガラス10で覆われないP型半導体層103表面上にメタル電極104が形成され、半導体基板の第二主面であるN型半導体基板101表面上に裏面メタライズ層107が形成されている。
(Embodiment 2)
FIG. 3 is a cross-sectional view of the chip-type semiconductor element according to the second embodiment of the present invention. 3, the same components as those in FIGS. 1 and 4 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 3, 10 is a lead glass, 101 is an N-type semiconductor substrate, 102 is a low concentration N-type epitaxial layer, 103 is a P-type semiconductor layer, 104 is a metal electrode, and 107 is a back metallization layer. A low-concentration N-type epitaxial layer 102, which is a low-concentration N-type semiconductor, is formed over the semiconductor substrate 101, and a P-type semiconductor layer 103 is formed over the epitaxial layer 102. The side surface on which the low-concentration N-type epitaxial layer 102 and the P-type semiconductor layer 103 are stacked is a part of the side surface of the N-type semiconductor substrate 101 when the upper surface of the P-type semiconductor layer 103 is the first main surface of the semiconductor substrate. The side surface of the low-concentration N-type epitaxial layer 102 and the side surface of the P-type semiconductor layer 103 are continuous, from the end of the first main surface of the semiconductor substrate to the side surface of the N-type semiconductor substrate 101. Forming a mesa shape that is a slope having a smooth curvature over the portion, from the side slope including the N-type semiconductor substrate 101, the low-concentration N-type epitaxial layer 102, and the P-type semiconductor layer 103 of the semiconductor substrate to the first main surface. A lead glass 10 extending to the periphery is formed, a metal electrode 104 is formed on the surface of the P-type semiconductor layer 103 that is not covered with the glass 10, and the surface of the N-type semiconductor substrate 101 that is the second main surface of the semiconductor substrate A back metallized layer 107 is formed on the surface.

かかる構成によれば、半導体基板の第一主面上方より半導体基板全面を含む面に電子線照射を施すことによって鉛ガラス10をマスクとしてメタル電極104下に位置する半導体基板のみに該電子線を透過させて、メタル電極104下に位置する半導体基板全般に分布する結晶欠陥を形成する事が可能で、半導体基板の有するメサ形状による電界集中緩和の作用による高耐圧化と、電界が集中する鉛ガラス10下部の半導体基板を除く半導体基板にのみ結晶欠陥を形成できるので高耐圧化を妨げることなく結晶欠陥がキャリアのキラーとして作用してtrrを短縮するので、高耐圧化を妨げずに高速動作が可能となる。   According to such a configuration, the surface including the entire surface of the semiconductor substrate is irradiated from above the first main surface of the semiconductor substrate, whereby the electron beam is applied only to the semiconductor substrate located under the metal electrode 104 using the lead glass 10 as a mask. Crystal defects distributed over the entire semiconductor substrate located under the metal electrode 104 can be formed through transmission, and the breakdown voltage is increased by the action of relaxation of the electric field concentration due to the mesa shape of the semiconductor substrate, and lead in which the electric field is concentrated Since crystal defects can be formed only on the semiconductor substrate excluding the semiconductor substrate under the glass 10, the crystal defects act as a carrier killer without hindering the high breakdown voltage and shorten trr. Is possible.

尚、本発明の説明では、第一導電型をN型、第二導電型をP型としたが、これを反転させて第一導電型をP型、第二導電型をN型としてもよい。この場合、電圧と電流が反転する事となる。また、本発明の実施の形態では一例として、二極素子であるダイオードとしたがこれに限定するものではなく、三極素子のトタンジスタ等他の素子としても良い。   In the description of the present invention, the first conductivity type is N type and the second conductivity type is P type. However, the first conductivity type may be inverted and the second conductivity type may be N type. . In this case, the voltage and current are inverted. In the embodiment of the present invention, a diode that is a bipolar element is used as an example. However, the present invention is not limited to this, and other elements such as a transistor of a three-pole element may be used.

チップ型半導体素子として有用であり、特に高耐圧で且つ高速なタイプに適している。   It is useful as a chip-type semiconductor element and is particularly suitable for a high breakdown voltage and high speed type.

本発明の実施の形態1におけるチップ型半導体素子の断面図Sectional drawing of the chip-type semiconductor element in Embodiment 1 of this invention 本発明の実施の形態1における製造フローに沿った断面図Sectional drawing along the manufacturing flow in Embodiment 1 of this invention 本発明の実施の形態2におけるチップ型半導体素子の断面図Sectional drawing of the chip-type semiconductor element in Embodiment 2 of this invention 従来のチップ型半導体素子の断面図Cross-sectional view of a conventional chip type semiconductor device 従来のチップ型半導体素子の断面図Cross-sectional view of a conventional chip type semiconductor device

符号の説明Explanation of symbols

10 鉛ガラス
101 N型半導体基板
102 低濃度N型エピタキシャル層
103 P型半導体層
104 メタル電極
105 絶縁皮膜
105a P型半導体層拡散窓
105b FLR拡散窓
106 FLR
107 裏面メタライズ層

DESCRIPTION OF SYMBOLS 10 Lead glass 101 N type semiconductor substrate 102 Low concentration N type epitaxial layer 103 P type semiconductor layer 104 Metal electrode 105 Insulating film 105a P type semiconductor layer diffusion window 105b FLR diffusion window 106 FLR
107 Back metallization layer

Claims (6)

半導体基板に結晶欠陥が選択的に分布形成され、
逆方向バイアス時に前記結晶欠陥を起因とする降伏現象が生じない事を特徴とするチップ型半導体素子。
Crystal defects are selectively distributed and formed on the semiconductor substrate,
A chip type semiconductor device characterized in that a breakdown phenomenon caused by the crystal defect does not occur during reverse bias.
前記半導体基板に少なくとも低濃度第一導電型半導体層と第二導電型半導体層と第二導電型のFLRとを含み、
前記低濃度第一導電型半導体層の表面から層内へ延在する前記第二導電型半導体層が形成され、
前記第二導電型半導体層から離間して該半導体層を環状に取り囲んで前記低濃度第一導電型半導体層の表面から層内へ略前記第二導電型半導体層と同程度の深さに延在する前記第二導電型のFLRが形成され、
該FLRに取り囲まれた内側の、前記低濃度第一導電型半導体層と前記第二導電型半導体層を含む前記半導体基板の第一主面から第二主面にかける範囲内で選択的に前記結晶欠陥が分布形成された事を特徴とする、請求項1に記載のチップ型半導体素子。
The semiconductor substrate includes at least a low-concentration first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and a second conductivity type FLR,
The second conductivity type semiconductor layer extending from the surface of the low concentration first conductivity type semiconductor layer into the layer is formed,
The semiconductor layer is spaced from the second conductive semiconductor layer and surrounds the semiconductor layer in an annular shape and extends from the surface of the low-concentration first conductive semiconductor layer into the layer to a depth substantially equal to that of the second conductive semiconductor layer. An existing FLR of the second conductivity type is formed;
Selectively within a range from the first main surface to the second main surface of the semiconductor substrate including the low-concentration first conductivity type semiconductor layer and the second conductivity type semiconductor layer inside the FLR. 2. The chip type semiconductor device according to claim 1, wherein crystal defects are distributed and formed.
半導体基板表面に電子線を遮蔽するマスクが形成され、
該マスクを利用して前記半導体基板に選択的に電子線を照射する事で該半導体基板に結晶欠陥が選択的に分布形成され、
逆方向バイアス時に前記結晶欠陥を起因とする降伏現象が生じない事を特徴とする、チップ型半導体素子。
A mask for shielding electron beams is formed on the surface of the semiconductor substrate,
By selectively irradiating the semiconductor substrate with an electron beam using the mask, crystal defects are selectively distributed and formed on the semiconductor substrate,
A chip type semiconductor device characterized in that a breakdown phenomenon caused by the crystal defect does not occur during reverse bias.
前記半導体基板に少なくとも低濃度第一導電型半導体層と第二導電型半導体層とを含み、
前記低濃度第一導電型半導体層の上層に前記第二導電型半導体層が形成され、
前記半導体基板の側面の少なくとも前記低濃度第一導電型半導体層と前記第二導電型半導体層とで成る側面はメサ形状を成し、
前記半導体基板の側面の少なくとも前記低濃度第一導電型半導体層と前記第二導電型半導体層とから該半導体基板の第一主面周縁へ延在する前記マスクが形成された事を特徴とする、請求項3に記載のチップ型半導体素子。
The semiconductor substrate includes at least a low-concentration first conductive semiconductor layer and a second conductive semiconductor layer,
The second conductive semiconductor layer is formed on the low concentration first conductive semiconductor layer,
The side surface of at least the low-concentration first conductive semiconductor layer and the second conductive semiconductor layer on the side surface of the semiconductor substrate has a mesa shape,
The mask extending from at least the low-concentration first conductive semiconductor layer and the second conductive semiconductor layer on the side surface of the semiconductor substrate to the periphery of the first main surface of the semiconductor substrate is formed. The chip type semiconductor device according to claim 3.
前記マスクが、鉛ガラスから成る事を特徴とする請求項3または4に記載のチップ型半導体素子。   5. The chip type semiconductor element according to claim 3, wherein the mask is made of lead glass. 第一導電型半導体基板の上層に低濃度第一導電型エピタキシャル層をエピタキシャル成長させ、半導体基板の第一主面である前記低濃度第一導電型エピタキシャル層の主面を熱酸化法にて酸化膜である絶縁皮膜で覆って形成する初期酸化工程と、
前記初期酸化工程終了後の前記絶縁皮膜にフォトリソグラフィーを用いた選択的エッチング除去を施して、第二導電型半導体層形成予定部上に位置する第二導電型半導体層拡散窓と、前記第二導電型半導体層形成予定部から離間して該第二導電型半導体層形成予定部を取り囲んだ環状のFLR形成予定部上に位置するFLR拡散窓とを形成し、該FLR形成予定部は各々と離間させて前記第二導電型半導体層形成予定部と同心な環状に一箇所または複数箇所形成し、前記第二導電型半導体層拡散窓と前記FLR拡散窓とに前記低濃度第一導電型エピタキシャル層を露出させる拡散窓形成工程と、
前記拡散窓形成工程終了後の前記半導体基板第一主面側の少なくとも前記低濃度第一導電型エピタキシャル層露出面の上に第二導電型ドーパントを含む膜を形成し、熱拡散法にて低濃度第一導電型エピタキシャル層表面から層内へ延在する第二導電型のFLRと第二導電型半導体層とを形成する拡散層形成工程と、
前記拡散層形成工程終了後の前記絶縁皮膜で前記FLR最内殻の内周面上に位置する前記絶縁皮膜を残して他の部分の該絶縁皮膜にフォトリソグラフィーを用いた選択的エッチング除去を施して前記FLR最内殻を含んだ外側の前記低濃度第一導電型エピタキシャル層と前記FLRとを露出させる絶縁皮膜除去工程と、
前記絶縁皮膜除去工程終了後の前記低濃度第一導電型エピタキシャル層と前記FLRとを含む露出面に鉛成分を含むガラスパウダーを選択的に電着させた後に該ガラスパウダーを加熱焼成させて前記FLR最内殻を含んだ外側の該FLRと前記低濃度第一導電型エピタキシャル層との表面上に前記絶縁皮膜と接して鉛ガラスを形成する鉛ガラス形成工程と、
前記鉛ガラス形成工程終了後の前記第二導電型半導体層上に位置する前記絶縁皮膜の一部分にフォトリソグラフィーを用いた選択的エッチング除去を施して前記第二導電型半導体層表面の一部分を露出させ、前記半導体基板の第一主面側を占める前記鉛ガラスと前記絶縁皮膜と前記第二導電型半導体層とを含む面に蒸着法にてメタル層を形成し、該メタル層にフォトリソグラフィーを用いた選択的エッチング除去を施して前記第二導電型半導体層表面から前記絶縁皮膜表面周辺へ延在するメタル電極を形成し、前記半導体基板の第二主面である前記第一導電型半導体基板表面を研削研磨して厚み調整の後に該半導体基板表面に蒸着法にて裏面メタライズ層を形成する外部電極形成工程と、
前記外部電極形成工程終了後に前記半導体基板の第一主面の上方より、該半導体基板の第一主面に形成された前記鉛ガラスをマスクとして電子線を照射し、マスキングされていない部分の前記半導体基板に該電子線を透過させて前記メタル電極と前記絶縁皮膜との下に位置する前記第二導電型半導体層と前記低濃度第一導電型エピタキシャル層と前記第一導電型半導体基板との範囲内に分布する結晶欠陥を形成する電子線照射工程と、を含む事を特徴とする、チップ型半導体素子の製造方法。

A low-concentration first-conductivity-type epitaxial layer is epitaxially grown on the first-conductivity-type semiconductor substrate, and the main surface of the low-concentration first-conductivity-type epitaxial layer, which is the first main surface of the semiconductor substrate, is oxidized by a thermal oxidation method. An initial oxidation step of covering and forming with an insulating film,
A second conductive type semiconductor layer diffusion window located on the second conductive type semiconductor layer formation planned portion by performing selective etching removal using photolithography on the insulating film after completion of the initial oxidation step; Forming an FLR diffusion window positioned on the annular FLR formation planned portion spaced apart from the conductive type semiconductor layer formation planned portion and surrounding the second conductivity type semiconductor layer formation planned portion; One or a plurality of annularly formed concentric rings with the second conductive type semiconductor layer formation scheduled portion are formed, and the low-concentration first conductive type epitaxial is formed in the second conductive type semiconductor layer diffusion window and the FLR diffusion window. A diffusion window forming step to expose the layer;
A film containing a second conductivity type dopant is formed on at least the low-concentration first conductivity type epitaxial layer exposed surface on the first main surface side of the semiconductor substrate after completion of the diffusion window forming step, and is reduced by a thermal diffusion method. A diffusion layer forming step of forming a second conductivity type FLR and a second conductivity type semiconductor layer extending from the concentration first conductivity type epitaxial layer surface into the layer;
The insulating film after the diffusion layer forming step is subjected to selective etching removal using photolithography, leaving the insulating film located on the inner peripheral surface of the FLR innermost shell. An insulating film removing step for exposing the FLR outside the low-concentration first conductivity type epitaxial layer including the FLR innermost shell;
A glass powder containing a lead component is selectively electrodeposited on the exposed surface containing the low-concentration first conductivity type epitaxial layer and the FLR after the insulating film removing step is completed, and then the glass powder is heated and fired. A lead glass forming step of forming lead glass on the surface of the outer FLR including the innermost shell of the FLR and the surface of the low-concentration first conductivity type epitaxial layer in contact with the insulating film;
A portion of the insulating film located on the second conductive type semiconductor layer after the lead glass forming step is selectively etched and removed using photolithography to expose a part of the surface of the second conductive type semiconductor layer. A metal layer is formed by vapor deposition on a surface including the lead glass occupying the first main surface side of the semiconductor substrate, the insulating film, and the second conductivity type semiconductor layer, and photolithography is used for the metal layer. Forming a metal electrode extending from the surface of the second conductive type semiconductor layer to the periphery of the surface of the insulating film by performing selective etching removal, and the surface of the first conductive type semiconductor substrate being the second main surface of the semiconductor substrate External electrode forming step of forming a back metallized layer by vapor deposition on the surface of the semiconductor substrate after adjusting the thickness by grinding and polishing,
After the external electrode forming step is completed, the electron beam is irradiated from above the first main surface of the semiconductor substrate using the lead glass formed on the first main surface of the semiconductor substrate as a mask, and the unmasked portion of the portion is not masked. The second conductive type semiconductor layer, the low-concentration first conductive type epitaxial layer, and the first conductive type semiconductor substrate, which are made to transmit the electron beam through the semiconductor substrate and are located under the metal electrode and the insulating film, And an electron beam irradiation step for forming crystal defects distributed within the range.

JP2005169345A 2005-06-09 2005-06-09 Chip-type semiconductor element and manufacturing method thereof Pending JP2006344782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169345A JP2006344782A (en) 2005-06-09 2005-06-09 Chip-type semiconductor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169345A JP2006344782A (en) 2005-06-09 2005-06-09 Chip-type semiconductor element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006344782A true JP2006344782A (en) 2006-12-21

Family

ID=37641514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169345A Pending JP2006344782A (en) 2005-06-09 2005-06-09 Chip-type semiconductor element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006344782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021151474A (en) * 2020-03-18 2021-09-30 良明 金澤 Pillow, and support method of head on pillow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216400A (en) * 1993-01-20 1994-08-05 Hitachi Ltd Semiconductor device
JPH08227895A (en) * 1995-02-20 1996-09-03 Rohm Co Ltd Semiconductor device and manufacture thereof
JP2003338590A (en) * 2002-05-17 2003-11-28 Sanken Electric Co Ltd Semiconductor element and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216400A (en) * 1993-01-20 1994-08-05 Hitachi Ltd Semiconductor device
JPH08227895A (en) * 1995-02-20 1996-09-03 Rohm Co Ltd Semiconductor device and manufacture thereof
JP2003338590A (en) * 2002-05-17 2003-11-28 Sanken Electric Co Ltd Semiconductor element and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021151474A (en) * 2020-03-18 2021-09-30 良明 金澤 Pillow, and support method of head on pillow

Similar Documents

Publication Publication Date Title
JP6477106B2 (en) Semiconductor device
JP2009158528A (en) Semiconductor device
JP2012235002A (en) Semiconductor device and method for manufacturing the same
JP2003318413A (en) High breakdown voltage silicon carbide diode and manufacturing method therefor
JP2008034652A (en) Semiconductor device and manufacturing method therefor
JP2018019047A (en) Silicon carbide semiconductor substrate, silicon carbide semiconductor substrate manufacturing method, semiconductor device and semiconductor device manufacturing method
JP2015165542A (en) Method for manufacturing semiconductor device and semiconductor device
CN111725329A (en) Semiconductor MPS diode with reduced current crowding effect and method of manufacturing the same
KR100503936B1 (en) Semiconductor device
JP2013105798A (en) Semiconductor device and method for manufacturing the same
JP2010073857A (en) Method of manufacturing semiconductor device
JP2006344782A (en) Chip-type semiconductor element and manufacturing method thereof
JP2009224642A (en) Silicon carbide semiconductor device and manufacturing method therefor
JP2005135972A (en) Manufacturing method of semiconductor device
JP2000188406A (en) Silicon carbide schottky barrier diode and its manufacture
JP6137955B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP2006108346A (en) Chip type semiconductor element and its manufacturing method
JP2015170667A (en) semiconductor device
JP6309211B2 (en) Silicon carbide semiconductor device
JP4860146B2 (en) Surge protection semiconductor device
JP2006228772A (en) Schottky barrier diode and manufacturing method thereof
JPWO2019224913A1 (en) Semiconductor device
JP2015002315A (en) Silicon carbide semiconductor device and method of manufacturing the same
JP2006351587A (en) Semiconductor device and its manufacturing method
JP2005294772A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Effective date: 20110819

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110826

A02 Decision of refusal

Effective date: 20120120

Free format text: JAPANESE INTERMEDIATE CODE: A02