JP2006329567A - Heat pump device - Google Patents
Heat pump device Download PDFInfo
- Publication number
- JP2006329567A JP2006329567A JP2005156775A JP2005156775A JP2006329567A JP 2006329567 A JP2006329567 A JP 2006329567A JP 2005156775 A JP2005156775 A JP 2005156775A JP 2005156775 A JP2005156775 A JP 2005156775A JP 2006329567 A JP2006329567 A JP 2006329567A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- compressor
- heat pump
- return circuit
- oil flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、オイルセパレータを備え、圧縮機の信頼性確保だけでなく、ガスクーラ及び蒸発器の性能向上を図ることができる高効率なヒートポンプ装置に関するものである。 The present invention relates to a high-efficiency heat pump device that includes an oil separator and can improve not only the reliability of a compressor but also the performance of a gas cooler and an evaporator.
従来、オイルセパレータを備えたヒートポンプ装置として図3に示すものがある(例えば、特許文献1参照)。図3に示すように、このヒートポンプ装置は、コンプレッサ101、オイルセパレータ102、コンデンサ103、レシーバ104、膨張弁105、エバポレータ106が環状に接続されている。また、コンプレッサ101とオイルセパレータ102との間には油戻し回路107が形成され、この油戻し回路107の配管途中には過冷却制御弁108が接続されている。コンプレッサ101からの吐出冷媒ガス(コンプレッサ101の潤滑のためのオイルを含む)はオイルセパレータ102にて冷媒ガスとオイルとに分離され、冷媒ガスのみがコンデンサ103、レシーバ104、膨張弁105、エバポレータ106を循環してコンプレッサ101に戻る。一方、オイルセパレータ102にて分離したオイルは、油戻し回路107によってコンプレッサ101に戻される。この時、オイルセパレータ102の底部から油戻し回路107に流れる流体の温度と圧力とを検知して、この流体の温度と圧力との組み合わせが冷媒の過冷却領域に相当する値である場合、即ちこの流体がオイルである場合に、過冷却制御弁108を開いてこの流体(オイル)を油戻し回路107を経由してコンプレッサ101に戻すのである。これにより、コンデンサ103やエバポレータ106の熱交換器には冷媒のみが流れるためオイルによる性能低下を防止でき、ヒートポンプ装置の運転効率を向上することができる。また、過冷却弁108によりオイルのみがコンプレッサ101に戻されるため、コンプレッサ101の信頼性向上を図ることができる。
しかしながら、前記従来の構成では、ヒートポンプ装置の運転状態が急激に変化した場合、油戻し回路107を流れる流体の温度と圧力とから過冷却状態を正確に検知することは困難であり、過冷却制御弁108を開くタイミングが遅れてコンプレッサ101へのオイル供給が遅れることにより焼き付き等の不具合を生じたり、過冷却制御弁108を必要以上に開いてオイル以外に冷媒ガスがコンプレッサ101に戻ることによりヒートポンプ装置の運転効率低下を招く恐れがあった。 However, in the conventional configuration, when the operating state of the heat pump device changes rapidly, it is difficult to accurately detect the supercooling state from the temperature and pressure of the fluid flowing through the oil return circuit 107. The timing of opening the valve 108 is delayed and the oil supply to the compressor 101 is delayed, thereby causing problems such as seizure, or the supercooling control valve 108 is opened more than necessary and the refrigerant gas other than oil returns to the compressor 101 to cause a heat pump. The operation efficiency of the device may be reduced.
本発明は、前記従来の課題を解決するもので、圧縮機のオイル戻し量を、圧縮機運転状態の変化に対応して適切に制御することにより、圧縮機の信頼性を確保しつつ高効率なヒートポンプ装置を提供することを目的とする。 The present invention solves the above-described conventional problems, and by appropriately controlling the oil return amount of the compressor in response to changes in the compressor operating state, it is possible to achieve high efficiency while ensuring the reliability of the compressor. An object is to provide a heat pump device.
前記従来の課題を解決するために、本発明のヒートポンプ装置は、圧縮機とオイルセパレータとガスクーラと膨張弁と蒸発器とを環状に接続して形成した冷媒回路と、前記オイルセパレータで分離したオイルをオイル流量制御装置を介して前記圧縮機に戻すオイル戻し回路とを備え、前記オイル流量制御装置は、前記圧縮機の運転周波数が基準周波数の時のオイル流量を基準オイル流量とし、前記圧縮機の運転周波数が前記基準周波数よりも高い場合は前記オイル戻し回路のオイル流量を所定量だけ増大させ、前記圧縮機の運転周波数が前記基準周波数よりも低い場合は前記オイル戻し回路のオイル流量を所定量だけ減少させるものである。 In order to solve the above-described conventional problems, a heat pump device according to the present invention includes a refrigerant circuit formed by annularly connecting a compressor, an oil separator, a gas cooler, an expansion valve, and an evaporator, and oil separated by the oil separator. And an oil return circuit that returns the oil to the compressor via an oil flow control device, wherein the oil flow control device uses the oil flow when the operation frequency of the compressor is a reference frequency as a reference oil flow, and the compressor When the operating frequency of the compressor is higher than the reference frequency, the oil flow rate of the oil return circuit is increased by a predetermined amount. When the operating frequency of the compressor is lower than the reference frequency, the oil flow rate of the oil return circuit is determined. Decrease only by quantification.
これにより、圧縮機のオイル戻し量を、圧縮機運転状態の変化に対応して適切に制御することができ、圧縮機の信頼性確保と高効率な運転を両立できる。 Thereby, the oil return amount of the compressor can be appropriately controlled in accordance with the change in the compressor operating state, and both the reliability of the compressor and the highly efficient operation can be achieved.
圧縮機の運転周波数が高い場合はオイル戻し回路のオイル流量を増大させ、圧縮機の運転周波数が低い場合はオイル戻し回路のオイル流量を減少させることにより、圧縮機のオイル戻し量が圧縮機運転状態の変化に対応して適切に制御され、圧縮機の信頼性確保と高効率な運転を両立できる。 When the compressor operating frequency is high, increase the oil flow rate in the oil return circuit, and when the compressor operating frequency is low, decrease the oil flow rate in the oil return circuit, so that the compressor oil return amount Appropriately controlled in response to changes in conditions, it is possible to ensure both the reliability of the compressor and high-efficiency operation.
第1の発明は、圧縮機とオイルセパレータとガスクーラと膨張弁と蒸発器とを環状に接続して形成した冷媒回路と、前記オイルセパレータで分離したオイルをオイル流量制御装置を介して前記圧縮機に戻すオイル戻し回路とを備え、前記オイル流量制御装置は、前記圧縮機の運転周波数が基準周波数の時のオイル流量を基準オイル流量とし、前記圧縮機の運転周波数が前記基準周波数よりも高い場合は前記オイル戻し回路のオイル流量を所定量だけ増大させ、前記圧縮機の運転周波数が前記基準周波数よりも低い場合は前記オイル戻し回路のオイル流量を所定量だけ減少させることにより、圧縮機のオイル戻し量が圧縮機運転状態の変化に対応して適切に制御され、圧縮機の信頼性確保と高効率な運転を両立できる。 According to a first aspect of the present invention, there is provided a refrigerant circuit formed by annularly connecting a compressor, an oil separator, a gas cooler, an expansion valve, and an evaporator, and oil separated by the oil separator via the oil flow control device. When the operating frequency of the compressor is a reference frequency, the oil flow rate control device uses the oil flow rate when the operating frequency of the compressor is a reference frequency as a reference oil flow rate, and the operating frequency of the compressor is higher than the reference frequency. Increases the oil flow rate of the oil return circuit by a predetermined amount, and reduces the oil flow rate of the compressor by decreasing the oil flow rate of the oil return circuit by a predetermined amount when the operating frequency of the compressor is lower than the reference frequency. The return amount is appropriately controlled in response to the change in the compressor operating state, so that both the reliability of the compressor and the highly efficient operation can be achieved.
第2の発明は、特に、第1の発明のヒートポンプ装置のオイル流量制御装置を、圧縮機の運転周波数が所定値未満の場合にオイル戻し回路を閉じるようにしたものであり、圧縮機の吐出冷媒がオイル戻し回路を介して圧縮機に戻ることによる運転効率低下を防止できる。 In the second invention, in particular, the oil flow control device of the heat pump device of the first invention is such that the oil return circuit is closed when the operating frequency of the compressor is less than a predetermined value. It is possible to prevent a reduction in operating efficiency due to the refrigerant returning to the compressor via the oil return circuit.
第3の発明は、特に、第1または第2のいずれかの発明のヒートポンプ装置のオイル流量制御装置が圧縮機の積算運転時間を検知する第1タイマーを有し、前記第1タイマーの検知時間が所定積算時間以上になった場合にオイル戻し回路に所定量だけオイルを流すようにしたものであり、圧縮機から吐出されたオイルがオイルセパレータに過剰に溜まり込むことによる圧縮機内のオイル不足を防止でき、圧縮機の信頼性向上が図れる。 According to a third aspect of the invention, in particular, the oil flow rate control device of the heat pump device according to the first or second aspect of the invention has a first timer for detecting the cumulative operation time of the compressor, and the detection time of the first timer When the amount of time exceeds the specified cumulative time, a predetermined amount of oil is allowed to flow through the oil return circuit, and the oil discharged from the compressor excessively accumulates in the oil separator, resulting in insufficient oil in the compressor. The reliability of the compressor can be improved.
第4の発明は、特に、第1〜第3のいずれかの発明のヒートポンプ装置のオイル流量制御装置が所定周波数範囲毎に圧縮機の積算運転時間を検知する第2タイマーを有し、前記第2タイマーの検知時間が所定積算時間以上になった場合にオイル戻し回路に所定量だけオイルを流し、前記圧縮機の運転周波数が高い場合には前記所定積算時間を短く、前記圧縮機の運転周波数が低い場合には前記所定積算時間を長く設定したことにより、圧縮機の保持するオイル量をより正確に制御することができ、圧縮機の信頼性向上が図れる。 According to a fourth aspect of the invention, in particular, the oil flow rate control device of the heat pump device according to any one of the first to third aspects of the invention has a second timer for detecting the cumulative operation time of the compressor for each predetermined frequency range. When a detection time of the two timers exceeds a predetermined integration time, a predetermined amount of oil is allowed to flow through the oil return circuit. When the operating frequency of the compressor is high, the predetermined integration time is shortened, and the operating frequency of the compressor When the engine speed is low, by setting the predetermined integration time longer, the amount of oil retained by the compressor can be controlled more accurately, and the reliability of the compressor can be improved.
第5の発明は、特に、第1〜第4のいずれかの発明のヒートポンプ装置のオイル流量制御装置上流側の配管温度を検知する第1温度センサーと前記オイル流量制御装置下流側の配管温度を検知する第2温度センサーとを備え、前記オイル流量制御装置は、圧縮機の運転周波数が所定値以上の場合にオイル戻し回路を開き、またオイル戻し回路が開いており、かつ前記第1温度センサーと前記第2温度センサーとで検出した温度差が所定温度以上の場合に前記オイル戻し回路内を冷媒が流れていると判定して前記オイル戻し回路を閉じるもので、これにより前記オイル戻し回路を冷媒が流れることによる運転効率の低下を防止できる。 In particular, the fifth aspect of the invention relates to the first temperature sensor for detecting the pipe temperature upstream of the oil flow control device of the heat pump apparatus of any one of the first to fourth inventions and the pipe temperature downstream of the oil flow control device. A second temperature sensor for detecting, wherein the oil flow control device opens an oil return circuit when the operating frequency of the compressor is equal to or higher than a predetermined value, the oil return circuit is open, and the first temperature sensor And when the temperature difference detected by the second temperature sensor is equal to or greater than a predetermined temperature, it is determined that the refrigerant is flowing in the oil return circuit and the oil return circuit is closed. It is possible to prevent a decrease in operating efficiency due to the flow of the refrigerant.
第6の発明は、特に、第1〜5のいずれか1つの発明のヒートポンプ装置の冷媒回路を、高圧側の冷媒圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとし、前記臨界圧力以上に昇圧された冷媒によりガスクーラ内の流体を加熱することにより、前記ガスクーラ内の冷媒は臨界圧力以上に加圧されているので、前記ガスクーラ内の流体により熱を奪われて温度低下しても凝縮することがない。従って、前記ガスクーラの全域で冷媒と流体との間の温度差を形成しやすくなり、熱交換効率を高くできる。 In the sixth invention, in particular, the refrigerant circuit of the heat pump device according to any one of the first to fifth inventions is a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure, and the pressure is increased to the critical pressure or higher. Since the refrigerant in the gas cooler is heated to a critical pressure or higher by heating the fluid in the gas cooler with the refrigerant, the refrigerant in the gas cooler may condense even if the temperature is lowered due to the heat taken away by the fluid in the gas cooler. Absent. Therefore, it becomes easy to form a temperature difference between the refrigerant and the fluid throughout the gas cooler, and the heat exchange efficiency can be increased.
第7の発明は、特に、第6の発明のヒートポンプ装置において、使用する冷媒を二酸化炭素としたものであり、比較的安価でかつ安定な二酸化炭素を冷媒に使用することで製品コストを抑えるとともに、信頼性を向上させることができる。また、二酸化炭素はオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。 In the heat pump device according to the sixth aspect of the invention, in particular, the heat pump device according to the sixth aspect uses carbon dioxide as a refrigerant to be used, and reduces the product cost by using relatively inexpensive and stable carbon dioxide as the refrigerant. , Reliability can be improved. In addition, carbon dioxide has an ozone depletion coefficient of zero and a global warming coefficient of about 1/700 of the alternative refrigerant HFC-407C, which is very small.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の第1の実施の形態のヒートポンプ装置の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump device according to a first embodiment of the present invention.
図1において、圧縮機11とオイルセパレータ12と給湯熱交換器の冷媒側配管13aと膨張弁14と蒸発器15とを環状に接続して冷媒回路を形成している。ヒートポンプ装置のガスクーラを給湯熱交換器として使うことで、ヒートポンプ給湯機の機能を有している。蒸発器15はファン16を有しており、ファン16により蒸発器15に供給された空気と蒸発器15内の冷媒との間で熱交換が行われ、冷媒が加熱される。また、オイルセパレータ12で分離したオイルが開閉弁18を介して圧縮機11に戻されるオイル戻し回路を備えている。開閉弁18は、第1タイマー23により圧縮機11の積算運転時間が所定積算時間以上になったことを検知した場合に開く。開閉弁18は、圧縮機11の運転周波数が基準周波数(ヒートポンプ装置の標準的な加熱能力を得るための圧縮機11の運転周波数)の時のオイル流量を基準オイル流量とし、圧縮機11の運転周波数が基準周波数よりも高い場合はオイル戻し回路のオイル流量を所定量だけ増大させ、圧縮機11の運転周波数が基準周波数よりも低い場合はオイル戻し回路のオイル流量を所定量だけ減少させるように、第1タイマー23と開閉弁制御装置24によって開閉状態が制御される。オイルセパレータ12と開閉弁18とを接続する配管途中にはキャピラリチューブ17が接続されている。このキャピラリチューブ17は一定の減圧作用を有しているため、開閉弁18が開いた時のオイル戻し回路内におけるオイル流量が急激に増大することを抑制し、圧縮機11のオイル圧縮による破損を防止できるので信頼性向上を図ることができる。また、貯湯タンク19と積層ポンプ20と給湯熱交換器の水側配管13bとを環状に接続して沸上げ回路を形成している。貯湯タンク19底部の水は、積層ポンプ20によって給湯熱交換器の水側配管13bに搬送され、ここで給湯熱交換器の冷媒側配管13a内の冷媒と熱交換して自身は高温の湯となって貯湯タンク19の上部に戻される。貯湯タンク19の底部には貯湯タンク19に水を補給するための給水配管21が、貯湯タンク19の上部には貯湯タンク19から湯を取り出すための給湯配管22がそれぞれ接続されている。 In FIG. 1, a compressor 11, an oil separator 12, a refrigerant side pipe 13 a of a hot water supply heat exchanger, an expansion valve 14, and an evaporator 15 are annularly connected to form a refrigerant circuit. By using the gas cooler of the heat pump device as a hot water supply heat exchanger, it has the function of a heat pump water heater. The evaporator 15 has a fan 16, and heat exchange is performed between the air supplied to the evaporator 15 by the fan 16 and the refrigerant in the evaporator 15, and the refrigerant is heated. In addition, an oil return circuit is provided in which oil separated by the oil separator 12 is returned to the compressor 11 via the on-off valve 18. The on-off valve 18 is opened when it is detected by the first timer 23 that the accumulated operation time of the compressor 11 has exceeded a predetermined accumulated time. The on-off valve 18 uses the oil flow rate when the operation frequency of the compressor 11 is the reference frequency (the operation frequency of the compressor 11 for obtaining the standard heating capacity of the heat pump device) as the reference oil flow rate, and operates the compressor 11. When the frequency is higher than the reference frequency, the oil flow rate of the oil return circuit is increased by a predetermined amount. When the operating frequency of the compressor 11 is lower than the reference frequency, the oil flow rate of the oil return circuit is decreased by a predetermined amount. The open / close state is controlled by the first timer 23 and the open / close valve control device 24. A capillary tube 17 is connected in the middle of the piping connecting the oil separator 12 and the on-off valve 18. Since this capillary tube 17 has a constant pressure reducing action, the oil flow rate in the oil return circuit when the on-off valve 18 is opened is prevented from rapidly increasing, and the compressor 11 is damaged by oil compression. Therefore, the reliability can be improved. Moreover, the hot water storage tank 19, the laminated pump 20, and the water side pipe 13b of the hot water supply heat exchanger are connected in an annular shape to form a boiling circuit. The water at the bottom of the hot water storage tank 19 is conveyed by the stacking pump 20 to the water side pipe 13b of the hot water heat exchanger, where it exchanges heat with the refrigerant in the refrigerant side pipe 13a of the hot water heat exchanger. And returned to the upper part of the hot water storage tank 19. A hot water supply pipe 21 for supplying water to the hot water storage tank 19 is connected to the bottom of the hot water storage tank 19, and a hot water supply pipe 22 for taking out hot water from the hot water storage tank 19 is connected to the upper part of the hot water storage tank 19.
以上のように構成されたヒートポンプ装置について、以下その動作、作用を説明する。 About the heat pump apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
圧縮機11内部には、摺動部分の潤滑を目的として所定量のオイルが封入されている。圧縮機11の特性として、運転周波数が大きいほど圧縮機11から吐出されるオイル量も増大するのが一般的である。 A predetermined amount of oil is sealed inside the compressor 11 for the purpose of lubricating the sliding portion. As a characteristic of the compressor 11, the amount of oil discharged from the compressor 11 generally increases as the operating frequency increases.
そこで、まず、圧縮機11の運転周波数が基準周波数(70Hzとする)よりも高い状態(例えば、71〜120Hzの範囲内であり、圧縮機11からのオイル吐出量が多い)の場合は、開閉弁制御装置24により、開閉弁18が開いている時間を長くすることによってオイル戻し回路を流れるオイル流量を増大させ、圧縮機11のオイル量を保持する。 Therefore, first, when the operating frequency of the compressor 11 is higher than the reference frequency (70 Hz) (for example, within the range of 71 to 120 Hz and the oil discharge amount from the compressor 11 is large), the opening and closing The valve control device 24 increases the amount of oil flowing through the oil return circuit by increasing the time during which the on-off valve 18 is open, and maintains the amount of oil in the compressor 11.
次に、圧縮機11の運転周波数が基準周波数よりも低い状態(例えば、50〜69Hzの範囲内であり、圧縮機11からのオイル吐出量が比較的少ない)の場合は、開閉弁制御装置24により、開閉弁18が開いている時間を短くすることによってオイル戻し回路を流れるオイル流量を減少させ、圧縮機11のオイル量を保持する。 Next, when the operating frequency of the compressor 11 is lower than the reference frequency (for example, within the range of 50 to 69 Hz and the amount of oil discharged from the compressor 11 is relatively small), the on-off valve control device 24. Thus, the flow rate of the oil flowing through the oil return circuit is reduced by shortening the time during which the on-off valve 18 is open, and the oil amount of the compressor 11 is maintained.
そして、更に圧縮機11の運転周波数が低い状態(例えば、50Hz未満であり、圧縮機11からのオイル吐出量が更に少ない)の場合は、開閉弁制御装置24により開閉弁18を常時閉じることによって、圧縮機11のオイル量を保持すると共に、オイル戻し回路を介して冷媒が圧縮機11に戻ることを防止し、ヒートポンプ装置の運転効率低下を抑制できる。 When the operating frequency of the compressor 11 is lower (for example, less than 50 Hz and the amount of oil discharged from the compressor 11 is smaller), the on-off valve control device 24 always closes the on-off valve 18. In addition to maintaining the amount of oil in the compressor 11, it is possible to prevent the refrigerant from returning to the compressor 11 via the oil return circuit, and to suppress a reduction in operating efficiency of the heat pump device.
以上のように、本実施の形態1においては、圧縮機の運転周波数に応じてオイル戻し回路を流れるオイル流量を制御することで圧縮機のオイル量を一定に保持することができ、圧縮機の信頼性向上を図ることができる。また、オイルが給湯熱交換器や蒸発器に流入することによる熱交換器の性能低下を防止でき、高効率なヒートポンプ装置の運転が可能となる。 As described above, in the first embodiment, the oil amount of the compressor can be kept constant by controlling the oil flow rate flowing through the oil return circuit in accordance with the operating frequency of the compressor. Reliability can be improved. In addition, it is possible to prevent the performance of the heat exchanger from being deteriorated due to the oil flowing into the hot water supply heat exchanger or the evaporator, and it is possible to operate the heat pump device with high efficiency.
(実施の形態2)
図2は、本発明の第2の実施の形態のヒートポンプ装置の構成図である。図2において、本発明の第1の実施の形態のヒートポンプ装置と同様の構成部分については共通の符号を用い、詳細な説明を省略する。
(Embodiment 2)
FIG. 2 is a configuration diagram of the heat pump apparatus according to the second embodiment of the present invention. In FIG. 2, the same components as those of the heat pump apparatus according to the first embodiment of the present invention are denoted by common reference numerals, and detailed description thereof is omitted.
実施の形態1と異なるのは、第1タイマー23の代わりに、キャピラリチューブ17上流側の配管温度を検知する第1温度センサー25とキャピラリチューブ17下流側の配管温度を検知する第2温度センサーとを備え、オイル流量制御装置24は、圧縮機11の運転周波数が所定値以上の場合に開閉弁18を開き、また開閉弁18が開いており、かつ第1温度センサー25と第2温度センサー26とで検出した温度差が所定値以上の場合に開閉弁18閉じるようにしたことである。 The difference from the first embodiment is that instead of the first timer 23, a first temperature sensor 25 for detecting the piping temperature upstream of the capillary tube 17 and a second temperature sensor for detecting the piping temperature downstream of the capillary tube 17 are provided. The oil flow control device 24 opens the on-off valve 18 when the operating frequency of the compressor 11 is equal to or higher than a predetermined value, the on-off valve 18 is open, and the first temperature sensor 25 and the second temperature sensor 26. The on-off valve 18 is closed when the temperature difference detected in the above is greater than or equal to a predetermined value.
以上のように構成されたヒートポンプ装置について、以下その動作、作用を説明する。 About the heat pump apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
圧縮機11の運転周波数が基準周波数(例えば、70Hz)以上の場合は、開閉弁制御装置24により開閉弁18を開くことによってオイル戻し回路にオイル流して圧縮機11のオイル量を保持する。 When the operating frequency of the compressor 11 is equal to or higher than a reference frequency (for example, 70 Hz), the on-off valve control device 24 opens the on-off valve 18 to flow oil to the oil return circuit to hold the oil amount of the compressor 11.
キャピラリチューブ17内を流体が通過する際には減圧されるため、その流体が非圧縮性のオイルのみである場合には、キャピラリチューブ17前後で流体の温度差は生じない、即ち第1温度センサー25と第2温度センサー26の検出値の差はほとんど生じない。一方、キャピラリチューブ17内を流れる流体が冷媒を比較的多く含んだオイルである場合は、冷媒が減圧される際にオイルの温度を低下させる。従って、第1温度センサー25と第2温度センサー26とで検出した温度差が所定値以上の場合には、キャピラリチューブ17内を比較的多くの冷媒が流れていると判断して開閉弁18を閉じるのである。これにより、オイル戻し回路内を流れる冷媒量が多くなった場合に速やかにオイル戻し回路を閉じることで、圧縮機11の吐出冷媒が圧縮機11の吸入側にバイパスされることによる性能低下を防止でき、高効率なヒートポンプ装置の運転が可能となる。 Since the pressure is reduced when the fluid passes through the capillary tube 17, when the fluid is only incompressible oil, there is no temperature difference between the fluid before and after the capillary tube 17, that is, the first temperature sensor. The difference between the detection values of 25 and the second temperature sensor 26 hardly occurs. On the other hand, when the fluid flowing in the capillary tube 17 is oil containing a relatively large amount of refrigerant, the temperature of the oil is lowered when the refrigerant is decompressed. Therefore, when the temperature difference detected by the first temperature sensor 25 and the second temperature sensor 26 is equal to or greater than a predetermined value, it is determined that a relatively large amount of refrigerant is flowing in the capillary tube 17 and the on-off valve 18 is opened. Close. As a result, when the amount of refrigerant flowing through the oil return circuit increases, the oil return circuit is quickly closed, thereby preventing performance deterioration caused by bypassing the refrigerant discharged from the compressor 11 to the suction side of the compressor 11. It is possible to operate the heat pump device with high efficiency.
なお、実施の形態1および実施の形態2では、オイル戻し回路内のオイル流量を、開閉弁18を開閉させることにより制御したが、開閉弁18の代わりにニードル弁のような流量を連続的に変化させることができる流量制御弁を用いてもよい。オイル流量を連続的に変化させることにより、圧縮機11に戻されるオイル流量の急激な変動が少なくなり、圧縮機11内のオイル量をより精度良く一定に保持することができる。 In the first and second embodiments, the oil flow rate in the oil return circuit is controlled by opening and closing the on-off valve 18, but instead of the on-off valve 18, a flow rate like a needle valve is continuously increased. A flow control valve that can be changed may be used. By continuously changing the oil flow rate, the rapid fluctuation of the oil flow rate returned to the compressor 11 is reduced, and the oil amount in the compressor 11 can be kept constant with higher accuracy.
また、実施の形態1および実施の形態2では、冷媒回路のサイクルを、高圧側の冷媒圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん高圧側の冷媒圧力が臨界圧力以下のヒートポンプサイクルでもよい。またこの場合、冷媒としてはフロンガス、アンモニアなどを用いても良い。 In Embodiments 1 and 2, the cycle of the refrigerant circuit is a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure. It may be a cycle. In this case, chlorofluorocarbon, ammonia, or the like may be used as the refrigerant.
以上のように、本発明にかかるヒートポンプ装置は、圧縮機内のオイル量を一定に保持することができ、ヒートポンプサイクル、特に圧縮機の信頼性向上を図る場合に有効である。 As described above, the heat pump device according to the present invention can keep the amount of oil in the compressor constant, and is effective in improving the reliability of the heat pump cycle, particularly the compressor.
11 圧縮機
12 オイルセパレータ
13 給湯熱交換器
13a 給湯熱交換器の冷媒側配管
13b 給湯熱交換器の水側配管
14 膨張弁
15 蒸発器
16 ファン
17 キャピラリチューブ
18 開閉弁
19 貯湯タンク
20 積層ポンプ
21 給水配管
22 給湯配管
23 第1タイマー
24 開閉弁制御装置
25 第1温度センサー
26 第2温度センサー
DESCRIPTION OF SYMBOLS 11 Compressor 12 Oil separator 13 Hot-water supply heat exchanger 13a Refrigerant-side piping of hot-water supply heat exchanger 13b Water-side piping of hot-water supply heat exchanger 14 Expansion valve 15 Evaporator 16 Fan 17 Capillary tube 18 On-off valve 19 Hot water storage tank 20 Multilayer pump 21 Water supply pipe 22 Hot water supply pipe 23 First timer 24 On-off valve controller 25 First temperature sensor 26 Second temperature sensor
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005156775A JP2006329567A (en) | 2005-05-30 | 2005-05-30 | Heat pump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005156775A JP2006329567A (en) | 2005-05-30 | 2005-05-30 | Heat pump device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006329567A true JP2006329567A (en) | 2006-12-07 |
Family
ID=37551433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005156775A Pending JP2006329567A (en) | 2005-05-30 | 2005-05-30 | Heat pump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006329567A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006329568A (en) * | 2005-05-30 | 2006-12-07 | Matsushita Electric Ind Co Ltd | Heat pump device |
JP2009133585A (en) * | 2007-11-30 | 2009-06-18 | Daikin Ind Ltd | Refrigerating device |
JP2011007351A (en) * | 2009-06-23 | 2011-01-13 | Sanyo Electric Co Ltd | Refrigerating device |
JP2011149669A (en) * | 2010-01-25 | 2011-08-04 | Daikin Industries Ltd | Air conditioner |
JP2012211763A (en) * | 2007-03-27 | 2012-11-01 | Daikin Industries Ltd | Refrigerating device |
JP2014089021A (en) * | 2012-10-31 | 2014-05-15 | Panasonic Corp | Freezing apparatus |
KR20150123586A (en) * | 2014-04-25 | 2015-11-04 | 엘지전자 주식회사 | Air conditioner |
CN107339836A (en) * | 2017-06-13 | 2017-11-10 | 珠海格力电器股份有限公司 | Frequency converter unit and oil return control method and device thereof |
EP2136158B1 (en) | 2007-03-27 | 2018-11-14 | Daikin Industries, Ltd. | Refrigerating device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0610835A (en) * | 1992-06-26 | 1994-01-21 | Toyota Autom Loom Works Ltd | Oil separator for compressor |
JPH0634211A (en) * | 1992-07-20 | 1994-02-08 | Daikin Ind Ltd | Controlling equipment of oil return of refrigerating apparatus |
JP2001082815A (en) * | 1999-09-14 | 2001-03-30 | Mitsubishi Electric Corp | Refrigeration airconditioning cycle device |
JP2003028524A (en) * | 2001-07-19 | 2003-01-29 | Fujitsu General Ltd | Multiroom type air conditioner |
JP2003148814A (en) * | 2001-11-15 | 2003-05-21 | Matsushita Electric Ind Co Ltd | Refrigerating machine |
JP2003279175A (en) * | 2002-03-22 | 2003-10-02 | Mitsubishi Electric Corp | Refrigerating air conditioning system |
JP2003279179A (en) * | 2002-03-26 | 2003-10-02 | Mitsubishi Electric Corp | Refrigerating air conditioning device |
JP2004108687A (en) * | 2002-09-19 | 2004-04-08 | Sanyo Electric Co Ltd | Transition critical refrigerant cycle device |
-
2005
- 2005-05-30 JP JP2005156775A patent/JP2006329567A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0610835A (en) * | 1992-06-26 | 1994-01-21 | Toyota Autom Loom Works Ltd | Oil separator for compressor |
JPH0634211A (en) * | 1992-07-20 | 1994-02-08 | Daikin Ind Ltd | Controlling equipment of oil return of refrigerating apparatus |
JP2001082815A (en) * | 1999-09-14 | 2001-03-30 | Mitsubishi Electric Corp | Refrigeration airconditioning cycle device |
JP2003028524A (en) * | 2001-07-19 | 2003-01-29 | Fujitsu General Ltd | Multiroom type air conditioner |
JP2003148814A (en) * | 2001-11-15 | 2003-05-21 | Matsushita Electric Ind Co Ltd | Refrigerating machine |
JP2003279175A (en) * | 2002-03-22 | 2003-10-02 | Mitsubishi Electric Corp | Refrigerating air conditioning system |
JP2003279179A (en) * | 2002-03-26 | 2003-10-02 | Mitsubishi Electric Corp | Refrigerating air conditioning device |
JP2004108687A (en) * | 2002-09-19 | 2004-04-08 | Sanyo Electric Co Ltd | Transition critical refrigerant cycle device |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006329568A (en) * | 2005-05-30 | 2006-12-07 | Matsushita Electric Ind Co Ltd | Heat pump device |
JP2012211763A (en) * | 2007-03-27 | 2012-11-01 | Daikin Industries Ltd | Refrigerating device |
EP2136158B1 (en) | 2007-03-27 | 2018-11-14 | Daikin Industries, Ltd. | Refrigerating device |
JP2009133585A (en) * | 2007-11-30 | 2009-06-18 | Daikin Ind Ltd | Refrigerating device |
JP2011007351A (en) * | 2009-06-23 | 2011-01-13 | Sanyo Electric Co Ltd | Refrigerating device |
JP2011149669A (en) * | 2010-01-25 | 2011-08-04 | Daikin Industries Ltd | Air conditioner |
JP2014089021A (en) * | 2012-10-31 | 2014-05-15 | Panasonic Corp | Freezing apparatus |
KR20150123586A (en) * | 2014-04-25 | 2015-11-04 | 엘지전자 주식회사 | Air conditioner |
KR102243654B1 (en) * | 2014-04-25 | 2021-04-23 | 엘지전자 주식회사 | Air conditioner |
CN107339836A (en) * | 2017-06-13 | 2017-11-10 | 珠海格力电器股份有限公司 | Frequency converter unit and oil return control method and device thereof |
CN107339836B (en) * | 2017-06-13 | 2019-09-24 | 珠海格力电器股份有限公司 | Frequency converter unit and oil return control method and device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5452138B2 (en) | Refrigeration air conditioner | |
JP5875649B2 (en) | Air conditioner | |
JP2012504220A (en) | Control of the flash tank economizer cycle | |
JP5355016B2 (en) | Refrigeration equipment and heat source machine | |
JP2009133547A (en) | Refrigerating cycle apparatus | |
JP2007071505A (en) | Refrigerating plant | |
JP2011117626A (en) | Air conditioner | |
JP2008008523A (en) | Refrigerating cycle and water heater | |
JP2011080633A (en) | Refrigerating cycle device and hot-water heating device | |
JP2011080634A (en) | Refrigerating cycle device and hot-water heating device | |
JP3915770B2 (en) | Heat pump water heater | |
JP5418253B2 (en) | Refrigeration cycle equipment | |
CN102620458A (en) | Refrigeration cycle apparatus | |
JP5034367B2 (en) | Heat pump water heater | |
JP2009236403A (en) | Geothermal use heat pump device | |
JP5239897B2 (en) | refrigerator | |
JP4691138B2 (en) | Heat pump water heater | |
JP2006329567A (en) | Heat pump device | |
JP2005147610A (en) | Heat pump water heater | |
JP2009139041A (en) | Air conditioner | |
JP2009186033A (en) | Two-stage compression type refrigerating device | |
JP2005147584A (en) | Start-up controller and start-up control method for heat pump hot water supply apparatus | |
JP2005147542A (en) | Heat pump water heater | |
JP5521924B2 (en) | Container refrigeration equipment | |
JP2006329568A (en) | Heat pump device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080219 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080312 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100609 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100907 |