JP2006261405A - Manufacturing method of projective optical system for euv exposure apparatus, and euv exposure apparatus - Google Patents
Manufacturing method of projective optical system for euv exposure apparatus, and euv exposure apparatus Download PDFInfo
- Publication number
- JP2006261405A JP2006261405A JP2005077069A JP2005077069A JP2006261405A JP 2006261405 A JP2006261405 A JP 2006261405A JP 2005077069 A JP2005077069 A JP 2005077069A JP 2005077069 A JP2005077069 A JP 2005077069A JP 2006261405 A JP2006261405 A JP 2006261405A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- optical system
- manufacturing
- exposure apparatus
- projection optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
本発明は、EUV露光装置(極端紫外線露光装置とも呼ばれ、本明細書、及び特許請求の範囲においては、波長が50nm以下の紫外線を用いた露光装置をいう)に搭載される投影光学系の製造装置、及びこの方法により製造された投影光学系を有するEUV露光装置に関するものである。 The present invention relates to a projection optical system mounted on an EUV exposure apparatus (also referred to as an extreme ultraviolet exposure apparatus, and in the present specification and claims, refers to an exposure apparatus using ultraviolet light having a wavelength of 50 nm or less). The present invention relates to a manufacturing apparatus and an EUV exposure apparatus having a projection optical system manufactured by this method.
近年、半導体集積回路の微細化に伴い、光の回折限界によって制限される光学系の解像力を向上させるために、従来の紫外線に代えてこれより短い波長(11〜14nm)のEUV光を使用した投影リソグラフィ技術が開発されている(例えば、D.Tichenor, et al, SPIE 2437 (1995) 292参照)。この技術は、最近ではEUV(Extreme UltraViolet)リソグラフィと呼ばれており、従来の波長190nm程度の光線を用いた光リソグラフィでは実現不可能な解像力を得られる技術として期待されている。 In recent years, with the miniaturization of semiconductor integrated circuits, EUV light having a shorter wavelength (11 to 14 nm) is used in place of conventional ultraviolet rays in order to improve the resolving power of the optical system limited by the diffraction limit of light. Projection lithography techniques have been developed (see, for example, D. Tichenor, et al, SPIE 2437 (1995) 292). This technique is recently called EUV (Extreme UltraViolet) lithography, and is expected as a technique that can obtain a resolution that cannot be achieved by conventional optical lithography using light having a wavelength of about 190 nm.
EUV光の波長領域では、従来のレンズのような透過屈折型の光学素子を使用できず、反射を利用した光学系が使用される。 In a wavelength region of EUV light, a transmission / refraction type optical element such as a conventional lens cannot be used, and an optical system utilizing reflection is used.
EUV露光装置の概要を図3に示す。EUV光源31から放出されたEUV光32は、照明光学系33に入射し、実質的な面光源が形成される。実質的な面光源からの光は、平面ミラー36により偏向された後、マスクM上に細長い円弧状の照明領域を形成する。照明されたマスクMのパターンからの光は、複数のミラー(図3では例示的に6つのミラーM1〜M6)からなる投影光学系PLを介して、ウエハW上にマスクパターンの像を形成する。
An outline of the EUV exposure apparatus is shown in FIG. The EUV
所望のパターンをウエハ上に形成するためには、投影光学系の収差を十分小さくすることが好ましく、特に投影光学系の波面収差(rms値)を波長の1/30以下に、かつパターン歪を線幅の1/10以下に保つと、コントラストの高い微細なパターンを形成することができる。例えば、露光波長が13.5nm、投影光学系のNAが0.25である場合、波面収差を0.5nm(rms)以下に、パターン歪を5nm以下にすると、45nm程度のサイズの良質なレジストパターンを形成することができる。 In order to form a desired pattern on the wafer, it is preferable to sufficiently reduce the aberration of the projection optical system. In particular, the wavefront aberration (rms value) of the projection optical system is reduced to 1/30 or less of the wavelength, and the pattern distortion is reduced. If the line width is kept at 1/10 or less, a fine pattern with high contrast can be formed. For example, when the exposure wavelength is 13.5 nm and the NA of the projection optical system is 0.25, if the wavefront aberration is 0.5 nm (rms) or less and the pattern distortion is 5 nm or less, a good resist having a size of about 45 nm is obtained. A pattern can be formed.
このような微小な波面収差およびパターン歪を有する投影光学系を製作するためには、少なくとも極めて高精度な反射面形状を有する非球面ミラーを製作する必要がある。例えば前記投影光学系を製作するためには、ミラーの形状精度を0.1nm(rms)以下にしなければならない。しかし、このようなミラーを作製することは、現在の高精度なミラー製作技術を用いても大変難しい。 In order to manufacture a projection optical system having such a minute wavefront aberration and pattern distortion, it is necessary to manufacture an aspherical mirror having a reflection surface shape with extremely high accuracy. For example, in order to manufacture the projection optical system, the shape accuracy of the mirror must be 0.1 nm (rms) or less. However, it is very difficult to manufacture such a mirror even if the current high-precision mirror manufacturing technology is used.
従来の投影光学系の製作工程を図4に示す。最初に投影光学系を構成する非球面ミラーの基板を製作する。基板材料には、熱変形の小さい低熱膨張ガラスを使用することが好ましい。研磨加工と反射面形状計測を交互に実施して、徐々に反射面が所望の形状となるまで研磨加工を繰り返し実施する。非球面基板が完成したら、その表面にEUV光の反射率を増大させるための多層膜コートを施す。このようにして作製した非球面ミラーと並行して作製した光学系メカ部品を用いて、光学系を組み立てる。波面収差等の光学性能を評価しながら、ミラーの位置を調整することによって、投影光学系が完成する。投影光学系をEUV露光装置に搭載して、最後に露光評価を行い、最終的な性能を確認する。 A manufacturing process of a conventional projection optical system is shown in FIG. First, an aspherical mirror substrate constituting the projection optical system is manufactured. As the substrate material, it is preferable to use low thermal expansion glass with small thermal deformation. The polishing process and the reflection surface shape measurement are alternately performed, and the polishing process is repeatedly performed until the reflection surface gradually becomes a desired shape. When the aspherical substrate is completed, a multilayer coating for increasing the reflectance of EUV light is applied to the surface. The optical system is assembled using the optical system mechanical parts produced in parallel with the produced aspherical mirror. A projection optical system is completed by adjusting the position of the mirror while evaluating optical performance such as wavefront aberration. The projection optical system is mounted on an EUV exposure apparatus, and finally exposure evaluation is performed to confirm final performance.
従来の工程で作製した投影光学系は、光学性能評価において所望の光学性能が得られない場合があった。これは主にミラーの形状誤差に起因するものであり、ミラーの位置調整だけでは十分に補正することができない。光学性能評価の結果から、ミラーの形状誤差あるいは光学性能を補正するミラー形状補正量を算出することは可能であるが、多層膜コートを施したミラーの形状を変えることはきわめて難しい。多層膜の中には、ウエットエッチングでは剥離ができないものがある。研磨加工等でミラーから多層膜を剥離すると、ミラーの形状精度が大幅に劣化する。以上のように従来の工程では、ミラーの形状誤差に起因する光学性能を補正することは困難であった。 The projection optical system produced by the conventional process may not obtain a desired optical performance in the optical performance evaluation. This is mainly caused by a mirror shape error, and cannot be sufficiently corrected only by adjusting the mirror position. Although it is possible to calculate the mirror shape error or the mirror shape correction amount for correcting the optical performance from the result of the optical performance evaluation, it is very difficult to change the shape of the mirror coated with the multilayer coating. Some multilayer films cannot be removed by wet etching. When the multilayer film is peeled from the mirror by polishing or the like, the shape accuracy of the mirror is greatly deteriorated. As described above, in the conventional process, it is difficult to correct the optical performance due to the mirror shape error.
本発明は、このような事情に鑑みてなされたもので、所望の光学性能を有するEUV露光装置用投影光学系の製造方法、及びこの投影光学系を有するEUV露光装置を提供することを課題とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for manufacturing a projection optical system for an EUV exposure apparatus having desired optical performance, and an EUV exposure apparatus having the projection optical system. To do.
前記課題を解決するための第1の手段は、以下の工程を有することを特徴とするEUV露光装置用投影光学系の製造方法(請求項1)である。
(1) 投影光学系を構成する複数の非球面ミラーを、設計値に基づいて製造し、製造された非球面ミラーを組み込んで光学系を組み立てる工程
(2) 組み立てられた前記光学系の光学性能を評価する工程
(3) 評価された光学性能に基づいて、前記非球面ミラーの内、新しい非球面ミラーに交換するミラー(被交換ミラー)について、前記光学性能が許容範囲に収まるように、その形状補正量を決定する工程
(4) 前記決定された形状補正量と前記被交換ミラーの形状に基づいて、新しい非球面ミラー(交換ミラー)を製造する工程
(5) 製造された交換ミラーを、前記被交換ミラーと交換する工程
(6) 交換されずに残った非球面ミラーと、交換された非球面ミラーを用いて、投影光学系を製造する工程。
A first means for solving the above-described problem is a method for manufacturing a projection optical system for an EUV exposure apparatus, characterized by comprising the following steps.
(1) Manufacturing a plurality of aspherical mirrors constituting the projection optical system based on the design values, and assembling the optical system by incorporating the manufactured aspherical mirrors
(2) A step of evaluating the optical performance of the assembled optical system
(3) Based on the evaluated optical performance, the shape correction amount of the aspherical mirror to be replaced with a new aspherical mirror (a mirror to be exchanged) is adjusted so that the optical performance falls within an allowable range. Decision process
(4) A step of manufacturing a new aspherical mirror (exchange mirror) based on the determined shape correction amount and the shape of the exchanged mirror
(5) Step of replacing the manufactured replacement mirror with the replacement mirror
(6) A step of manufacturing a projection optical system using the aspherical mirror remaining without being replaced and the replaced aspherical mirror.
本手段においては、投影光学系を構成する複数の非球面ミラーを設計値に基づいて製造した後、これらの非球面ミラーを用いて光学系を組み立て、その光学特性の設計値よりのずれを測定する。そして、交換する非球面ミラーを決定し(予め決定しておいてもよい)、光学特性を設計値とするために必要な形状補正量(交換ミラーと被交換ミラーの形状の差)を決定する。 In this means, after manufacturing a plurality of aspherical mirrors that make up the projection optical system based on the design values, an optical system is assembled using these aspherical mirrors, and the deviation of the optical characteristics from the design values is measured. To do. Then, the aspherical mirror to be replaced is determined (may be determined in advance), and the shape correction amount (difference between the shape of the replacement mirror and the replacement mirror) necessary for setting the optical characteristics to the design value is determined. .
そして、この形状補正量と、被交換ミラーの形状とに基づいて、新しい非球面ミラー(交換ミラー)を製造し、被交換ミラーを交換ミラーに交換して、交換されずに残った非球面ミラーと交換ミラーとを用いて投影光学系を製造する。 Then, based on the shape correction amount and the shape of the exchanged mirror, a new aspherical mirror (exchanged mirror) is manufactured, the exchanged mirror is exchanged with the exchanged mirror, and the remaining aspherical mirror remains. And an exchange mirror are used to manufacture a projection optical system.
本手段においては、非球面ミラーの形状誤差に起因して目的とする光学特性が得られなかった場合でも、非球面ミラーの形状を修正するのではなく、形状補正量を考慮して新しいミラーを製造し、それに交換しているので、形状修正という手間のかかる工程を省略することができる。 In this means, even if the target optical characteristics are not obtained due to the shape error of the aspherical mirror, the shape of the aspherical mirror is not corrected, and a new mirror is considered in consideration of the shape correction amount. Since it is manufactured and exchanged for it, the time-consuming process of shape correction can be omitted.
前記課題を解決するための第2の手段は、前記第1の手段であって、前記光学系が、実際のEUV露光装置用投影光学系であることを特徴とするもの(請求項2)である。 A second means for solving the problem is the first means, wherein the optical system is an actual projection optical system for an EUV exposure apparatus (claim 2). is there.
本手段においては、光学特性を検出するのに実際のEUV露光装置用投影光学系を用いているので、より実際の使用状態に近い状態で測定を行うことができる。 In this means, since the actual projection optical system for the EUV exposure apparatus is used to detect the optical characteristics, the measurement can be performed in a state closer to the actual use state.
前記課題を解決するための第3の手段は、前記第1の手段であって、前記交換ミラーを製造するに際し、当該交換ミラーの反射面の形状と、それに対応する被交換ミラーの基板の反射面となる面の形状を、レーザー干渉形状測定装置で測定し、両者の測定データの差と、前記形状補正量に基づいて、前記被交換ミラーの基板の反射面となる面の形状が目標値になるように加工を行う工程を有することを特徴とするもの(請求項3)である。 The third means for solving the above-mentioned problem is the first means, and when the exchange mirror is manufactured, the shape of the reflection surface of the exchange mirror and the reflection of the substrate of the exchanged mirror corresponding thereto are reflected. The shape of the surface to be a surface is measured with a laser interference shape measuring device, and based on the difference between the measurement data of the two and the shape correction amount, the shape of the surface to be the reflective surface of the substrate of the exchanged mirror is the target value It has the process which processes so that it may become (Claim 3).
レーザー干渉形状測定装置で、交換ミラーの反射面の形状と、それに対応する被交換ミラーの基板の反射面となる面の形状との差を測定することにより、精密な測定が可能であり、測定と加工を交互に繰り返して交換ミラーの基板を製造することにより、交換ミラーの形状を目標値に近いものとすることができる。 With the laser interference shape measuring device, precise measurement is possible by measuring the difference between the shape of the reflective surface of the interchangeable mirror and the shape of the corresponding mirror surface of the mirror to be replaced. By alternately and repeatedly processing the substrate of the exchange mirror, the shape of the exchange mirror can be made close to the target value.
前記課題を解決するための第4の手段は、前記第3の手段であって、前記レーザー干渉形状測定装置は参照面を有し、当該参照面のレーザー光反射率が、前記被交換ミラーの反射面のレーザー光反射率より低く、前記交換ミラーの基板の反射面となる面の反射率より高いことを特徴とするもの(請求項4)である。 A fourth means for solving the problem is the third means, wherein the laser interference shape measuring apparatus has a reference surface, and the laser light reflectance of the reference surface is equal to that of the mirror to be exchanged. It is lower than the laser beam reflectance of the reflecting surface and higher than the reflectance of the surface that becomes the reflecting surface of the substrate of the exchange mirror (claim 4).
レーザー干渉形状測定装置で表面形状を測定するとき、交換ミラーの基板の反射面となる面と被交換ミラーの反射面との反射率の違いが問題となる。すなわち、被交換ミラーの反射面には反射膜が形成されているのに、交換ミラーの基板の反射面となる面には、まだ反射膜が形成されていないので、両者の反射率の差は大きくなる。レーザー干渉形状測定装置においては、参照面から反射される光量と測定面から反射される光量の差が大きいと、明確な干渉縞が形成されず、測定誤差が大きくなる。 When the surface shape is measured by the laser interference shape measuring apparatus, the difference in reflectance between the surface serving as the reflective surface of the substrate of the exchange mirror and the reflective surface of the exchanged mirror becomes a problem. That is, although the reflection film is formed on the reflection surface of the exchanged mirror, the reflection film is not yet formed on the surface that becomes the reflection surface of the substrate of the exchange mirror. growing. In the laser interference shape measuring apparatus, if the difference between the amount of light reflected from the reference surface and the amount of light reflected from the measurement surface is large, clear interference fringes are not formed and measurement error increases.
本手段においては、参照面のレーザー光反射率が、被交換ミラーの反射面のレーザー光反射率より低く、交換ミラーの基板の反射面となる面の反射率より高いような反射率とされているので、被交換ミラーの反射面、交換ミラーの基板の反射面となる面の両方の形状を正確に測定することができる。 In this means, the reflectance of the reference surface is such that the reflectance of the laser beam is lower than the reflectance of the laser beam of the reflecting surface of the exchanged mirror and higher than the reflectance of the surface of the substrate of the exchange mirror. Therefore, it is possible to accurately measure the shapes of both the reflection surface of the exchanged mirror and the reflection surface of the exchange mirror substrate.
前記課題を解決するための第5の手段は、前記第1の手段から第4の手段のいずれかのEUV露光装置用投影光学系の製造方法で製造された投影光学系を有することを特徴とするEUV露光装置(請求項5)である。 According to a fifth aspect of the present invention, there is provided a projection optical system manufactured by the method of manufacturing a projection optical system for an EUV exposure apparatus according to any one of the first to fourth means. An EUV exposure apparatus (claim 5).
本手段においては、所望の光学性能を有するEUV露光装置とすることができる。 In this means, an EUV exposure apparatus having desired optical performance can be obtained.
本発明によれば、所望の光学性能を有するEUV露光装置用投影光学系の製造方法、及びこの投影光学系を有するEUV露光装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the projection optical system for EUV exposure apparatuses which has desired optical performance, and the EUV exposure apparatus which has this projection optical system can be provided.
以下、図3に示されたような6枚の非球面ミラーで構成される投影光学系を例として、本発明の実施例を、図を用いて説明する。この投影光学系は光路の途中で中間像を形成する光学系で、像側から光路をたどって3番面のミラー(以下、M3ミラーという)が、中間像に最も近い位置に配置されている。
(実施例1)
図1は、本発明のEUV露光装置用投影光学系の製造方法の第1の実施例の製造工程を示すフローチャートである。本実施例による製造方法は、光学性能評価の後に、光学性能を補正する工程を有する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example a projection optical system composed of six aspherical mirrors as shown in FIG. This projection optical system is an optical system that forms an intermediate image in the middle of the optical path, and a third mirror (hereinafter referred to as an M3 mirror) is disposed at a position closest to the intermediate image along the optical path from the image side. .
Example 1
FIG. 1 is a flowchart showing manufacturing steps of a first embodiment of a method for manufacturing a projection optical system for an EUV exposure apparatus according to the present invention. The manufacturing method according to the present embodiment includes a step of correcting the optical performance after the optical performance evaluation.
最初に投影光学系を構成する非球面ミラーの基板を製作した(ステップS1)。基板材料には、熱膨張率1ppb/K以下のセラミックガラスを使用した。イオンビームを用いて基板の研磨加工を行い、その形状はフィゾータイプのレーザー干渉計で測定した。イオンビーム加工は原子レベルで基板材料を除去できるため、高精度な基板の加工に適している。フィゾータイプのレーザー干渉計は、装置内に基準参照面(フィゾー面)を具備し、フィゾー面と被測定ミラー表面との比較測定を行うものである。比較的空気揺らぎや振動等の影響を受けにくく、高精度な形状計測に適している。 First, an aspherical mirror substrate constituting the projection optical system was manufactured (step S1). As the substrate material, ceramic glass having a thermal expansion coefficient of 1 ppb / K or less was used. The substrate was polished using an ion beam, and its shape was measured with a Fizeau type laser interferometer. Since ion beam processing can remove substrate material at the atomic level, it is suitable for high-precision substrate processing. The Fizeau type laser interferometer has a reference reference surface (Fizeau surface) in the apparatus, and performs comparative measurement between the Fizeau surface and the surface of the mirror to be measured. It is relatively insensitive to air fluctuations and vibrations, and is suitable for highly accurate shape measurement.
基板加工が完了した後、その表面にモリブデンとシリコンからなる多層膜をコーティングした(ステップS2)。多層膜の形成手段には、反射率の高い多層膜が形成できるマグネトロンスパッタ法を採用した。投影光学系を構成する6枚のミラーを完成した後、並行して製作したメカ部品(ステップS3)と組み合わせて、光学系を組み立てた(ステップS4)。メカ部品は、ミラーを保持するマウント機構や、ミラーを高精度に位置決めするステージ機構などを有する。これらによって、ミラーの形状を変化させないようにミラーを保持し、さらにミラーの位置関係を高精度に調整できる。 After the substrate processing was completed, a multilayer film made of molybdenum and silicon was coated on the surface (step S2). As a means for forming the multilayer film, a magnetron sputtering method capable of forming a multilayer film having a high reflectance was employed. After completing the six mirrors constituting the projection optical system, the optical system was assembled (step S4) in combination with mechanical parts (step S3) manufactured in parallel. The mechanical parts include a mount mechanism that holds the mirror and a stage mechanism that positions the mirror with high accuracy. Thus, the mirror can be held so as not to change the shape of the mirror, and the positional relationship between the mirrors can be adjusted with high accuracy.
ミラーの位置調整は、光学性能の評価結果に基づいて実施した。光学性能の評価は、EUV光を用いた干渉計を用い、光学系の波面収差を測定することによって行った。波面収差の測定は、投影光学系の露光フィールド内の複数箇所に対して行った。同時に、像歪と像面湾曲も測定した(ステップS4)。これらの測定結果から、ミラーの位置関係のずれ量を算出し、ミラーの位置を調整した。さらに、光学性能を補正するような、ミラー形状補正量を算出した(ステップS6)。ミラー形状補正量は、補正するミラー枚数によって異なるが、本実施例においては、6枚のミラーのうち3枚を補正する場合の補正量を算出した。 The mirror position was adjusted based on the evaluation results of the optical performance. The optical performance was evaluated by measuring the wavefront aberration of the optical system using an interferometer using EUV light. The wavefront aberration was measured at a plurality of locations in the exposure field of the projection optical system. At the same time, image distortion and field curvature were also measured (step S4). From these measurement results, the amount of deviation in the mirror positional relationship was calculated, and the mirror position was adjusted. Further, a mirror shape correction amount for correcting the optical performance was calculated (step S6). Although the mirror shape correction amount differs depending on the number of mirrors to be corrected, in this embodiment, the correction amount for correcting three of the six mirrors was calculated.
波面収差の測定データからミラー形状の補正量を算出する方法は、例えば特開2000−91209号公報(特許文献1)に記載されているような、公知の方法を使用することができる。 As a method for calculating the correction amount of the mirror shape from the measurement data of the wavefront aberration, a known method as described in, for example, Japanese Patent Application Laid-Open No. 2000-91209 (Patent Document 1) can be used.
すなわち、波面収差をゼルニケ多項式に展開することによって、ディストーション、フォーカス、非点収差、コマ収差等の各収差を求める一方、どの各ミラーの形状を微少量変化させたときに、どの収差成分がどの程度変化するかを、シミュレーションにより求めておく。そして、このシミュレーション結果を逆算することにより、各収差を補正するために、対応するミラー形状をどの程度修正したらよいのかを求める。 In other words, by expanding wavefront aberrations to Zernike polynomials, distortion, focus, astigmatism, coma, and other aberrations are obtained. Whether it changes to some extent is obtained by simulation. Then, by calculating back the simulation result, it is determined how much the corresponding mirror shape should be corrected in order to correct each aberration.
光学性能評価の後、光学系を解体し、6枚のミラーのうち、3枚のミラー(以下、これらのミラーを被交換ミラーという)を取り出した(ステップS7)。この3枚の被交換ミラーと同じ種類のミラー(以下、このミラーを交換ミラーという)を各1枚ずつ製作した(ステップS8)。交換ミラーは被交換ミラーと同じ基板材料で構成し、被交換ミラーの基板と同じ手法で研磨加工を行った。ただし、交換ミラーの基板の形状が、交換ミラーの形状に前述のミラー形状補正量を加えた形状となるように研磨加工を行った。 After the optical performance evaluation, the optical system was disassembled, and three mirrors out of the six mirrors (hereinafter referred to as “replaced mirrors”) were taken out (step S7). One mirror of the same type as the three mirrors to be exchanged (hereinafter, this mirror is referred to as an exchange mirror) was manufactured (step S8). The exchange mirror was made of the same substrate material as the exchanged mirror, and was polished by the same technique as the exchange mirror substrate. However, the polishing process was performed so that the shape of the substrate of the exchange mirror was a shape obtained by adding the above-described mirror shape correction amount to the shape of the exchange mirror.
すなわち、光学系から取り外した交換ミラーの形状をフィゾー干渉計で計測したときの測定値をAとし、算出した形状補正量をBとすると、交換ミラーの形状の目標測定値は、A+Bとした。つまり、形状補正量分だけオフセットさせた形状に交換ミラーの形状を追い込むように加工を行った。例えば、交換ミラーの形状測定値がCであった場合は、残りの研摩量はA+B−Cということになる。 That is, assuming that the measured value when the shape of the exchange mirror removed from the optical system is measured with a Fizeau interferometer is A and the calculated shape correction amount is B, the target measurement value of the shape of the exchange mirror is A + B. In other words, the processing was performed so that the shape of the replacement mirror was driven to the shape offset by the shape correction amount. For example, when the shape measurement value of the exchange mirror is C, the remaining polishing amount is A + B−C.
交換ミラーの基板の製作が完了した後、基板表面に多層膜をコーティングした(ステップS9)。次に3枚の交換ミラーを被交換ミラーに代えてメカ部品に装着し、光学系を再度組み立てた(ステップS10)。再度光学系の特性を評価し、ミラーの位置を調整した。その結果、当初のミラーで構成した光学系よりも優れた光学性能を得ることができた(ステップS11)。これらのミラーをEUV露光装置の投影光学系に搭載して(ステップS12)、露光評価を行った(ステップS13)ところ所望のレジストパターンを得ることができた。
(実施例2)
図2は、本発明のEUV露光装置用投影光学系の製造方法の第2の実施例の製造工程を示すフローチャートである。本実施例においては、第1の実施例において、光学系を組み立てて光学性能の評価を行い、その結果に基づいてミラー形状補正量を算出したのに対し、実際のEUV露光装置を用いて行った露光結果に基づいてミラー形状補正量を算出しているところが異なっている。前者よりも後者の測定精度がよい場合は、第1の実施例よりもさらに優れた投影光学系を作成することが可能である。
After the fabrication of the exchange mirror substrate was completed, a multilayer film was coated on the substrate surface (step S9). Next, the three replacement mirrors were mounted on mechanical parts instead of the mirrors to be replaced, and the optical system was reassembled (step S10). The characteristics of the optical system were evaluated again and the position of the mirror was adjusted. As a result, it was possible to obtain optical performance superior to that of the optical system constituted by the original mirror (step S11). These mirrors were mounted on the projection optical system of the EUV exposure apparatus (step S12), and exposure evaluation was performed (step S13). As a result, a desired resist pattern could be obtained.
(Example 2)
FIG. 2 is a flowchart showing manufacturing steps of the second embodiment of the method for manufacturing a projection optical system for an EUV exposure apparatus according to the present invention. In the present embodiment, in the first embodiment, the optical system is assembled and the optical performance is evaluated, and the mirror shape correction amount is calculated based on the result, but the actual EUV exposure apparatus is used. The mirror shape correction amount is calculated based on the exposure result. When the latter measurement accuracy is better than the former, it is possible to create a projection optical system that is even better than the first embodiment.
以下の説明においては、第1の実施例と同じ工程の説明は省略し、第1の実施例と異なる工程のみを説明する。 In the following description, description of the same steps as those in the first embodiment will be omitted, and only steps different from those in the first embodiment will be described.
交換ミラーで構成した光学系の光学性能評価を行った後(ステップS25)、これらのミラーを実際のEUV露光装置の投影光学系に搭載した(ステップS26)。このEUV露光装置を用いて実際に所定のパターンを有するマスクによりウエハ上のレジストを露光し、得られたレジストパターンを測定し、その結果から光学性能を得た(ステップS27)。 After evaluating the optical performance of the optical system constituted by the exchange mirror (step S25), these mirrors were mounted on the projection optical system of the actual EUV exposure apparatus (step S26). Using this EUV exposure apparatus, the resist on the wafer was actually exposed with a mask having a predetermined pattern, the obtained resist pattern was measured, and optical performance was obtained from the result (step S27).
すなわち、ステージを走査することなく露光を行い、静止露光パターンを得た。そのレジストパターンの位置関係を座標測定機で計測し、像歪を取得した。一般にEUV光を用いた干渉計は波面収差の測定には適しているものの像歪の測定精度は静止露光評価精度に劣る場合が多い。本工程は、より高精度に像歪を低減したい場合に有効である。 That is, exposure was performed without scanning the stage to obtain a static exposure pattern. The positional relationship of the resist pattern was measured with a coordinate measuring machine to obtain image distortion. In general, an interferometer using EUV light is suitable for measurement of wavefront aberration, but the measurement accuracy of image distortion is often inferior to that of still exposure evaluation. This step is effective when it is desired to reduce image distortion with higher accuracy.
像歪から、ミラーの形状修正量を求める方法は、各ミラーの形状を微少量変化させたときに、像歪がどの程度変化するかを、予めシミュレーションによって求めておき、この関係式を逆算することにより、求められた像歪に対応するミラーの形状修正量を求める方法を使用することができる。 The method for obtaining the mirror shape correction amount from the image distortion is to calculate the degree of change in the image distortion when the shape of each mirror is changed by a small amount in advance, and then reversely calculate this relational expression. Thus, it is possible to use a method for obtaining the mirror shape correction amount corresponding to the obtained image distortion.
光学性能評価から得られた波面収差と露光評価から得た像歪から、ミラー形状補正量を算出した(ステップS28)。その後は、第1の実施例と同様に投影光学系を製作した。この投影光学系をEUV露光機に搭載して、露光評価を行ったところ所望のレジストパターンを得ることができた。 A mirror shape correction amount was calculated from the wavefront aberration obtained from the optical performance evaluation and the image distortion obtained from the exposure evaluation (step S28). Thereafter, a projection optical system was manufactured in the same manner as in the first example. When this projection optical system was mounted on an EUV exposure machine and exposure evaluation was performed, a desired resist pattern could be obtained.
以上の第1及び第2の実施例において、交換ミラーの基板を製作する際は、フィゾー干渉計で被交換ミラーの形状と交換ミラーの基板の比較測定を行った。このとき、被交換ミラーには多層膜がコーティングされているため、そのレーザー光反射率は交換ミラーの基板の光反射率よりも高いことが多い。反射率の差が大きい場合は、干渉縞のコントラストを得ることが難しくなる。 In the first and second embodiments described above, when the substrate of the exchange mirror was manufactured, a comparative measurement of the shape of the mirror to be exchanged and the substrate of the exchange mirror was performed with a Fizeau interferometer. At this time, since the mirror to be exchanged is coated with a multilayer film, the laser light reflectance is often higher than the light reflectance of the substrate of the exchange mirror. When the difference in reflectance is large, it is difficult to obtain the interference fringe contrast.
干渉縞のコントラストは、フィゾー面で反射したレーザー光の強度と、被測定ミラーの表面で反射したレーザー光の強度の比で決まる。フィゾー面の反射率がミラー基板の反射率と概ね同じである場合は、ミラー基板を測定する場合に十分なコントラストが得られるものの、多層膜ミラーを測定する場合は、コントラストが低くなり、測定精度が不足する。 The contrast of the interference fringes is determined by the ratio of the intensity of the laser beam reflected by the Fizeau surface and the intensity of the laser beam reflected by the surface of the mirror to be measured. If the reflectivity of the Fizeau surface is approximately the same as the reflectivity of the mirror substrate, sufficient contrast can be obtained when measuring the mirror substrate, but when measuring a multilayer mirror, the contrast is low and the measurement accuracy is low. Is lacking.
第1の実施例、第2の実施例においては、フィゾー面の反射率をミラー基板の反射率よりも高く、且つ多層膜の反射率よりも低くなるようにした。すなわち、フィゾー面に表面反射増加膜を形成して、反射率を制御した。このようなフィゾー干渉計を用いることによって、被交換ミラーおよび交換ミラーのいずれの測定においても十分なコントラストを得ることができた。 In the first embodiment and the second embodiment, the reflectivity of the Fizeau surface is higher than the reflectivity of the mirror substrate and lower than the reflectivity of the multilayer film. That is, a surface reflection increasing film was formed on the Fizeau surface to control the reflectance. By using such a Fizeau interferometer, it was possible to obtain a sufficient contrast in any measurement of the exchanged mirror and the exchange mirror.
なお、第2の実施例においては、実際に露光したレジストパターンの形状から光学性能を評価したが、このような測定方法に限らず、例えば、EUV露光装置に干渉計を搭載して、波面収差を測定し、その結果に基づいて光学性能を評価するようにしてもよい。また、空間像をフォトセンサ等で計測し、その結果に基づいて波面収差や像歪を取得するようにしてもよい。 In the second embodiment, the optical performance was evaluated from the shape of the resist pattern that was actually exposed. However, the present invention is not limited to such a measurement method. For example, an interferometer is mounted on an EUV exposure apparatus, and wavefront aberration is achieved. May be measured and the optical performance may be evaluated based on the result. Further, the aerial image may be measured by a photo sensor or the like, and wavefront aberration and image distortion may be acquired based on the result.
Claims (5)
(1) 投影光学系を構成する複数の非球面ミラーを、設計値に基づいて製造し、製造された非球面ミラーを組み込んで光学系を組み立てる工程
(2) 組み立てられた前記光学系の光学性能を評価する工程
(3) 評価された光学性能に基づいて、前記非球面ミラーの内、新しい非球面ミラーに交換するミラー(被交換ミラー)について、前記光学性能が許容範囲に収まるように、その形状補正量を決定する工程
(4) 前記決定された形状補正量と前記被交換ミラーの形状に基づいて、新しい非球面ミラー(交換ミラー)を製造する工程
(5) 製造された交換ミラーを、前記被交換ミラーと交換する工程
(6) 交換されずに残った非球面ミラーと、交換された非球面ミラーを用いて、投影光学系を製造する工程。 The manufacturing method of the projection optical system for EUV exposure apparatuses characterized by having the following processes.
(1) Manufacturing a plurality of aspherical mirrors constituting the projection optical system based on the design values, and assembling the optical system by incorporating the manufactured aspherical mirrors
(2) A step of evaluating the optical performance of the assembled optical system
(3) Based on the evaluated optical performance, the shape correction amount of the aspherical mirror to be replaced with a new aspherical mirror (a mirror to be exchanged) is adjusted so that the optical performance falls within an allowable range. Decision process
(4) A step of manufacturing a new aspherical mirror (exchange mirror) based on the determined shape correction amount and the shape of the exchanged mirror
(5) Step of replacing the manufactured replacement mirror with the replacement mirror
(6) A step of manufacturing a projection optical system using the aspherical mirror remaining without being replaced and the replaced aspherical mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005077069A JP2006261405A (en) | 2005-03-17 | 2005-03-17 | Manufacturing method of projective optical system for euv exposure apparatus, and euv exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005077069A JP2006261405A (en) | 2005-03-17 | 2005-03-17 | Manufacturing method of projective optical system for euv exposure apparatus, and euv exposure apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006261405A true JP2006261405A (en) | 2006-09-28 |
Family
ID=37100305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005077069A Pending JP2006261405A (en) | 2005-03-17 | 2005-03-17 | Manufacturing method of projective optical system for euv exposure apparatus, and euv exposure apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006261405A (en) |
-
2005
- 2005-03-17 JP JP2005077069A patent/JP2006261405A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999050712A1 (en) | Exposure method and system, photomask, method of manufacturing photomask, micro-device and method of manufacturing micro-device | |
JP5898079B2 (en) | Mirrors used in microlithographic projection exposure equipment | |
JP3459773B2 (en) | Projection exposure apparatus and device manufacturing method | |
JP2004266264A (en) | Optical system, aligner, method for manufacturing device | |
EP1387220A2 (en) | Adjustment method and apparatus of optical system, and exposure apparatus | |
JP2007013179A (en) | Method of correcting lithography projection objective, and the objective | |
US7429116B2 (en) | Projection objective and method for its manufacture | |
US7466395B2 (en) | Exposure apparatus and device manufacturing method using the apparatus | |
US7543948B2 (en) | Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method | |
JP2008112756A (en) | Optical element driving device and control method thereof, exposure apparatus, and manufacturing method of device | |
JP4568340B2 (en) | Manufacturing method of semiconductor device | |
JP2897345B2 (en) | Projection exposure equipment | |
JP3368227B2 (en) | Optical element manufacturing method | |
NL1030626C2 (en) | System for measuring aberration, method for measuring aberration and method for manufacturing a semiconductor device. | |
TWI397781B (en) | Optical system, exposure apparatus and apparatus manufacturing method | |
KR101080144B1 (en) | Exposure apparatus and device fabrication method | |
TWI705295B (en) | Method, computer program and evaluation unit for transforming measurement data of a photolithographic mask for the euv range from first surroundings into second surroundings | |
JP3958261B2 (en) | Optical system adjustment method | |
JP3632264B2 (en) | X-ray projection exposure apparatus | |
JP3541262B2 (en) | X-ray projection exposure equipment | |
JP4498059B2 (en) | Optical element, exposure apparatus and film forming method | |
JP2006261405A (en) | Manufacturing method of projective optical system for euv exposure apparatus, and euv exposure apparatus | |
JP2004259844A (en) | Projection optical system, method for manufacturing the same aliner, method for manufacturing the same, exposure method, and method for manufacturing optical system | |
JP2007109957A (en) | Mirror mounting structure, projection optical system, and aligner | |
US20090041934A1 (en) | Method for manufacturing projection optics |