JP2006232667A - Low thermal expansion ceramic and member for device for manufacturing semiconductor using it - Google Patents
Low thermal expansion ceramic and member for device for manufacturing semiconductor using it Download PDFInfo
- Publication number
- JP2006232667A JP2006232667A JP2006102218A JP2006102218A JP2006232667A JP 2006232667 A JP2006232667 A JP 2006232667A JP 2006102218 A JP2006102218 A JP 2006102218A JP 2006102218 A JP2006102218 A JP 2006102218A JP 2006232667 A JP2006232667 A JP 2006232667A
- Authority
- JP
- Japan
- Prior art keywords
- thermal expansion
- low thermal
- weight
- less
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本発明は、半導体製造工程等で使用される、露光装置用のX−Yステージ、静電チャック及びその構造部品、ミラー等の部材に適した軽量で高剛性の低熱膨張性セラミックスと半導体製造装置用部品に関する。 The present invention relates to a lightweight, high-rigidity, low thermal expansion ceramic suitable for use in semiconductor manufacturing processes and the like, and a semiconductor manufacturing apparatus suitable for members such as an XY stage for an exposure apparatus, an electrostatic chuck and its structural parts, and a mirror. Related to parts.
近年、LSI等の半導体電子回路部品の高集積化に伴い、回路線幅及び回路デザインルールの微細化が急速に進められ、回路線幅は0.35μmから0.10μmまで微細化しつつある。そして、Siウェハに微細な回路線幅の電子回路を形成するための露光装置に対して、構造的に高精度及び高い位置精度が要求されるようになってきており、例えば露光装置のX−Yステージにおいては10nm未満の位置決め精度が要求され、製品の品質向上や歩留まり向上、高スループットを実現する上で、露光装置の位置合わせ誤差の低減が大きな要素技術として捉えられている。 In recent years, along with the high integration of semiconductor electronic circuit components such as LSI, circuit line widths and circuit design rules have been rapidly miniaturized, and circuit line widths are becoming smaller from 0.35 μm to 0.10 μm. Further, with respect to an exposure apparatus for forming an electronic circuit having a fine circuit line width on a Si wafer, structurally high accuracy and high positional accuracy are required. In the Y stage, positioning accuracy of less than 10 nm is required, and in order to improve product quality, yield, and high throughput, reduction of alignment error of the exposure apparatus is regarded as a major element technology.
従来、上記したようなLSI等の半導体電子回路部品の製造工程において、シリコンウェハに配線を形成する工程でシリコンウェハを支持又は保持するためのサセプタ、真空チャック、静電チャック、絶縁リング及びその他治具等用のセラミックス材料として、比較的安価で化学的に安定であることからアルミナセラミックスや窒化珪素セラミックスが広く用いられてきた。また、露光装置のX−Yステージ等の材料としても、従来よりアルミナセラミックスや窒化珪素セラミックス等が同様に用いられてきた。 Conventionally, in the manufacturing process of semiconductor electronic circuit components such as LSI as described above, a susceptor, vacuum chuck, electrostatic chuck, insulating ring and other treatments for supporting or holding the silicon wafer in the process of forming wiring on the silicon wafer. As ceramic materials for tools and the like, alumina ceramics and silicon nitride ceramics have been widely used because they are relatively inexpensive and chemically stable. Also, conventionally, alumina ceramics, silicon nitride ceramics, and the like have been used as materials for the XY stage of the exposure apparatus.
また、近年、コージェライトセラミックスの低熱膨張性を利用して、半導体製造用の各種部品及び治具としてコージェライトセラミックスを使用することが提案されている(特開平1−191422号公報、特公平6−97675号公報参照)。前記特開平1−191422号によれば、X線露光用のマスク基板に接着する補強リングを、SiO2,インバー等とコージェライトセラミックスによって作製することによって、メンブレンの応力を制御することが記載されている。また、特公平6−97675号には、シリコンウェハを載置する静電チャック用基板としてアルミナセラミックスやコージェライトセラミックスを使用することが開示されている。 In recent years, it has been proposed to use cordierite ceramics as various parts and jigs for semiconductor manufacturing by utilizing the low thermal expansion property of cordierite ceramics (Japanese Patent Laid-Open No. 1-191422, Japanese Patent Publication No. 6). -97675). According to Japanese Patent Laid-Open No. 1-191422, it is described that the stress of the membrane is controlled by producing a reinforcing ring that adheres to a mask substrate for X-ray exposure using SiO 2 , invar, and cordierite ceramics. ing. Japanese Patent Publication No. 6-97675 discloses the use of alumina ceramics or cordierite ceramics as an electrostatic chuck substrate on which a silicon wafer is placed.
また従来、低熱膨張性セラミックスとして、コージェライトセラミックスやリチウムアルミノシリケートセラミックス(LiAlSiO4であり、以下、LASとする)が知られている。コージェライトセラミックスについては、コージェライト粉末或いはコージェライトセラミックスを形成するMgO粉末,Al2O3粉末,SiO2粉末を配合した原料粉末に、焼結助剤として希土類酸化物やCaO,SiO2,MgO等を添加し、所定形状に成形後、1000〜1400℃の温度で焼成することによって製造することが公知である(特公昭57−3629号公報、特開平2−229760号公報参照)。 Conventionally, cordierite ceramics and lithium aluminosilicate ceramics (LiAlSiO 4 , hereinafter referred to as LAS) are known as low thermal expansion ceramics. For cordierite ceramics, raw material powders containing cordierite powder or MgO powder, Al 2 O 3 powder, and SiO 2 powder forming cordierite ceramics, rare earth oxides, CaO, SiO 2 , MgO as sintering aids And the like, and after forming into a predetermined shape, it is known to produce by baking at a temperature of 1000 to 1400 ° C. (see Japanese Patent Publication No. 57-3629 and Japanese Patent Application Laid-Open No. Hei 2-229760).
LAS系セラミックスのうち特にβ−スポジュメンについては、天然原料を使用して所定形状に成形後、1100〜1400℃の温度で焼成することによって作製されることが知られている(特公昭53−9605号公報、特公昭56−164070号公報参照)。また、Al2O3が25〜70重量%、SiO2が25〜70重量%、Li2Oが1〜5重量%及び不純物が5重量%以下であるAl2O3・SiO2・Li2O系低膨張性溶射材料であって、コークス炉の補修材料として使用され、機械的強度に優れ緻密な溶射膜を形成できる溶射材料が提案されている(特開昭63−25280号公報参照)。
半導体製造工程で使用される各種装置、部品及び治具用として、一般的に用いられてきたアルミナセラミックス、窒化珪素セラミックス等のセラミックスは、金属に較べて軽量で熱膨張率が小さく、剛性も大きい。それぞれの比重はアルミナセラミックスが3.8、窒化珪素セラミックスが3.2と軽量である。しかしながら、露光装置の軽量化、またX−Yステージ等の駆動系部材の軽量化によるモーター負荷低減、振動抑制のために、より軽量化が必要とされてきている。一方、露光装置の使用温度帯である10〜40℃での熱膨張率は、アルミナセラミックスが約5.0×10−6/℃、窒化珪素セラミックスが約1.5×10−6/℃であり、回路デザインルールの微細化と共に露光時の熱変形を軽減するために、より低熱膨張率のものが必要とされてきている。 Ceramics such as alumina ceramics and silicon nitride ceramics that have been generally used for various devices, parts, and jigs used in semiconductor manufacturing processes are lighter in weight, have a smaller coefficient of thermal expansion, and have higher rigidity. . The specific gravity of each is lightweight, 3.8 for alumina ceramics and 3.2 for silicon nitride ceramics. However, lighter weight has been required to reduce the motor load and suppress vibrations by reducing the weight of the exposure apparatus and the weight of the drive system member such as the XY stage. On the other hand, the thermal expansion coefficient at 10 to 40 ° C., which is the operating temperature zone of the exposure apparatus, is about 5.0 × 10 −6 / ° C. for alumina ceramics and about 1.5 × 10 −6 / ° C. for silicon nitride ceramics. In order to reduce the thermal deformation at the time of exposure along with the miniaturization of circuit design rules, those having a lower coefficient of thermal expansion have been required.
これに対して、コージェライト系セラミックスは熱膨張率が0.2×10−6/℃以下であり、アルミナセラミックスや窒化珪素セラミックスに比較して熱膨張率が低い。しかしながら、剛性の点では、アルミナセラミックスが約350GPa(ギガパスカル)、窒化珪素セラミックスが約300GPaであるのに対し、多孔質のコージェライトセラミックスが70〜90GPaと低い。コージェライトセラミックスを露光装置等に用いる場合、変形や固有振動数低下に伴う共振発生によるSiウェハ位置決め時間の増加が懸念される。最近の報告では、緻密質コージェライトセラミックスとして、比重2.7、ヤング率130〜140GPaを有するものがあり、変形対策や固有振動数の向上について期待されている。ただし、比重はアルミナセラミックスや窒化珪素セラミックスと比較すると小さいものの、露光装置の重量軽減、部材重量軽減のために、更なる比重低下が望
まれる。
In contrast, cordierite-based ceramics have a thermal expansion coefficient of 0.2 × 10 −6 / ° C. or lower, and have a lower thermal expansion coefficient than alumina ceramics and silicon nitride ceramics. However, in terms of rigidity, alumina ceramics are about 350 GPa (gigapascal) and silicon nitride ceramics are about 300 GPa, whereas porous cordierite ceramics are as low as 70 to 90 GPa. When cordierite ceramics are used in an exposure apparatus or the like, there is a concern that the Si wafer positioning time may increase due to the occurrence of resonance due to deformation or a decrease in natural frequency. In recent reports, dense cordierite ceramics have a specific gravity of 2.7 and a Young's modulus of 130 to 140 GPa, and are expected for measures against deformation and improvement of the natural frequency. However, although the specific gravity is smaller than that of alumina ceramic or silicon nitride ceramic, further reduction in specific gravity is desired to reduce the weight of the exposure apparatus and the weight of the member.
LAS系セラミックスのβ−スポジュメンについては、比重2.0〜2.4、熱膨張率が0.3×10−6〜2.7×10−6/℃、磁器が気孔を有するもので−0.3×10−6〜−1.0×10−6/℃と低い値を示すが、ヤング率は60〜80GPaと低い。LAS系セラミックスの熱膨張率の低さは、結晶軸方向の異方性によるものとそれに伴うマイクロクラックの存在がその要因とされる。マイクロクラックは、結晶軸方向の異方
性の大きさが大きいほどよく見られる。マイクロクラックを抑制する方法は、マイクロクラック発生の臨界粒径を見極め、臨界粒径内で磁器結晶を制御することとされる。
The β-spodumene of LAS ceramics has a specific gravity of 2.0 to 2.4, a coefficient of thermal expansion of 0.3 × 10 −6 to 2.7 × 10 −6 / ° C., and the porcelain has pores. The value is as low as 3 × 10 −6 to −1.0 × 10 −6 / ° C., but the Young's modulus is as low as 60 to 80 GPa. The low coefficient of thermal expansion of LAS ceramics is attributed to the anisotropy in the crystal axis direction and the presence of microcracks associated therewith. Microcracks are often seen as the anisotropy in the crystal axis direction increases. A method for suppressing microcracks is to determine the critical grain size of microcracks and to control the ceramic crystal within the critical grain size.
このように、露光装置等用の材料として、軽量、低熱膨張率、高剛性等の特性が要求されており、特に金属と比較して軽量及び低熱膨張性を有するセラミックスが望ましく、剛性については組成設計等で対応することが考えられるが、これらの諸特性を共に満足するセラミックスは従来存在しなかった。 As described above, characteristics such as light weight, low thermal expansion coefficient, and high rigidity are required as materials for exposure apparatuses and the like. In particular, ceramics having light weight and low thermal expansion as compared with metals are desirable, and the composition of rigidity is compositional. Although it is conceivable to cope with the design and the like, there has never been a ceramic that satisfies both of these characteristics.
従って、本発明は上記事情を鑑みて完成されたものであり、その目的は、半導体製造工程で使用される露光装置等の各種装置、部品及び治具の材料として最適なものであって、軽量で低熱膨張率を有すると共に高剛性のセラミックスと、その製造方法を提供することである。 Therefore, the present invention has been completed in view of the above circumstances, and the object thereof is optimal as a material for various apparatuses such as an exposure apparatus used in a semiconductor manufacturing process, components, and jigs, and is lightweight. It is to provide a ceramic having a low thermal expansion coefficient and a high rigidity, and a manufacturing method thereof.
本発明の低熱膨張性セラミックスは、一般式LiAlSiO4で表されるβ−ユークリプタイトを95〜99重量%、マグネシアを1〜5重量%を含むことを特徴とする。 The low thermal expansion ceramic of the present invention is characterized by containing 95 to 99% by weight of β-eucryptite represented by the general formula LiAlSiO 4 and 1 to 5% by weight of magnesia.
また、本発明の低熱膨張性セラミックスは、ボイド率が0.1体積%未満であることを特徴とする。 The low thermal expansion ceramic of the present invention is characterized in that the void ratio is less than 0.1% by volume.
さらに、本発明の低熱膨張性セラミックスは、平均ボイド径が2μm未満であることを特徴とする。 Furthermore, the low thermal expansion ceramic of the present invention is characterized in that an average void diameter is less than 2 μm.
またさらに、本発明の低熱膨張性セラミックスは、前記一般式LiAlSiO4で表されるβ−ユークリプタイトは、重量%比でLi2O:Al2O3:SiO2=12.5:40.5:47、且つ前記重量%のバラツキは1重量%以内の成分組成であることを特徴とする。 Furthermore, in the low thermal expansion ceramic of the present invention, β-eucryptite represented by the general formula LiAlSiO 4 is Li 2 O: Al 2 O 3 : SiO 2 = 12.5: 40. 5:47, and the variation in weight% is a component composition within 1% by weight.
さらにまた、本発明の低熱膨張性セラミックスは、熱膨張率が−0.4×10−6/℃以上、且つ0.1×10−6/℃以下であることを特徴とする。 Furthermore, the low thermal expansion ceramic of the present invention is characterized in that the coefficient of thermal expansion is −0.4 × 10 −6 / ° C. or more and 0.1 × 10 −6 / ° C. or less.
また、本発明の低熱膨張性セラミックスは、前記マグネシアは、その原料粉末の平均粒径が0.5μm以上、且つ0.7μm以下であることを特徴とする。 In the low thermal expansion ceramic of the present invention, the magnesia is characterized in that the average particle size of the raw material powder is 0.5 μm or more and 0.7 μm or less.
また、本発明の半導体製造装置用部材は、前記低熱膨張性セラミックスを用いて形成することを特徴とする。 The member for a semiconductor manufacturing apparatus of the present invention is formed using the low thermal expansion ceramic.
本発明は、化学式LiAlSiO4で表されるβ−ユークリプタイトを95〜99重量%、マグネシアを1〜5重量%を含むことにより、熱膨張率−0.4×10−6〜0.1×10−6/℃、ヤング率110〜120GPa、比重が2.2〜2.4と軽量で低熱膨張率を有すると共に高剛性のセラミックスが得られる。そして、本発明の低熱膨張性セラミックスは、超微細な電子回路を形成するために半導体ウェハに露光処理等を行う半導体製造用の各種装置及び部品、例えばX−Yステージ及びその部品、真空チャック、静電チャック、ミラー等に用いることにより、温度変化に対する寸法安定性に優れ、変形や振動の影響が実質的に解消される。 The present invention includes 95 to 99% by weight of β-eucryptite represented by the chemical formula LiAlSiO 4 and 1 to 5% by weight of magnesia, so that the coefficient of thermal expansion is −0.4 × 10 −6 to 0.1. × 10 −6 / ° C., Young's modulus of 110 to 120 GPa, specific gravity of 2.2 to 2.4, lightweight, low thermal expansion coefficient and high rigidity ceramic can be obtained. The low thermal expansion ceramic of the present invention includes various devices and parts for semiconductor manufacturing that perform exposure processing on a semiconductor wafer to form an ultrafine electronic circuit, such as an XY stage and its parts, a vacuum chuck, By using it for electrostatic chucks, mirrors, etc., it has excellent dimensional stability against temperature changes, and the effects of deformation and vibration are substantially eliminated.
さらに、本発明は、低熱膨張性セラミックスの中でも特に比重の小さいLAS系セラミックスであって、更に熱膨張率が低いβ−ユークリプタイトを焼結法、好ましくは更に焼結後のホットプレス(加圧加焼)法により緻密化することでマイクロクラック発生を抑え、低熱膨率を有しかつ高剛性の材料を得ることができる。また、β−ユークリプタイトにマグネシアを所定量含有させることで、低熱膨張率を維持してβ−ユークリプタイトを緻密化させることができる。 Furthermore, the present invention is an LAS-based ceramic having a particularly low specific gravity among low thermal expansion ceramics, and a β-eucryptite having a lower coefficient of thermal expansion is further sintered, preferably further subjected to hot pressing (processing). By densifying by the pressure firing method, the generation of microcracks can be suppressed, and a low rigidity and high rigidity material can be obtained. Further, by adding a predetermined amount of magnesia to β-eucryptite, it is possible to maintain a low coefficient of thermal expansion and densify β-eucryptite.
本発明の低熱膨張性セラミックスは、軽量低熱膨張特性を有するLAS系セラミックスであって、特にβ−ユークリプタイトとして知られる一般式LiAlSiO4で表される複合酸化物から構成される。また、この低熱膨張性セラミックス中には、焼結助剤としてMgOを1〜5重量%含有させる。MgO自身の熱膨張率は、評価温度領域20〜1000℃で13×10−6〜14×10−6/℃であり、その添加量が5重量%を越えると液相分の増加により熱膨張率が増大する。また、添加量が1重量%未満ではβ−ユークリプタイトが緻密化しない。MgO以外の焼結助剤の場合、焼結温度が上昇し粒成長を伴い、マイクロクラック発生を生じる傾向が強い。尚、本発明の低熱膨張性セラミックスは、β−ユークリプタイト及びMgO以外に微量の不純物を含んでいても良い。 The low thermal expansion ceramic of the present invention is a LAS-based ceramic having light weight and low thermal expansion characteristics, and is particularly composed of a composite oxide represented by the general formula LiAlSiO 4 known as β-eucryptite. The low thermal expansion ceramic contains 1 to 5% by weight of MgO as a sintering aid. The thermal expansion coefficient of MgO itself is 13 × 10 −6 to 14 × 10 −6 / ° C. in the evaluation temperature range of 20 to 1000 ° C., and when the added amount exceeds 5 wt%, the thermal expansion is caused by an increase in the liquid phase content. The rate increases. Further, when the addition amount is less than 1% by weight, β-eucryptite is not densified. In the case of a sintering aid other than MgO, the sintering temperature rises and is accompanied by grain growth, and has a strong tendency to generate microcracks. The low thermal expansion ceramic of the present invention may contain a small amount of impurities in addition to β-eucryptite and MgO.
本発明の低熱膨張性セラミックスにおいて、ボイド率(気孔率)が0.1体積%未満かつ平均ボイド径が2μm未満であるのが好ましく、ボイド率が0.1体積%以上では、鏡面加工後の製品面の光反射率が低くなる。平均ボイド径が2μm以上では、半導体製造装置に用いたとき光によってSiウェハ等の位置決めを行う際に、位置決め用として十分な光反射特性が得られない。より好ましくは、最大ボイド径が3μm未満である。 In the low thermal expansion ceramic of the present invention, it is preferable that the void ratio (porosity) is less than 0.1 volume% and the average void diameter is less than 2 μm. The light reflectance of the product surface is lowered. When the average void diameter is 2 μm or more, sufficient light reflection characteristics for positioning cannot be obtained when positioning a Si wafer or the like with light when used in a semiconductor manufacturing apparatus. More preferably, the maximum void diameter is less than 3 μm.
本発明の軽量低熱膨張性セラミックスは以下の工程〔1〕〜〔3〕のようにして製造する。 The lightweight low thermal expansion ceramic of the present invention is produced by the following steps [1] to [3].
〔1〕重量%比でLi2O:Al2O3:SiO2=12.5:40.5:47に調製した原料粉末を用いる。各成分の増減により結晶中にムライト生成やクリストバライト生成が見られるようになる。その場合、熱膨張率が増加するため、重量%比のバラツキは1重量%以内に抑えることが好ましい。そして、アルコキシド法で製造した上記組成比で平均粒径5〜7μmのLAS原料粉末95〜99重量%に対して、比表面積12
〜14m2/g、平均粒径0.5〜0.7μmのMgO粉末を1〜5重量%添加する。
[1] A raw material powder prepared in a weight percent ratio of Li 2 O: Al 2 O 3 : SiO 2 = 12.5: 40.5: 47 is used. By increasing or decreasing each component, mullite generation and cristobalite generation are observed in the crystal. In this case, since the coefficient of thermal expansion increases, it is preferable to suppress variation in the weight% ratio within 1% by weight. And the specific surface area of 12 to 95 to 99% by weight of LAS raw material powder having an average particle size of 5 to 7 μm at the composition ratio produced by the alkoxide method.
Add 1 to 5% by weight of MgO powder having an average particle size of 0.5 to 0.7 μm and ˜14 m 2 / g.
〔2〕LAS原料粉末とMgO粉末を配合の後、振動ミル等を使用して平均粒径1μm未満となるように粉砕混合し、所定形状に成形する。 [2] After blending the LAS raw material powder and the MgO powder, they are pulverized and mixed so as to have an average particle size of less than 1 μm using a vibration mill or the like, and formed into a predetermined shape.
〔3〕大気雰囲気下で1000〜1200℃、好ましくは1040〜1130℃で焼結させることで、比重2.2〜2.4、熱膨張率−0.4×10−6〜0.1×10−6/℃、ヤング率110〜120GPaとなる軽量且つ高剛性の低熱膨張性セラミックスを製造できる。また、LAS原料粉末及びMgO粉末からなる原料粉末を所定形状に成形した後、大気雰囲気下で900〜1000℃で相対密度90%以上に焼結した後、1100〜1200℃、100気圧以上で加圧焼成することにより、気孔率0.1%未満かつ平均ボイド径2μm未満に緻密化することができる。加圧焼成時の温度が1100℃未満では磁器の緻密化が不十分であり、1200℃を超えると磁器の溶融がはじまり良好な磁器が得られなくなる。また、圧力100気圧未満では、ボイド低減効果が得られない。 [3] Specific gravity 2.2-2.4, coefficient of thermal expansion −0.4 × 10 −6 to 0.1 × by sintering at 1000 to 1200 ° C., preferably 1040 to 1130 ° C. in an air atmosphere. A lightweight and highly rigid low thermal expansion ceramic with 10 −6 / ° C. and Young's modulus of 110 to 120 GPa can be produced. In addition, after forming a raw material powder composed of LAS raw material powder and MgO powder into a predetermined shape, it is sintered at 900-1000 ° C. in an air atmosphere at a relative density of 90% or higher, and then heated at 1100-1200 ° C., 100 atmospheric pressure or higher. By pressure firing, it can be densified to a porosity of less than 0.1% and an average void diameter of less than 2 μm. If the temperature during the pressure firing is less than 1100 ° C., the porcelain is not sufficiently densified, and if it exceeds 1200 ° C., the porcelain starts melting and a good porcelain cannot be obtained. Moreover, if the pressure is less than 100 atm, the void reduction effect cannot be obtained.
このようにして得られた低熱膨張性セラミックスは、窒化珪素セラミックスやコージェライトセラミックス、KZP(リン酸ジルコニウムカリウム)と比較して、比重が2.2〜2.4と小さく、アルミナセラミックス及び窒化珪素セラミックスと比較して、熱膨張率が−0.4×10−6〜0.1×10−6/℃と熱膨張率が実質的に0、又は0近傍の値を示す。また、コージェライトセラミックス等の低熱膨張材料の中ではヤング率が110〜120GPaと高くなる。更に、半導体製造用の露光装置等用として、表面平滑性や表面コーティング性に優れる、ボイド率0.1体積%未満かつ平均ボイド径2μm未満の軽量低熱膨張性及び高剛性特性を有する。 The low thermal expansion ceramic thus obtained has a specific gravity as small as 2.2 to 2.4 compared to silicon nitride ceramics, cordierite ceramics, and KZP (potassium zirconium phosphate), and alumina ceramics and silicon nitrides. Compared with ceramics, the coefficient of thermal expansion is −0.4 × 10 −6 to 0.1 × 10 −6 / ° C. and the coefficient of thermal expansion is substantially 0 or a value in the vicinity of 0. Further, among low thermal expansion materials such as cordierite ceramics, Young's modulus is as high as 110 to 120 GPa. Furthermore, as an exposure apparatus for manufacturing semiconductors, etc., it has excellent surface smoothness and surface coating properties, light weight, low thermal expansion and high rigidity characteristics with a void ratio of less than 0.1% by volume and an average void diameter of less than 2 μm.
かくして、本発明は、半導体製造工程で使用される露光装置等の各種装置、部品及び治具の材料として最適なものであって、軽量で低熱膨張率を有すると共に高剛性のセラミックスを得ることができる。 Thus, the present invention is optimal as a material for various apparatuses such as exposure apparatuses used in semiconductor manufacturing processes, components, and jigs, and can obtain a lightweight, low thermal expansion coefficient and high rigidity ceramic. it can.
尚、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を行っても何ら差し支えない。 The present invention is not limited to the above embodiment, and various modifications may be made without departing from the scope of the present invention.
(実施例1)平均粒径5.5μmのβ−ユークリプタイト粉末に対して、比表面積12.6m2/g、平均粒径0.6μmのMgO粉末を、0重量%,1重量%,2重量%,3重量%,4重量%,5重量%,6重量%の割合で各々配合して原料粉末を調製し、これらを振動ミルにより72時間混合した後、造粒、乾燥後、乾式プレス成形により試験片形状にした。原料粉末の平均粒径及びMgO添加量が種々に異なる8種類の試験片について、更に各々焼成温度を変えて大気雰囲気下で焼成し、セラミックス磁器を製作し評価を行った。このうち、気孔率が0.1%未満となる緻密体が得られたNo.3,4,5の1040℃焼成品について、特性評価を行った。評価結果は表2に示す。尚、表1においてw
t%は重量%、vol%は体積%を意味し、原料粉末の平均粒径はマイクロトラック法によって測定した。
t% means weight%, vol% means volume%, and the average particle diameter of the raw material powder was measured by the microtrack method.
表1に示すように、NO.1のLAS原料粉末の平均粒径1.8μm、MgO2wt%のものでは、いずれの焼成温度においてもボイド率が2.1体積%以上となり、緻密体は得られなかった。NO.2の平均粒径0.7μm、MgO0wt%のものでは、いずれの焼成温度においてもボイド率が2.6体積%以上となり、緻密体は得られなかった。NO.3の平均粒径0.7μm、MgO1wt%のものでは、焼成温度1040℃,1130℃でボイド率が0.1体積%未満となり、緻密体が得られた。NO.4の平均粒径0.7μm、MgO2wt%のものでは、1040℃,1130℃でボイド率が0.1体積%未満となり、緻密体が得られた。 As shown in Table 1, NO. No. 1 LAS raw material powder having an average particle diameter of 1.8 μm and MgO of 2 wt% had a void ratio of 2.1 vol% or higher at any firing temperature, and a dense body was not obtained. NO. 2 having an average particle size of 0.7 μm and MgO of 0 wt%, the void ratio was 2.6% by volume or more at any firing temperature, and a dense body was not obtained. NO. 3 having an average particle diameter of 0.7 μm and MgO of 1 wt%, the void ratio was less than 0.1% by volume at the firing temperatures of 1040 ° C. and 1130 ° C., and a dense body was obtained. NO. 4 having an average particle size of 0.7 μm and MgO of 2 wt%, the void fraction was less than 0.1% by volume at 1040 ° C. and 1130 ° C., and a dense body was obtained.
また、NO.5の平均粒径0.7μm、MgO3wt%のものでは、1040℃,1130℃でボイド率が0.1体積%未満となり、緻密体が得られた。NO.6の平均粒径0.7μm、MgO4wt%のものでは、1040℃でボイド率が0.1体積%未満となり、緻密体が得られた。NO.7の平均粒径0.7μm、MgO5wt%のものでは、1040℃でボイド率が0.1体積%未満となり、緻密体が得られた。NO.8の平均粒径0.7μm、MgO6wt%のものでは、いずれの焼成温度においてもボイド率が0.8体積%以上となり緻密体は得られなかった。 In addition, NO. 5 having an average particle size of 0.7 μm and MgO 3 wt%, the void fraction was less than 0.1 vol% at 1040 ° C. and 1130 ° C., and a dense body was obtained. NO. When the average particle size of No. 6 was 0.7 μm and MgO was 4 wt%, the void ratio was less than 0.1 vol% at 1040 ° C., and a dense body was obtained. NO. 7 having an average particle diameter of 0.7 μm and MgO of 5 wt%, the void fraction was less than 0.1 volume% at 1040 ° C., and a dense body was obtained. NO. With an average particle diameter of 0.7 μm and MgO 6 wt%, the void ratio was 0.8 vol% or higher at any firing temperature, and a dense body was not obtained.
表2に示すように、本発明に基づき、β−ユークリプタイト粉末に、比表面積12.6m2/g、平均粒径0.6μmのMgO粉末を1〜3重量%加え、平均粒径0.7μmに粉砕した原料粉末を使用して、大気雰囲気下で1040℃で焼成することにより、比重2.3、熱膨張率−0.4×10−6〜0.1×10−6/℃、ヤング率110〜120GPa、気孔率0.1体積%未満の緻密なセラミックスを得ることができた。また、原料粉末を中空体とすることで更に軽量化することも可能である。 As shown in Table 2, in accordance with the present invention, 1 to 3% by weight of MgO powder having a specific surface area of 12.6 m 2 / g and an average particle size of 0.6 μm was added to β-eucryptite powder, resulting in an average particle size of 0 By using raw material powder pulverized to 0.7 μm and firing at 1040 ° C. in an air atmosphere, specific gravity 2.3, coefficient of thermal expansion −0.4 × 10 −6 to 0.1 × 10 −6 / ° C. A dense ceramic having a Young's modulus of 110 to 120 GPa and a porosity of less than 0.1% by volume could be obtained. Further, it is possible to further reduce the weight by making the raw material powder into a hollow body.
(実施例2)平均粒径5.5μmのβ−ユークリプタイト粉末に対して、比表面積12.6m2/g、平均粒径0.6μmのMgO粉末を、2重量%,5重量%の割合で各々配合して原料粉末を調製し、これらを振動ミルにより72時間混合した後、造粒、乾燥後、乾式プレス成形により試験片形状にした。その後、焼成温度1000℃で焼成した後、HP(加圧焼成)処理を行った。HP条件は、加圧力を100気圧,300気圧の2種とし、それぞれに対し1000℃,1100℃,1200℃,1300℃で焼成し、合計8種類のHP処理を行った。これらにつき平均ボイド率(気孔率)、平均ボイド径の評価を行い、その結果を表3に示す。尚、平均ボイド率及び平均ボイド径の測定は、試験片表面又は断面の光学顕微鏡による倍率100倍又は1000倍の写真を10視野とり、ボイドを球状であると仮定し画像処理してボイドの占有面積から平均ボイド率を近似的に導出し、また平均ボイド径は各ボイド径を観測し平均値をとることで行った。
加圧力が100気圧では処理温度1100〜1200℃で、平均ボイド率が0.1体積%未満、平均ボイド径が1.2〜1.8μmとなった。1300℃でβ−ユークリプタイトは溶融した。300気圧では処理温度1100〜1200℃で、平均ボイド率が0.1体積%未満、平均ボイド径が1.0〜1.9μmとなった。1300℃でβ−ユークリプタイトは溶融した。従って、1100℃〜1200℃の範囲で平均ボイド率
0.1体積%未満、平均ボイド径2μm未満のセラミックス磁器が得られることが判明した。
When the applied pressure was 100 atm, the treatment temperature was 1100 to 1200 ° C., the average void ratio was less than 0.1% by volume, and the average void diameter was 1.2 to 1.8 μm. The β-eucryptite melted at 1300 ° C. At 300 atmospheres, the processing temperature was 1100 to 1200 ° C., the average void ratio was less than 0.1% by volume, and the average void diameter was 1.0 to 1.9 μm. The β-eucryptite melted at 1300 ° C. Accordingly, it was found that ceramic porcelain having an average void fraction of less than 0.1% by volume and an average void diameter of less than 2 μm can be obtained in the range of 1100 ° C. to 1200 ° C.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006102218A JP4429288B2 (en) | 2006-04-03 | 2006-04-03 | Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006102218A JP4429288B2 (en) | 2006-04-03 | 2006-04-03 | Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02211199A Division JP3805119B2 (en) | 1999-01-29 | 1999-01-29 | Method for producing low thermal expansion ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006232667A true JP2006232667A (en) | 2006-09-07 |
JP4429288B2 JP4429288B2 (en) | 2010-03-10 |
Family
ID=37040725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006102218A Expired - Fee Related JP4429288B2 (en) | 2006-04-03 | 2006-04-03 | Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4429288B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263189A (en) * | 2008-04-28 | 2009-11-12 | Nikko Co | Low temperature-fired high strength low thermal expansion ceramic, and method for producing the same |
JP2010247999A (en) * | 2009-04-10 | 2010-11-04 | Nikko Co | Low temperature-fired high strength low thermal expansion ceramic and method for producing the same |
JP2010254505A (en) * | 2009-04-23 | 2010-11-11 | Nikko Co | Low temperature-fired, high-strength, low thermal expansion ceramic and method for producing the same |
CN109369209A (en) * | 2018-12-06 | 2019-02-22 | 哈尔滨工业大学 | A kind of method of porous negative expansion ceramic inter-layer assistant brazing |
CN116332627A (en) * | 2023-02-14 | 2023-06-27 | 西安航科创星电子科技有限公司 | Low-thermal expansion coefficient high-temperature co-fired ceramic (HTCC) material and preparation method thereof |
-
2006
- 2006-04-03 JP JP2006102218A patent/JP4429288B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263189A (en) * | 2008-04-28 | 2009-11-12 | Nikko Co | Low temperature-fired high strength low thermal expansion ceramic, and method for producing the same |
JP2010247999A (en) * | 2009-04-10 | 2010-11-04 | Nikko Co | Low temperature-fired high strength low thermal expansion ceramic and method for producing the same |
JP2010254505A (en) * | 2009-04-23 | 2010-11-11 | Nikko Co | Low temperature-fired, high-strength, low thermal expansion ceramic and method for producing the same |
CN109369209A (en) * | 2018-12-06 | 2019-02-22 | 哈尔滨工业大学 | A kind of method of porous negative expansion ceramic inter-layer assistant brazing |
CN109369209B (en) * | 2018-12-06 | 2021-03-30 | 哈尔滨工业大学 | Method for auxiliary brazing of porous negative expansion ceramic interlayer |
CN116332627A (en) * | 2023-02-14 | 2023-06-27 | 西安航科创星电子科技有限公司 | Low-thermal expansion coefficient high-temperature co-fired ceramic (HTCC) material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4429288B2 (en) | 2010-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4416191B2 (en) | Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component | |
JP5657210B2 (en) | A member for semiconductor manufacturing equipment comprising a cordierite sintered body | |
US20120107585A1 (en) | Ceramic Composite Based on Beta-Eucryptite and an Oxide, and Process of Manufacturing Said Composite | |
JP2006232667A (en) | Low thermal expansion ceramic and member for device for manufacturing semiconductor using it | |
JPH11343168A (en) | Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus | |
JP2008007341A (en) | Low thermal expansion ceramic joined body and method for manufacturing the same | |
JP3805119B2 (en) | Method for producing low thermal expansion ceramics | |
JPH11209171A (en) | Dense low thermal expansion ceramics, its production and member for semiconductor producing device | |
JP4261631B2 (en) | Manufacturing method of ceramic sintered body | |
JP3676552B2 (en) | Low thermal expansion ceramics and method for producing the same | |
JP4025455B2 (en) | Composite oxide ceramics | |
JP3469513B2 (en) | Exposure apparatus and support member used therein | |
JP2010111559A (en) | Ceramic joint and its manufacturing method | |
JP2001302338A (en) | Composite ceramic and manufacturing method thereof | |
JP2006347802A (en) | Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck | |
JPH11236262A (en) | Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same | |
JPH11100275A (en) | Low thermal expansion ceramic and its preparation | |
JP2001302340A (en) | High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device | |
JP3260340B2 (en) | Composite ceramic and method for producing the same | |
JP2002160972A (en) | High rigidity and low thermal expansion ceramic and its manufacturing method | |
JP5011609B2 (en) | Dense cordierite ceramics and method for producing the same | |
JP4658311B2 (en) | Lithium aluminosilicate ceramics | |
JP4062059B2 (en) | Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus | |
JP2001058867A (en) | Structure part | |
JP2007254205A (en) | Silicon nitride joined body, its production method and member for semiconductor production apparatus using the joined body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091215 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |