JP2006228475A - Conductive fine particles and anisotropic conductive material - Google Patents
Conductive fine particles and anisotropic conductive material Download PDFInfo
- Publication number
- JP2006228475A JP2006228475A JP2005038271A JP2005038271A JP2006228475A JP 2006228475 A JP2006228475 A JP 2006228475A JP 2005038271 A JP2005038271 A JP 2005038271A JP 2005038271 A JP2005038271 A JP 2005038271A JP 2006228475 A JP2006228475 A JP 2006228475A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- conductive
- metal plating
- film
- conductive fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、異方性導電フィルム等により電極に熱圧着した際に、樹脂排除性に優れ、かつ電極との接続面積が増加して接続信頼性を向上させることができる導電性微粒子、及び該導電性微粒子を用いた異方性導電材料に関する。 The present invention provides a conductive fine particle that is excellent in resin exclusion property and can increase the connection area with the electrode and improve connection reliability when thermally bonded to the electrode with an anisotropic conductive film or the like, and The present invention relates to an anisotropic conductive material using conductive fine particles.
導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。
これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接続したりするために、相対向する基板や電極端子の間に挟み込んで使用されている。
The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.
These anisotropic conductive materials are, for example, for electrically connecting substrates in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and electrically connecting small components such as semiconductor elements to the substrate. In order to do so, it is used by being sandwiched between opposing substrates and electrode terminals.
上記異方性導電材料に用いられる導電性微粒子としては、従来から、粒子径が均一で、適度な強度を有する樹脂微粒子等の非導電性微粒子の表面に、導電性膜として例えば金属メッキ層を形成させた導電性微粒子が用いられてきている。しかしながら、近年の電子機器の急激な進歩や発展に伴って、異方性導電材料として用いられる導電性微粒子の接続信頼性の更なる向上が求められてきている。
上記導電性微粒子の接続信頼性を向上させるためには、例えば表面に突起を有する導電性微粒子が報告されている(例えば、特許文献1、特許文献2参照)。
Conventionally, as the conductive fine particles used in the anisotropic conductive material, for example, a metal plating layer is used as a conductive film on the surface of non-conductive fine particles such as resin fine particles having a uniform particle size and appropriate strength. The formed conductive fine particles have been used. However, with rapid progress and development of electronic devices in recent years, further improvement in connection reliability of conductive fine particles used as anisotropic conductive materials has been demanded.
In order to improve the connection reliability of the conductive fine particles, for example, conductive fine particles having protrusions on the surface have been reported (see, for example, Patent Document 1 and Patent Document 2).
特許文献1には、表面に突起を形成させた非導電性微粒子の表面に金属メッキを施した導電性微粒子が記載されている。しかしながら、これは母粒子と子粒子を複合させた複合粒子により形成させた突起粒子であり、その突起部分はプラスチックやケイ酸ガラス等の非導電性物質が芯物質として用いられており、接続抵抗値の低減化は十分ではなかった。
また、特許文献2には、非導電性微粒子に、無電解ニッケルメッキ法におけるニッケルメッキ液の自己分解を利用して、ニッケルの微小突起とニッケル被膜を同時に形成させ、導電性無電解メッキ粉体を製造する方法が記載されている。しかしながら、この製造方法では、その突起部分はニッケル塊からなる突起であり、その大きさ、形状等を制御することは極めて困難であって、この突起による樹脂排除性は十分ではなかった。
Patent Document 1 describes conductive fine particles obtained by performing metal plating on the surface of non-conductive fine particles having protrusions formed on the surface. However, this is a protruding particle formed by a composite particle in which the mother particle and the child particle are combined, and the protruding portion is made of a non-conductive material such as plastic or silicate glass as the core material, and the connection resistance The reduction in value was not sufficient.
Further, Patent Document 2 discloses that a non-conductive fine particle is formed by simultaneously forming a micro-projection of nickel and a nickel coating by utilizing self-decomposition of a nickel plating solution in an electroless nickel plating method. Is described. However, in this manufacturing method, the protruding portion is a protrusion made of a nickel lump, and it is extremely difficult to control the size, shape, etc., and the resin exclusion property by this protrusion is not sufficient.
更に、近年のより多様な電子機器への展開により、様々な使用条件においても異方性導電材料として用いられる導電性微粒子は、更なる接続信頼性の向上が求められてきている。このため、突起による樹脂排除性が求められる一方、突起部分による電極への接続も確実に行われることが求められている。しかしながら、従来のように、突起部分を被覆するニッケル被膜等の導電性膜が硬質のものでは、熱圧着する際に十分な電極との接続面積増加が起こらず、電極間の接続が確実ではなく接続信頼性が十分ではなかった。 Furthermore, with recent developments in more diverse electronic devices, conductive fine particles used as anisotropic conductive materials under various usage conditions have been required to further improve connection reliability. For this reason, while resin exclusion property by a protrusion is calculated | required, the connection to the electrode by a protrusion part is calculated | required reliably. However, when the conductive film such as a nickel coating that covers the protruding portion is hard as in the prior art, the connection area between the electrodes does not increase sufficiently when thermocompression bonding is performed, and the connection between the electrodes is not reliable. Connection reliability was not enough.
本発明の目的は、上述した現状に鑑み、異方性導電フィルム等により電極に熱圧着した際に、樹脂排除性に優れ、かつ電極との接続面積が増加して接続信頼性を向上させることができる導電性微粒子、及び該導電性微粒子を用いた異方性導電材料を提供することである。 The object of the present invention is to improve the connection reliability by increasing the connection area with the electrode, and excellent in resin rejection when thermocompression bonded to the electrode with an anisotropic conductive film, etc. It is an object to provide conductive fine particles that can be produced, and an anisotropic conductive material using the conductive fine particles.
上記目的を達成するために請求項1記載の発明は、基材微粒子の表面がニッケル及びリンを含有する金属メッキ被膜層と最表面を金層とする多層の導電性膜で被覆されており、前記導電性膜は表面に隆起した突起を有する導電性微粒子であって、前記金属メッキ被膜はリンを10重量%以上含有し、前記導電性膜の表面の隆起した突起は、導電性物質を芯物質とする導電性微粒子を提供する。 In order to achieve the above object, according to the first aspect of the present invention, the surface of the substrate fine particles is coated with a multi-layer conductive film having a metal plating film layer containing nickel and phosphorus and a gold layer as the outermost surface, The conductive film is a conductive fine particle having protrusions protruding on the surface, the metal plating film contains 10% by weight or more of phosphorus, and the protrusions protruding on the surface of the conductive film are made of a conductive substance as a core. Provided is a conductive fine particle as a substance.
また、請求項2記載の発明は、金属メッキ被膜の膜厚は、40〜150nmである請求項1記載の導電性微粒子を提供する。 The invention according to claim 2 provides the conductive fine particles according to claim 1, wherein the metal plating film has a thickness of 40 to 150 nm.
また、請求項3記載の発明は、金属メッキ被膜中において、基材微粒子側から金属メッキ被膜膜厚の20%以下の領域で金属メッキ組成中に10〜20重量%のリンを含有し、金属メッキ被膜表面側から金属メッキ被膜膜厚の10%以下の領域で金属メッキ組成中に1〜10重量%のリンを含有する請求項1又は2記載の導電性微粒子を提供する。 Further, the invention according to claim 3 is characterized in that in the metal plating film, the metal plating composition contains 10 to 20% by weight of phosphorus in the region of 20% or less of the metal plating film thickness from the substrate fine particle side. The conductive fine particles according to claim 1 or 2, which contain 1 to 10% by weight of phosphorus in the metal plating composition in a region of 10% or less of the thickness of the metal plating film from the surface of the plating film.
また、請求項4記載の発明は、ビッカース硬度による、芯物質の硬度に対する導電性膜の硬度の硬度比が、0.2〜0.7である請求項1〜3のいずれか1項に記載の導電性微粒子を提供する。 In the invention according to claim 4, the hardness ratio of the hardness of the conductive film to the hardness of the core substance according to the Vickers hardness is 0.2 to 0.7. The conductive fine particles are provided.
また、請求項5記載の発明は、芯物質は、ニッケル、銅、金、銀、及び亜鉛から選ばれる少なくとも1種の金属からなる請求項1〜4のいずれか1項に記載の導電性微粒子を提供する。 In the invention described in claim 5, the core material is made of at least one metal selected from nickel, copper, gold, silver, and zinc. The conductive fine particles according to any one of claims 1-4. I will provide a.
また、請求項6記載の発明は、基材微粒子は、樹脂微粒子である請求項1〜5のいずれか1項に記載の導電性微粒子を提供する。 The invention according to claim 6 provides the conductive fine particles according to any one of claims 1 to 5, wherein the substrate fine particles are resin fine particles.
また、請求項7記載の発明は、隆起した突起部分の平均高さが、導電性微粒子の平均粒子径の0.5%以上である請求項1〜6のいずれか1項に記載の導電性微粒子を提供する。 In the invention according to claim 7, the average height of the raised protrusions is 0.5% or more of the average particle diameter of the conductive fine particles. The conductivity according to any one of claims 1 to 6 Provide fine particles.
また、請求項8記載の発明は、請求項1〜7のいずれか1項に記載の導電性微粒子が樹脂バインダーに分散されてなる異方性導電材料を提供する。 The invention according to claim 8 provides an anisotropic conductive material in which the conductive fine particles according to any one of claims 1 to 7 are dispersed in a resin binder.
以下、本発明の詳細を説明する。
本発明の導電性微粒子は、基材微粒子の表面がニッケル及びリンを含有する金属メッキ被膜層と最表面を金層とする多層の導電性膜で被覆されており、前記導電性膜は表面に隆起した突起を有する導電性微粒子であって、前記金属メッキ被膜はリンを10重量%以上含有し、前記導電性膜の表面の隆起した突起は、導電性物質を芯物質とするものである。
従って、本発明における突起は、導電性物質からなる芯物質と、上記導電性膜とから構成され、導電性膜の表面に隆起した突起として現れる。この突起の存在により、異方性導電フィルム等により電極間を熱圧着する際に、突起が絶縁性樹脂の排除効果等により、接続抵抗値が低く接続信頼性に優れた導電接続を得ることができる。
Details of the present invention will be described below.
In the conductive fine particles of the present invention, the surface of the substrate fine particles is coated with a multi-layered conductive film having a metal plating film layer containing nickel and phosphorus and the outermost surface being a gold layer, and the conductive film is formed on the surface. Conductive fine particles having raised protrusions, wherein the metal plating film contains 10% by weight or more of phosphorus, and the raised protrusions on the surface of the conductive film have a conductive substance as a core substance.
Therefore, the protrusion in the present invention is composed of a core material made of a conductive material and the conductive film, and appears as a protrusion raised on the surface of the conductive film. Due to the presence of this protrusion, when the electrodes are thermocompression bonded with an anisotropic conductive film or the like, the protrusion can obtain a conductive connection with a low connection resistance value and excellent connection reliability due to the effect of eliminating the insulating resin, etc. it can.
また、上記導電性膜は、ニッケル及びリンを含有する金属メッキ被膜層と最表面を金層とする多層のものであり、上記金属メッキ被膜は、リンを10重量%以上含有しているものである。
従って、本発明における導電性膜は、リンを10重量%以上含有したニッケル及びリンを含有する金属メッキ被膜を含むため、例えばニッケルメッキ被膜を含む場合等に比べて導電性膜が軟らかくなり、この導電性膜の表面に隆起した突起は、異方性導電フィルム等により電極に熱圧着した際に、電極との十分な接続面積増加が起こり、接続信頼性を向上させることができる。
The conductive film is a multi-layered film having a metal plating film layer containing nickel and phosphorus and a gold layer as the outermost surface, and the metal plating film contains 10% by weight or more of phosphorus. is there.
Therefore, since the conductive film in the present invention includes nickel containing 10% by weight or more of phosphorus and a metal plating film containing phosphorus, for example, the conductive film becomes softer than when including a nickel plating film. When the protrusions protruding on the surface of the conductive film are thermocompression bonded to the electrode with an anisotropic conductive film or the like, a sufficient connection area with the electrode occurs, and the connection reliability can be improved.
上記金属メッキ被膜には、金属成分であるニッケルが含有されていることが必要であり、その他にも金属成分が含有されていてもよい。例えば、銅等が含有されていてもよい。
また、上記金属メッキ被膜には、非金属成分であるリンが含有されていることが必要であり、その他にも非金属成分が含有されていてもよい。例えば、ホウ素等が含有されていてもよい。
金属メッキ被膜におけるリンの含有量は10重量%以上であることが必要である。リンの含有量が10重量%未満であると、金属メッキ被膜を含む導電性膜が軟らかくならず、電極に熱圧着した際に電極との十分な接続面積増加が起こらないことがある。
The metal plating film needs to contain nickel, which is a metal component, and may contain other metal components. For example, copper etc. may be contained.
Further, the metal plating film needs to contain phosphorus, which is a nonmetallic component, and may contain other nonmetallic components. For example, boron or the like may be contained.
The phosphorus content in the metal plating film needs to be 10% by weight or more. When the phosphorus content is less than 10% by weight, the conductive film including the metal plating film may not be soft, and a sufficient connection area with the electrode may not increase when the electrode is thermocompression bonded.
本発明における金属メッキ被膜中のニッケルやリン等の含有比率は、例えば、EDX(Energy Dispersing X−ray analyzer:エネルギー分散型X線分析装置)により求めることができる。 The content ratio of nickel, phosphorus, etc. in the metal plating film in the present invention can be determined by, for example, EDX (Energy Dispersing X-ray analyzer).
上記金属メッキ被膜の膜厚は、40〜150nmであることが好ましい。40nm未満であると、熱圧着する際に十分な電極との接続面積増加が起こらず、電極間の接続が確実ではなく接続信頼性が十分ではないことがあり、150nmを超えると、基材微粒子と金属メッキ被膜との熱膨張率の差から、この金属メッキ被膜が剥離し易くなることがある。 The thickness of the metal plating film is preferably 40 to 150 nm. When the thickness is less than 40 nm, the sufficient connection area with the electrode does not increase when thermocompression bonding is performed, and the connection between the electrodes may not be reliable and the connection reliability may not be sufficient. The metal plating film may be easily peeled off due to the difference in coefficient of thermal expansion between the metal plating film and the metal plating film.
本発明の導電性微粒子は、金属メッキ被膜中において、基材微粒子側から金属メッキ被膜膜厚の20%以下の領域で金属メッキ組成中に10〜20重量%のリンを含有し、金属メッキ被膜表面側から金属メッキ被膜膜厚の10%以下の領域で金属メッキ組成中に1〜10重量%のリンを含有することが好ましい。 The conductive fine particle of the present invention contains 10 to 20% by weight of phosphorus in the metal plating composition in a region of 20% or less of the metal plating film thickness from the substrate fine particle side in the metal plating film. It is preferable to contain 1 to 10% by weight of phosphorus in the metal plating composition in the region of 10% or less of the metal plating film thickness from the surface side.
金属メッキ被膜中において、基材微粒子側から金属メッキ被膜膜厚の20%以下の領域で金属メッキ組成中に10〜20重量%のリンを含有し、金属メッキ被膜表面側から金属メッキ被膜膜厚の10%以下の領域で金属メッキ組成中に1〜10重量%のリンを含有することにより、金属メッキ被膜は全体として柔軟性を保ちつつ、基材微粒子側では基材微粒子との密着性を向上させ、金属メッキ被膜表面側では硬くして熱圧着時の樹脂排除性を向上させることができる。 In the metal plating film, the metal plating composition contains 10 to 20% by weight of phosphorus in the region of 20% or less of the metal plating film thickness from the substrate fine particle side, and the metal plating film thickness from the metal plating film surface side. By containing 1 to 10% by weight of phosphorus in the metal plating composition in an area of 10% or less, the metal plating film maintains the flexibility as a whole, while the adhesion to the substrate fine particles is maintained on the substrate fine particle side. It can be improved and hardened on the surface of the metal plating film to improve the resin exclusion property at the time of thermocompression bonding.
上記金属メッキ被膜を形成する方法は、特に限定されず、例えば、無電解メッキ、電気メッキ等の方法が挙げられる。なかでも、基材微粒子が樹脂微粒子等の非導電性である場合は、無電解メッキにより形成する方法が好適に用いられる。
また、無電解メッキにより形成する場合は、ニッケルメッキ液にリン成分を含有させる方法等を用いることができ、金属メッキ被膜中の厚さ方向のリン含有量を制御するためにはニッケルメッキの前期工程と後期工程とで、ニッケルメッキ液のpH、温度、還元剤濃度等を制御する方法等を用いることができる。無電解メッキについては更に後述する。
The method for forming the metal plating film is not particularly limited, and examples thereof include electroless plating and electroplating. Among these, when the substrate fine particles are non-conductive such as resin fine particles, a method of forming by electroless plating is preferably used.
In addition, in the case of forming by electroless plating, a method of including a phosphorus component in a nickel plating solution can be used, and in order to control the phosphorus content in the thickness direction in the metal plating film, the first period of nickel plating A method of controlling the pH, temperature, reducing agent concentration, etc. of the nickel plating solution can be used in the process and the later process. The electroless plating will be further described later.
上記導電性膜には、上記金属メッキ被膜の他に、導電性膜の軟質化を阻害しない範囲で更に金属被膜が形成されていてもよい。すなわち、導電性膜には、金属メッキ被膜を含む複数の被膜が形成されていてもよい。
上記金属被膜を構成する金属としては、特に限定されず、例えば、ニッケル、金、銅、銀、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム等の金属;錫−鉛合金、錫−銅合金、錫−銀合金、錫−鉛−銀合金等の2種類以上の金属で構成される合金等が挙げられる。
In addition to the metal plating film, a metal film may be further formed on the conductive film as long as the softening of the conductive film is not hindered. That is, a plurality of films including a metal plating film may be formed on the conductive film.
The metal constituting the metal coating is not particularly limited. For example, nickel, gold, copper, silver, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, chromium, titanium, antimony, bismuth, germanium. And metals such as cadmium; alloys composed of two or more kinds of metals such as tin-lead alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and the like.
上記金属被膜を形成する方法は、特に限定されず、例えば、無電解メッキ、電気メッキ、スパッタリング等の方法が挙げられる。 The method for forming the metal coating is not particularly limited, and examples thereof include electroless plating, electroplating, and sputtering.
本発明における導電性膜は、最表面を金層とすることが必要である。最表面を金層とすることにより、接続抵抗値の低減化や表面の安定化を図ることができる。
従って、本発明における隆起した突起部分は、導電性微粒子の最表面の金層を突出させる。すなわち、導電性膜の表面に隆起した突起は、導電性微粒子の最表面の金層に隆起した突起部分として現れる。
The conductive film in the present invention needs to have a gold layer on the outermost surface. By making the outermost surface a gold layer, the connection resistance value can be reduced and the surface can be stabilized.
Therefore, the raised protrusion in the present invention causes the outermost gold layer of the conductive fine particles to protrude. That is, the protrusion raised on the surface of the conductive film appears as a protrusion raised on the outermost gold layer of the conductive fine particles.
上記金層は、無電解メッキ、置換メッキ、電気メッキ、スパッタリング等の公知の方法により形成することができる。 The gold layer can be formed by a known method such as electroless plating, displacement plating, electroplating, or sputtering.
上記金層の膜厚は、特に限定されないが、1〜100nmが好ましく、より好ましくは1〜50nmである。1nm未満であると、例えば下地層であるニッケル及びリンを含有する金属メッキ被膜の酸化を防止することが困難となることがあり、接続抵抗値が高くなったりすることがある。100nmを超えると、例えば置換メッキの場合下地層を侵食し基材微粒子と下地層との密着を悪くすることがある。 Although the film thickness of the said gold layer is not specifically limited, 1-100 nm is preferable, More preferably, it is 1-50 nm. If the thickness is less than 1 nm, for example, it may be difficult to prevent oxidation of the metal plating film containing nickel and phosphorus as the underlying layer, and the connection resistance value may increase. When the thickness exceeds 100 nm, for example, in the case of displacement plating, the base layer may be eroded and adhesion between the substrate fine particles and the base layer may be deteriorated.
上記導電性膜の膜厚は、40〜500nmであることが好ましい。40nm未満であると、熱圧着する際に十分な電極との接続面積増加が起こらず、電極間の接続が確実ではなく接続信頼性が十分ではないことがあり、500nmを超えると、基材微粒子と導電性膜との熱膨張率の差から、この導電性膜が剥離し易くなったり、導電性膜の表面に隆起した突起が得られにくくなったりすることがある。 The film thickness of the conductive film is preferably 40 to 500 nm. When the thickness is less than 40 nm, the sufficient connection area with the electrode does not increase when thermocompression bonding is performed, and the connection between the electrodes may not be reliable and the connection reliability may not be sufficient. Due to the difference in thermal expansion coefficient between the conductive film and the conductive film, the conductive film may be easily peeled off or it may be difficult to obtain a raised protrusion on the surface of the conductive film.
本発明の導電性微粒子は、ビッカース硬度による、芯物質の硬度に対する導電性膜の硬度の硬度比が、0.2〜0.7であることが好ましい。導電性膜の硬度が芯物質の硬度よりも軟らかく硬度比が、0.2〜0.7であることにより、この導電性膜の表面に隆起した突起は、異方性導電フィルム等により電極に熱圧着した際に、導電性膜が潰れ易くなり電極との十分な接続面積増加が起こり、接続信頼性を向上させることができる。 In the conductive fine particles of the present invention, the hardness ratio of the hardness of the conductive film to the hardness of the core substance by Vickers hardness is preferably 0.2 to 0.7. Since the hardness of the conductive film is softer than the hardness of the core material and the hardness ratio is 0.2 to 0.7, the protrusions raised on the surface of the conductive film are formed on the electrode by an anisotropic conductive film or the like. When the thermocompression bonding is performed, the conductive film is easily crushed and a sufficient connection area with the electrode is increased, so that the connection reliability can be improved.
上記ビッカース硬度は、押込硬さの一種であり、対面角が136度の正四角錐形のダイヤモンド圧子に静荷重をかけて試験片に永久くぼみをつけ、くぼみの対角線の長さを測定して硬さ(指数)を求めたものである。ビッカース硬度の特長は、荷重の大小にかかわらずくぼみが常に相似形になるので、試験荷重に無関係に硬さの測定値が同じ数値になるという相似の法則がなりたち、従って異なった荷重による値をそのまま比較できる点である。 The Vickers hardness is a kind of indentation hardness. A static indentation is applied to a diamond pyramid shaped indenter with a face angle of 136 degrees to make a permanent indentation on the specimen, and the length of the diagonal line of the indentation is measured to determine the hardness. This is the value (index). The feature of Vickers hardness is that the indentation always has a similar shape regardless of the load size, so the similarity law is that the measured value of hardness is the same regardless of the test load, and therefore the value due to different loads It is a point that can be compared as it is.
上記芯物質を構成する導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属、ポリアセチレン等の導電性ポリマー等が挙げられる。なかでも、金属が好ましい。なお、金属は合金であってもよく、従って少なくとも1種以上の金属であることが好ましい。 Examples of the conductive material constituting the core material include conductive non-metals such as metals, metal oxides, graphite, and conductive polymers such as polyacetylene. Of these, metals are preferred. The metal may be an alloy, and therefore it is preferable that the metal is at least one metal.
上記金属としては、特に限定されず、例えば、ニッケル(ビッカース硬度約500)、銅(ビッカース硬度約100)、金、銀、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム等の金属;錫−鉛合金、錫−銅合金、錫−銀合金、錫−鉛−銀合金等の2種類以上の金属で構成される合金等が挙げられる。なかでも、適度な硬度と導電性が得られるので、ニッケル、銅、金、銀、亜鉛が好ましい。これらは単独で用いられてもよく、2種類以上が併用されてもよい。従って、芯物質は、ニッケル、銅、金、銀、及び亜鉛から選ばれる少なくとも1種の金属からなることが好ましい。 The metal is not particularly limited. For example, nickel (Vickers hardness of about 500), copper (Vickers hardness of about 100), gold, silver, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, chromium, Metals such as titanium, antimony, bismuth, germanium, cadmium; alloys composed of two or more metals such as tin-lead alloy, tin-copper alloy, tin-silver alloy, tin-lead-silver alloy, etc. . Especially, since moderate hardness and electroconductivity are obtained, nickel, copper, gold | metal | money, silver, and zinc are preferable. These may be used alone or in combination of two or more. Therefore, the core material is preferably made of at least one metal selected from nickel, copper, gold, silver, and zinc.
本発明における芯物質の形状は、特に限定されず、例えば、球状、円盤状、柱状、板状、針状、立方体、直方体等が挙げられる。なかでも、球状が好ましい。 The shape of the core substance in the present invention is not particularly limited, and examples thereof include a spherical shape, a disk shape, a column shape, a plate shape, a needle shape, a cube shape, a rectangular parallelepiped shape, and the like. Of these, spherical is preferable.
本発明における突起の形状は、特に限定されるものではないが、導電性膜が芯物質を包んで被覆するので、上記芯物質の形状に依存したものとなる。 The shape of the protrusion in the present invention is not particularly limited, but the conductive film wraps around and coats the core material, and therefore depends on the shape of the core material.
本発明の導電性微粒子の製造方法としては、特に限定されず、例えば、基材微粒子の表面に芯物質を付着させ、後述する無電解メッキにより金属メッキ被膜等の導電性膜を被覆する方法;基材微粒子の表面を、無電解メッキにより導電性膜を被覆した後、芯物質を付着させ、更に無電解メッキにより導電性膜を被覆する方法;上述の方法において無電解メッキの代わりに電気メッキにより導電性膜を被覆する方法等が挙げられる。 The method for producing the conductive fine particles of the present invention is not particularly limited, and for example, a method of coating a conductive film such as a metal plating film by electroless plating described later; A method in which the surface of the substrate fine particles is coated with a conductive film by electroless plating, and then a core substance is attached, and further the conductive film is coated by electroless plating; in the above method, electroplating instead of electroless plating And the like, and the like.
上記の、基材微粒子の表面に芯物質を付着させる方法としては、特に限定されず、例えば、基材微粒子の分散液中に芯物質を添加し、基材微粒子の表面上に芯物質を例えばファンデルワールス力により集積させ付着させる方法;基材微粒子を入れた容器に芯物質を添加し、容器の回転等による機械的な作用により基材微粒子の表面上に芯物質を付着させる方法等が挙げられる。 The method for attaching the core substance to the surface of the substrate fine particles is not particularly limited. For example, the core substance is added to the dispersion of the substrate fine particles, and the core substance is added onto the surface of the substrate fine particles, for example. A method of collecting and adhering by van der Waals force; a method of adding a core substance to a container containing base material fine particles, and attaching a core substance on the surface of the base material fine particles by mechanical action such as rotation of the container Can be mentioned.
本発明において、導電性膜中の芯物質の存在のしかたとしては、特に限定されず、例えば、基材微粒子の表面上に存在していてもよいし、基材微粒子の表面上から離れて存在していてもよい。なかでも、芯物質は基材微粒子に接触しているか、又は基材微粒子から5nm以内の距離に存在することが好ましい。また、導電性膜中の芯物質は2〜3個凝集していてもよいが、凝集個数は少ないほうが好ましい。
芯物質が基材微粒子に接触しているか、又は基材微粒子から5nm以内の距離に存在することにより、芯物質が確実に導電性膜で覆われることになり、隆起した突起の基材微粒子に対する密着性が優れた導電性微粒子を得ることができ、また、隆起した突起の高さが揃った導電性微粒子を得ることができる。従って、上記導電性微粒子を異方性導電材料として用いた電極間の接続時には、導電性微粒子の導電性能のばらつきが小さくなり、接続信頼性に優れるという効果が得られる。
In the present invention, the presence of the core substance in the conductive film is not particularly limited. For example, the core substance may be present on the surface of the base particle, or may be separated from the surface of the base particle. You may do it. Especially, it is preferable that the core substance is in contact with the base particle or is present at a distance within 5 nm from the base particle. Moreover, although 2 or 3 core materials in the conductive film may be aggregated, it is preferable that the aggregate number is small.
When the core substance is in contact with the substrate fine particles or exists at a distance of 5 nm or less from the substrate fine particles, the core substance is surely covered with the conductive film, and the raised protrusions with respect to the substrate fine particles Conductive fine particles having excellent adhesion can be obtained, and conductive fine particles having raised protrusions of uniform height can be obtained. Therefore, at the time of connection between the electrodes using the conductive fine particles as an anisotropic conductive material, the variation in conductive performance of the conductive fine particles is reduced, and the effect of excellent connection reliability can be obtained.
本発明における基材微粒子としては、適度な弾性率、弾性変形性及び復元性を有するものであれば、無機材料であっても有機材料であってもよく特に限定されないが、樹脂からなる樹脂微粒子であることが好ましい。 The substrate fine particles in the present invention are not particularly limited as long as they have an appropriate elastic modulus, elastic deformability, and resilience, and may be inorganic materials or organic materials. It is preferable that
上記樹脂微粒子としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂;(メタ)アクリル酸エステル重合体;ジビニルベンゼン重合体;ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−(メタ)アクリル酸エステル共重合体等のジビニルベンゼン系重合体等からなるものが挙げられる。上記(メタ)アクリル酸エステルは必要に応じて架橋型、非架橋型いずれを用いてもよく、これらを混合して用いてもよい。なかでも、(メタ)アクリル酸エステル重合体、ジビニルベンゼン重合体、ジビニルベンゼン系重合体からなる微粒子が好ましく用いられる。ここで、(メタ)アクリル酸エステルとはメタクリル酸エステル又はアクリル酸エステルを意味する。
これらの樹脂微粒子は、単独で用いられてもよく、2種以上が併用されてもよい。
The resin fine particles are not particularly limited. For example, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, polybutadiene, polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, Divinylbenzene such as melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin; (meth) acrylic acid ester polymer; divinylbenzene polymer; divinylbenzene-styrene copolymer, divinylbenzene- (meth) acrylic acid ester copolymer The thing which consists of a system polymer etc. is mentioned. The (meth) acrylic acid ester may be either a crosslinked type or a non-crosslinked type, if necessary, and a mixture thereof may be used. Of these, fine particles comprising a (meth) acrylic acid ester polymer, a divinylbenzene polymer, and a divinylbenzene polymer are preferably used. Here, (meth) acrylic acid ester means methacrylic acid ester or acrylic acid ester.
These resin fine particles may be used independently and 2 or more types may be used together.
上記基材微粒子の平均粒子径は1〜20μmが好ましく、より好ましくは1〜10μmである。平均粒子径が1μm未満であると、例えば無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として基板電極間等で用いられる範囲を超えてしまうことがある。 The average particle size of the substrate fine particles is preferably 1 to 20 μm, more preferably 1 to 10 μm. When the average particle diameter is less than 1 μm, for example, it is easy to aggregate when performing electroless plating, and it may be difficult to form single particles. When it exceeds 20 μm, it is used as an anisotropic conductive material between substrate electrodes and the like. May be exceeded.
本発明における隆起した突起部分の平均高さは、導電性微粒子の平均粒子径(直径)の0.5%以上であることが好ましく、25%以下であることが好ましい。
上記突起部分の平均高さは、芯物質の粒子径と導電性膜とに依存するが、導電性微粒子の平均粒子径の0.5%未満であると、突起の効果が得られにくく、25%を超えると、電極に深くめり込み電極を破損させる恐れがある。
上記突起部分の平均高さのより好ましい範囲は、導電性微粒子の平均粒子径の1〜20%である。
なお、突起部分の平均高さは、後述する電子顕微鏡による測定方法により求める。
In the present invention, the average height of the raised protrusions is preferably 0.5% or more and more preferably 25% or less of the average particle diameter (diameter) of the conductive fine particles.
The average height of the protrusions depends on the particle diameter of the core substance and the conductive film, but if it is less than 0.5% of the average particle diameter of the conductive fine particles, it is difficult to obtain the effect of protrusions. If it exceeds 50%, the electrode may be deeply cut and the electrode may be damaged.
A more preferable range of the average height of the protrusions is 1 to 20% of the average particle diameter of the conductive fine particles.
In addition, the average height of the protruding portion is obtained by a measurement method using an electron microscope described later.
(特性の測定方法)
本発明における導電性微粒子の各種特性、例えば、金属メッキ被膜の膜厚、金層の膜厚、基材微粒子の平均粒子径、導電性微粒子の平均粒子径、芯物質の形状、突起の形状、突起部分の平均高さ等は、電子顕微鏡による導電性微粒子の粒子観察又は断面観察により得ることができる。
(Characteristic measurement method)
Various characteristics of the conductive fine particles in the present invention, for example, the thickness of the metal plating film, the thickness of the gold layer, the average particle diameter of the substrate fine particles, the average particle diameter of the conductive fine particles, the shape of the core substance, the shape of the protrusions, The average height of the protrusions can be obtained by observing particles or cross sections of the conductive fine particles with an electron microscope.
上記断面観察を行うための試料の作製法としては、導電性微粒子を熱硬化型の樹脂に埋め込み加熱硬化させ、所定の研磨紙や研磨剤を用いて観察可能な鏡面状態にまで試料を研磨する方法等が挙げられる。 As a method of preparing a sample for performing the cross-sectional observation, conductive fine particles are embedded in a thermosetting resin and cured by heating, and the sample is polished to a specular state that can be observed using a predetermined abrasive paper or abrasive. Methods and the like.
導電性微粒子の粒子観察は、走査電子顕微鏡(SEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、例えば、4000倍で観察することにより行う。また、導電性微粒子の断面観察は、透過電子顕微鏡(TEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、例えば、20万倍で観察することにより行う。 The observation of the conductive fine particles is performed with a scanning electron microscope (SEM). As the magnification, an easily observable magnification may be selected. For example, observation is performed at 4000 times. Further, the cross-sectional observation of the conductive fine particles is performed with a transmission electron microscope (TEM), and as the magnification, an easily observable magnification may be selected.
上記導電性微粒子の金属メッキ被膜や金層等の導電性膜の平均膜厚は、無作為に選んだ10個の粒子について測定し、それを算術平均した膜厚である。なお、個々の導電性微粒子の膜厚にむらがある場合には、その最大膜厚と最小膜厚を測定し、算術平均した値を膜厚とする。 The average film thickness of the conductive film such as a metal plating film or a gold layer of the conductive fine particles is a film thickness obtained by measuring 10 randomly selected particles and arithmetically averaging them. In addition, when the film thickness of each electroconductive fine particle has nonuniformity, the maximum film thickness and the minimum film thickness are measured, and let the film thickness be the arithmetic average value.
上記基材微粒子の平均粒子径は、無作為に選んだ20個の基材微粒子について粒子径を測定し、それを算術平均したものとする。
上記導電性微粒子の平均粒子径は、無作為に選んだ20個の導電性微粒子について粒子径を測定し、それを算術平均したものとする。
The average particle size of the above-mentioned substrate fine particles is obtained by measuring the particle size of 20 randomly selected substrate fine particles and arithmetically averaging them.
The average particle size of the conductive fine particles is obtained by measuring the particle size of 20 randomly selected conductive fine particles and arithmetically averaging them.
上記突起部分の平均高さは、確認された多数の突起部分のなかで、ほぼ全体が観察された20個の突起部分について、最表面を形成する基準表面から突起として現れている高さを測定し、それを算術平均して突起部分の平均高さとする。このとき、突起を付与した効果が得られるものとして、導電性微粒子の平均粒子径に対し0.5%以上のものを突起として選ぶものとする。 The average height of the above-mentioned protrusions was measured from the reference surface forming the outermost surface as the protrusions of 20 protrusions that were almost entirely observed among the many protrusions confirmed. Then, it is arithmetically averaged to obtain the average height of the protrusions. At this time, assuming that the effect of providing the projection is obtained, a projection having a size of 0.5% or more with respect to the average particle diameter of the conductive fine particles is selected.
(無電解メッキ)
本発明における金属メッキ被膜の形成は、例えば、無電解ニッケルメッキ法により形成することができる。上記無電解ニッケルメッキを行う方法としては、例えば、次亜リン酸ナトリウムを還元剤として構成される無電解ニッケルメッキ液を所定の方法にしたがって建浴、加温したところに、触媒付与された基材微粒子を浸漬し、Ni2++H2PO2 -+H2O→Ni+H2PO3 -+2H+ からなる還元反応でニッケル及びリンを含有する金属メッキ被膜を析出させる方法等が挙げられる。
(Electroless plating)
The metal plating film in the present invention can be formed, for example, by an electroless nickel plating method. As a method for performing the electroless nickel plating, for example, an electroless nickel plating solution composed of sodium hypophosphite as a reducing agent is erected and heated according to a predetermined method. For example, a method of immersing metal fine particles and depositing a metal plating film containing nickel and phosphorus by a reduction reaction of Ni 2+ + H 2 PO 2 − + H 2 O → Ni + H 2 PO 3 − + 2H + can be mentioned.
このとき、上述したように、例えば、金属メッキ被膜中の厚さ方向のリン含有量を低減化する方法としては、ニッケルメッキの前期工程と後期工程とで、ニッケルメッキ液のpHを順次高くしニッケルメッキ反応の速度を速めていく方法、ニッケルメッキ液の温度を上げメッキ温度を順次高くする方法、ニッケルメッキ液中のリン系還元剤の濃度を順次高くする方法等を用いることができる。これらの方法は単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 At this time, as described above, for example, as a method of reducing the phosphorus content in the thickness direction in the metal plating film, the pH of the nickel plating solution is sequentially increased in the first and second stages of nickel plating. A method of increasing the speed of the nickel plating reaction, a method of increasing the temperature of the nickel plating solution and sequentially increasing the plating temperature, a method of sequentially increasing the concentration of the phosphorus reducing agent in the nickel plating solution, and the like can be used. These methods may be used alone or in combination of two or more.
ニッケルメッキの前期工程において、例えば、ニッケルメッキ液中のpHを制御し反応速度を遅くすると、ニッケルの沈着速度が遅く、副生成物であるリンの生成が早いため、リンがメッキ被膜中に多く取り込まれてリン含有量の多い金属メッキ被膜が形成される。このような金属メッキ被膜は、リン含有量が多いため柔軟であるだけでなく、凹凸無く均一で緻密な金属メッキ被膜ができるため、基材微粒子との密着性に優れたものとなる。 In the first step of nickel plating, for example, if the reaction rate is slowed by controlling the pH in the nickel plating solution, the deposition rate of nickel is slow and the by-product phosphorus is generated quickly, so there is a lot of phosphorus in the plating film. A metal plating film having a high phosphorus content is formed by being taken in. Such a metal plating film is not only flexible because of its high phosphorus content, but also has a uniform and dense metal plating film without irregularities, and therefore has excellent adhesion to the substrate fine particles.
上記触媒付与を行う方法としては、例えば、樹脂からなる基材微粒子に、アルカリ脱脂、酸中和、二塩化スズ(SnCl2 )溶液におけるセンシタイジング、二塩化パラジウム(PdCl2)溶液におけるアクチベイチングからなる無電解メッキ前処理工程を行う方法等が挙げられる。なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、Sn2++Pd2+→Sn4++Pd0なる反応を絶縁物質表面に起こしてパラジウムを無電解メッキの触媒核とする工程である。 Examples of the method for applying the catalyst include, for example, alkali degreasing, acid neutralization, sensitizing in a tin dichloride (SnCl 2 ) solution, and activator in a palladium dichloride (PdCl 2 ) solution. For example, a method of performing an electroless plating pretreatment step consisting of ching. Sensitizing is a process of adsorbing Sn 2+ ions on the surface of the insulating material, and activating causes a reaction of Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of the insulating material. In this process, palladium is used as a catalyst core for electroless plating.
(異方性導電材料)
次に、本発明の異方性導電材料は、上述した本発明の導電性微粒子が樹脂バインダーに分散されてなるものである。
(Anisotropic conductive material)
Next, the anisotropic conductive material of the present invention is obtained by dispersing the above-described conductive fine particles of the present invention in a resin binder.
上記異方性導電材料としては、本発明の導電性微粒子が樹脂バインダーに分散されていれば特に限定されるものではなく、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等が挙げられる。 The anisotropic conductive material is not particularly limited as long as the conductive fine particles of the present invention are dispersed in a resin binder. For example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive An adhesive, an anisotropic conductive film, an anisotropic conductive sheet, etc. are mentioned.
本発明の異方性導電材料の作製方法としては、特に限定されるものではないが、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して導電性組成物を作製した後、この導電性組成物を必要に応じて有機溶媒中に均一に溶解(分散)させるか、又は加熱溶融させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、作製しようとする異方性導電材料の種類に対応して、適宜の作製方法をとればよい。また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを、混合することなく、別々に用いて異方性導電材料としてもよい。 The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and mixed and dispersed uniformly. For example, a method of using an anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., or adding the conductive fine particles of the present invention to an insulating resin binder and mixing them uniformly. After preparing the conductive composition, the conductive composition is uniformly dissolved (dispersed) in an organic solvent as necessary, or heated and melted to release a release material such as release paper or release film. Applying to the mold processing surface so as to have a predetermined film thickness, and performing drying or cooling as necessary, for example, an anisotropic conductive film, an anisotropic conductive sheet, etc. Depending on the type of anisotropic conductive material to be produced, Manufacturing methods may Taking. Further, the insulating resin binder and the conductive fine particles of the present invention may be used separately without being mixed to form an anisotropic conductive material.
上記絶縁性の樹脂バインダーの樹脂としては、特に限定されるものではないが、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型等のいずれの硬化形態であってもよい。 The resin of the insulating resin binder is not particularly limited. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene -Thermoplastic resins such as vinyl acetate copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene blocks Thermoplastic block copolymers such as copolymers, styrene-isoprene-styrene block copolymers, and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber ( Rubbers). These resins may be used alone or in combination of two or more. The curable resin may be in any curing form such as a room temperature curing type, a thermosetting type, a photocuring type, and a moisture curing type.
本発明の異方性導電材料には、絶縁性の樹脂バインダー、及び、本発明の導電性微粒子に加えるに、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤の1種又は2種以上が併用されてもよい。 In addition to the insulating resin binder and the conductive fine particles of the present invention, the anisotropic conductive material of the present invention includes, for example, a bulking agent, a softening agent, etc. 1 type of various additives such as additives (plasticizers), tackifiers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Or 2 or more types may be used together.
本発明は、上述の構成よりなるので、異方性導電フィルム等により電極に熱圧着した際に、樹脂排除性に優れ、かつ電極との接続面積が増加して接続信頼性が向上した導電性微粒子を得ることができる。また、電極に熱圧着した際に、樹脂排除性に優れ、かつ電極との接続面積が増加して接続信頼性が向上した該導電性微粒子を用いた異方性導電材料を得ることが可能となった。 Since the present invention has the above-described configuration, it is excellent in resin rejection when thermally bonded to an electrode with an anisotropic conductive film or the like, and has improved connection reliability by increasing the connection area with the electrode. Fine particles can be obtained. In addition, it is possible to obtain an anisotropic conductive material using the conductive fine particles that are excellent in resin exclusion properties and have increased connection area with the electrode and improved connection reliability when thermocompression bonded to the electrode. became.
以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.
(実施例1)
(無電解メッキ前処理工程)
平均粒子径4μmのジビニルベンゼン系重合体からなる基材微粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材微粒子を得た。
Example 1
(Electroless plating pretreatment process)
Alkali degreasing with a sodium hydroxide aqueous solution, acid neutralization, and sensitizing in a tin dichloride solution were performed on 10 g of base material fine particles made of a divinylbenzene polymer having an average particle size of 4 μm. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, substrate fine particles having palladium adhered to the particle surfaces were obtained.
(芯物質複合化工程)
得られた基材微粒子を脱イオン水300mlで攪拌により3分間分散させた後、その水溶液に芯物質としてニッケル粒子(三井金属社製「2020SUS」、平均粒子径200nm、ビッカース硬度500)1gを添加し、芯物質を付着させた基材微粒子を得た。
(Core material compounding process)
The obtained substrate fine particles were dispersed in 300 ml of deionized water with stirring for 3 minutes, and then 1 g of nickel particles (“2020SUS” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter 200 nm, Vickers hardness 500) was added to the aqueous solution as a core material. As a result, substrate fine particles to which a core substance was adhered were obtained.
(無電解ニッケルメッキ工程)
次に、得られた芯物質を付着させた基材微粒子10gの水性懸濁液に硫酸を添加してpH4の水性懸濁液に調製した。
(Electroless nickel plating process)
Next, sulfuric acid was added to an aqueous suspension of 10 g of the substrate fine particles to which the obtained core material was adhered to prepare an aqueous suspension having a pH of 4.
一方、前期工程用ニッケルメッキ液として、硫酸ニッケル450g/l、次亜リン酸ナトリウム150g/l、クエン酸ナトリウム116g/l、メッキ安定剤6mlの混合溶液を硫酸にてpH7に調整した。このニッケルメッキ液300mlを40ml/分の添加速度で定量ポンプを通して水性懸濁液に添加した。反応温度は40℃に設定した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。メッキ前期工程後のpHは5以下であることを確認した。 On the other hand, as a nickel plating solution for the first step, a mixed solution of nickel sulfate 450 g / l, sodium hypophosphite 150 g / l, sodium citrate 116 g / l, and plating stabilizer 6 ml was adjusted to pH 7 with sulfuric acid. 300 ml of this nickel plating solution was added to the aqueous suspension through a metering pump at an addition rate of 40 ml / min. The reaction temperature was set at 40 ° C. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating pre-process was performed. It was confirmed that the pH after the first plating step was 5 or less.
次に、後期工程用ニッケルメッキ液として、硫酸ニッケル450g/l、次亜リン酸ナトリウム150g/l、クエン酸ナトリウム116g/l、メッキ安定剤35mlの混合溶液のpHを11にアンモニアで調整した。この混合溶液200mlを15ml/分の添加速度で定量ポンプを通して添加した。反応温度は40℃に設定した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行い金属メッキ被膜が形成された導電性微粒子を得た。メッキ後期工程後のpHは8以上であることを確認した。 Next, the pH of a mixed solution of nickel sulfate 450 g / l, sodium hypophosphite 150 g / l, sodium citrate 116 g / l, and plating stabilizer 35 ml was adjusted to 11 with ammonia as a nickel plating solution for the latter stage process. 200 ml of this mixed solution was added through a metering pump at an addition rate of 15 ml / min. The reaction temperature was set at 40 ° C. Thereafter, the mixture was stirred until the pH was stabilized, it was confirmed that hydrogen foaming stopped, and electroless plating was performed at a later stage to obtain conductive fine particles on which a metal plating film was formed. It was confirmed that the pH after the latter plating step was 8 or more.
(金メッキ工程)
得られた金属メッキ被膜が形成された導電性微粒子に、更に、置換金メッキを行い、金属メッキ被膜に金被膜が形成された導電性微粒子を得た。
(Gold plating process)
The obtained conductive fine particles on which the metal plating film was formed were further subjected to substitution gold plating to obtain conductive fine particles on which the gold film was formed on the metal plating film.
(導電性微粒子の評価)
得られた導電性微粒子について、断面を収束イオンビームで切り出し、20万倍の透過型電子顕微鏡で観察して、突起部分の高さ及び膜厚を調査した。また、以下のEDXによる成分測定方法により金属メッキ被膜中のニッケル及びリンの含有量を調査した。
これらの結果を表1に示した。
(Evaluation of conductive fine particles)
About the obtained electroconductive fine particles, the cross section was cut out with the focused ion beam, and it observed with the 200,000 times transmission electron microscope, and investigated the height and film thickness of the projection part. Further, the contents of nickel and phosphorus in the metal plating film were investigated by the following component measuring method using EDX.
These results are shown in Table 1.
(EDXによる成分測定方法)
EDX(「エネルギー分散型X線分光機」、日本電子データム社製)を用い、導電性微粒子の断面を収束イオンビームにて切り出し、金属メッキ被膜中の各部位を成分分析することにより、ニッケル及びリンの検出値を測定した。得られた測定値から金属メッキ組成中のニッケル及びリンの含有量を算出した。
(Component measurement method by EDX)
Using EDX (“Energy Dispersive X-ray Spectrometer”, manufactured by JEOL Datum), the cross-section of the conductive fine particles is cut out with a focused ion beam, and each component in the metal plating film is subjected to component analysis. The detection value of phosphorus was measured. The contents of nickel and phosphorus in the metal plating composition were calculated from the obtained measured values.
(異方性導電フィルムの作製)
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及びトルエン100重量部に、得られた導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cm2 とした。
その後、導電性微粒子を含有する接着フィルムを、導電性微粒子を含有させずに得た接着フィルムと常温で貼り合わせ厚さ17μmで2層構造の異方性導電フィルムを得た。
(Preparation of anisotropic conductive film)
As a resin binder resin, 100 parts by weight of an epoxy resin (manufactured by Yuka Shell Epoxy, “Epicoat 828”), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene, the obtained conductive fine particles are added, After sufficiently mixing using a planetary stirrer, it was applied on a release film so that the thickness after drying was 7 μm, and toluene was evaporated to obtain an adhesive film containing conductive fine particles. In addition, the compounding quantity of electroconductive fine particles made content in a film 50,000 piece / cm < 2 >.
Thereafter, an adhesive film containing conductive fine particles was bonded to an adhesive film obtained without containing conductive fine particles at room temperature to obtain a two-layer anisotropic conductive film having a thickness of 17 μm.
(異方性導電フィルムの導電性評価)
得られた異方性導電フィルムを5×5mmの大きさに切断した。また、一方に抵抗測定用の引き回し線を持つ、幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極が形成されたガラス基板を2枚用意した。異方性導電フィルムを一方のガラス基板のほぼ中央に貼り付けた後、他方のガラス基板を異方性導電フィルムが貼り付けられたガラス基板の電極パターンと重なるように位置あわせをして貼り合わせた。
2枚のガラス基板を、圧力10N、温度180℃の条件で熱圧着した後、電極間の抵抗値を測定した。
また、作製した試験片に対して信頼性試験(80℃、95%RHの高温高湿環境下で1000時間保持)を行った後、電極間の抵抗値を測定した。
評価結果を表1に示す。
(Evaluation of conductivity of anisotropic conductive film)
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. In addition, two glass substrates having a lead wire for resistance measurement on which an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm was formed were prepared. After attaching the anisotropic conductive film to the center of one glass substrate, align the other glass substrate so that it overlaps the electrode pattern of the glass substrate to which the anisotropic conductive film is attached. It was.
Two glass substrates were thermocompression bonded under the conditions of a pressure of 10 N and a temperature of 180 ° C., and then the resistance value between the electrodes was measured.
Moreover, after performing the reliability test (80 degreeC, 95% RH high temperature high-humidity environment hold | maintained for 1000 hours) with respect to the produced test piece, the resistance value between electrodes was measured.
The evaluation results are shown in Table 1.
(実施例2)
実施例1における芯物質複合化工程において、ニッケル粒子(三井金属社製「2020SUS」、平均粒子径200nm、ビッカース硬度500)1gの代わりに、ニッケル粒子(三井金属社製「2007SUS」、平均粒子径50nm、ビッカース硬度500)1gを用いたこと以外は実施例1と同様にして、導電性微粒子を得た。
得られた導電性微粒子について、実施例1と同様にして導電性微粒子の評価を行った。
更に、得られた導電性微粒子について、実施例1と同様にして異方性導電フィルムの作製を行い、異方性導電フィルムの導電性評価を行った。
評価結果を表1に示す。
(Example 2)
In the core material compounding step in Example 1, instead of 1 g of nickel particles (Mitsui Kinzoku "2020SUS", average particle diameter 200 nm, Vickers hardness 500), nickel particles (Mitsui Kinzoku "2007SUS", average particle diameter) Conductive fine particles were obtained in the same manner as in Example 1 except that 1 g of 50 nm and Vickers hardness 500) was used.
The obtained conductive fine particles were evaluated in the same manner as in Example 1.
Further, for the obtained conductive fine particles, an anisotropic conductive film was prepared in the same manner as in Example 1, and the conductivity of the anisotropic conductive film was evaluated.
The evaluation results are shown in Table 1.
(比較例1)
実施例1における無電解ニッケルメッキ工程において、前期工程用ニッケルメッキ液のpH7の代わりにpH9.3に調整したこと、後期工程用ニッケルメッキ液のpH11の代わりにpH12に調整したこと、並びに、前期工程及び後期工程の反応温度を共に27℃にしたこと以外は実施例1と同様にして、導電性微粒子を得た。
得られた導電性微粒子について、実施例1と同様にして導電性微粒子の評価を行った。
更に、得られた導電性微粒子について、実施例1と同様にして異方性導電フィルムの作製を行い、異方性導電フィルムの導電性評価を行った。
評価結果を表1に示す。
(Comparative Example 1)
In the electroless nickel plating step in Example 1, the pH was adjusted to 9.3 instead of the pH 7 of the nickel plating solution for the previous process, the pH was adjusted to 12 instead of the pH 11 of the nickel plating solution for the latter process, and the previous period Conductive fine particles were obtained in the same manner as in Example 1 except that the reaction temperature in the step and the latter step was both set to 27 ° C.
The obtained conductive fine particles were evaluated in the same manner as in Example 1.
Further, for the obtained conductive fine particles, an anisotropic conductive film was prepared in the same manner as in Example 1, and the conductivity of the anisotropic conductive film was evaluated.
The evaluation results are shown in Table 1.
(比較例2)
実施例1における芯物質複合化工程を行わなかったこと以外は実施例1と同様にして、導電性微粒子を得た。
得られた導電性微粒子について、実施例1と同様にして導電性微粒子の評価を行った。
更に、得られた導電性微粒子について、実施例1と同様にして異方性導電フィルムの作製を行い、異方性導電フィルムの導電性評価を行った。
評価結果を表1に示す。
(Comparative Example 2)
Conductive fine particles were obtained in the same manner as in Example 1 except that the core material combining step in Example 1 was not performed.
The obtained conductive fine particles were evaluated in the same manner as in Example 1.
Further, for the obtained conductive fine particles, an anisotropic conductive film was prepared in the same manner as in Example 1, and the conductivity of the anisotropic conductive film was evaluated.
The evaluation results are shown in Table 1.
表1より、実施例の導電性微粒子は、金属メッキ被膜中のリン含有量が10重量%以上でこの金属メッキ被膜を含む導電性膜は柔軟となっているため、該導電性膜で包まれた突起により、接続信頼性が向上していることがわかる。 From Table 1, the conductive fine particles of the example are wrapped in the conductive film because the conductive film containing the metal plating film is soft when the phosphorus content in the metal plating film is 10% by weight or more. It can be seen that the connection reliability is improved by the protrusions.
本発明によれば、異方性導電フィルム等により電極に熱圧着した際に、樹脂排除性に優れ、かつ電極との接続面積が増加して接続信頼性を向上させることができる導電性微粒子、及び該導電性微粒子を用いた異方性導電材料を提供できる。
According to the present invention, when thermocompression bonding to an electrode with an anisotropic conductive film or the like, conductive fine particles that are excellent in resin rejection and can increase connection area with the electrode and improve connection reliability, And an anisotropic conductive material using the conductive fine particles.
Claims (8)
前記金属メッキ被膜はリンを10重量%以上含有し、
前記導電性膜の表面の隆起した突起は、導電性物質を芯物質とすることを特徴とする導電性微粒子。 The surface of the substrate fine particles is coated with a multi-layered conductive film having a metal plating film layer containing nickel and phosphorus and the outermost surface being a gold layer, and the conductive film has conductive protrusions having protrusions raised on the surface. Because
The metal plating film contains 10% by weight or more of phosphorus,
Conductive fine particles, wherein the raised protrusions on the surface of the conductive film have a conductive substance as a core substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005038271A JP4860163B2 (en) | 2005-02-15 | 2005-02-15 | Method for producing conductive fine particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005038271A JP4860163B2 (en) | 2005-02-15 | 2005-02-15 | Method for producing conductive fine particles |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011174943A Division JP5323147B2 (en) | 2011-08-10 | 2011-08-10 | Conductive fine particles and anisotropic conductive materials |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006228475A true JP2006228475A (en) | 2006-08-31 |
JP2006228475A5 JP2006228475A5 (en) | 2007-11-29 |
JP4860163B2 JP4860163B2 (en) | 2012-01-25 |
Family
ID=36989679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005038271A Active JP4860163B2 (en) | 2005-02-15 | 2005-02-15 | Method for producing conductive fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4860163B2 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058159A1 (en) * | 2005-11-18 | 2007-05-24 | Hitachi Chemical Company, Ltd. | Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method |
WO2008105355A1 (en) * | 2007-02-26 | 2008-09-04 | Sekisui Chemical Co., Ltd. | Conductive fine particle and anisotropic conductive material |
JP2010034045A (en) * | 2008-07-01 | 2010-02-12 | Hitachi Chem Co Ltd | Circuit connection material, and circuit connection structure |
JP2010174322A (en) * | 2009-01-29 | 2010-08-12 | Alps Electric Co Ltd | Elastic contact and method of manufacturing the same, and contact substrate and method of manufacturing the same |
JP2011012180A (en) * | 2009-07-02 | 2011-01-20 | Hitachi Chem Co Ltd | Circuit connecting material and circuit connection structure |
EP2284829A1 (en) | 2006-08-24 | 2011-02-16 | Sharp Kabushiki Kaisha | Liquid crystal display device |
JP2011175951A (en) * | 2009-08-06 | 2011-09-08 | Hitachi Chem Co Ltd | Conductive fine particles, and anisotropic conductive material |
WO2012043472A1 (en) * | 2010-09-30 | 2012-04-05 | 積水化学工業株式会社 | Conductive particles, anisotropic conductive material and connection structure |
JP2013138013A (en) * | 2009-11-16 | 2013-07-11 | Hitachi Chemical Co Ltd | Circuit connection material and connection structure of circuit member using the same |
WO2013108842A1 (en) * | 2012-01-20 | 2013-07-25 | 積水化学工業株式会社 | Conductive particles, conductive material and connection structure |
WO2013108740A1 (en) * | 2012-01-19 | 2013-07-25 | 積水化学工業株式会社 | Conductive particles, conductive material and connection structure |
WO2013108843A1 (en) * | 2012-01-20 | 2013-07-25 | 積水化学工業株式会社 | Conductive particles, conductive material and connection structure |
JP2014011117A (en) * | 2012-07-02 | 2014-01-20 | Nippon Shokubai Co Ltd | Conductive fine particle |
JP2014022065A (en) * | 2012-07-12 | 2014-02-03 | Natoko Kk | Conductive fine particle |
JP2014130809A (en) * | 2012-11-28 | 2014-07-10 | Sekisui Chem Co Ltd | Electroconductive particles, electroconductive material, and connection structure |
JPWO2012157375A1 (en) * | 2011-05-18 | 2014-07-31 | 日立化成株式会社 | Circuit connection material, circuit member connection structure, and circuit member connection structure manufacturing method |
KR20140106384A (en) | 2011-12-21 | 2014-09-03 | 세키스이가가쿠 고교가부시키가이샤 | Conductive particles, conductive material, and connection structure |
JP2014241280A (en) * | 2013-05-14 | 2014-12-25 | 積水化学工業株式会社 | Conductive particle, conductive material and connection structure |
US8932716B2 (en) | 2009-07-16 | 2015-01-13 | Dexerials Corporation | Conductive particle, and anisotropic conductive film, bonded structure, and bonding method |
US8987607B2 (en) | 2010-08-31 | 2015-03-24 | Dexerials Corporation | Conductive particle, and anisotropic conductive film, bonded structure, and bonding method |
KR20150063962A (en) | 2012-10-02 | 2015-06-10 | 세키스이가가쿠 고교가부시키가이샤 | Conductive particle, conductive material and connecting structure |
JP2015122330A (en) * | 2012-12-26 | 2015-07-02 | 株式会社ドクサンハイメタル | Conductive particle and conductive material containing conductive particle |
JP2015197955A (en) * | 2014-03-31 | 2015-11-09 | 日立化成株式会社 | Conductive particle |
JP2016039152A (en) * | 2014-08-07 | 2016-03-22 | 積水化学工業株式会社 | Conductive particle, conductive material and connection structure |
JP2018104751A (en) * | 2016-12-26 | 2018-07-05 | 日華化学株式会社 | Method of producing composite particle dispersion |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118866A (en) * | 1993-10-21 | 1995-05-09 | Nippon Chem Ind Co Ltd | Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production |
JP2000243132A (en) * | 1999-02-22 | 2000-09-08 | Nippon Chem Ind Co Ltd | Conductive electroless plating powder, manufacture thereof, and conductive material made thereof |
JP2001152045A (en) * | 1999-11-29 | 2001-06-05 | Shin Etsu Chem Co Ltd | Gold-plated silica and method for producing the same |
-
2005
- 2005-02-15 JP JP2005038271A patent/JP4860163B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118866A (en) * | 1993-10-21 | 1995-05-09 | Nippon Chem Ind Co Ltd | Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production |
JP2000243132A (en) * | 1999-02-22 | 2000-09-08 | Nippon Chem Ind Co Ltd | Conductive electroless plating powder, manufacture thereof, and conductive material made thereof |
JP2001152045A (en) * | 1999-11-29 | 2001-06-05 | Shin Etsu Chem Co Ltd | Gold-plated silica and method for producing the same |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058159A1 (en) * | 2005-11-18 | 2007-05-24 | Hitachi Chemical Company, Ltd. | Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method |
JP4877230B2 (en) * | 2005-11-18 | 2012-02-15 | 日立化成工業株式会社 | Adhesive composition, circuit connection material, connection structure, and circuit member connection method |
EP2284829A1 (en) | 2006-08-24 | 2011-02-16 | Sharp Kabushiki Kaisha | Liquid crystal display device |
EP2284828A1 (en) | 2006-08-24 | 2011-02-16 | Sharp Kabushiki Kaisha | Liquid crystal display device |
WO2008105355A1 (en) * | 2007-02-26 | 2008-09-04 | Sekisui Chemical Co., Ltd. | Conductive fine particle and anisotropic conductive material |
JP2010034045A (en) * | 2008-07-01 | 2010-02-12 | Hitachi Chem Co Ltd | Circuit connection material, and circuit connection structure |
JP2010174322A (en) * | 2009-01-29 | 2010-08-12 | Alps Electric Co Ltd | Elastic contact and method of manufacturing the same, and contact substrate and method of manufacturing the same |
JP2011012180A (en) * | 2009-07-02 | 2011-01-20 | Hitachi Chem Co Ltd | Circuit connecting material and circuit connection structure |
US8932716B2 (en) | 2009-07-16 | 2015-01-13 | Dexerials Corporation | Conductive particle, and anisotropic conductive film, bonded structure, and bonding method |
US8383016B2 (en) | 2009-08-06 | 2013-02-26 | Hitachi Chemical Company, Ltd. | Conductive fine particles and anisotropic conductive material |
JP2011175951A (en) * | 2009-08-06 | 2011-09-08 | Hitachi Chem Co Ltd | Conductive fine particles, and anisotropic conductive material |
KR101195732B1 (en) * | 2009-08-06 | 2012-10-29 | 히다치 가세고교 가부시끼가이샤 | Conductive particle and anisotropic conductive material |
JP2013138013A (en) * | 2009-11-16 | 2013-07-11 | Hitachi Chemical Co Ltd | Circuit connection material and connection structure of circuit member using the same |
US8987607B2 (en) | 2010-08-31 | 2015-03-24 | Dexerials Corporation | Conductive particle, and anisotropic conductive film, bonded structure, and bonding method |
JP5054232B2 (en) * | 2010-09-30 | 2012-10-24 | 積水化学工業株式会社 | Conductive particles, anisotropic conductive materials, and connection structures |
WO2012043472A1 (en) * | 2010-09-30 | 2012-04-05 | 積水化学工業株式会社 | Conductive particles, anisotropic conductive material and connection structure |
JPWO2012157375A1 (en) * | 2011-05-18 | 2014-07-31 | 日立化成株式会社 | Circuit connection material, circuit member connection structure, and circuit member connection structure manufacturing method |
JP2017084794A (en) * | 2011-12-21 | 2017-05-18 | 積水化学工業株式会社 | Conductive particle, conductive material and connection structure |
KR20140106384A (en) | 2011-12-21 | 2014-09-03 | 세키스이가가쿠 고교가부시키가이샤 | Conductive particles, conductive material, and connection structure |
KR101987509B1 (en) | 2012-01-19 | 2019-06-10 | 세키스이가가쿠 고교가부시키가이샤 | Conductive particles, conductive material and connection structure |
WO2013108740A1 (en) * | 2012-01-19 | 2013-07-25 | 積水化学工業株式会社 | Conductive particles, conductive material and connection structure |
JP2018056138A (en) * | 2012-01-19 | 2018-04-05 | 積水化学工業株式会社 | Conductive particle, conductive material, and connection structure |
JPWO2013108740A1 (en) * | 2012-01-19 | 2015-05-11 | 積水化学工業株式会社 | Conductive particles, conductive materials, and connection structures |
KR20140113628A (en) * | 2012-01-19 | 2014-09-24 | 세키스이가가쿠 고교가부시키가이샤 | Conductive particles, conductive material and connection structure |
JPWO2013108843A1 (en) * | 2012-01-20 | 2015-05-11 | 積水化学工業株式会社 | Conductive particles, conductive materials, and connection structures |
JPWO2013108842A1 (en) * | 2012-01-20 | 2015-05-11 | 積水化学工業株式会社 | Conductive particles, conductive materials, and connection structures |
WO2013108843A1 (en) * | 2012-01-20 | 2013-07-25 | 積水化学工業株式会社 | Conductive particles, conductive material and connection structure |
WO2013108842A1 (en) * | 2012-01-20 | 2013-07-25 | 積水化学工業株式会社 | Conductive particles, conductive material and connection structure |
JP2014011117A (en) * | 2012-07-02 | 2014-01-20 | Nippon Shokubai Co Ltd | Conductive fine particle |
JP2014022065A (en) * | 2012-07-12 | 2014-02-03 | Natoko Kk | Conductive fine particle |
KR20150063962A (en) | 2012-10-02 | 2015-06-10 | 세키스이가가쿠 고교가부시키가이샤 | Conductive particle, conductive material and connecting structure |
JP2014130809A (en) * | 2012-11-28 | 2014-07-10 | Sekisui Chem Co Ltd | Electroconductive particles, electroconductive material, and connection structure |
JP2015122330A (en) * | 2012-12-26 | 2015-07-02 | 株式会社ドクサンハイメタル | Conductive particle and conductive material containing conductive particle |
JP2014241280A (en) * | 2013-05-14 | 2014-12-25 | 積水化学工業株式会社 | Conductive particle, conductive material and connection structure |
JP2015197955A (en) * | 2014-03-31 | 2015-11-09 | 日立化成株式会社 | Conductive particle |
JP2016039152A (en) * | 2014-08-07 | 2016-03-22 | 積水化学工業株式会社 | Conductive particle, conductive material and connection structure |
JP2018104751A (en) * | 2016-12-26 | 2018-07-05 | 日華化学株式会社 | Method of producing composite particle dispersion |
Also Published As
Publication number | Publication date |
---|---|
JP4860163B2 (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4860163B2 (en) | Method for producing conductive fine particles | |
JP4674096B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP4243279B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP4563110B2 (en) | Method for producing conductive fine particles | |
JP4235227B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP4638341B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP4052832B2 (en) | Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material | |
JP4718926B2 (en) | Conductive fine particles and anisotropic conductive material | |
JP2007242307A (en) | Conductive particulate and anisotropic conductive material | |
TW201125661A (en) | Conductive fine particles and anisotropic conductive material | |
JP4936678B2 (en) | Conductive particles and anisotropic conductive materials | |
JP4593302B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP6668075B2 (en) | Conductive particles, conductive material and connection structure | |
JP4217271B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP2007324138A (en) | Conductive particulate and anisotropic conductive material | |
JP5091416B2 (en) | Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material | |
JP5323147B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP2014026971A (en) | Conductive particle, conductive material, and connection structure | |
JP5529901B2 (en) | Conductive particles and anisotropic conductive materials | |
JP4714719B2 (en) | Method for producing conductive fine particles | |
JP7144472B2 (en) | Conductive particles, conductive materials and connecting structures | |
JP4589810B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP2006086104A (en) | Conductive fine particle and anisotropic conductive material | |
JP2014026970A (en) | Conductive particle, conductive material, and connection structure | |
JP2012160460A (en) | Conductive fine particle and anisotropic conductive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071015 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100628 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110810 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111011 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111102 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4860163 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |