JP2006183068A - Conductive material for connecting part and method for manufacturing the conductive material - Google Patents
Conductive material for connecting part and method for manufacturing the conductive material Download PDFInfo
- Publication number
- JP2006183068A JP2006183068A JP2004375212A JP2004375212A JP2006183068A JP 2006183068 A JP2006183068 A JP 2006183068A JP 2004375212 A JP2004375212 A JP 2004375212A JP 2004375212 A JP2004375212 A JP 2004375212A JP 2006183068 A JP2006183068 A JP 2006183068A
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- alloy
- alloy coating
- layer
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Non-Insulated Conductors (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Abstract
Description
本発明は、主として自動車・民生機器等の電気配線に使用されるコネクタ用端子やバスバー等の接続部品用導電材料に関し、特にオス端子とメス端子の挿抜に際しての摩擦や摩耗の低減及び使用に際しての電気的接続の信頼性の兼備が求められる嵌合型接続部品用導電材料に関するものである。 The present invention relates to conductive materials for connecting parts such as connector terminals and bus bars used mainly in electrical wiring of automobiles and consumer devices, and in particular, friction and wear during insertion and extraction of male terminals and female terminals and in use. The present invention relates to a conductive material for a fitting-type connecting part that is required to have a reliable electrical connection.
自動車・民生機器等の電気配線の接続に使用されるコネクタ用端子やバスバー等の接続部品用導電材料には、低レベルの信号電圧及び電流に対して高い電気的接続の信頼性が求められる重要な電気回路の場合などを除き、Snめっき(はんだめっき等のSn合金めっきを含む)施したCu又はCu合金が用いられている。SnめっきはAuめっきや他の表面処理に比べて低コストであることなどの理由により多用されているが、その中でも、近年の環境負荷物質規制への対応からPbを含まないSnめっき、特にウィスカの発生による回路短絡障害の報告例がほとんどないリフローSnめっきや溶融Snめっきが主流となってきている。 It is important that conductive materials for connecting parts such as connector terminals and bus bars used to connect electrical wiring of automobiles / consumer equipment require high electrical connection reliability for low-level signal voltages and currents. Except in the case of a simple electric circuit, Cu or Cu alloy subjected to Sn plating (including Sn alloy plating such as solder plating) is used. Sn plating is widely used for reasons such as low cost compared to Au plating and other surface treatments. Among them, Sn plating not containing Pb, especially whisker, is being used in order to meet recent environmental load substance regulations. Reflow Sn plating and molten Sn plating, which have almost no reports of short circuit faults due to the occurrence of the above, have become mainstream.
近年のエレクトロニクスの進展は目覚しく、例えば自動車においては安全性、環境性、快適性の追求から高度電装化が急速に進行している。これに伴い、回路数や重量などが増加して消費スペースや消費エネルギーなどが増加してしまうため、コネクタ用端子などの接続部品は、多極化、小型軽量化及びエンジンルーム内への搭載などを行っても、接続部品としての性能を満足し得るような、接続部品用導電材料が求められている。 In recent years, the progress of electronics has been remarkable. For example, in automobiles, advanced electronic components are rapidly progressing from the pursuit of safety, environment and comfort. As a result, the number of circuits, weight, etc. will increase, resulting in an increase in consumption space and energy consumption. Therefore, connection parts such as connector terminals will be multipolarized, reduced in size and weight, and installed in the engine room. However, there is a demand for a conductive material for connecting parts that can satisfy the performance as a connecting part.
接続部品用導電材料にSnめっきを施すおもな目的は、電気接点部や接合部において低い接触抵抗を得るとともに、表面に耐食性を付与し、接合をはんだ付けで行う接続部品用導電材料においてはそのはんだ付け性を得ることである。Snめっきは非常に軟質な導電性皮膜であり、その表面酸化皮膜が破壊されやすい。そのため、例えばオス端子とメス端子の組み合せからなる嵌合型端子において、インデントやリブなどの電気接点部がめっき同士の凝着によりガスタイト接触を形成しやすく、低い接触抵抗を得るのに好適である。また、使用に際して低い接触抵抗を維持するためには、Snめっきの厚さは厚い方が好ましく、また電気接点部同士を押しつける接圧力を大きくすることも重要である。 The main purpose of applying Sn plating to the conductive material for connecting parts is to obtain a low contact resistance at the electrical contact portion and the joint, and to provide corrosion resistance to the surface, and to solder the joint for the connecting component. It is to obtain the solderability. Sn plating is a very soft conductive film, and its surface oxide film is easily destroyed. Therefore, for example, in a fitting type terminal composed of a combination of a male terminal and a female terminal, electrical contact portions such as indents and ribs are easy to form a gastight contact by adhesion between platings, and are suitable for obtaining a low contact resistance. . Further, in order to maintain a low contact resistance during use, it is preferable that the thickness of the Sn plating is thick, and it is also important to increase the contact pressure for pressing the electrical contact portions.
しかしながら、Snめっきの厚さを厚くし、また電気接点部同士を押しつける接圧力を大きくすることは、Snめっき間の接触面積や凝着力を増加させるため、端子挿入の際にSnめっきの掘り起こしによる変形抵抗や凝着をせん断するせん断抵抗を増加させ、結果として挿入力を大きくさせてしまう。挿入力の大きい嵌合型接続部品は、組立作業の効率を低下させたり、嵌合ミスによる電気的接続の劣化の原因にもなる。このため、極数が増加しても、全体の挿入力が従来より大きくならないように、低挿入力の端子が要求されている。 However, increasing the thickness of the Sn plating and increasing the contact pressure that presses the electrical contact portions increases the contact area between the Sn plating and the adhesion force. This increases the shear resistance that shears deformation resistance and adhesion, resulting in increased insertion force. A fitting-type connecting component having a large insertion force can reduce the efficiency of assembly work or cause electrical connection deterioration due to a fitting error. For this reason, even if the number of poles increases, a terminal having a low insertion force is required so that the entire insertion force does not become larger than the conventional one.
さらには、挿入力や挿抜時の摩耗を小さくすることを目的として電気接点部同士を押しつける接圧力を小さくした小型のSnめっき製端子などは、その後の使用に際して低い接触抵抗を維持することが困難となるばかりでなく、使用時の振動や熱膨張・収縮などにより電気接点部が微摺動を起こし、接触抵抗が異常増大する微摺動摩耗現象を引き起こし易くなる。微摺動摩耗現象は、電気接点部のSnめっきが微摺動により摩耗し、それにより生じたSn酸化物が微摺動の繰り返しにより電気接点部同士の間に多量に堆積することにより引き起こされると考えられている。これらのことから、挿抜回数が増加しても、さらには電気接点部のSnめっきに微摺動が生じても、低い接触抵抗を維持できるような、低挿入力で耐挿抜摩耗性及び耐微摺動摩耗性に優れる端子が要求されている。 Furthermore, it is difficult to maintain a low contact resistance in subsequent use, such as small Sn-plated terminals with reduced contact pressure that presses the electrical contact portions together in order to reduce the insertion force and wear during insertion / extraction. In addition to this, the electrical contact portion is slightly slid due to vibration or thermal expansion / contraction during use, and it is easy to cause a fine sliding wear phenomenon in which the contact resistance is abnormally increased. The fine sliding wear phenomenon is caused by the Sn plating of the electrical contact portion being worn by fine sliding, and the resulting Sn oxide being deposited in a large amount between the electrical contact portions due to repeated fine sliding. It is believed that. Therefore, even if the number of insertions / extractions is increased, and even if a slight sliding occurs in the Sn plating of the electrical contact part, the insertion / removal wear resistance and fine resistance can be maintained with a low insertion force so that low contact resistance can be maintained. There is a demand for terminals that are excellent in sliding wear.
下記特許文献1〜6には、Cu又はCu合金母材の表面に、必要に応じてNi下地めっき層を形成し、その上にCuめっき層とSnめっき層をこの順に形成した後、リフロー処理し、Cu6Sn5相を主体とするCu−Sn合金被覆層を形成した嵌合型端子材料が記載されている。これらの記載によれば、リフロー処理により形成されたこのCu−Sn合金層はNiめっきやCuめっきに比べて硬く、これが最表面に残留するSn層の下地層として存在することにより、端子の挿入力を低減することができる。また、表面のSn層により、低い接触抵抗を維持できる。 In the following Patent Documents 1 to 6, a Ni underplating layer is formed on the surface of the Cu or Cu alloy base material as necessary, and a Cu plating layer and an Sn plating layer are formed thereon in this order, followed by a reflow treatment. In addition, a fitting-type terminal material in which a Cu—Sn alloy coating layer mainly composed of a Cu 6 Sn 5 phase is formed is described. According to these descriptions, the Cu—Sn alloy layer formed by the reflow process is harder than Ni plating or Cu plating, and it exists as an underlayer of the Sn layer remaining on the outermost surface. The force can be reduced. Moreover, a low contact resistance can be maintained by the Sn layer on the surface.
さらに下記特許文献7〜9には、Cu又はCu合金母材の表面に、必要に応じてCu下地めっき層を形成し、Snめっき層を形成した後、必要に応じてリフロー処理した後に熱処理し、Cu−Snを主体とする金属間化合物層と必要に応じて酸化皮膜層をこの順に形成した嵌合型端子材料が記載されている。これらの記載によれば、熱処理によりCu−Sn合金層を表面に形成することにより、端子の挿入力を一段と低減することができる。 Further, in the following Patent Documents 7 to 9, a Cu base plating layer is formed on the surface of the Cu or Cu alloy base material as necessary, a Sn plating layer is formed, and then a heat treatment is performed after a reflow treatment as necessary. , A fitting type terminal material in which an intermetallic compound layer mainly composed of Cu—Sn and, if necessary, an oxide film layer is formed in this order is described. According to these descriptions, the insertion force of the terminal can be further reduced by forming the Cu—Sn alloy layer on the surface by heat treatment.
Sn層の下地にCu−Sn合金層を形成した端子の挿入力は、表面のSn層の厚さが薄くなると低下する。さらに、Cu−Sn合金層を表面に形成した端子の挿入力は、一段と低下する。一方、Sn層の厚さが薄くなると、例えば自動車のエンジンルームのような150℃にも達する高温雰囲気に長時間保持したような場合、端子の接触抵抗が増加するという問題がある。また、Sn層の厚さが薄いと、耐食性及びはんだ付け性も低下する。加えて、Sn層は微摺動摩耗現象を引き起こし易い。このように、このタイプの端子において、挿入力が非常に低く、多数回の挿抜後、高温雰囲気に長時間保持後、腐食環境下あるいは振動環境下において低い接触抵抗の維持等、嵌合型端子に求められる特性をいまだ十分なかたちで得ることができず、さらなる改良が求められている。 The insertion force of the terminal in which the Cu—Sn alloy layer is formed on the base of the Sn layer decreases as the surface Sn layer becomes thinner. Furthermore, the insertion force of the terminal having the Cu—Sn alloy layer formed on the surface is further reduced. On the other hand, when the thickness of the Sn layer is reduced, there is a problem that the contact resistance of the terminal increases when the Sn layer is kept in a high temperature atmosphere as high as 150 ° C. for example for an automobile engine room for a long time. Further, when the Sn layer is thin, the corrosion resistance and solderability are also lowered. In addition, the Sn layer tends to cause a fine sliding wear phenomenon. Thus, in this type of terminal, the insertion force is very low, after many insertions / removals, after holding in a high temperature atmosphere for a long time, maintenance of low contact resistance in corrosive environment or vibration environment, etc. However, the characteristics required for this are still not sufficiently obtained, and further improvements are required.
従って、本発明は、Cu板条からなる母材表面にCu−Sn合金被覆層とSn被覆層を形成した接続部品用導電材料において、摩擦係数が低く(低い挿入力)、同時に電気的接続の信頼性(低い接触抵抗)を維持できる接続部品用導電材料を得ることを目的とする。 Therefore, the present invention provides a conductive material for connecting parts in which a Cu-Sn alloy coating layer and a Sn coating layer are formed on the surface of a base material made of a Cu plate, and has a low friction coefficient (low insertion force) and at the same time electrical connection. It is an object of the present invention to obtain a conductive material for connecting parts that can maintain reliability (low contact resistance).
本発明者らは、Cu板条からなる母材の表面に、Ni被覆層(必要に応じて)、Cu被覆層(必要に応じて)、Cu−Sn合金被覆層及びSn被覆層がこの順に形成され、前記Cu−Sn合金被覆層の材料表面露出面積率が3〜75%(望ましくは、少なくとも一方向における平均の材料表面露出間隔が0.01〜0.5mm)、平均の厚さが0.1〜3.0μm、かつCu含有量が20〜70at%であり、前記Sn被覆層の平均の厚さが0.2〜5.0μmである接続部品用導電材料を発明し、先に特許出願した(特願2004−264749)。この先願発明では、少なくとも一方向における算術平均粗さRaが0.15μm以上で全ての方向における算術平均粗さRaが4.0μm以下の表面粗さ(望ましくは、少なくとも一方向における凹凸の平均間隔Smが0.01〜0.5mm)を有する母材が用いられ、母材表面にCuめっき(必要に応じて)及びSnめっきを形成し、又はNiめっき、Cuめっき及びSnめっきを形成した後、リフロー処理が行われる。
本発明は、この先願発明をさらに発展させたものである。
The inventors of the present invention have a Ni coating layer (if necessary), a Cu coating layer (if necessary), a Cu—Sn alloy coating layer, and a Sn coating layer in this order on the surface of the base material made of Cu strip. The Cu—Sn alloy coating layer is formed with a material surface exposed area ratio of 3 to 75% (desirably, an average material surface exposure interval in at least one direction is 0.01 to 0.5 mm), and an average thickness is Invented a conductive material for connecting parts having a thickness of 0.1 to 3.0 μm, a Cu content of 20 to 70 at%, and an average thickness of the Sn coating layer of 0.2 to 5.0 μm. A patent application was filed (Japanese Patent Application No. 2004-264749). In the prior invention, the surface roughness (desirably, the average interval between the irregularities in at least one direction) is the arithmetic average roughness Ra in at least one direction is 0.15 μm or more and the arithmetic average roughness Ra in all directions is 4.0 μm or less. After using a base material having Sm of 0.01 to 0.5 mm and forming Cu plating (if necessary) and Sn plating on the surface of the base material, or forming Ni plating, Cu plating and Sn plating A reflow process is performed.
The present invention is a further development of this prior invention.
本発明に係る接続部品用導電材料は、Cu板条からなる母材の表面に、Cu含有量が20〜70at%で平均の厚さが0.2〜3.0μmのCu−Sn合金被覆層と平均の厚さが0.2〜5.0μmのSn被覆層がこの順に形成され、その材料表面はリフロー処理されていて、少なくとも一方向における算術平均粗さRaが0.15μm以上で全ての方向における算術平均粗さRaが3.0μm以下であり、前記Sn被覆層の表面に前記Cu−Sn合金被覆層の一部が露出して形成され、前記Cu−Sn合金被覆層の材料表面露出面積率が3〜75%であることを特徴とする。Sn被覆層の表面に露出したCu−Sn合金被覆層の一部は、Sn被覆層の表面から突出している。なお、この被覆層構成が形成された領域は、母材の片面又は両面全体に及んでいてもよいし、片面又は両面の一部のみを占めているのでもよい。
この接続部品用導電材料では、前記材料表面は、少なくとも一方向における平均の材料表面露出間隔が0.01〜0.5mmであることが望ましい。
さらに、この接続部品用導電材料では、前記Sn被覆層の表面に露出する前記Cu−Sn合金被覆層の厚さ(露出部の厚さ)が0.2μm以上であることが望ましい。
The conductive material for connecting parts according to the present invention is a Cu-Sn alloy coating layer having a Cu content of 20 to 70 at% and an average thickness of 0.2 to 3.0 [mu] m on the surface of a base material made of Cu strips. Sn coating layer having an average thickness of 0.2 to 5.0 μm is formed in this order, and the material surface is reflow-treated, and arithmetic average roughness Ra in at least one direction is 0.15 μm or more and all Arithmetic average roughness Ra in the direction is 3.0 μm or less, part of the Cu—Sn alloy coating layer is exposed on the surface of the Sn coating layer, and the material surface exposure of the Cu—Sn alloy coating layer The area ratio is 3 to 75%. A part of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer protrudes from the surface of the Sn coating layer. In addition, the area | region in which this coating layer structure was formed may extend to the single side | surface or both surfaces of a preform | base_material, and may occupy only a part of single side | surface or both surfaces.
In this conductive material for connecting parts, it is desirable that the material surface has an average material surface exposure interval of 0.01 to 0.5 mm in at least one direction.
Furthermore, in this conductive material for connecting parts, it is desirable that the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer (thickness of the exposed portion) is 0.2 μm or more.
前記接続部品用導電材料において、前記母材表面と前記Cu−Sn合金被覆層の間にさらにCu被覆層を有していてもよい。
また、前記母材表面と前記Cu−Sn合金被覆層の間にさらにNi被覆層が形成されていてもよい。この場合、前記Ni被覆層とCu−Sn合金被覆層との間にさらにCu被覆層を有していてもよい。
なお、本発明において、Cu板条はCu合金板条を含む。また、Sn被覆層、Cu被覆層及びNi被覆層は、それぞれSn、Cu、Ni金属のほか、Sn合金、Cu合金及びNi合金を含む。
In the conductive material for connecting parts, a Cu coating layer may be further provided between the surface of the base material and the Cu-Sn alloy coating layer.
Further, a Ni coating layer may be further formed between the surface of the base material and the Cu—Sn alloy coating layer. In this case, a Cu coating layer may be further provided between the Ni coating layer and the Cu—Sn alloy coating layer.
In the present invention, the Cu strip includes a Cu alloy strip. In addition, the Sn coating layer, the Cu coating layer, and the Ni coating layer include Sn alloy, Cu alloy, and Ni alloy in addition to Sn, Cu, and Ni metal, respectively.
前記接続部品用導電材料は、Cu板条からなる母材の表面に、Cuめっき層とSnめっき層をこの順に形成した後、リフロー処理を行い、Cu−Sn合金被覆層と、Sn被覆層をこの順に形成することにより製造される。そして、本発明の製造方法は、母材の表面につき、少なくとも一方向の算術平均粗さRaが0.3μm以上で、全ての方向の算術平均粗さRaが4.0μm以下の表面粗さとする点に特徴がある。リフロー処理によりSnめっき層を溶融流動して平滑化し、母材に形成された凹凸の凸の部分で、Cu−Sn合金被覆層の一部をSn被覆層の表面に露出させる。その際、母材の表面粗さに応じて適切なSnめっき層の厚さを選定して、リフロー処理後の材料表面を少なくとも一方向における算術平均粗さRaが0.15μm以上、全ての方向における算術平均粗さRaが3.0μm以下となり、かつ前記Cu−Sn合金被覆層の材料表面露出面積率が3〜75%となるようにする。このとき、Sn被覆層の表面に露出したCu−Sn合金被覆層の一部は、Sn被覆層の表面から突き出している。
前記母材の表面粗さについては、前記一方向において算出された凹凸の平均間隔Sm(粗さ曲線が平均線と交差する交点から求めた山谷一周期の間隔の平均値)が0.01〜0.5mmであることが望ましい。さらに、前記Sn被覆層の表面に露出する前記Cu−Sn合金被覆層の厚さが0.2μm以上となるように、前記リフロー処理を、前記Snめっき層の融点以上、600℃以下の温度で3〜30秒間行うことが望ましい。
なお、前記母材の表面において、前記表面粗さにして前記被覆層構成を形成する領域は、母材の片面又は両面全体に及んでいてもよいし、片面又は両面の一部のみを占めているのでもよい。
The conductive material for connecting parts is formed by forming a Cu plating layer and a Sn plating layer in this order on the surface of a base material made of a Cu plate, and then performing a reflow process to form a Cu-Sn alloy coating layer and a Sn coating layer. It is manufactured by forming in this order. In the production method of the present invention, the arithmetic average roughness Ra in at least one direction is 0.3 μm or more and the arithmetic average roughness Ra in all directions is 4.0 μm or less per surface of the base material. There is a feature in the point. The Sn plating layer is melted and fluidized and smoothed by a reflow process, and a part of the Cu—Sn alloy coating layer is exposed on the surface of the Sn coating layer at the convex and concave portions formed on the base material. At that time, an appropriate Sn plating layer thickness is selected according to the surface roughness of the base material, and the material surface after the reflow treatment has an arithmetic average roughness Ra in at least one direction of 0.15 μm or more in all directions. The arithmetic average roughness Ra is 3.0 μm or less, and the material surface exposed area ratio of the Cu—Sn alloy coating layer is 3 to 75%. At this time, a part of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer protrudes from the surface of the Sn coating layer.
As for the surface roughness of the base material, the average interval Sm of unevenness calculated in the one direction (average value of intervals of one mountain valley period obtained from the intersection where the roughness curve intersects the average line) is 0.01 to It is desirable to be 0.5 mm. Further, the reflow treatment is performed at a temperature not lower than the melting point of the Sn plating layer and not higher than 600 ° C. so that the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is 0.2 μm or more. It is desirable to perform for 3 to 30 seconds.
Note that, in the surface of the base material, the region where the coating layer configuration is formed by the surface roughness may extend over one or both sides of the base material, or occupy only a part of one side or both sides. May be.
前記Cu−Sn合金被覆層は、リフロー処理により、Cuめっき層とSnめっき層のCuとSnが相互拡散して形成されるが、その際にCuめっき層が全て消滅する場合と一部残留する場合の両方があり得る。Cuめっき層の厚さによっては、母材からもCuが供給される場合がある。母材表面に形成するCuめっき層の平均の厚さは1.5μm以下、Snめっき層の平均の厚さは0.4〜8.0μmの範囲が望ましい。Cuめっき層の平均の厚さは0.1μm以上が望ましい。
前記製造方法において、Cuめっき層を全く形成しない場合もあり得る。この場合、Cu−Sn合金被覆層のCuは、母材から供給される。
また、前記製造方法において、前記母材表面と前記Cuめっき層の間に、Niめっき層を形成してもよい。Niめっき層の平均の厚さは3μm以下とし、この場合のCuめっき層の平均の厚さは0.1〜1.5μmとするのが望ましい。
なお、本発明において、Cuめっき層、Snめっき層及びNiめっき層は、それぞれCu、Sn、Ni金属のほか、Cu合金、Sn合金及びNi合金を含む。
The Cu-Sn alloy coating layer is formed by inter-diffusion of Cu and Sn in the Cu plating layer and the Sn plating layer by reflow treatment, and in this case, the Cu plating layer is completely extinguished and partially remains. There can be both cases. Depending on the thickness of the Cu plating layer, Cu may also be supplied from the base material. The average thickness of the Cu plating layer formed on the surface of the base material is preferably 1.5 μm or less, and the average thickness of the Sn plating layer is preferably in the range of 0.4 to 8.0 μm. The average thickness of the Cu plating layer is preferably 0.1 μm or more.
In the manufacturing method, a Cu plating layer may not be formed at all. In this case, Cu of the Cu—Sn alloy coating layer is supplied from the base material.
In the manufacturing method, a Ni plating layer may be formed between the base material surface and the Cu plating layer. The average thickness of the Ni plating layer is 3 μm or less, and the average thickness of the Cu plating layer in this case is preferably 0.1 to 1.5 μm.
In addition, in this invention, Cu plating layer, Sn plating layer, and Ni plating layer contain Cu alloy, Sn alloy, and Ni alloy other than Cu, Sn, and Ni metal, respectively.
本発明に係る接続部品用導電材料は、特に嵌合型端子用として、摩擦係数を低く抑えることができるので、例えば自動車等において多極コネクタに使用した場合、オス、メス端子の嵌合時の挿入力が低く、組立作業を効率よく行うことができる。また、高温雰囲気下で長時間保持されても、腐食環境下においても、あるいは振動環境下においても電気的信頼性(低接触抵抗)を維持でき、特に下地層としてNiめっきを施したものは、エンジンルーム等の、非常に高温で使用される箇所に配置された場合においても、一段と優れた電気的信頼性が保持できる。
なお、本発明に係る接続部品用導電材料を嵌合型端子として用いる場合、オス、メス端子の両方に用いることが望ましいが、オス、メス端子の一方だけに用いることもできる。
Since the conductive material for connecting parts according to the present invention can keep the coefficient of friction low, particularly for fitting type terminals, for example, when used for multipolar connectors in automobiles, The insertion force is low and assembly work can be performed efficiently. Moreover, even if it is kept for a long time in a high temperature atmosphere, it can maintain electrical reliability (low contact resistance) even in a corrosive environment or in a vibration environment. Even when it is placed in a place where it is used at a very high temperature, such as an engine room, it is possible to maintain even better electrical reliability.
In addition, when using the electrically-conductive material for connection components which concerns on this invention as a fitting type terminal, although using for both a male and a female terminal is desirable, it can also be used for only one of a male and a female terminal.
以下、本発明に係る接続部品用導電材料について、具体的に説明する。
(1)Cu−Sn合金被覆層について、そのCu含有量を20〜70at%とした理由について述べる。Cu含有量が20〜70at%のCu−Sn合金被覆層は、Cu6Sn5相を主体とする金属間化合物からなる。Cu6Sn5相はSn被覆層を形成するSn又はSn合金に比べて非常に硬く、それを材料の最表面に部分的に露出形成すると、端子挿抜の際にSn被覆層の掘り起こしによる変形抵抗や凝着をせん断するせん断抵抗を抑制でき、摩擦係数を非常に低くすることができる。さらに、本発明ではCu6Sn5相がSn被覆層の表面に部分的に突出しているため、端子挿抜や振動環境下などにおける電気接点部の摺動・微摺動の際に接圧力を硬いCu6Sn5相で受けてSn被覆層同士の接触面積を一段と低減できるため、摩擦係数をさらに低くすることができ、微摺動によるSn被覆層の摩耗や酸化も減少する。一方、Cu3Sn相はさらに硬いが、Cu6Sn5相に比べてCu含有量が多いため、これをSn被覆層の表面に部分的に露出させた場合には、経時や腐食などによる材料表面のCuの酸化物量などが多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。また、Cu3Sn相はCu6Sn5相に比べて脆いために、成形加工性などが劣るという問題点がある。従って、Cu−Sn合金被覆層の構成成分を、Cu含有量が20〜70at%のCu−Sn合金に規定する。
このCu−Sn合金被覆層には、Cu3Sn相が一部含まれていてもよく、母材及びSnめっき中の成分元素などが含まれていてもよい。しかし、Cu−Sn合金被覆層のCu含有量が20at%未満では凝着力が増して摩擦係数を低くすることが困難となり、耐微摺動摩耗性も低下する。一方Cu含有量が70at%を超えると経時や腐食などによる電気的接続の信頼性を維持することが困難となり、成形加工性なども悪くなる。従って、Cu−Sn合金被覆層のCu含有量を20〜70at%に規定する。より望ましくは45〜65at%である。
Hereinafter, the conductive material for connecting parts according to the present invention will be specifically described.
(1) Regarding the Cu—Sn alloy coating layer, the reason for setting its Cu content to 20 to 70 at% will be described. The Cu—Sn alloy coating layer having a Cu content of 20 to 70 at% is made of an intermetallic compound mainly composed of a Cu 6 Sn 5 phase. The Cu6Sn5 phase is very hard compared to Sn or Sn alloy forming the Sn coating layer. If it is partially exposed on the outermost surface of the material, deformation resistance and adhesion due to digging of the Sn coating layer during terminal insertion / extraction The shear resistance for shearing can be suppressed, and the friction coefficient can be made extremely low. Furthermore, in the present invention, the Cu6Sn5 phase partially protrudes from the surface of the Sn coating layer, so that the contact pressure is a hard Cu6Sn5 phase when the electrical contact part slides or slides slightly under terminal insertion / extraction or vibration environment. Accordingly, the contact area between the Sn coating layers can be further reduced, so that the friction coefficient can be further reduced, and wear and oxidation of the Sn coating layer due to fine sliding are also reduced. On the other hand, the Cu3Sn phase is harder but has a higher Cu content than the Cu6Sn5 phase. Therefore, when this is partially exposed on the surface of the Sn coating layer, the oxidation of Cu on the surface of the material due to aging, corrosion, etc. The amount of material increases, the contact resistance tends to increase, and it becomes difficult to maintain the reliability of electrical connection. Further, since the Cu3Sn phase is more fragile than the Cu6Sn5 phase, there is a problem that molding processability is inferior. Therefore, the constituent component of the Cu—Sn alloy coating layer is defined as a Cu—Sn alloy having a Cu content of 20 to 70 at%.
This Cu—Sn alloy coating layer may contain a part of the
(2)Cu−Sn合金被覆層の平均の厚さを0.2〜3.0μmとした理由について述べる。なお本発明では、Cu−Sn合金被覆層の平均の厚さを、Cu−Sn合金被覆層に含有されるSnの面密度(単位:g/mm2)をSnの密度(単位:g/mm3)で除した値と定義する(下記実施例に記載したCu−Sn合金被覆層の平均の厚さ測定方法は、この定義に準拠するものである)。Cu−Sn合金被覆層の平均の厚さが0.2μm未満では、特に本発明のようにCu−Sn合金被覆層を材料表面に部分的に露出形成させる場合には、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。一方3.0μmを超える場合には、経済的に不利であり、生産性も悪く、硬い層が厚く形成されるために成形加工性なども悪くなる。従って、Cu−Sn合金被覆層の平均の厚さを0.2〜3.0μmに規定する。より望ましくは0.3〜1.0μmである。 (2) The reason for setting the average thickness of the Cu—Sn alloy coating layer to 0.2 to 3.0 μm will be described. In the present invention, the average thickness of the Cu—Sn alloy coating layer, the surface density of Sn contained in the Cu—Sn alloy coating layer (unit: g / mm 2), and the Sn density (unit: g / mm 3) (The method for measuring the average thickness of the Cu—Sn alloy coating layer described in the following examples is based on this definition). When the average thickness of the Cu—Sn alloy coating layer is less than 0.2 μm, particularly when the Cu—Sn alloy coating layer is partially exposed on the surface of the material as in the present invention, thermal diffusion such as high-temperature oxidation is performed. As a result, the amount of Cu oxide on the surface of the material increases, the contact resistance tends to increase, and it becomes difficult to maintain the reliability of electrical connection. On the other hand, when it exceeds 3.0 μm, it is economically disadvantageous, the productivity is poor, and the hard layer is formed thick, so that the moldability is also deteriorated. Therefore, the average thickness of the Cu—Sn alloy coating layer is specified to be 0.2 to 3.0 μm. More desirably, the thickness is 0.3 to 1.0 μm.
(3)Cu−Sn合金被覆層の材料表面露出面積率を3〜75%とした理由について述べる。なお本発明では、Cu−Sn合金被覆層の材料表面露出面積率を、材料の単位表面積あたりに露出するCu−Sn合金被覆層の表面積に100をかけた値として算出する。Cu−Sn合金被覆層の材料表面露出面積率が3%未満では、Sn被覆層同士の凝着量が増し、さらに端子挿抜の際の接触面積が増加するため摩擦係数を低くすることが困難となり、耐微摺動摩耗性も低下する。一方75%を超える場合には、経時や腐食などによる材料表面のCuの酸化物量などが多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。従って、Cu−Sn合金被覆層の材料表面露出面積率を3〜75%に規定する。より望ましくは10〜50%である。 (3) The reason why the material surface exposed area ratio of the Cu—Sn alloy coating layer is set to 3 to 75% will be described. In the present invention, the material surface exposed area ratio of the Cu—Sn alloy coating layer is calculated as a value obtained by multiplying the surface area of the Cu—Sn alloy coating layer exposed per unit surface area of the material by 100. If the exposed surface area ratio of the Cu—Sn alloy coating layer is less than 3%, the amount of adhesion between the Sn coating layers increases, and the contact area during terminal insertion / extraction increases, making it difficult to reduce the friction coefficient. Also, the fine sliding wear resistance is lowered. On the other hand, if it exceeds 75%, the amount of Cu oxide on the surface of the material due to aging or corrosion increases, and it is easy to increase the contact resistance, and it becomes difficult to maintain the reliability of electrical connection. Therefore, the material surface exposed area ratio of the Cu—Sn alloy coating layer is specified to be 3 to 75%. More desirably, it is 10 to 50%.
(4)Sn被覆層の平均の厚さを0.2〜5.0μmとした理由について述べる。なお、本発明では、Sn被覆層の平均の厚さを、Sn被覆層に含有されるSnの面密度(単位:g/mm2)をSnの密度(単位:g/mm3)で割った値と定義する(下記実施例に記載したSn被覆層の平均の厚さ測定方法は、この定義に準拠するものである)。Sn被覆層の平均の厚さが0.2μm未満では、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、また耐食性も悪くなることから、電気的接続の信頼性を維持することが困難となる。一方5.0μmを超える場合には、経済的に不利であり、生産性も悪くなる。従って、Sn被覆層の平均の厚さを0.2〜5.0μmに規定する。より望ましくは0.5〜3.0μmである。
Sn被覆層がSn合金からなる場合、Sn合金のSn以外の構成成分としては、Pb、Bi、Zn、Ag、Cuなどが挙げられる。Pbについては50質量%未満、他の元素については10質量%未満が望ましい。
(4) The reason why the average thickness of the Sn coating layer is 0.2 to 5.0 μm will be described. In the present invention, the average thickness of the Sn coating layer is a value obtained by dividing the surface density (unit: g / mm2) of Sn contained in the Sn coating layer by the density of Sn (unit: g / mm3). (The method for measuring the average thickness of the Sn coating layer described in the examples below is based on this definition). If the average thickness of the Sn coating layer is less than 0.2 μm, the amount of Cu oxide on the surface of the material due to thermal diffusion such as high-temperature oxidation increases, and the contact resistance is likely to increase, and the corrosion resistance also deteriorates. It becomes difficult to maintain the reliability of the connection. On the other hand, if it exceeds 5.0 μm, it is economically disadvantageous and the productivity is also deteriorated. Therefore, the average thickness of the Sn coating layer is specified to be 0.2 to 5.0 μm. More desirably, the thickness is 0.5 to 3.0 μm.
When the Sn coating layer is made of an Sn alloy, examples of the constituent components other than Sn of the Sn alloy include Pb, Bi, Zn, Ag, and Cu. Pb is preferably less than 50% by mass, and other elements are preferably less than 10% by mass.
(5)材料表面の少なくとも一方向における算術平均粗さRaが0.15μm以上で全ての方向における算術平均粗さRaが3.0μm以下とした理由について述べる。全ての方向において算術平均粗さRaが0.15μm未満の場合、Cu−Sn合金被覆層の材料表面突出高さが全体に低く、電気接点部の摺動・微摺動の際に接圧力を硬いCu6Sn5相で受ける割合が小さくなり、特に、微摺動によるSn被覆層の摩耗量を低減することが困難となる。一方、いずれかの方向において算術平均粗さRaが3.0μmを超える場合、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、また耐食性も悪くなることから、電気的接続の信頼性を維持することが困難となる。従って、母材の表面粗さは、少なくとも一方向の算術平均粗さRaが0.15μm以上かつ全ての方向の算術平均粗さRaが3.0μm以下と規定する。より望ましくは0.2〜2.0μmである。 (5) The reason why the arithmetic average roughness Ra in at least one direction of the material surface is 0.15 μm or more and the arithmetic average roughness Ra in all directions is 3.0 μm or less will be described. When the arithmetic average roughness Ra is less than 0.15 μm in all directions, the protrusion height of the material surface of the Cu—Sn alloy coating layer is low overall, and the contact pressure is reduced when the electric contact portion slides or slightly slides. The ratio received by the hard Cu6Sn5 phase becomes small, and in particular, it becomes difficult to reduce the amount of wear of the Sn coating layer due to fine sliding. On the other hand, when the arithmetic average roughness Ra exceeds 3.0 μm in any direction, the amount of Cu oxide on the surface of the material due to thermal diffusion such as high-temperature oxidation increases, and the contact resistance is likely to increase, and the corrosion resistance also deteriorates. For this reason, it becomes difficult to maintain the reliability of the electrical connection. Accordingly, the surface roughness of the base material is defined such that the arithmetic average roughness Ra in at least one direction is 0.15 μm or more and the arithmetic average roughness Ra in all directions is 3.0 μm or less. More desirably, the thickness is 0.2 to 2.0 μm.
(6)材料表面の少なくとも一方向における平均の材料表面露出間隔が0.01〜0.5mmとした理由について述べる。なお、本発明では、Cu−Sn合金被覆層の平均の材料表面露出間隔を、材料表面に描いた直線を横切るCu−Sn合金被覆層の平均の幅(前記直線に沿った長さ)とSn被覆層の平均の幅を足した値と定義する。Cu−Sn合金被覆層の平均の材料表面露出間隔が0.01mm未満では、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。一方、0.5mmを超える場合には、特に小型端子に用いた際に低い摩擦係数を得ることが困難となる場合が生じてくる。一般的に端子が小型になれば、インデントやリブなどの電気接点部(挿抜部)の接触面積が小さくなるため、挿抜の際にSn被覆層同士のみの接触確率が増加する。これにより凝着量が増すため、低い摩擦係数を得ることが困難となる。従って、Cu−Sn合金被覆層の平均の材料表面露出間隔を少なくとも一方向において0.01〜0.5mmとすることが望ましい。より望ましくは、Cu−Sn合金被覆層の平均の材料表面露出間隔を全ての方向において0.01〜0.5mmにする。これにより、挿抜の際のSn被覆層同士のみの接触確率が低下する。さらに望ましくは0.05〜0.3mmである。 (6) The reason why the average material surface exposure interval in at least one direction of the material surface is 0.01 to 0.5 mm will be described. In the present invention, the average material surface exposure interval of the Cu—Sn alloy coating layer is defined as the average width (length along the straight line) of the Cu—Sn alloy coating layer crossing the straight line drawn on the material surface and Sn. It is defined as the value obtained by adding the average width of the covering layer. When the average material surface exposure interval of the Cu—Sn alloy coating layer is less than 0.01 mm, the amount of Cu oxide on the material surface due to thermal diffusion such as high-temperature oxidation increases, and it is easy to increase the contact resistance, and the reliability of electrical connection It becomes difficult to maintain the sex. On the other hand, when it exceeds 0.5 mm, it may be difficult to obtain a low coefficient of friction particularly when used for a small terminal. In general, when the terminal is reduced in size, the contact area of an electrical contact portion (insertion / extraction portion) such as an indent or a rib is reduced, so that the contact probability of only the Sn coating layers increases during insertion / extraction. This increases the amount of adhesion and makes it difficult to obtain a low coefficient of friction. Therefore, it is desirable that the average material surface exposure interval of the Cu—Sn alloy coating layer be 0.01 to 0.5 mm in at least one direction. More desirably, the average material surface exposure interval of the Cu—Sn alloy coating layer is set to 0.01 to 0.5 mm in all directions. Thereby, the contact probability only of Sn coating layers in the case of insertion / extraction falls. More desirably, the thickness is 0.05 to 0.3 mm.
(7)Sn被覆層の表面に露出するCu−Sn合金被覆層の厚さが0.2μm以上とした理由について述べる。これは、本発明のようにCu−Sn合金被覆層の一部をSn被覆層の表面に露出させる場合、製造条件によりSn被覆層の表面に露出するCu−Sn合金被覆層の厚さが前記Cu−Sn合金被覆層の平均の厚さと比較して極めて薄くなる場合が生じるからである。なお本発明では、Sn被覆層の表面に露出するCu−Sn合金被覆層の厚さを、断面観察により測定した値と定義する(前記Cu−Sn合金被覆層の平均の厚さ測定方法とは異なる)。Sn被覆層の表面に露出するCu−Sn合金被覆層の厚さが0.2μm未満の場合、特に本発明のようにCu−Sn合金被覆層を材料表面に部分的に露出形成させる場合には、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、また耐食性も低下することから、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。従って、Sn被覆層の表面に露出するCu−Sn合金被覆層の厚さを0.2μm以上とすることが望ましい。より望ましくは0.3μm以上である。 (7) The reason why the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is 0.2 μm or more will be described. This is because when the Cu-Sn alloy coating layer is partially exposed on the surface of the Sn coating layer as in the present invention, the thickness of the Cu-Sn alloy coating layer exposed on the surface of the Sn coating layer depends on the manufacturing conditions. It is because the case where it becomes very thin compared with the average thickness of a Cu-Sn alloy coating layer arises. In the present invention, the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is defined as a value measured by cross-sectional observation (what is the average thickness measurement method for the Cu—Sn alloy coating layer)? Different). When the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is less than 0.2 μm, particularly when the Cu—Sn alloy coating layer is partially exposed on the surface of the material as in the present invention. Since the amount of Cu oxide on the material surface due to thermal diffusion such as high-temperature oxidation increases and the corrosion resistance also decreases, it is easy to increase the contact resistance and it is difficult to maintain the reliability of electrical connection. Therefore, the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is desirably 0.2 μm or more. More desirably, it is 0.3 μm or more.
(8)黄銅や丹銅のようなZn含有Cu合金を母材として用いる場合などには、母材とCu−Sn合金被覆層の間にCu被覆層を有していてもよい。このCu被覆層はリフロー処理後にCuめっき層が残留したものである。Cu被覆層は、Znやその他の母材構成元素の材料表面への拡散を抑制するのに役立ち、はんだ付け性などが改善されることが広く知られている。Cu被覆層は厚くなりすぎると成型加工性などが劣化し、経済性も悪くなることから、Cu被覆層の厚さは3.0μm以下が好ましい。
Cu被覆層には、母材に含まれる成分元素等が少量混入していてもよい。また、Cu被覆層がCu合金からなる場合、Cn合金のCn以外の構成成分としてはSn、Zn等が挙げられる。Snの場合は50質量%未満、他の元素については5質量%未満が望ましい。
(8) When using a Zn-containing Cu alloy such as brass or red brass as a base material, a Cu coating layer may be provided between the base material and the Cu—Sn alloy coating layer. This Cu coating layer is a layer in which the Cu plating layer remains after the reflow treatment. It is widely known that the Cu coating layer is useful for suppressing the diffusion of Zn and other base material constituent elements to the material surface, and improves the solderability. If the Cu coating layer becomes too thick, the moldability and the like deteriorate and the economic efficiency also deteriorates. Therefore, the thickness of the Cu coating layer is preferably 3.0 μm or less.
A small amount of component elements contained in the base material may be mixed in the Cu coating layer. Moreover, when Cu covering layer consists of Cu alloy, Sn, Zn, etc. are mentioned as structural components other than Cn of Cn alloy. In the case of Sn, less than 50% by mass, and for other elements, less than 5% by mass is desirable.
(9)また、母材とCu−Sn合金被覆層の間(Cu被覆層がない場合)、又は母材とCu被覆層の間に、Ni被覆層が形成されていてもよい。Ni被覆層はCuや母材構成元素の材料表面への拡散を抑制して、高温長時間使用後も接触抵抗の上昇を抑制するとともに、Cu−Sn合金被覆層の成長を抑制してSn被覆層の消耗を防止し、また亜硫酸ガス耐食性が向上することが知られている。また、Ni被覆層自身の材料表面への拡散はCu−Sn合金被覆層やCu被覆層により抑制される。このことから、Ni被覆層を形成した接続部品用材料は、耐熱性が求められる接続部品に特に適する。Ni被覆層は厚くなりすぎると成型加工性などが劣化し、経済性も悪くなることから、Ni被覆層の厚さは3.0μm以下が好ましい。
Ni被覆層には、母材に含まれる成分元素等が少量混入していてもよい。また、Ni被覆層がNi合金からなる場合、Ni合金のNi以外の構成成分としては、Cu、P、Coなどが挙げられる。Cuについては40質量%以下、P、Coについては10質量%以下が望ましい。
(9) Further, a Ni coating layer may be formed between the base material and the Cu—Sn alloy coating layer (when there is no Cu coating layer), or between the base material and the Cu coating layer. The Ni coating layer suppresses the diffusion of Cu and matrix constituent elements to the surface of the material, suppresses the increase in contact resistance even after use at high temperature for a long time, and suppresses the growth of the Cu—Sn alloy coating layer to provide the Sn coating. It is known that layer consumption is prevented and sulfurous acid corrosion resistance is improved. Further, the diffusion of the Ni coating layer itself onto the material surface is suppressed by the Cu—Sn alloy coating layer or the Cu coating layer. For this reason, the connecting component material on which the Ni coating layer is formed is particularly suitable for connecting components that require heat resistance. If the Ni coating layer becomes too thick, the moldability and the like deteriorate and the economic efficiency also deteriorates. Therefore, the thickness of the Ni coating layer is preferably 3.0 μm or less.
The Ni coating layer may contain a small amount of component elements contained in the base material. Moreover, when Ni coating layer consists of Ni alloy, Cu, P, Co etc. are mentioned as structural components other than Ni of Ni alloy. For Cu, 40% by mass or less, and for P and Co, 10% by mass or less are desirable.
(10)本発明の材料表面におけるSn被覆層表面の凹凸は表面光沢を低下させ、摩擦係数や接触抵抗に悪影響を及ぼす場合があるため、なるべく平滑なほうが望ましい。母材表面の凹凸が激しい材料に被覆したSn被覆層の表面を平滑化する方法には、被覆層を形成させた後に研削、研磨などを行う機械的方法や、Sn被覆層をリフロー処理する方法が挙げられるが、経済性や生産性を考慮すると、Sn被覆層をリフロー処理する方法が望ましい。さらに、本発明のように、前記Cu−Sn合金被覆層の一部を前記Sn被覆層の表面に露出して形成させるには、リフロー処理以外の方法では製造が非常に困難となる。
凹凸の激しい母材表面に直接に、あるいはNiめっき層やCuめっき層を介してSnめっき層を施した場合、めっきの均一電着性が良好であれば、Snめっき層表面は、母材の表面形態を反映して凹凸の激しい表面が得られてしまう。これにリフロー処理を施すと、溶融した表面凸部のSnが表面凹部に流動する作用により、Sn被覆層の表面を平滑化でき、さらにリフロー処理中に形成されるCu−Sn合金被覆層の一部を前記Sn被覆層の表面に露出して形成させることができる。また加熱溶融処理を施すことにより、耐ウィスカ性も向上する。なお、Cuめっき層と溶融したSnめっき層の間に形成されるCu−Sn拡散合金層は、通常、母材の表面形態を反映して成長する。ただし、リフロー処理条件が不適切だと、Sn被覆層の表面に突出するCu−Sn合金被覆層の厚さが前記Cu−Sn合金被覆層の平均の厚さと比較して極めて薄くなる場合がある。
(10) Since the unevenness on the surface of the Sn coating layer on the surface of the material of the present invention may reduce the surface gloss and adversely affect the friction coefficient and contact resistance, it is desirable that the surface is as smooth as possible. As a method for smoothing the surface of the Sn coating layer coated with a material having a rough surface of the base material, a mechanical method for grinding or polishing after forming the coating layer, or a method for reflowing the Sn coating layer However, in consideration of economy and productivity, a method of reflowing the Sn coating layer is desirable. Further, as in the present invention, in order to form a part of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer, it is very difficult to manufacture by a method other than the reflow treatment.
When the Sn plating layer is applied directly on the surface of the base material with severe irregularities or through the Ni plating layer or the Cu plating layer, if the uniform electrodeposition of plating is good, the Sn plating layer surface is Reflecting the surface form, a highly uneven surface is obtained. When this is subjected to reflow treatment, the surface of the Sn coating layer can be smoothed by the action of the molten Sn of the surface convex portion flowing into the surface concave portion, and one of the Cu-Sn alloy coating layers formed during the reflow treatment. The portion can be exposed on the surface of the Sn coating layer. Moreover, whisker resistance is also improved by performing the heat melting treatment. The Cu—Sn diffusion alloy layer formed between the Cu plating layer and the molten Sn plating layer usually grows reflecting the surface form of the base material. However, if the reflow treatment conditions are inappropriate, the thickness of the Cu—Sn alloy coating layer protruding from the surface of the Sn coating layer may be extremely thin compared to the average thickness of the Cu—Sn alloy coating layer. .
続いて、本発明に係る接続部品用導電材料の製造方法について、具体的に説明する。
(1)本発明の接続部品用導電材料は、リフロー処理後のSn被覆層が平均の厚さ0.2〜5.0μmで存在し、材料表面の少なくとも一方向における算術平均粗さRaが0.15μm以上、全ての方向における算術平均粗さRaが3.0μm以下で、Sn被覆層の表面にCu−Sn合金被覆層の一部が露出し、その表面露出面積率が3〜75%である。Sn被覆層の表面に露出するCu−Sn合金被覆層の一部は、Sn被覆層の表面に突出している。なお、従来の接続部品用導電材料においては、Cu−Sn合金被覆層が表面に露出する状態であれば、Sn被覆層は完全に又はほとんど消滅した状態になっていた。
Next, the method for producing the conductive material for connection parts according to the present invention will be specifically described.
(1) In the conductive material for connecting parts of the present invention, the Sn coating layer after the reflow treatment exists with an average thickness of 0.2 to 5.0 μm, and the arithmetic average roughness Ra in at least one direction of the material surface is 0. .15 μm or more, arithmetic average roughness Ra in all directions is 3.0 μm or less, a part of the Cu—Sn alloy coating layer is exposed on the surface of the Sn coating layer, and the surface exposed area ratio is 3 to 75%. is there. A part of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer protrudes on the surface of the Sn coating layer. In the conventional conductive material for connecting parts, if the Cu—Sn alloy coating layer is exposed on the surface, the Sn coating layer is completely or almost extinguished.
本発明の方法は、母材の表面を粗化処理したうえで、該母材表面に直接に、あるいはNiめっき層やCuめっき層を介してSnめっき層を施し、続いてリフロー処理する方法である。母材の表面を粗化処理する方法としては、イオンエッチング等の物理的方法、エッチングや電解研磨等の化学的方法、圧延(研磨やショットブラスト等により粗面化したワークロールを使用)、研磨、ショットブラスト等の機械的方法が挙げられる。この中で、生産性、経済性及び母材表面形態の再現性に優れる方法としては、圧延や研磨が望ましい。
なお、Niめっき層、Cuめっき層及びSnめっき層が、それぞれNi合金、Cu合金及びSn合金からなる場合、先にNi被覆層、Cu被覆層及びSn被覆層に関して説明した各合金を用いることができる。
The method of the present invention is a method in which the surface of the base material is roughened, and then the Sn plating layer is applied directly to the surface of the base material or through the Ni plating layer or the Cu plating layer, followed by reflow processing. is there. As a method for roughening the surface of the base material, a physical method such as ion etching, a chemical method such as etching or electrolytic polishing, rolling (using a work roll roughened by polishing or shot blasting), polishing, etc. And mechanical methods such as shot blasting. Among these methods, rolling and polishing are desirable as methods that are excellent in productivity, economy, and reproducibility of the base material surface form.
In addition, when the Ni plating layer, the Cu plating layer, and the Sn plating layer are respectively made of a Ni alloy, a Cu alloy, and a Sn alloy, it is possible to use the respective alloys described above regarding the Ni coating layer, the Cu coating layer, and the Sn coating layer. it can.
(2)ここで、母材の表面粗さについて、少なくとも一方向の算術平均粗さRaが0.3μm以上、かつ全ての方向の算術平均粗さRaが4.0μm以下とした理由について述べる。全ての方向において算術平均粗さRaが0.3μm未満の場合、本発明の接続部品用導電材料の製造が非常に困難となる。具体的にいえば、リフロー処理後の材料表面の少なくとも一方向における算術平均粗さRaを0.15μm以上とし、かつCu−Sn合金被覆層の材料表面露出面積率を3〜75%としながら、同時にSn被覆層の平均の厚さを0.2〜5.0μmとすることが非常に困難となる。一方、いずれかの方向において算術平均粗さRaが4.0μmを超える場合、溶融Sn又はSn合金の流動作用によるSn被覆層表面の平滑化が困難となる。従って、母材の表面粗さは、少なくとも一方向の算術平均粗さRaが0.3μm以上かつ全ての方向の算術平均粗さRaが4.0μm以下と規定する。この表面粗さとしたことにより、溶融Sn又はSn合金の流動作用(Sn被覆層の平滑化)に伴い、リフロー処理で成長したCu−Sn合金被覆層の一部が材料表面に露出する。
母材の表面粗さについては、より望ましくは、少なくとも一方向の算術平均粗さRaが0.4μm以上かつ全ての方向の算術平均粗さRaが3.0μm以下である。
(2) Here, regarding the surface roughness of the base material, the reason why the arithmetic average roughness Ra in at least one direction is 0.3 μm or more and the arithmetic average roughness Ra in all directions is 4.0 μm or less will be described. When the arithmetic average roughness Ra is less than 0.3 μm in all directions, it is very difficult to manufacture the conductive material for connecting parts of the present invention. Specifically, the arithmetic average roughness Ra in at least one direction of the material surface after the reflow treatment is 0.15 μm or more, and the material surface exposed area ratio of the Cu—Sn alloy coating layer is 3 to 75%, At the same time, it becomes very difficult to set the average thickness of the Sn coating layer to 0.2 to 5.0 μm. On the other hand, when the arithmetic average roughness Ra exceeds 4.0 μm in any direction, it becomes difficult to smooth the surface of the Sn coating layer due to the flow action of molten Sn or Sn alloy. Therefore, the surface roughness of the base material is defined such that the arithmetic average roughness Ra in at least one direction is 0.3 μm or more and the arithmetic average roughness Ra in all directions is 4.0 μm or less. Due to the surface roughness, a part of the Cu—Sn alloy coating layer grown by the reflow process is exposed on the material surface with the flow action of the molten Sn or Sn alloy (smoothing of the Sn coating layer).
Regarding the surface roughness of the base material, it is more desirable that the arithmetic average roughness Ra in at least one direction is 0.4 μm or more and the arithmetic average roughness Ra in all directions is 3.0 μm or less.
(3)さらに、前記母材の表面粗さについて、前記一方向において算出された凹凸の平均間隔Smが0.01〜0.5mmとした理由について述べる。本発明の方法は、母材の表面を粗化処理したうえで、該母材表面に直接に、あるいはNiめっき層やCuめっき層を介してSnめっき層を施し、続いてリフロー処理する方法であり、前記材料表面は、少なくとも一方向における平均の材料表面露出間隔が0.01〜0.5mmであることが望ましい。Cu合金母材又はCuめっき層と溶融したSnめっき層の間に形成されるCu−Sn拡散合金層は、通常、母材の表面形態を反映して成長するため、前記材料表面露出間隔は母材表面の凹凸の平均間隔Smにおよそ反映する。従って、前記一方向において算出された凹凸の平均間隔Smが0.01〜0.5mmであることが望ましい。さらに望ましくは0.05〜0.3mmである。これにより、材料表面に露出するCu−Sn合金被覆層の露出形態を制御することが可能となる。 (3) Further, the reason why the average interval Sm between the irregularities calculated in the one direction is set to 0.01 to 0.5 mm for the surface roughness of the base material will be described. The method of the present invention is a method in which the surface of the base material is roughened, and then the Sn plating layer is applied directly to the surface of the base material or through the Ni plating layer or the Cu plating layer, followed by reflow processing. In addition, the material surface preferably has an average material surface exposure interval of 0.01 to 0.5 mm in at least one direction. Since the Cu-Sn diffusion alloy layer formed between the Cu alloy base material or the Cu plating layer and the molten Sn plating layer normally grows reflecting the surface form of the base material, the material surface exposure interval is the base material. This is reflected in the average interval Sm of the unevenness on the material surface. Therefore, it is desirable that the average interval Sm between the irregularities calculated in the one direction is 0.01 to 0.5 mm. More desirably, the thickness is 0.05 to 0.3 mm. This makes it possible to control the exposed form of the Cu—Sn alloy coating layer exposed on the material surface.
(4)またリフロー処理を行う場合のリフロー条件は、Snめっき層の溶融温度〜600℃×3〜30秒間とする。Sn金属の場合、加熱温度が230℃未満では溶融せず、低すぎないCu含有量のCu−Sn合金被覆層を得るには、望ましくは240℃以上であり、600℃を越えると母材が軟化し、歪みが発生するとともに、高すぎるCu含有量のCu−Sn合金被覆層が形成され、接触抵抗を低く維持することができない。加熱時間が3秒未満では熱伝達が不均一となり、十分な厚みのCu−Sn合金被覆層を形成できず、30秒を越える場合には、材料表面の酸化が進行するため、接触抵抗が増加し、耐微摺動摩耗性も劣化する。
このリフロー処理を行うことにより、Cu−Sn合金被覆層が形成され、溶融Sn又はSn合金が流動してSn被覆層が平滑化され、0.2μm以上の厚さを有するCu−Sn合金被覆層が材料表面に露出する。また、めっき粒子が大きくなり、めっき応力が低下し、ウイスカが発生しなくなる。いずれにしても、Cu−Sn合金層を均一に成長させるためには、熱処理はSn又はSn合金の溶融する温度で、300℃以下のできるだけ少ない熱量で行うことが望ましい。
(4) Moreover, the reflow conditions in the case of performing the reflow treatment are the melting temperature of the Sn plating layer to 600 ° C. × 3 to 30 seconds. In the case of Sn metal, when the heating temperature is less than 230 ° C., it does not melt, and in order to obtain a Cu-Sn alloy coating layer with a Cu content that is not too low, it is desirably 240 ° C. or higher. Softening and distortion occur, and a Cu-Sn alloy coating layer with an excessively high Cu content is formed, and the contact resistance cannot be kept low. If the heating time is less than 3 seconds, the heat transfer becomes non-uniform, and a sufficiently thick Cu—Sn alloy coating layer cannot be formed. If the heating time exceeds 30 seconds, the surface of the material oxidizes and the contact resistance increases. In addition, the fine sliding wear resistance also deteriorates.
By performing this reflow treatment, a Cu—Sn alloy coating layer is formed, the molten Sn or Sn alloy flows, the Sn coating layer is smoothed, and a Cu—Sn alloy coating layer having a thickness of 0.2 μm or more Is exposed on the material surface. Further, the plating particles become large, the plating stress is reduced, and whiskers are not generated. In any case, in order to uniformly grow the Cu—Sn alloy layer, it is desirable to perform the heat treatment at the temperature at which Sn or the Sn alloy melts and with as little heat as possible at 300 ° C. or less.
(5)なお、これまで、本発明に係る導電材料の製造方法に関し、母材に直接、あるいはNiめっき層やCuめっき層を介してSnめっき層をこの順に形成した後、リフロー処理してCu−Sn合金層を形成し、更に材料表面を平滑化する方法を説明したが、本発明に係る接続部品用導電材料の被覆層構成は、母材に直接、あるいはNiめっき層を介してCu−Sn合金めっき層を形成し、その上にSnめっき層を形成し、リフロー処理することでも得ることができる。後者の方法も本発明に含まれる。 (5) Until now, regarding the method for producing a conductive material according to the present invention, an Sn plating layer is formed in this order directly on a base material or via a Ni plating layer or a Cu plating layer, and then subjected to reflow treatment to form Cu. Although the method of forming a Sn alloy layer and further smoothing the surface of the material has been described, the coating layer structure of the conductive material for connecting parts according to the present invention can be formed directly on the base material or via a Ni plating layer. It can also be obtained by forming a Sn alloy plating layer, forming a Sn plating layer thereon, and performing a reflow treatment. The latter method is also included in the present invention.
以上述べた本発明に係る接続部品用導電材料の断面構造(リフロー後)を、図1に模式的に示す。この図1では、母材Aの一方の表面(図1において上側の表面)が粗面化され、他方の表面が従来材と同じく平滑である。粗面化した前記一方の表面では、表面の凹凸に沿って、数〜数十μm程度の径の粒子からなるCu−Sn合金被覆層Yが形成され、Sn被覆層Xが溶融流動して平滑化しており、それに伴い、Cu−Sn合金被覆層Yが一部材料表面に露出し、Sn被覆層Xの表面から突出している。平滑な前記他方の表面では、従来材と同じく、Cu−Sn合金被覆層Yの全面をSn被覆層Xが覆っている。 The cross-sectional structure (after reflow) of the conductive material for connecting parts according to the present invention described above is schematically shown in FIG. In FIG. 1, one surface of the base material A (upper surface in FIG. 1) is roughened, and the other surface is smooth as in the conventional material. On the roughened one surface, a Cu—Sn alloy coating layer Y composed of particles having a diameter of several to several tens of μm is formed along the unevenness of the surface, and the Sn coating layer X melts and flows smoothly. Accordingly, a part of the Cu—Sn alloy coating layer Y is exposed on the surface of the material and protrudes from the surface of the Sn coating layer X. On the other smooth surface, the Sn coating layer X covers the entire surface of the Cu—Sn alloy coating layer Y as in the conventional material.
このように本発明の接続部品用導電材料は、電気的接続の信頼性の維持に必要なSn被覆層を厚く形成させても、電気的接続の信頼性が比較的良好で、かつ端子挿抜の際の挿抜力を低下させるのに効果的なCu−Sn合金被覆層を、材料表面に適正な条件で露出させているため、摩擦係数が低く、電気的接続の信頼性(低い接触抵抗)を維持することができる。
また、この接続部品用導電材料は、少なくとも端子が挿抜・微摺動される部分の被覆層構成について、Cu含有量が20〜70at%で平均の厚さが0.2〜3.0μmのCu−Sn合金被覆層と平均の厚さが0.2〜5.0μmのSn被覆層がこの順に形成され、その材料表面はリフロー処理されていて、少なくとも一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが3.0μm以下であり、前記Sn被覆層の表面に前記Cu−Sn合金被覆層の一部が露出して形成され、前記Cu−Sn合金被覆層の材料表面露出面積率が3〜75%となっていればよく、端子が挿抜されない部分(例えば、ワイヤやプリント基板との接合部)の被覆層構成は前記規定を満たしていなくてもよい。しかし、この接続部品用導電材料を端子が挿抜されない部分に適用すれば、電気的接続の信頼性を更に高くすることが可能となる。
As described above, the conductive material for connecting parts of the present invention has relatively good electrical connection reliability even when the Sn coating layer necessary for maintaining the reliability of the electrical connection is formed thick, and the insertion / extraction of the terminals. The Cu-Sn alloy coating layer, which is effective in reducing the insertion / extraction force at the time, is exposed to the material surface under appropriate conditions, so that the friction coefficient is low and the reliability of electrical connection (low contact resistance) is achieved. Can be maintained.
Further, this conductive material for connecting parts is a Cu layer having a Cu content of 20 to 70 at% and an average thickness of 0.2 to 3.0 μm, at least in the covering layer structure where the terminal is inserted / extracted and slightly slid A Sn alloy coating layer and an Sn coating layer having an average thickness of 0.2 to 5.0 μm are formed in this order, the material surface is reflowed, and the arithmetic average roughness Ra in at least one direction is 0. 15 μm or more, the arithmetic average roughness Ra in all directions is 3.0 μm or less, and a part of the Cu—Sn alloy coating layer is exposed on the surface of the Sn coating layer, and the Cu—Sn alloy is formed. It is sufficient that the material surface exposed area ratio of the coating layer is 3 to 75%, and the configuration of the coating layer of the portion where the terminal is not inserted / extracted (for example, a joint portion with a wire or a printed board) does not satisfy the above-mentioned regulations. Good. However, if this conductive material for connecting parts is applied to a portion where the terminal is not inserted / extracted, the reliability of electrical connection can be further increased.
以下の実施例により、要点を絞り、更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The following examples will focus on the essential points and will be described more specifically, but the present invention is not limited to these examples.
[Cu合金母材の作製]
本実施例においては、Cu中に0.1質量%のFe、0.03質量%のP、2.0質量%のSnを含有するCu合金板条を用い、機械的な方法(圧延又は研磨)で表面粗化処理を行い、ビッカース硬さ180、厚さ0.25mmで、各々の表面粗さを有するCu合金母材に仕上げた。さらに、各々の厚さのNiめっき、Cuめっき及びSnめっきを施した後、280℃で10秒間のリフロー処理を行うことにより試験材No.1〜5を得た。その製造条件を表1に示す。なお、表1に記載されたCu合金母材の表面粗さ、Niめっき、Cuめっき及びSnめっきの平均の厚さは、下記要領で測定した。
[Cu合金母材の表面粗さ測定方法]
接触式表面粗さ計(株式会社東京精密;サーフコム1400)を用いて、JIS B0601−1994に基づいて測定した。表面粗さ測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さを4.0mm、測定速度を0.3mm/s、及び触針先端半径を5μmRとした。なお、表面粗さ測定方向は、表面粗化処理の際に行った圧延又は研磨方向に直角な方向(表面粗さが最も大きく出る方向)とした。
[Preparation of Cu alloy base material]
In this example, a Cu alloy strip containing 0.1% by mass of Fe, 0.03% by mass of P, and 2.0% by mass of Sn in Cu is used, and a mechanical method (rolling or polishing) is used. ), And a Cu alloy base material having a surface roughness of Vickers hardness of 180 and a thickness of 0.25 mm was obtained. Furthermore, after performing Ni plating of each thickness, Cu plating, and Sn plating, by performing the reflow process for 10 seconds at 280 degreeC, test material No. 1-5 were obtained. The production conditions are shown in Table 1. In addition, the surface roughness of the Cu alloy base material described in Table 1, the average thickness of Ni plating, Cu plating, and Sn plating were measured as follows.
[Method for measuring surface roughness of Cu alloy base material]
It measured based on JISB0601-1994 using the contact-type surface roughness meter (Tokyo Seimitsu; Surfcom 1400). The surface roughness measurement conditions were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, a measurement speed of 0.3 mm / s, and a stylus tip radius of 5 μmR. The surface roughness measurement direction was a direction perpendicular to the rolling or polishing direction performed during the surface roughening treatment (the direction in which the surface roughness is maximized).
[Niめっきの平均の厚さ測定方法]
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、リフロー処理前の試験材のNiめっきの平均の厚さを算出した。測定条件は、検量線にSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
[Cuめっきの平均の厚さ測定方法]
ミクロトーム法にて加工したリフロー処理前の試験材の断面をSEM(走査型電子顕微鏡)を用いて10,000倍の倍率で観察し、画像解析処理によりCuめっきの平均の厚さを算出した。
[Snめっきの平均の厚さ測定方法]
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、リフロー処理前の試験材のSnめっきの平均の厚さを算出した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
[Measurement method of average thickness of Ni plating]
The average thickness of the Ni plating of the test material before the reflow treatment was calculated using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were Sn / Ni / base metal two-layer calibration curve for the calibration curve and the collimator diameter was φ0.5 mm.
[Measuring method of average thickness of Cu plating]
The cross section of the test material before reflow processing processed by the microtome method was observed at a magnification of 10,000 using an SEM (scanning electron microscope), and the average thickness of Cu plating was calculated by image analysis processing.
[Method for measuring average thickness of Sn plating]
Using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200), the average thickness of the Sn plating of the test material before the reflow treatment was calculated. The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm.
続いて、得られた試験材の被覆層構成及び材料表面粗さを、表2に示す。なお、Cu−Sn合金被覆層のCu含有量、Cu−Sn合金被覆層の平均の厚さ、Sn被覆層の平均の厚さ、Cu−Sn合金被覆層の材料表面露出面積率、Cu−Sn合金被覆層の平均の材料表面露出間隔、材料表面に露出するCu−Sn合金被覆層の厚さ及び材料表面粗さについては、下記要領で測定した。
[Cu−Sn合金被覆層のCu含有量測定方法]
まず、試験材をp-ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。その後、EDX(エネルギー分散型X線分光分析器)を用いて、Cu−Sn合金被覆層のCu含有量を定量分析により求めた。
[Cu−Sn合金被覆層の平均の厚さ測定方法]
まず、試験材をp-ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。その後、蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、Cu−Sn合金被覆層に含有されるSn成分の膜厚を測定した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。得られた値をCu−Sn合金被覆層の平均の厚さと定義して算出した。
Then, the coating layer structure and material surface roughness of the obtained test material are shown in Table 2. In addition, the Cu content of the Cu—Sn alloy coating layer, the average thickness of the Cu—Sn alloy coating layer, the average thickness of the Sn coating layer, the material surface exposed area ratio of the Cu—Sn alloy coating layer, Cu—Sn The average material surface exposure interval of the alloy coating layer, the thickness of the Cu—Sn alloy coating layer exposed on the material surface, and the material surface roughness were measured as follows.
[Method for measuring Cu content of Cu-Sn alloy coating layer]
First, the test material was immersed in an aqueous solution containing p-nitrophenol and caustic soda as components for 10 minutes to remove the Sn coating layer. Thereafter, the Cu content of the Cu—Sn alloy coating layer was determined by quantitative analysis using EDX (energy dispersive X-ray spectrometer).
[Method for measuring average thickness of Cu-Sn alloy coating layer]
First, the test material was immersed in an aqueous solution containing p-nitrophenol and caustic soda as components for 10 minutes to remove the Sn coating layer. Thereafter, the film thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm. The obtained value was defined as the average thickness of the Cu—Sn alloy coating layer.
[Sn被覆層の平均の厚さ測定方法]
まず、蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のSn被覆層の膜厚とCu−Sn合金被覆層に含有されるSn成分の膜厚の和を測定した。その後、p-ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。再度、蛍光X線膜厚計を用いて、Cu−Sn合金被覆層に含有されるSn成分の膜厚を測定した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。得られたSn被覆層の膜厚とCu−Sn合金被覆層に含有されるSn成分の膜厚の和から、Cu−Sn合金被覆層に含有されるSn成分の膜厚を差し引くことにより、Sn被覆層の平均の厚さを算出した。
[Method for measuring average thickness of Sn coating layer]
First, the sum of the film thickness of the Sn coating layer of the test material and the film thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). . Then, it was immersed for 10 minutes in the aqueous solution which uses p-nitrophenol and caustic soda as components, and the Sn coating layer was removed. Again, the film thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter. The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm. By subtracting the film thickness of the Sn component contained in the Cu-Sn alloy coating layer from the sum of the film thickness of the obtained Sn coating layer and the film thickness of the Sn component contained in the Cu-Sn alloy coating layer, Sn The average thickness of the coating layer was calculated.
[Cu−Sn合金被覆層の材料表面露出面積率測定方法]
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析によりCu−Sn合金被覆層の材料表面露出面積率を測定した。 図2にNo.1の組成像、図3にNo.2の組成像を示す。図中、XはSn被覆層、Yは露出したCu−Sn合金被覆層である。なお、No.1は研磨による表面粗化処理、No.2は圧延による表面粗化処理を行っている。
[Cu−Sn合金被覆層の平均の材料表面露出間隔測定方法]
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察し、得られた組成像から、材料表面に引いた直線を横切るCu−Sn合金被覆層の平均の幅(前記直線に沿った長さ)とSn被覆層の平均の幅を足した値の平均を求めることにより、Cu−Sn合金被覆層の平均の材料表面露出間隔を測定した。測定方向(引いた直線の方向)は、表面粗化処理の際に行った圧延又は研磨方向に直角な方向とした。
[材料表面に露出するCu−Sn合金被覆層の厚さ測定方法]
ミクロトーム法にて加工した試験材の断面をSEM(走査型電子顕微鏡)を用いて10,000倍の倍率で観察し、画像解析処理により材料表面に露出するCu−Sn合金被覆層の厚さを算出した。
[Measuring Method of Material Surface Exposed Area Ratio of Cu—Sn Alloy Coating Layer]
The surface of the test material was observed at a magnification of 200 using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer), and the resulting composition image was shaded (dirt, scratches, etc.). The surface area area ratio of the Cu—Sn alloy coating layer was measured by image analysis. In FIG. No. 1 composition image, No. 1 in FIG. 2 shows a composition image. In the figure, X is a Sn coating layer, and Y is an exposed Cu—Sn alloy coating layer. In addition, No. No. 1 is a surface roughening treatment by polishing. No. 2 performs surface roughening treatment by rolling.
[Measuring method of average material surface exposure interval of Cu—Sn alloy coating layer]
The surface of the test material was observed at a magnification of 200 times using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer), and was drawn on the material surface from the obtained composition image. By calculating the average of the value obtained by adding the average width (length along the straight line) of the Cu—Sn alloy coating layer crossing the straight line and the average width of the Sn coating layer, the average of the Cu—Sn alloy coating layer is obtained. The material surface exposure interval was measured. The measurement direction (the direction of the drawn straight line) was a direction perpendicular to the rolling or polishing direction performed during the surface roughening treatment.
[Method for measuring thickness of Cu—Sn alloy coating layer exposed on material surface]
The cross section of the test material processed by the microtome method is observed at a magnification of 10,000 times using a SEM (scanning electron microscope), and the thickness of the Cu-Sn alloy coating layer exposed on the material surface is determined by image analysis processing. Calculated.
[材料表面粗さ測定方法]
接触式表面粗さ計(株式会社東京精密;サーフコム1400)を用いて、JIS B0601−1994に基づいて測定した。表面粗さ測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さを4.0mm、測定速度を0.3mm/s、及び触針先端半径を5μmRとした。なお、表面粗さ測定方向は、表面粗化処理の際に行った圧延又は研磨方向に直角な方向(表面粗さが最も大きく出る方向)とした。
[Material surface roughness measurement method]
It measured based on JISB0601-1994 using the contact-type surface roughness meter (Tokyo Seimitsu; Surfcom 1400). The surface roughness measurement conditions were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, a measurement speed of 0.3 mm / s, and a stylus tip radius of 5 μmR. The surface roughness measurement direction was a direction perpendicular to the rolling or polishing direction performed during the surface roughening treatment (the direction in which the surface roughness is maximized).
また、得られた試験材について、摩擦係数評価試験、高温放置後の接触抵抗評価試験、塩水噴霧後の接触抵抗評価試験及び微摺動時の接触抵抗評価試験を、下記の要領で行った。その結果を、表3に示す。
[摩擦係数評価試験]
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図4に示すような装置を用いて評価した。まず、各試験材(No.1〜5)から切り出した板材のオス試験片1を水平な台2に固定し、その上に試験材No.5から切り出した半球加工材(内径をφ1.5mmとした)のメス試験片3をおいて被覆層同士を接触させた。続いて、メス試験片3に3.0Nの荷重(錘4)をかけてオス試験片1を押さえ、横型荷重測定器(アイコーエンジニアリング株式会社;Model−2152)を用いて、オス試験片1を水平方向に引っ張り(摺動速度を80mm/minとした)、摺動距離5mmまでの最大摩擦力F(単位:N)を測定した。摩擦係数を下記式(1)により求めた。なお、5はロードセル、矢印は摺動方向である。
摩擦係数=F/3.0 …(1)
Moreover, about the obtained test material, the friction coefficient evaluation test, the contact resistance evaluation test after leaving at high temperature, the contact resistance evaluation test after spraying with salt water, and the contact resistance evaluation test at the time of fine sliding were performed as follows. The results are shown in Table 3.
[Friction coefficient evaluation test]
The shape of the indented portion of the electrical contact in the fitting type connecting part was simulated and evaluated using an apparatus as shown in FIG. First, a male test piece 1 of a plate material cut out from each test material (No. 1 to 5) is fixed to a
Friction coefficient = F / 3.0 (1)
[高温放置後の接触抵抗評価試験]
各試験材に対し、大気中にて160℃×120hrの熱処理を行った後、接触抵抗を四端子法により、開放電圧20mV、電流10mA、無摺動の条件にて測定した。
[塩水噴霧後の接触抵抗評価試験]
各試験材に対し、JIS Z2371−2000に基づいて、5%NaCl水溶液を用いて35℃×6hrの塩水噴霧試験を行った後、接触抵抗を四端子法により、開放電圧20mV、電流10mA、無摺動の条件にて測定した。
[Evaluation test for contact resistance after standing at high temperature]
Each test material was heat-treated at 160 ° C. for 120 hours in the air, and then contact resistance was measured by a four-terminal method under an open voltage of 20 mV, a current of 10 mA, and no sliding.
[Contact resistance test after spraying with salt water]
Each test material was subjected to a salt spray test of 35 ° C. × 6 hr using a 5% NaCl aqueous solution based on JIS Z2371-2000, and then contact resistance was measured by a four-terminal method using an open-circuit voltage of 20 mV, a current of 10 mA, and nothing. Measurement was performed under sliding conditions.
[微摺動時の接触抵抗評価試験]
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図5に示すような摺動試験機(株式会社山崎精機研究所;CRS−B1050CHO)を用いて評価した。まず、試験材No.5から切り出した板材のオス試験片6を水平な台7に固定し、その上に各試験材(No.1〜5)から切り出した半球加工材(内径をφ1.5mmとした)のメス試験片8をおいて被覆層同士を接触させた。続いて、メス試験片8に2.0Nの荷重(錘9)をかけてオス試験片6を押さえ、オス試験片6とメス試験片8の間に定電流を印加し、ステッピングモータ10を用いてオス試験片6を水平方向に摺動させ(摺動距離を50μm、摺動周波数を1Hzとした)、摺動回数1000回までの最大接触抵抗を四端子法により、開放電圧20mV、電流10mAの条件にて測定した。なお、矢印は摺動方向である。
[Evaluation test for contact resistance during fine sliding]
The shape of the indented portion of the electrical contact in the fitting type connecting part was simulated and evaluated using a sliding tester (Yamazaki Seiki Laboratory Co., Ltd .; CRS-B1050CHO) as shown in FIG. First, test material No. A male test piece 6 of a plate material cut out from 5 is fixed to a horizontal base 7, and a female test of a hemispherical work material (with an inner diameter of φ1.5 mm) cut out from each test material (No. 1 to 5) thereon The coating layers were brought into contact with each other with the piece 8 interposed therebetween. Subsequently, a load of 2.0 N (weight 9) is applied to the female test piece 8 to hold the male test piece 6, a constant current is applied between the male test piece 6 and the female test piece 8, and the stepping
表1〜3に示すように、No.1〜2は、被覆層構成に関して本発明に規定する要件を満たし、摩擦係数が非常に低く、高温長時間放置後の接触抵抗、塩水噴霧後の接触抵抗及び微摺動時の接触抵抗のいずれについても、優れた特性を示す。特に、Ni被覆層を形成しているNo.1は、特に高温放置後の接触抵抗が低くなっており、耐熱性に優れている。
一方、No.3は、材料表面に突出するCu−Sn合金被覆層の平均の突出間隔が広いため、小さい接点での摩擦係数の低減効果が少なく、また微摺動時の接触抵抗も十分低く抑制することができなかった。また、No.4は、材料表面の算術平均粗さRaが小さいため、微摺動時の接触抵抗を低く抑制することができなかった。なお、No.5は、粗面化処理を行わない通常母材を用いたため、Cu−Sn合金被覆層が材料表面に露出せず、摩擦係数が高く、微摺動時の接触抵抗が高い。
As shown in Tables 1-3, no. Nos. 1 and 2 satisfy the requirements stipulated in the present invention regarding the coating layer structure, have a very low friction coefficient, contact resistance after standing at high temperature for a long time, contact resistance after spraying with salt water, and contact resistance at the time of fine sliding Also exhibits excellent properties. In particular, no. No. 1 has particularly low heat resistance after being left at high temperature and is excellent in heat resistance.
On the other hand, no. 3 has a large average protrusion interval of the Cu-Sn alloy coating layer protruding on the material surface, so that the effect of reducing the friction coefficient at a small contact is small, and the contact resistance at the time of fine sliding is sufficiently suppressed. could not. No. In No. 4, since the arithmetic average roughness Ra of the material surface was small, the contact resistance during fine sliding could not be suppressed low. In addition, No. No. 5 uses a normal base material that is not subjected to roughening treatment, so that the Cu—Sn alloy coating layer is not exposed on the material surface, has a high friction coefficient, and has a high contact resistance during fine sliding.
[Cu合金母材の作製]
本実施例においては、7/3黄銅板条を用い、機械的な方法(圧延又は研磨)で表面粗化処理を行い、ビッカース硬さ170、厚さ0.25mmで、所定の表面粗さを有するCu合金母材に仕上げた。さらに、各々の厚さのNiめっき、Cuめっき及び所定のSnめっきを施した後、各々のリフロー処理を行うことにより試験材No.6〜10を得た。その製造条件を表4に示す。なお、表4に記載されたCu合金母材の表面粗さ、Niめっき、Cuめっき及びSnめっきの平均の厚さについては、上記実施例1と同様の要領で測定した。
[Preparation of Cu alloy base material]
In this example, a 7/3 brass strip is used, and a surface roughening treatment is performed by a mechanical method (rolling or polishing), and a predetermined surface roughness is obtained with a Vickers hardness of 170 and a thickness of 0.25 mm. It finished to the Cu alloy base material which has. Further, after each thickness of Ni plating, Cu plating, and predetermined Sn plating was applied, each reflow treatment was performed, whereby the test material No. 6-10 were obtained. The production conditions are shown in Table 4. In addition, about the surface roughness of Ni alloy base material described in Table 4, Ni plating, Cu plating, and the average thickness of Sn plating, it measured in the same way as the said Example 1.
続いて、得られた試験材の被覆層構成及び材料表面粗さを、表5に示す。なお、Cu−Sn合金被覆層のCu含有量、Cu−Sn合金被覆層の平均の厚さ、Sn被覆層の平均の厚さ、Cu−Sn合金被覆層の材料表面露出面積率、Cu−Sn合金被覆層の平均の材料表面露出間隔、材料表面に露出するCu−Sn合金被覆層の厚さ及び材料表面粗さについては、上記実施例1と同様の要領で測定した。 Then, the coating layer structure and material surface roughness of the obtained test material are shown in Table 5. In addition, the Cu content of the Cu—Sn alloy coating layer, the average thickness of the Cu—Sn alloy coating layer, the average thickness of the Sn coating layer, the material surface exposed area ratio of the Cu—Sn alloy coating layer, Cu—Sn The average material surface exposure interval of the alloy coating layer, the thickness of the Cu—Sn alloy coating layer exposed on the material surface, and the material surface roughness were measured in the same manner as in Example 1.
また、得られた試験材について、摩擦係数評価試験、高温放置後の接触抵抗評価試験、塩水噴霧後の接触抵抗評価試験及び微摺動時の接触抵抗評価試験を、上記実施例1と同様の要領で行った。その結果を表6に示す。 For the obtained test materials, the friction coefficient evaluation test, the contact resistance evaluation test after standing at high temperature, the contact resistance evaluation test after spraying with salt water, and the contact resistance evaluation test at the time of fine sliding are the same as in Example 1 above. I went there. The results are shown in Table 6.
表4〜6に示すように、No.6は、被覆層構成に関して本発明に規定する要件を満たし、摩擦係数が非常に低く、高温長時間放置後の接触抵抗、塩水噴霧後の接触抵抗及び微摺動時の接触抵抗のいずれについても、優れた特性を示す。
一方、No.7は、高温で短時間のリフロー処理を施した試験材であり、材料表面に突出するCu−Sn合金被覆層の露出部の厚さが薄くなっているため、高温長時間放置後の接触抵抗及び塩水噴霧後の接触抵抗が高くなった。また、No.8は、リフロー温度が低かったため、Cu−Sn合金被覆層のCu含有量が少なくなり、摩擦係数の低減効果が少なく、また微摺動時の接触抵抗も高くなった。逆に、No.9は、高すぎる温度でリフロー処理を施したため、Cu−Sn合金被覆層のCu含有量が多くなり、高温長時間放置後の接触抵抗及び塩水噴霧後の接触抵抗が高くなった。さらに、No.10はリフロー時間が非常に長く、Sn被覆層が少なくなり、またCu−Sn合金被覆層の材料表面突出面積率が大きくなり、さらにリフロー処理中にSnの酸化皮膜層が厚く形成されたため、高温長時間放置後の接触抵抗、塩水噴霧後の接触抵抗及び微摺動時の接触抵抗がいずれも高くなった。
As shown in Tables 4-6, no. No. 6 satisfies the requirements stipulated in the present invention with respect to the coating layer configuration, has a very low coefficient of friction, and has any contact resistance after standing at high temperature for a long time, contact resistance after spraying salt water, and contact resistance at the time of fine sliding. Show excellent properties.
On the other hand, no. 7 is a test material subjected to reflow treatment at a high temperature for a short time, and the exposed portion of the Cu-Sn alloy coating layer protruding on the material surface is thin, so that the contact resistance after being left at high temperature for a long time The contact resistance after spraying with salt water increased. No. In No. 8, since the reflow temperature was low, the Cu content of the Cu—Sn alloy coating layer was decreased, the effect of reducing the friction coefficient was small, and the contact resistance during fine sliding was also increased. Conversely, no. No. 9 was subjected to reflow treatment at a temperature that was too high, so the Cu content of the Cu—Sn alloy coating layer increased, and the contact resistance after standing at high temperature for a long time and the contact resistance after spraying with salt water increased. Furthermore, no. No. 10 has a very long reflow time, the Sn coating layer is reduced, the surface area area ratio of the Cu-Sn alloy coating layer is increased, and the Sn oxide film layer is formed thick during the reflow process. The contact resistance after leaving for a long time, the contact resistance after spraying with salt water, and the contact resistance at the time of fine sliding increased.
A 母材
X Sn被覆層
Y Cu−Sn合金被覆層
1 オス試験片
2 台
3 メス試験片
4 錘
5 ロードセル
6 オス試験片
7 台
8 メス試験片
9 錘
10 ステッピングモータ
A Base material X Sn coating layer Y Cu-Sn alloy coating layer 1
Claims (13)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004375212A JP4024244B2 (en) | 2004-12-27 | 2004-12-27 | Conductive material for connecting parts and method for manufacturing the same |
EP05778496.9A EP1788585B1 (en) | 2004-09-10 | 2005-09-08 | Conductive material for connecting part and method for fabricating the conductive material |
PCT/JP2005/016553 WO2006028189A1 (en) | 2004-09-10 | 2005-09-08 | Conductive material for connecting part and method for manufacturing the conductive material |
KR1020077005512A KR100870334B1 (en) | 2004-09-10 | 2005-09-08 | Conductive material for connecting part and method for manufacturing the conductive material |
US11/574,768 US7820303B2 (en) | 2004-09-10 | 2005-09-08 | Conductive material for connecting part and method for manufacturing the conductive material |
US12/856,951 US8445057B2 (en) | 2004-09-10 | 2010-08-16 | Conductive material for connecting part and method for manufacturing the conductive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004375212A JP4024244B2 (en) | 2004-12-27 | 2004-12-27 | Conductive material for connecting parts and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006183068A true JP2006183068A (en) | 2006-07-13 |
JP4024244B2 JP4024244B2 (en) | 2007-12-19 |
Family
ID=36736400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004375212A Active JP4024244B2 (en) | 2004-09-10 | 2004-12-27 | Conductive material for connecting parts and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4024244B2 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008269999A (en) * | 2007-04-20 | 2008-11-06 | Kobe Steel Ltd | Terminal for coupling connector and its manufacturing method |
JP2008274364A (en) * | 2007-05-01 | 2008-11-13 | Kobe Steel Ltd | Terminal for engaging type connector and manufacturing method therefor |
JP2009007668A (en) * | 2007-05-29 | 2009-01-15 | Furukawa Electric Co Ltd:The | Metal material for electrical electronic component |
JP2009052076A (en) * | 2007-08-24 | 2009-03-12 | Kobe Steel Ltd | Conductive material for connecting component, and method for manufacturing the same |
JP2009099282A (en) * | 2007-10-12 | 2009-05-07 | Kobe Steel Ltd | Fitting type connector |
US7700883B2 (en) | 2007-04-20 | 2010-04-20 | (Kobe Steel, Ltd.) | Terminal for engaging type connector |
JP2010262863A (en) * | 2009-05-08 | 2010-11-18 | Shinko Leadmikk Kk | Press-fit terminal and method of manufacturing the same |
JP2011042860A (en) * | 2009-08-24 | 2011-03-03 | Kobe Steel Ltd | Tin plated copper or copper alloy material for connecting component used for connection with aluminum conductive member |
JP2011127153A (en) * | 2009-12-16 | 2011-06-30 | Autonetworks Technologies Ltd | Plating material and method of producing the same |
JP2011157588A (en) * | 2010-01-29 | 2011-08-18 | Kobe Steel Ltd | Tin-plated copper alloy sheet material for fitting type terminal, and method for producing the same |
JP2011204617A (en) * | 2010-03-26 | 2011-10-13 | Kobe Steel Ltd | Copper alloy for component for connection and conductive material |
JP2011202266A (en) * | 2010-03-26 | 2011-10-13 | Kobe Steel Ltd | Mating-type connecting part and method of producing the same |
JP2012007227A (en) * | 2010-06-28 | 2012-01-12 | Jst Mfg Co Ltd | Electronic part |
JP2013139640A (en) * | 2013-02-21 | 2013-07-18 | Kobe Steel Ltd | Fitting type connector terminal |
CN103227369A (en) * | 2012-01-26 | 2013-07-31 | 三菱综合材料株式会社 | Tin-plated copper-alloy material for terminal and method for producing the same |
EP2636769A2 (en) | 2012-03-07 | 2013-09-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | A copper alloy sheet with Sn coating layer for a fitting type connection terminal and a fitting type connection terminal |
EP2644750A1 (en) * | 2012-03-30 | 2013-10-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Electroconductive material for connection component |
JP2013213249A (en) * | 2012-03-30 | 2013-10-17 | Jx Nippon Mining & Metals Corp | Sn-PLATED MATERIAL |
EP2703524A2 (en) | 2012-08-29 | 2014-03-05 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Sn-coated copper alloy strip having excellent heat resistance |
WO2014034460A1 (en) * | 2012-08-31 | 2014-03-06 | 株式会社オートネットワーク技術研究所 | Plated terminal for connector, and terminal pair |
WO2014045704A1 (en) * | 2012-09-21 | 2014-03-27 | 株式会社オートネットワーク技術研究所 | Connector terminal and material for connector terminal |
JP2014129611A (en) * | 2014-04-08 | 2014-07-10 | Auto Network Gijutsu Kenkyusho:Kk | Plating material and its manufacturing method |
EP2784184A1 (en) | 2013-03-29 | 2014-10-01 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Electroconductive material superior in resistance to fretting corrosion for connection component |
US8940405B2 (en) | 2010-03-26 | 2015-01-27 | Kobe Steel, Ltd. | Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same |
JP2015210940A (en) * | 2014-04-25 | 2015-11-24 | 矢崎総業株式会社 | Manufacturing method for terminal contact |
JP2015218363A (en) * | 2014-05-19 | 2015-12-07 | 日新製鋼株式会社 | Material for connection part |
KR20160111027A (en) | 2014-02-20 | 2016-09-23 | 가부시키가이샤 고베 세이코쇼 | Surface coating layer-equipped copper alloy plate strip having excellent heat resistance |
WO2016152495A1 (en) * | 2015-03-23 | 2016-09-29 | 株式会社神戸製鋼所 | Electrically conductive material for connection component |
KR20160120324A (en) | 2014-02-13 | 2016-10-17 | 가부시키가이샤 고베 세이코쇼 | Copper alloy sheet strip with surface coating layer having superior heat resistance |
KR20170032455A (en) | 2014-08-25 | 2017-03-22 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connection parts which has excellent minute slide wear resistance |
DE112016003503T5 (en) | 2015-09-01 | 2018-04-19 | Dowa Metaltech Co., Ltd. | Tinned product and method of making the same |
KR20180084118A (en) | 2015-12-24 | 2018-07-24 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connecting parts |
WO2020080411A1 (en) | 2018-10-17 | 2020-04-23 | 株式会社神戸製鋼所 | Copper or copper alloy strip with surface coating layer |
US10676835B2 (en) | 2015-05-07 | 2020-06-09 | Dowa Metaltech Co., Ltd. | Tin-plated product and method for producing same |
WO2020138414A1 (en) * | 2018-12-27 | 2020-07-02 | 三菱マテリアル株式会社 | Anti-corrosion terminal material, terminal, and electrical wire end section structure |
US10829862B2 (en) | 2014-03-04 | 2020-11-10 | Dowa Metaltech Co., Ltd. | Tin-plated product and method for producing same |
WO2021029301A1 (en) * | 2019-08-09 | 2021-02-18 | 株式会社オートネットワーク技術研究所 | Electric wire with terminal |
JP2021028880A (en) * | 2019-08-09 | 2021-02-25 | 株式会社オートネットワーク技術研究所 | Electric wire with terminal |
US11781234B2 (en) | 2018-12-26 | 2023-10-10 | Mitsubishi Materials Corporation | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6221695B2 (en) | 2013-03-25 | 2017-11-01 | 三菱マテリアル株式会社 | Tin-plated copper alloy terminal material with excellent insertability |
JP2015063750A (en) | 2013-08-26 | 2015-04-09 | 三菱マテリアル株式会社 | Tin-plated copper alloy terminal material excellent in insertability/extractability |
JP5897083B1 (en) * | 2014-08-25 | 2016-03-30 | 株式会社神戸製鋼所 | Conductive material for connecting parts with excellent resistance to fine sliding wear |
JP5897082B1 (en) * | 2014-08-25 | 2016-03-30 | 株式会社神戸製鋼所 | Conductive material for connecting parts with excellent resistance to fine sliding wear |
-
2004
- 2004-12-27 JP JP2004375212A patent/JP4024244B2/en active Active
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7700883B2 (en) | 2007-04-20 | 2010-04-20 | (Kobe Steel, Ltd.) | Terminal for engaging type connector |
US8076582B2 (en) | 2007-04-20 | 2011-12-13 | Kobe Steel, Ltd. | Terminal for engaging type connector |
JP2008269999A (en) * | 2007-04-20 | 2008-11-06 | Kobe Steel Ltd | Terminal for coupling connector and its manufacturing method |
JP2008274364A (en) * | 2007-05-01 | 2008-11-13 | Kobe Steel Ltd | Terminal for engaging type connector and manufacturing method therefor |
US9263814B2 (en) | 2007-05-29 | 2016-02-16 | Furukawa Electric Co., Ltd. | Metal material for electrical electronic component |
JP2009007668A (en) * | 2007-05-29 | 2009-01-15 | Furukawa Electric Co Ltd:The | Metal material for electrical electronic component |
JP2009052076A (en) * | 2007-08-24 | 2009-03-12 | Kobe Steel Ltd | Conductive material for connecting component, and method for manufacturing the same |
US7871710B2 (en) | 2007-08-24 | 2011-01-18 | Kobe Steel, Ltd. | Conductive material for a connecting part |
JP2009099282A (en) * | 2007-10-12 | 2009-05-07 | Kobe Steel Ltd | Fitting type connector |
JP2010262863A (en) * | 2009-05-08 | 2010-11-18 | Shinko Leadmikk Kk | Press-fit terminal and method of manufacturing the same |
JP2011042860A (en) * | 2009-08-24 | 2011-03-03 | Kobe Steel Ltd | Tin plated copper or copper alloy material for connecting component used for connection with aluminum conductive member |
JP2011127153A (en) * | 2009-12-16 | 2011-06-30 | Autonetworks Technologies Ltd | Plating material and method of producing the same |
JP2011157588A (en) * | 2010-01-29 | 2011-08-18 | Kobe Steel Ltd | Tin-plated copper alloy sheet material for fitting type terminal, and method for producing the same |
JP2011202266A (en) * | 2010-03-26 | 2011-10-13 | Kobe Steel Ltd | Mating-type connecting part and method of producing the same |
US8940405B2 (en) | 2010-03-26 | 2015-01-27 | Kobe Steel, Ltd. | Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same |
US9373925B2 (en) | 2010-03-26 | 2016-06-21 | Kobe Steel, Ltd. | Method for producing a mating-type connecting part |
JP2011204617A (en) * | 2010-03-26 | 2011-10-13 | Kobe Steel Ltd | Copper alloy for component for connection and conductive material |
US8956735B2 (en) | 2010-03-26 | 2015-02-17 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same |
JP2012007227A (en) * | 2010-06-28 | 2012-01-12 | Jst Mfg Co Ltd | Electronic part |
CN103227369A (en) * | 2012-01-26 | 2013-07-31 | 三菱综合材料株式会社 | Tin-plated copper-alloy material for terminal and method for producing the same |
TWI570283B (en) * | 2012-01-26 | 2017-02-11 | Mitsubishi Materials Corp | Metallic copper alloy terminal material with excellent plugability and manufacturing method thereof |
US20180301838A1 (en) * | 2012-03-07 | 2018-10-18 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal |
EP2636769A2 (en) | 2012-03-07 | 2013-09-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | A copper alloy sheet with Sn coating layer for a fitting type connection terminal and a fitting type connection terminal |
KR20150022965A (en) | 2012-03-07 | 2015-03-04 | 가부시키가이샤 고베 세이코쇼 | A copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal |
US9449728B2 (en) | 2012-03-30 | 2016-09-20 | Kobe Steel, Ltd. | Electroconductive material for connection component |
JP2013213249A (en) * | 2012-03-30 | 2013-10-17 | Jx Nippon Mining & Metals Corp | Sn-PLATED MATERIAL |
EP2644750A1 (en) * | 2012-03-30 | 2013-10-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Electroconductive material for connection component |
EP2703524A2 (en) | 2012-08-29 | 2014-03-05 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Sn-coated copper alloy strip having excellent heat resistance |
JP2014062322A (en) * | 2012-08-29 | 2014-04-10 | Kobe Steel Ltd | Copper alloy strip having surface containing layer excellent in heat resistance |
US9508462B2 (en) | 2012-08-29 | 2016-11-29 | Kobe Steel, Ltd. | Sn-coated copper alloy strip having excellent heat resistance |
WO2014034460A1 (en) * | 2012-08-31 | 2014-03-06 | 株式会社オートネットワーク技術研究所 | Plated terminal for connector, and terminal pair |
JPWO2014034460A1 (en) * | 2012-08-31 | 2016-08-08 | 株式会社オートネットワーク技術研究所 | Plated terminals and terminal pairs for connectors |
JP2014063662A (en) * | 2012-09-21 | 2014-04-10 | Auto Network Gijutsu Kenkyusho:Kk | Connector terminal, and material for connector terminal |
WO2014045704A1 (en) * | 2012-09-21 | 2014-03-27 | 株式会社オートネットワーク技術研究所 | Connector terminal and material for connector terminal |
JP2013139640A (en) * | 2013-02-21 | 2013-07-18 | Kobe Steel Ltd | Fitting type connector terminal |
JP2014208904A (en) * | 2013-03-29 | 2014-11-06 | 株式会社神戸製鋼所 | Electroconductive material superior in resistance to fretting corrosion for connection component |
EP2784184A1 (en) | 2013-03-29 | 2014-10-01 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Electroconductive material superior in resistance to fretting corrosion for connection component |
US9748683B2 (en) | 2013-03-29 | 2017-08-29 | Kobe Steel, Ltd. | Electroconductive material superior in resistance to fretting corrosion for connection component |
CN104078783A (en) * | 2013-03-29 | 2014-10-01 | 株式会社神户制钢所 | Electroconductive material superior in resistance to fretting corrosion for connection component |
US10415130B2 (en) | 2014-02-13 | 2019-09-17 | Kobe Steel, Ltd. | Copper alloy sheet strip with surface coating layer excellent in heat resistance |
KR20180089566A (en) | 2014-02-13 | 2018-08-08 | 가부시키가이샤 고베 세이코쇼 | Copper alloy sheet strip with surface coating layer having superior heat resistance |
KR20160120324A (en) | 2014-02-13 | 2016-10-17 | 가부시키가이샤 고베 세이코쇼 | Copper alloy sheet strip with surface coating layer having superior heat resistance |
EP3106546A4 (en) * | 2014-02-13 | 2017-06-28 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Copper alloy sheet strip with surface coating layer having superior heat resistance |
KR20160111027A (en) | 2014-02-20 | 2016-09-23 | 가부시키가이샤 고베 세이코쇼 | Surface coating layer-equipped copper alloy plate strip having excellent heat resistance |
US10233517B2 (en) | 2014-02-20 | 2019-03-19 | Kobe Steel, Ltd. | Copper alloy sheet strip with surface coating layer excellent in heat resistance |
US10829862B2 (en) | 2014-03-04 | 2020-11-10 | Dowa Metaltech Co., Ltd. | Tin-plated product and method for producing same |
JP2014129611A (en) * | 2014-04-08 | 2014-07-10 | Auto Network Gijutsu Kenkyusho:Kk | Plating material and its manufacturing method |
JP2015210940A (en) * | 2014-04-25 | 2015-11-24 | 矢崎総業株式会社 | Manufacturing method for terminal contact |
JP2015218363A (en) * | 2014-05-19 | 2015-12-07 | 日新製鋼株式会社 | Material for connection part |
US20170283910A1 (en) * | 2014-08-25 | 2017-10-05 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Conductive material for connection parts which has excellent minute slide wear resistance |
KR20170032455A (en) | 2014-08-25 | 2017-03-22 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connection parts which has excellent minute slide wear resistance |
KR20190045418A (en) | 2014-08-25 | 2019-05-02 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connection parts which has excellent minute slide wear resistance |
KR20190045417A (en) | 2014-08-25 | 2019-05-02 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connection parts which has excellent minute slide wear resistance |
KR102060947B1 (en) | 2015-03-23 | 2019-12-31 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connection parts |
JP2016180128A (en) * | 2015-03-23 | 2016-10-13 | 株式会社神戸製鋼所 | Conductive material for connection component |
WO2016152495A1 (en) * | 2015-03-23 | 2016-09-29 | 株式会社神戸製鋼所 | Electrically conductive material for connection component |
US10676835B2 (en) | 2015-05-07 | 2020-06-09 | Dowa Metaltech Co., Ltd. | Tin-plated product and method for producing same |
KR20180042418A (en) | 2015-09-01 | 2018-04-25 | 도와 메탈테크 가부시키가이샤 | Sn plating material and manufacturing method thereof |
DE112016003503T5 (en) | 2015-09-01 | 2018-04-19 | Dowa Metaltech Co., Ltd. | Tinned product and method of making the same |
US11078587B2 (en) | 2015-09-01 | 2021-08-03 | Dowa Metaltech Co., Ltd. | Tin-plated product and method for producing same |
KR20180084118A (en) | 2015-12-24 | 2018-07-24 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connecting parts |
US10597792B2 (en) | 2015-12-24 | 2020-03-24 | Kobe Steel, Ltd. | Electrically conductive material for connection component |
KR20210057118A (en) | 2018-10-17 | 2021-05-20 | 가부시키가이샤 고베 세이코쇼 | Copper or copper alloy plate with surface cladding |
WO2020080411A1 (en) | 2018-10-17 | 2020-04-23 | 株式会社神戸製鋼所 | Copper or copper alloy strip with surface coating layer |
US11781234B2 (en) | 2018-12-26 | 2023-10-10 | Mitsubishi Materials Corporation | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products |
WO2020138414A1 (en) * | 2018-12-27 | 2020-07-02 | 三菱マテリアル株式会社 | Anti-corrosion terminal material, terminal, and electrical wire end section structure |
JP7211075B2 (en) | 2018-12-27 | 2023-01-24 | 三菱マテリアル株式会社 | Anti-corrosion terminal material, terminal, and wire end structure |
JP2020105574A (en) * | 2018-12-27 | 2020-07-09 | 三菱マテリアル株式会社 | Anticorrosive terminal material, terminal and wire terminal structure |
JP2021028879A (en) * | 2019-08-09 | 2021-02-25 | 株式会社オートネットワーク技術研究所 | Electric wire with terminal |
JP2021028880A (en) * | 2019-08-09 | 2021-02-25 | 株式会社オートネットワーク技術研究所 | Electric wire with terminal |
WO2021029301A1 (en) * | 2019-08-09 | 2021-02-18 | 株式会社オートネットワーク技術研究所 | Electric wire with terminal |
US11843194B2 (en) | 2019-08-09 | 2023-12-12 | Autonetworks Technologies, Ltd. | Terminal-equipped electric wire |
US11843214B2 (en) | 2019-08-09 | 2023-12-12 | Autonetworks Technologies, Ltd. | Terminal-equipped electric wire |
Also Published As
Publication number | Publication date |
---|---|
JP4024244B2 (en) | 2007-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4024244B2 (en) | Conductive material for connecting parts and method for manufacturing the same | |
JP3926355B2 (en) | Conductive material for connecting parts and method for manufacturing the same | |
JP4503620B2 (en) | Conductive material for connecting parts and method for manufacturing the same | |
KR100870334B1 (en) | Conductive material for connecting part and method for manufacturing the conductive material | |
JP5025387B2 (en) | Conductive material for connecting parts and method for manufacturing the same | |
JP4771970B2 (en) | Conductive material for connecting parts | |
JP5319101B2 (en) | Sn plating material for electronic parts | |
JP3880877B2 (en) | Plated copper or copper alloy and method for producing the same | |
JP5464792B2 (en) | Method for manufacturing mating connector terminal | |
JP5005420B2 (en) | Mating connector terminal and manufacturing method thereof | |
JP5419594B2 (en) | Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members | |
JP6445895B2 (en) | Sn plating material and method for producing the same | |
KR20100108266A (en) | Sn-plated copper or sn-plated copper alloy having excellent heat resistance and manufacturing method thereof | |
JP2016169439A (en) | Copper terminal material with tin plating, manufacturing method therefor and wire terminal part structure | |
US20140295070A1 (en) | Electroconductive material superior in resistance to fretting corrosion for connection component | |
JP2004300524A (en) | Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD | |
JP2009099282A (en) | Fitting type connector | |
WO2017110859A1 (en) | Conductive material for connection component | |
JP5185759B2 (en) | Conductive material and manufacturing method thereof | |
WO2019087926A1 (en) | Anticorrosive terminal material, anticorrosive terminal, and electric wire end structure | |
JP7272224B2 (en) | Terminal materials for connectors | |
JP2007002341A (en) | Electroconductive material plate for forming connecting parts and manufacturing method therefor | |
JP5975903B2 (en) | Mating connector terminal | |
JP2006118054A (en) | Electroconductive material for connecting terminal and method for producing the same | |
JP2017082307A (en) | Copper with surface coating layer or copper alloy sheet stripe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071002 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4024244 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131012 Year of fee payment: 6 |