JP2006120659A - Substrate carrier - Google Patents

Substrate carrier Download PDF

Info

Publication number
JP2006120659A
JP2006120659A JP2004303661A JP2004303661A JP2006120659A JP 2006120659 A JP2006120659 A JP 2006120659A JP 2004303661 A JP2004303661 A JP 2004303661A JP 2004303661 A JP2004303661 A JP 2004303661A JP 2006120659 A JP2006120659 A JP 2006120659A
Authority
JP
Japan
Prior art keywords
arm
transfer
parallel link
transfer arm
drive source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004303661A
Other languages
Japanese (ja)
Other versions
JP4549153B2 (en
Inventor
Toshihiko Mitsuyoshi
敏彦 光吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JEL RES KK
JEL RESEARCH KK
JEL Corp
Original Assignee
JEL RES KK
JEL RESEARCH KK
JEL Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JEL RES KK, JEL RESEARCH KK, JEL Corp filed Critical JEL RES KK
Priority to JP2004303661A priority Critical patent/JP4549153B2/en
Publication of JP2006120659A publication Critical patent/JP2006120659A/en
Application granted granted Critical
Publication of JP4549153B2 publication Critical patent/JP4549153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a compact arm structure for precisely carrying a board conveying bed that is provided at the tip of a carrying arm to which two sets of parallel links are connected in a stable state. <P>SOLUTION: A turning arm 10 has first and second carrying arms 100, 200 to which two sets of parallel links are connected, and integrates an arm 111 in the first carrying arm 100 to which turning operation is given and an arm 211 in the second carrying arm 200 at a prescribed bending angle, when synchronizing the linear move of the first and second carrying arms 100, 200 and the retraction operation of the other. A prescribed turning operation is given from one drive source of the coaxial drive source to the turning arm 10, and synchronous turning operation in the same direction is given from the other drive source to one of the first and second carrying arms 100, 200. The conveying bed of the carrying arm to which the turning operation is given in the first or second carrying arm is retracted, and the conveying bed of the other carrying arm is moved linearly. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は基板搬送装置に係り、平行リンクからなる2組の搬送アームを有するツインアーム構造からなり、コンパクトで安定した状態で、基板を高精度に搬送できるようにした基板搬送装置に関する。   The present invention relates to a substrate transfer apparatus, and more particularly to a substrate transfer apparatus that has a twin arm structure having two sets of transfer arms composed of parallel links, and can transfer a substrate with high accuracy in a compact and stable state.

一般に半導体製造装置内には、所定のシーケンスで動作する搬送アームでウェハ等の基板を把持し、所定位置に移動させるようにした基板搬送装置が備えられている。この種の基板搬送装置はマルチチャンバタイプの半導体製造装置に使用された際に、高精度で迅速で多様な搬送動作が要求されている。出願人は、すでにこの要請に応えるために、耐久性を有する2組の平行リンクからなるツインアームを備え、各搬送アームが効率よく動作することにより、マルチチャンバタイプの半導体製造装置等における基板等の高速搬送を、高精度に行えるようにした、耐久性に富む基板搬送装置を提案している(特許文献1参照)。   In general, a semiconductor manufacturing apparatus includes a substrate transfer apparatus that holds a substrate such as a wafer by a transfer arm that operates in a predetermined sequence and moves the substrate to a predetermined position. When this type of substrate transfer apparatus is used in a multi-chamber type semiconductor manufacturing apparatus, it is required to perform various transfer operations with high accuracy and speed. In order to meet this demand, the applicant already has a twin arm consisting of two parallel links with durability, and each transfer arm operates efficiently, so that the substrate in a multi-chamber type semiconductor manufacturing apparatus, etc. Has proposed a highly durable substrate transfer apparatus that can perform high-speed transfer at high accuracy (see Patent Document 1).

また、同様のマルチチャンバタイプの半導体製造装置において、複数の小型駆動モータの連動動作により駆動するツインアームの採用により、トランスファチャンバとプロセスチャンバ間での基板の効率的な受け渡しを実現し、コストダウンを目指した搬送ロボットも提案されている(特許文献2参照)。   In addition, in the same multi-chamber type semiconductor manufacturing equipment, the adoption of twin arms that are driven by the interlocking operation of multiple small drive motors enables efficient transfer of substrates between the transfer chamber and the process chamber, thereby reducing costs. A transfer robot that aims to achieve this has also been proposed (see Patent Document 2).

特開2001−185596公報。JP 2001-185596 A. 特開平10−249757号公報。Japanese Patent Laid-Open No. 10-249757.

ところで、上述の特許文献1では、搬送アームの伸縮を実現するために2組の平行リンクを高精度に屈曲動作させるリニアガイドが使用されている。このリニアガイドは同期リンクを備えるため、部材点数が多く、関節部分が厚くなり、アーム屈曲部の薄型化が難しかった。また、リニアガイドは線状をなす内部経路をベアリングボールが連続して転動する構造であるが、従来の転動経路の短い玉軸受に比べて潤滑性に劣るおそれがあり、アームのスムースな屈曲、伸長が求められる場合、各関節等の可動部において、実績のある玉軸受の使用が望まれている。   By the way, in the above-mentioned patent document 1, in order to realize the expansion and contraction of the transfer arm, a linear guide for bending the two sets of parallel links with high accuracy is used. Since this linear guide includes a synchronization link, the number of members is large, the joint portion is thick, and it is difficult to reduce the thickness of the arm bending portion. In addition, the linear guide has a structure in which the bearing ball continuously rolls along a linear internal path, but there is a risk that it may be inferior in lubricity compared to a conventional ball bearing with a short rolling path, and the smoothness of the arm. When bending and extension are required, it is desired to use a proven ball bearing in a movable part such as each joint.

一方、特許文献2では、平行リンクの屈曲動作には歯車機構が使用されており、これらの噛合する歯車は所定のバックラッシをもって設計されているので、リンクの連動にガタが生じやすく、またダストの発生のおそれもある。このため真空プロセスにおいて搬送精度が低下し、高精度位置決めが期待できないという問題がある。また、プーリにベルトを掛け渡して回転角度の同期をとるようにした実施例も提案されている。しかし、ベルト等がプーリに巻回された際に繰り返し折り曲げられるため、早期に疲労破壊が生じるおそれがある。また、ベルト等の寿命を確保するために使用プーリの直径を大きくして対応することも考えられる。その場合にはプーリの直径が大きくなってしまい、リンク機構としての小型が難しい。   On the other hand, in Patent Document 2, a gear mechanism is used for the bending operation of the parallel links, and these meshing gears are designed with a predetermined backlash. There is also a risk of occurrence. For this reason, there is a problem that the conveyance accuracy is lowered in the vacuum process, and high-precision positioning cannot be expected. An embodiment in which a belt is wound around a pulley to synchronize the rotation angle has also been proposed. However, since the belt or the like is repeatedly bent when it is wound around the pulley, there is a risk that fatigue failure will occur early. It is also conceivable to increase the diameter of the pulley used in order to ensure the life of the belt or the like. In this case, the pulley has a large diameter, and it is difficult to reduce the size of the link mechanism.

また、特許文献2では、ツインアームの同時動作として、一方のアームを直動動作により伸長させるのと同時に、他のアームを旋回させて退避動作を行わせるために、退避動作をとる他のアームを独立して駆動させる駆動部が必要とする。このため4軸駆動系の基板搬送装置として設計しなければならず、装置の小型化の障害となる。   Further, in Patent Document 2, as a simultaneous operation of twin arms, one arm is extended by a linear motion, and at the same time, another arm that takes a retreat operation is performed by turning the other arm to perform a retreat operation. Are required to be driven independently. For this reason, it must be designed as a 4-axis drive system substrate transfer device, which is an obstacle to downsizing the device.

そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、ツインアームの各アームの平行リンクの屈曲部がコンパクトで高精度な動作を実現できる構成から成り、真空下の高温プロセスに対応可能な、高精度で伸縮および回転駆動できるようにした基板搬送装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and the bent portion of the parallel link of each arm of the twin arm has a configuration capable of realizing a compact and highly accurate operation, and is a high temperature process under vacuum. It is an object of the present invention to provide a substrate transfer apparatus that can be extended and contracted and rotated with high accuracy.

上記目的を達成するために、本発明は第1平行リンクの短節と、第2平行リンクの短節とを共有して連結し、前記第1平行リンクのアーム端に付与された旋回動作により、前記第1平行リンクのアームと第2平行リンクのアームのなす角度を変化させて前記第2平行リンクの自由端側の短節に設けられた搬送台を直線移動させる第1搬送アームと、該第1搬送アームと略同形で、同動作をなす第2搬送アームと、前記第1搬送アームと第2搬送アームを駆動する同軸駆動源が設けられ、該同軸駆動源からの動作付与により、前記第1搬送アームと前記第2搬送アームにおける一方の搬送台の直線移動と他方の退避動作とを、同期をとって行うようにした基板搬送装置において、前記第1搬送アームの第1平行リンクの旋回動作が付与されるアームと、前記第2搬送アームの第1平行リンクの旋回動作が付与されるアームとを所定屈曲角度をなし一体形成した旋回アームとし、該旋回アームに前記同軸駆動源の一方の駆動源から所定の旋回動作を付与するとともに、前記第1あるいは第2搬送アームのいずれかに、前記同軸駆動源の他方の駆動源から同期した同方向への旋回動作を付与し、前記第1あるいは第2搬送アームのうち、前記旋回動作が付与された搬送アームの搬送台を退避させるとともに、他の搬送アームの搬送台を直線移動させることを特徴とする。   In order to achieve the above object, according to the present invention, a short link of a first parallel link and a short link of a second parallel link are shared and connected, and a turning motion applied to an arm end of the first parallel link. A first transfer arm that linearly moves a transfer table provided at a short node on the free end side of the second parallel link by changing an angle formed by the arm of the first parallel link and the arm of the second parallel link; A second transfer arm that is substantially the same shape as the first transfer arm and performs the same operation, and a coaxial drive source that drives the first transfer arm and the second transfer arm are provided. By applying an operation from the coaxial drive source, In the substrate transfer apparatus, wherein the first transfer arm and the second transfer arm perform a linear movement of one transfer table and a retracting operation of the other transfer table in synchronization, the first parallel link of the first transfer arm The swivel motion And the arm to which the turning operation of the first parallel link of the second transport arm is given is a turning arm integrally formed with a predetermined bending angle, and the turning arm is provided with a predetermined distance from one drive source of the coaxial drive source. And the first or second transport arm is imparted with the swivel motion in the same direction in synchronization with the other drive source of the coaxial drive source. Among the arms, the transfer platform of the transfer arm to which the turning motion is applied is retracted, and the transfer platform of the other transfer arm is moved linearly.

このとき、第1搬送アーム及び第2搬送アームにおいて、それぞれ共有された前記短節を構成する各関節から、前記各第1平行リンクの各アームを所定量延長した端部支点間を連結する第1の連結部材と、前記各第2平行リンクの前記関節から各アーム上の所定量内側の中間支点間を連結した第2の連結部材とを、規制部材で連結することが好ましい。   At this time, in the first transfer arm and the second transfer arm, the first fulcrum that connects each arm of the first parallel link by a predetermined amount from each joint constituting the shared short joint is connected. It is preferable that the connecting member is connected to the second connecting member that connects between the intermediate fulcrum on a predetermined amount on each arm from the joint of each second parallel link by a regulating member.

さらに、前記規制部材は、前記第1の連結部材と第2の連結部材との間に掛け渡された板状バネ部材とすることが好ましい。   Furthermore, it is preferable that the restricting member is a plate-like spring member spanned between the first connecting member and the second connecting member.

以上に述べたように、本発明の基板搬送装置によれば、コンパクトなツインアームの装置構成により、コンパクトな装置を提供できるとともに、基板等の搬送を高精度に行えることができ、また耐熱性に富み、可動部の潤滑特性にも優れ、真空条件下においてクリーンな環境を長期にわたって保持できるという効果を奏する。   As described above, according to the substrate transfer device of the present invention, a compact twin-arm device configuration can provide a compact device, and can transfer a substrate or the like with high accuracy, and also has heat resistance. It has excellent lubrication characteristics of the movable part, and has the effect of maintaining a clean environment for a long time under vacuum conditions.

以下、本発明の基板搬送装置の実施するための最良の形態として、以下の実施例について添付図面を参照して説明する。   Hereinafter, as the best mode for carrying out the substrate transfer apparatus of the present invention, the following embodiments will be described with reference to the accompanying drawings.

以下、本発明の基板搬送装置の一実施の形態について、添付図面を参照して説明する。[ツインアームの構成]
本発明の基板搬送装置は、後述するように、2組が短節を共有するして連結された平行リンク機構の変形動作により、リンクの自由端が所定の直進動作をするような2組の搬送アームと、各搬送アームを構成する平行リンク機構の変形動作、及び2組の搬送アーム(以下、2組の搬送アームをツインアームと記す。)のそれぞれの伸長動作、退避動作およびツインアーム全体の旋回動作を可能にする同軸駆動部とから構成されている。なお、以下の説明において、ツインアームを構成する2組の搬送アーム100,200について、それぞれを構成する部材に、それぞれ1XX,2XXを付して説明する。
Hereinafter, an embodiment of a substrate transfer apparatus of the present invention will be described with reference to the accompanying drawings. [Configuration of twin arm]
As will be described later, the substrate transfer apparatus of the present invention has two sets in which the free end of the link performs a predetermined straight movement by the deformation operation of the parallel link mechanism in which the two sets share a short joint. Deformation operation of the transfer arm and the parallel link mechanism that constitutes each transfer arm, and extension operation, retraction operation, and the entire twin arm of each of the two sets of transfer arms (hereinafter, the two sets of transfer arms are referred to as twin arms) It is comprised from the coaxial drive part which enables the turning operation | movement of. In the following description, the two pairs of transfer arms 100 and 200 constituting the twin arm will be described with 1XX and 2XX respectively attached to the members constituting the twin arms.

[駆動部の構成]
図1は、基板搬送装置の各部の機構構成を説明するために示した正面断面図である。基板搬送装置1は、固定部2に形成された開口部3に基台プレート4を介して支持され、ツインアーム全体が真空雰囲気5内に位置するように設置されている。基台プレート4には、中心軸Oを中心として同軸配置され、各軸が独立して回転駆動可能な3本の回転駆動軸R1,R2,R3が軸受6,7,8を介して固着されている。
[Configuration of drive unit]
FIG. 1 is a front cross-sectional view for explaining the mechanism configuration of each part of the substrate transfer apparatus. The substrate transfer device 1 is supported by an opening 3 formed in the fixed portion 2 via a base plate 4 and is installed so that the entire twin arm is located in the vacuum atmosphere 5. The base plate 4 is coaxially arranged with the central axis O as the center, and three rotational drive shafts R 1 , R 2 , R 3 that can be independently rotationally driven via bearings 6, 7, 8. It is fixed.

これらの回転駆動軸R1,R2,R3は、中実回転駆動軸R3と、この中実回転駆動軸R3を玉軸受6で回転可能に支持するともに、独立して回転駆動可能な中空筒状回転駆動軸R2と、中空筒状回転駆動軸R2を玉軸受7で回転可能に支持するとともに、基台プレート4に対して玉軸受8を介して回転駆動可能な中空筒状回転駆動軸R1とから構成され、各駆動軸とも、図示しない回転制御部により独立あるいは同期をとって回転角、回転角速度、回転方向が高精度に制御される。 These rotational drive shafts R 1 , R 2 , R 3 are solid rotational drive shaft R 3 , and this solid rotational drive shaft R 3 is rotatably supported by ball bearings 6 and can be rotationally driven independently. Hollow cylindrical rotary drive shaft R 2 , and hollow cylindrical rotary drive shaft R 2 are rotatably supported by ball bearings 7, and are hollow cylinders that can be rotationally driven with respect to base plate 4 via ball bearings 8. consists Jo rotary drive shaft R 1 Tokyo, in each drive shaft, the rotational angle taken independently or synchronized by the rotation control unit (not shown), the rotational angular velocity, the rotational direction is controlled with high precision.

これらの回転駆動軸のうち、最外周に位置し、基台プレート4に支持された中空筒状回転軸R1の上端には旋回アーム10が固着されている。この旋回アーム10は、本実施例では、図2,図4の平面図に示したように折れ角が120°のV字形プレートからなり、中空筒状回転軸R1の回転駆動に伴い、回転中心軸Oを中心に旋回する。この旋回アーム10は、後に詳述するツインアームを構成する第1搬送アーム100,第2搬送アーム200のそれぞれの第1平行リンク110,210のうちの1本のアームとして一体形成されて装置に組み込まれている。これにより、この旋回アーム10の旋回動作と各搬送アーム100,200の各駆動軸R1、R2、R3の協働(一方の駆動、一方の停止状態を含む)により、ツインアームが屈曲状態である状態(図2参照)での搬送アーム100,200を一体とした旋回動作、および一方の搬送アーム100(200)の伸長動作と他方の搬送アーム200(100)の退避動作を同時に実現することができる。なお、旋回アーム10は平行リンク110,210の構成要素としてみるときは、アーム111,211で表現される。 Of these rotary drive shafts, the swivel arm 10 is fixed to the upper end of the hollow cylindrical rotary shaft R 1 located on the outermost periphery and supported by the base plate 4. In this embodiment, the swivel arm 10 is composed of a V-shaped plate having a folding angle of 120 ° as shown in the plan views of FIGS. 2 and 4, and rotates as the hollow cylindrical rotary shaft R 1 is driven to rotate. It turns around the central axis O. The swivel arm 10 is integrally formed as one of the first parallel links 110 and 210 of the first transfer arm 100 and the second transfer arm 200 constituting a twin arm, which will be described in detail later. It has been incorporated. Thus, the twin arm is bent by the turning operation of the turning arm 10 and the cooperation (including one drive and one stop state) of the drive shafts R 1 , R 2 and R 3 of the transfer arms 100 and 200. In the state (refer to FIG. 2), the turning operation with the transfer arms 100 and 200 integrated, and the extension operation of one transfer arm 100 (200) and the retracting operation of the other transfer arm 200 (100) are realized simultaneously. can do. Note that the swivel arm 10 is represented by the arms 111 and 211 when viewed as a component of the parallel links 110 and 210.

[第1搬送アームの構成]
第1搬送アーム100は、図1および図2に示したように、回転中心軸Oが装置中心軸に一致する中空筒状回転駆動軸R2の上端に固着された円形プレート109に、その一端が図示しない軸受で支持されたアーム112と、回転中心軸Oとアーム112の軸受とで結ばれた仮想線が短節130となり、この短節130と対向し、アーム112の端部と、旋回アーム10の一方のアーム111の端部とを結ぶ仮想短節131とで平行四辺形を構成する第1平行リンク110と、第1平行リンク110のアーム111,112と上下の段差を設けて共有する仮想短節131の両端関節58,59を、それぞれ回転軸として支持された2本の平行配置されたアーム121,122の各端が連結された第2平行リンク120と、第1平行リンク110の仮想短節131の両端部の関節58,59をわずかに延長したアーム111,112の部材端に設けられた端部支点54,55に、軸受(図示せず)を介して取り付けられた下面連結プレート52と、第2平行リンク120のアーム121,122側の関節58,59から所定量だけわずか内側に位置する中間支点56,57に軸受(図示せず)を介して取り付けられた上面連結プレート51と、下面連結プレート52と上面連結プレート51の外側端に固着された規制部材としての板状バネ53とからなる平行保持部50と、第2平行リンク120の関節58,59の反対端に位置し、その一部が仮想短節132として機能するように図示しない軸受により連結され、図示しない基板等の搬送対象物を載置するエンドエフェクタ171が連接された搬送台プレート170とから構成されている。なお、説明のため、図2の一部を拡大して仮想短節131を構成するリンク機構回りを示している。
[Configuration of the first transfer arm]
The first transfer arm 100, as shown in FIGS. 1 and 2, a circular plate 109 which is fixed to the upper end of a hollow cylindrical rotary drive shaft R 2 that the rotation center axis O coincides with the center axis of the device, one end Is an arm 112 supported by a bearing (not shown), and an imaginary line connected by the rotation center axis O and the bearing of the arm 112 is a short section 130, which faces the short section 130, The first parallel link 110 that forms a parallelogram with a virtual short link 131 that connects the end of one arm 111 of the arm 10 and the arms 111 and 112 of the first parallel link 110 are provided with upper and lower steps to be shared. The first parallel link 11 and the second parallel link 120 in which the ends of two parallelly arranged arms 121 and 122 supported as rotation axes are respectively connected to both end joints 58 and 59 of the virtual short node 131 to be connected. The lower surface attached to the end fulcrums 54 and 55 provided at the member ends of the arms 111 and 112 slightly extending the joints 58 and 59 at both ends of the virtual short bar 131 via bearings (not shown). Upper surface connection attached via a bearing (not shown) to the intermediate fulcrum 56, 57 located slightly inside the connection plate 52 and the joints 58, 59 on the arms 121, 122 side of the second parallel link 120 by a predetermined amount. The parallel holding part 50 which consists of the plate 51, the plate-like spring 53 as a regulating member fixed to the outer end of the lower surface connecting plate 52 and the upper surface connecting plate 51, and the opposite ends of the joints 58 and 59 of the second parallel link 120 And an end effector 171 on which a transport object such as a substrate (not shown) is placed is connected by a bearing (not shown) so that a part thereof functions as the virtual short bar 132. It is comprised from the conveyance stand plate 170 connected. For the sake of explanation, a part of FIG. 2 is enlarged to show the link mechanism around the virtual short bar 131.

[第2搬送アームの構成]
第2搬送アーム200は、第1搬送アーム100と平面視してほぼ同形からなるが、高さ方向において、第1搬送アーム100との干渉を回避するために、各構成部材の高さ位置が決定されている。すなわち、第2搬送アーム200は、図1および図2に示したように、回転中心軸Oが装置中心軸に一致する中空筒状回転駆動軸R2の内側に軸受6を介して同軸に配置された中実回転駆動軸R3の上端に固着された円形プレート209に、その一端が図示しない軸受で支持されたアーム212と、回転中心軸Oとアーム212の軸受とで結ばれた仮想線が短節230となり、この短節230と対向し、アーム212の端部と、旋回アーム10の一方のアーム211の端部とを結ぶ仮想短節231(図2中の仮想短節131拡大図を参照。)とで平行四辺形を構成する第1平行リンク210と、第1平行リンク210のアーム211,212と上下の段差を設けて共有する短節231の両端関節68,69を、それぞれ回転軸として支持された2本の平行配置されたアーム221,222の各端が連結された第2平行リンク220と、第1平行リンク210の短節230の両端部の関節68,69をわずかに延長したアーム211,212の部材端に設けられた端部支点64,65に、軸受(図示せず)を介して取り付けられた下面連結プレート62と、第2平行リンク220のアーム221,222側の関節68,69から所定量だけわずか内側に位置する中間支点66,67に軸受(図示せず)を介して取り付けられた上面連結プレート61と、下面連結プレート62と上面連結プレート61の外側端に固着された規制部材としての板状バネ63とからなる平行保持部60と、第2平行リンク220の関節68,69の反対端に位置し、その一部が短節232として機能するように図示しない軸受により連結され、図示しない基板等の搬送対象物を載置するエンドエフェクタ271が連接された搬送台プレート270とから構成されている。
[Configuration of second transfer arm]
The second transfer arm 200 has substantially the same shape as the first transfer arm 100 in plan view, but in order to avoid interference with the first transfer arm 100 in the height direction, the height position of each component member is It has been decided. That is, as shown in FIGS. 1 and 2, the second transfer arm 200 is coaxially disposed through the bearing 6 inside the hollow cylindrical rotation drive shaft R 2 whose rotation center axis O coincides with the apparatus center axis. An imaginary line connected to the circular plate 209 fixed to the upper end of the solid rotation drive shaft R 3 formed by the arm 212 supported at one end by a bearing (not shown) and the rotation center axis O and the bearing of the arm 212. Is a short node 230, which is opposed to the short node 230 and connects the end of the arm 212 and the end of one arm 211 of the swivel arm 10 (an enlarged view of the virtual short 131 in FIG. 2). And the joints 68 and 69 of the short node 231 that are shared by providing upper and lower steps with the arms 211 and 212 of the first parallel link 210, respectively. Supported as rotating shaft A second parallel link 220 in which the ends of the two arms 221 and 222 arranged in parallel are connected to each other, and an arm 211 that slightly extends the joints 68 and 69 at both ends of the short node 230 of the first parallel link 210. The lower surface connection plate 62 attached to end fulcrums 64 and 65 provided at the member ends of 212 via bearings (not shown), and the joints 68 and 69 on the arms 221 and 222 side of the second parallel link 220. The upper surface connection plate 61 attached to the intermediate fulcrums 66 and 67 located slightly inside by a predetermined amount via bearings (not shown), and the lower surface connection plate 62 and the restriction fixed to the outer ends of the upper surface connection plate 61 It is located at the opposite end of the parallel holding part 60 composed of the plate spring 63 as a member and the joints 68 and 69 of the second parallel link 220, and a part thereof functions as the short node 232. It is connected by a bearing (not shown), and a transport block plate 270. end effector 271 is articulated for mounting the conveying object such as a substrate, not shown.

上述したエンドエフェクタ171,271、搬送台プレート170,270の形状は、第1搬送アーム100及び第2搬送アーム200とで全く同形であるが、本実施例では図の簡単化のために模式的な形状で示している。その形状は、載置される基板や液晶用ガラス等(図示せず)の大きさ、重量等に応じて最適なフォーク形状等を有するように設定すればよい。また、後述するように、各平行リンクを構成する部材の材質は、所定の剛性と質量軽減の効果を図るために、ステンレススチール、アルミニウム等の各種金属材料等を適宜選択することができる。また、アームの形状は所定支持位置で軸受を介して保持でき、またリンク形状の変形において部材の干渉がないような形状であれば、適宜の寸法形状に設定できることは言うまでもない。   The shapes of the above-described end effectors 171, 271 and transfer table plates 170, 270 are exactly the same in the first transfer arm 100 and the second transfer arm 200, but in the present embodiment, they are schematically shown for the sake of simplification. The shape is shown. The shape may be set so as to have an optimal fork shape or the like according to the size, weight, etc. of the substrate to be placed, liquid crystal glass or the like (not shown). As will be described later, as the material of the members constituting each parallel link, various metal materials such as stainless steel and aluminum can be appropriately selected in order to achieve a predetermined rigidity and mass reduction effect. Needless to say, the shape of the arm can be set to an appropriate size and shape as long as it can be held via a bearing at a predetermined support position and there is no interference of members in the deformation of the link shape.

[基板搬送装置における伸長、退避動作の説明]
本発明の基板搬送装置のツインアームの伸長、退避動作の一例について、図2〜図4を参照して概略説明する。本発明の装置におけるツインアームは、初期状態として、図2に示したように、第1搬送アームと第2搬送アーム200とが所定の屈曲状態で、それぞれの搬送台プレートが上下に干渉しないで、重なって見えるような、平面視してX軸に対して対称な略菱形形状となっている。なお、図2〜図4に示したように、第2搬送アーム200は、駆動部で駆動回転軸に所定の回転力が付与されると、自由端側の短節(すなわち搬送台プレート)がX軸方向に沿って直動するように伸長する。このときの平行リンクの平行保持部の構成については、後述する。
[Explanation of extension / retraction operations in the substrate transfer device]
An example of the extension / retraction operation of the twin arm of the substrate transfer apparatus of the present invention will be schematically described with reference to FIGS. As shown in FIG. 2, the twin arm in the apparatus of the present invention is in an initial state, and the first transfer arm and the second transfer arm 200 are in a predetermined bent state, and the respective transfer table plates do not interfere vertically. It has a substantially rhomboid shape that is symmetrical with respect to the X-axis in plan view, and that appears to overlap. As shown in FIGS. 2 to 4, when a predetermined rotational force is applied to the drive rotation shaft by the drive unit, the second transport arm 200 has a short end (that is, a transport plate) on the free end side. It extends so as to move linearly along the X-axis direction. The configuration of the parallel holding portion of the parallel link at this time will be described later.

第2搬送アーム200は、第1搬送アーム100と平面視してほぼ同形からなるが、高さ方向において、第1搬送アーム100との干渉を回避するために、各構成部材の高さ位置が決定されている。すなわち、第2搬送アーム200を、図1および図2に示したように、最外側に位置する中空筒状回転駆動軸R1と、その内側に軸受を介して同軸に配置されたと中空筒状回転駆動軸R2とを同期させて同一方向(時計回り方向)に回動させる一方、中実回転駆動軸R3を停止状態とする。これにより、旋回アーム10(アーム111,211)が矢印方向にθだけ回転した状態で、第2搬送アーム200の第2平行リンクは2θだけ回動し、図3に示したように、搬送台プレート270はX軸方向に直動し、第1平行リンク210と、第2平行リンク220とが上下方向に重なるタイミングがある(図3参照)。そして、最終的に図4に示したように、第2搬送アーム200のエンドエフェクタ271は回転中心軸Oから最遠部に達する。このとき、第1搬送アーム100は、退避状態にある。 The second transfer arm 200 has substantially the same shape as the first transfer arm 100 in plan view, but in order to avoid interference with the first transfer arm 100 in the height direction, the height position of each component member is It has been decided. That is, as shown in FIG. 1 and FIG. 2, when the second transfer arm 200 is disposed coaxially with a hollow cylindrical rotary drive shaft R 1 positioned on the outermost side and a bearing on the inner side thereof, a hollow cylindrical shape is provided. The rotation shaft R 2 is synchronized with the rotation drive shaft R 2 and rotated in the same direction (clockwise direction), while the solid rotation drive shaft R 3 is stopped. As a result, the second parallel link of the second transfer arm 200 is rotated by 2θ in a state where the turning arm 10 (arms 111 and 211) is rotated by θ in the direction of the arrow, and as shown in FIG. The plate 270 moves linearly in the X-axis direction, and there is a timing at which the first parallel link 210 and the second parallel link 220 overlap in the vertical direction (see FIG. 3). Finally, as shown in FIG. 4, the end effector 271 of the second transfer arm 200 reaches the farthest portion from the rotation center axis O. At this time, the first transfer arm 100 is in a retracted state.

[平行保持部の構成]
上述した基板搬送装置の全体の動作(図2:初期状態から図4:伸長状態までの間の動作)を線図で模式的に示したのが、図6〜図8のリンクモデル図である。また、図5(a)〜(c)に、第2搬送アーム200の直動動作のリンクモデル図を示した。
[Configuration of parallel holding part]
The link model diagrams of FIGS. 6 to 8 schematically show the overall operation of the substrate transfer apparatus described above (FIG. 2: operation from the initial state to FIG. 4: extended state) in a diagram. . 5A to 5C show link model diagrams of the linear movement operation of the second transfer arm 200. FIG.

まず、第1平行リンクと第2平行リンクとが直動動作するための両リンクの連結部としての平行保持部の構成について、図5(a)〜(c)を参照して説明する。なお、図5では例示した第2搬送アーム200のうち、符号の簡単化のために2XXのXXのみを付し、各リンクの頂点に英文字を付して説明する。第1平行リンク10は、アーム11,12、回転中心軸O及び関節A,B間の短節30と、端部支点C,Dを連結した下面連結プレート62で構成されている。一方、第2平行リンク20は、アーム21,22、短節32及びアーム11,22の関節E,F近傍の中間支点I,Jを連結する上面連結プレート61とで構成されている。この構造において、さらに下面連結プレート62の端部と上面連結プレート61の端部とは、規制部材としての所定の剛性を備えた板バネ63により連結され、これにより平行リンク10,20の変形による搬送台プレート70のX軸方向への直線移動を確実に保持する平行保持部60が構成されている。なお、図5(a)〜(c)には平行保持部60の上面連結プレート61、下面連結プレート62及び板バネ63の側面から見た各状態での位置関係を模式的に示している。   First, the structure of the parallel holding part as a connection part of both the links for the linear motion of the first parallel link and the second parallel link will be described with reference to FIGS. In FIG. 5, in the illustrated second transfer arm 200, only 2XX XX is given for simplification of symbols, and English characters are given to the vertices of each link. The first parallel link 10 is composed of arms 11 and 12, a rotation center axis O and a short node 30 between the joints A and B, and a lower surface connecting plate 62 that connects the end fulcrums C and D. On the other hand, the second parallel link 20 includes the arms 21 and 22, the short nodes 32, and the upper surface connection plate 61 that connects the intermediate fulcrums I and J near the joints E and F of the arms 11 and 22. In this structure, the end portion of the lower surface connecting plate 62 and the end portion of the upper surface connecting plate 61 are connected by a plate spring 63 having a predetermined rigidity as a restricting member, whereby the parallel links 10 and 20 are deformed. A parallel holding portion 60 is configured to reliably hold the linear movement of the transport table plate 70 in the X-axis direction. 5A to 5C schematically show the positional relationship of the parallel holding portion 60 in each state viewed from the side surfaces of the upper surface connection plate 61, the lower surface connection plate 62, and the plate spring 63.

本発明では、規制部材としての板バネに厚さ0.2mm、幅80mmの鋼板が使用されており、この板バネの端部が上面連結プレート61と下面連結プレート62の端面にボルト(図示せず)固定されている(図5(a)他参照)。また基板搬送装置1の屈曲、伸長動作時において、端部支点C,Dを結ぶ直線(CD)と中間支点I,Jを結ぶ直線(IJ)とが関節E,Fを挟んでY軸方向へ同量だけ相対位置が変化する。上述の板バネ63はこの相対位置変化により生じた連結板61,62のY方向ずれを吸収可能な余裕長さに設定されている。規制部材としてはY方向へのズレを吸収し、X方向への変位を拘束可能なねじれ剛性を備えた部材であれば、上述の寸法に限定されず、またバネ鋼以外の材質等、適宜選定できることはいうまでもない。また、同様の変位の規制が実現し、同様の効果が得られる機構であれば、各種のリニアガイド、リンク機構等で代替させることができる。   In the present invention, a steel plate having a thickness of 0.2 mm and a width of 80 mm is used as a plate spring as a restricting member, and the ends of the plate spring are bolts (not shown) on the end surfaces of the upper surface connection plate 61 and the lower surface connection plate 62. (See Fig. 5 (a) and others). Further, when the substrate transfer apparatus 1 is bent or extended, a straight line (CD) connecting the end fulcrums C and D and a straight line (IJ) connecting the intermediate fulcrums I and J are located in the Y-axis direction with the joints E and F interposed therebetween. The relative position changes by the same amount. The above-described leaf spring 63 is set to a margin length that can absorb the displacement in the Y direction of the coupling plates 61 and 62 caused by the relative position change. The restriction member is not limited to the above-mentioned dimensions as long as it is a member having torsional rigidity capable of absorbing the displacement in the Y direction and restraining the displacement in the X direction. Needless to say, it can be done. In addition, various linear guides, link mechanisms, and the like can be used as long as the mechanism can achieve the same displacement regulation and achieve the same effect.

また、上述の第1平行リンク10と第2平行リンク20との連結において形成される平行保持部60の他の実施例として、端部支点I,Jが、それぞれアーム21,22上の中心線上の関節E,Fを所定量延長した位置に設けられ、関節E,F、端部支点I,Jの4点で扁平な平行四辺形が形成され、同様に中間支点C,Dが、それぞれアーム11,12上の中心線上の関節E,Fに近いアーム11,12上に配置された軸受位置に設けられ、同形の平行四辺形が形成されるようにしても良い。   Further, as another embodiment of the parallel holding portion 60 formed in the connection between the first parallel link 10 and the second parallel link 20 described above, the end fulcrums I and J are on the center lines on the arms 21 and 22, respectively. The joints E and F are provided at positions extended by a predetermined amount, and a flat parallelogram is formed at the four points of the joints E and F and the end fulcrums I and J. Similarly, the intermediate fulcrums C and D are respectively connected to the arms. 11 and 12 may be provided at bearing positions arranged on the arms 11 and 12 close to the joints E and F on the center line on the center line 11 and 12, so that a parallelogram of the same shape may be formed.

以下、上述した基板搬送装置1のツインアームによる伸長、退避動作について図6〜図8を参照して説明する。なお、第1搬送アーム100側のリンク頂点の英符号に関しては添字1を、第2搬送アーム200側には添字2を付して区別して説明する。
図2の初期状態から、最外側で旋回アーム10を支持する中空筒状回転駆動軸R1と、この中空筒状回転駆動軸R1との内側に同軸配置され、上端で円形プレートを支持するた中空筒状回転駆動軸R2とを、同期させて同一方向(時計回り方向)に回動させるとともに、中実回転駆動軸R3を停止状態とする。この動作により、回転駆動軸R1の上端に締結された旋回アーム10は、回転中心軸Oを中心に回転し、この結果、第2搬送アーム200の第1平行リンク210において、短節30の方向が固定されたまま、アーム11が回転するので、図6〜図8に示したように、平行四辺形(□A2222)と平行四辺形(□F2222)は、旋回動作に応じて扁平四辺形(図6)→長方形(図7)→扁平四辺形(図8)と変形する。ところが、上述したように、辺I22と辺C22とは、平行保持部60によってX軸方向のズレが拘束されているので、第2平行リンク220において、平行四辺形(□F2222)が変形し、平行四辺形(□G2222)も変形する。このときA22=B22=G22=H22及びD22=C22=J22=I22なる関係があるため、辺G22は常に辺A22上、すなわち短節30の軌跡上に位置するため、搬送台プレート270は線C上を矢印X方向に直線移動することができる。
Hereinafter, extension and retraction operations by the twin arms of the substrate transfer apparatus 1 described above will be described with reference to FIGS. Note that the alphabetical symbol of the link apex on the first transfer arm 100 side will be described by subscript 1 and the second transfer arm 200 side will be appended with subscript 2.
From the initial state of FIG. 2, the hollow cylindrical rotary drive shaft R 1 that supports the swivel arm 10 on the outermost side is coaxially arranged inside the hollow cylindrical rotary drive shaft R 1, and the circular plate is supported at the upper end. and a hollow cylindrical rotary drive shaft R 2, in synchronization with turning in the same direction (clockwise), during the stop state actual rotation drive shaft R 3. By this operation, the turning arm 10 fastened to the upper end of the rotation drive shaft R 1 rotates around the rotation center axis O. As a result, the first parallel link 210 of the second transport arm 200 has Since the arm 11 rotates while the direction is fixed, as shown in FIGS. 6 to 8, the parallelogram (□ A 2 B 2 E 2 F 2 ) and the parallelogram (□ F 2 E 2 C). 2 D 2 ) is transformed from a flat quadrangle (FIG. 6) to a rectangle (FIG. 7) to a flat quadrangle (FIG. 8) according to the turning motion. However, as described above, the side I 2 J 2 and the side C 2 D 2 are restrained from shifting in the X-axis direction by the parallel holding portion 60, so that the parallelogram (□ F 2 E 2 I 2 J 2 ) is deformed, and the parallelogram (□ G 2 H 2 E 2 F 2 ) is also deformed. Because of this time A 2 F 2 = B 2 E 2 = G 2 F 2 = H 2 E 2 and D 2 F 2 = C 2 E 2 = J 2 F 2 = I 2 E 2 the relationship, sides G 2 Since H 2 is always located on the side A 2 B 2 , that is, on the trajectory of the short node 30, the transport plate 270 can linearly move on the line C in the direction of the arrow X.

一方、上述のように、中空筒状回転駆動軸R1と中空筒状回転駆動軸R2とを同期させて同一方向に回動させるとともに、中実回転駆動軸R3を停止状態にしたときの第1搬送アーム100については、第1平行リンク110の平行四辺形(□A1111)と、第2平行リンク120の平行四辺形(□G1111)とは、そのままの形状と相互関係を保持したままで旋回アーム10の回動に伴って回動し、結果的に搬送台プレート170は初期状態から退避動作をとったのと同様の旋回動作を示し、ツインアームはそれぞれ最終的に図8に示した位置関係となる。 On the other hand, as described above, when the hollow cylindrical rotary drive shaft R 1 and the hollow cylindrical rotary drive shaft R 2 are synchronized and rotated in the same direction, the solid rotary drive shaft R 3 is stopped. For the first transfer arm 100, the parallelogram (□ A 1 B 1 E 1 F 1 ) of the first parallel link 110 and the parallelogram (□ G 1 H 1 E 1 F 1 ) of the second parallel link 120 are used. ) Is the same as the swiveling operation of the carrier plate 170 as a result of the retreating operation from the initial state. The twin arms finally have the positional relationship shown in FIG.

なお、以上のツインアームの伸長動作、退避動作は、第1搬送アーム100と第2搬送アーム200とを全く逆に動作させる、すなわち、図2の初期状態から、最外側で旋回アーム10を支持する中空筒状回転駆動軸R1と、最内側に位置するこの中実回転駆動軸R3とを同期させて同一方向(反時計回り方向)に回動させるとともに、中空筒状回転駆動軸R2を停止状態にすることで、図9に示したように、第1搬送アーム100が伸長し、第2搬送アーム200が退避動作をとるようにすることもできる。 Note that the above-described extending and retracting operations of the twin arms cause the first transfer arm 100 and the second transfer arm 200 to operate in opposite directions, that is, support the swivel arm 10 on the outermost side from the initial state of FIG. The hollow cylindrical rotary drive shaft R 1 and the solid rotary drive shaft R 3 located on the innermost side are synchronized and rotated in the same direction (counterclockwise direction), and the hollow cylindrical rotary drive shaft R 3 By setting 2 to the stop state, as shown in FIG. 9, the first transfer arm 100 can be extended and the second transfer arm 200 can be retracted.

また、中空筒状回転駆動軸R1と中空筒状回転駆動軸R2と中実回転駆動軸R3とを、すべて同期して同一方向に旋回させたときは、第1搬送アーム100と第2搬送アーム200とは、各アーム形状と互いの相互関係とを保持した状態で、アーム全体が回動することができる。 Moreover, the actual rotation drive shaft R 3 in a hollow cylindrical rotary drive shaft R 1 a hollow cylindrical rotary drive shaft R 2, when pivoted in the same direction all synchronized to the first transfer arm 100 first The two transfer arms 200 can rotate the whole arm in a state in which each arm shape and the mutual relation are maintained.

以上の説明は、たとえば図2において、設定した部材幅等の干渉を考慮して、旋回アームの屈曲角を約120°とし、旋回アームがθ=約60°の回動をしたときに平行リンクが当初角度から約120°(=2θ)回動するようなモデルを例に説明したが、図10、図11に示した他の実施例のように、たとえば図6〜図8に示したリンクモデル図をもとにしたリンク機構の動作過程においても、アーム部材のなす当初角度やアーム形状を適正に設計することで、アーム部材の動作時に各部材間の干渉を回避して動作することが可能になり、より高精度で効率的な基板搬送を実現することができる。   In the above explanation, for example, in FIG. 2, considering the interference such as the set member width, the turning angle of the turning arm is set to about 120 °, and the parallel link is turned when the turning arm rotates about θ = about 60 °. Has been described by taking as an example a model that rotates about 120 ° (= 2θ) from the initial angle, but as in the other embodiments shown in FIGS. 10 and 11, for example, the links shown in FIGS. Even in the operation process of the link mechanism based on the model diagram, by appropriately designing the initial angle and arm shape formed by the arm member, it is possible to operate while avoiding interference between the members during operation of the arm member. This makes it possible to realize more accurate and efficient substrate conveyance.

本発明による基板搬送装置の一実施例を模式的に示した示した横断面図。The cross-sectional view which showed typically one Example of the board | substrate conveying apparatus by this invention. 図1に示したツインアームの初期状態を示した平面図。The top view which showed the initial state of the twin arm shown in FIG. 図2に示したツインアームの伸長及び退避過程を示した平面図。The top view which showed the expansion | extension and retraction | saving process of the twin arm shown in FIG. 図2に示したツインアームの伸長状態と退避状態とを示した平面図。The top view which showed the expansion | extension state and retracted state of the twin arm shown in FIG. リンクモデル図によるアームの屈曲、伸長状態を段階的に示した状態説明図。The state explanatory drawing which showed the bending | flexion and expansion | extension state of the arm by a link model figure in steps. 図2に示した初期状態を線図で示したリンクモデル図。The link model figure which showed the initial state shown in FIG. 2 with the diagram. 図3に示した伸長及び退避過程を線図で示したリンクモデル図。The link model figure which showed the expansion | extension and retraction | saving process shown in FIG. 3 with the diagram. 図4に示した伸長状態と退避状態とを線図で示したリンクモデル図。The link model figure which showed the expansion | extension state and evacuation state which were shown in FIG. 4 with the diagram. 図4に示した場合と逆のアームによる伸長状態と退避状態とを示した平面図。FIG. 5 is a plan view showing an extended state and a retracted state by an arm opposite to the case shown in FIG. 4. ツインアームの他の実施例による初期状態を示した平面図。The top view which showed the initial state by the other Example of a twin arm. 図10に示したツインアームの伸長状態と退避状態とを示した平面図。The top view which showed the expansion | extension state and retracted state of the twin arm shown in FIG.

符号の説明Explanation of symbols

1 基板搬送装置
4 基台プレート
10 旋回アーム
100 第1搬送アーム
200 第2搬送アーム
110,120,210,220 平行リンク
111,112,121,122 アーム
211,212,221,222 アーム
50,60 平行保持部
54,55,64,65 端部支点
52,62 下面連結プレート
51,61 上面連結プレート
53,63 板バネ
130,230 仮想短節
131、231 短節
170,270 搬送台プレート
i 駆動回転軸(i=1,2,3)
DESCRIPTION OF SYMBOLS 1 Substrate transfer apparatus 4 Base plate 10 Turning arm 100 1st transfer arm 200 2nd transfer arm 110,120,210,220 Parallel link 111,112,121,122 Arm 211,212,221,222 Arm 50,60 Parallel Holding portions 54, 55, 64, 65 End fulcrums 52, 62 Lower surface connecting plates 51, 61 Upper surface connecting plates 53, 63 Leaf springs 130, 230 Virtual short bars 131, 231 Short bars 170, 270 Carrying plate R i drive rotation Axis (i = 1,2,3)

Claims (3)

第1平行リンクの短節と、第2平行リンクの短節とを共有して連結し、前記第1平行リンクのアーム端に付与された旋回動作により、前記第1平行リンクのアームと第2平行リンクのアームのなす角度を変化させて前記第2平行リンクの自由端側の短節に設けられた搬送台を直線移動させる第1搬送アームと、該第1搬送アームと略同形で、同動作をなす第2搬送アームと、前記第1搬送アームと第2搬送アームを駆動する同軸駆動源が設けられ、該同軸駆動源からの動作付与により、前記第1搬送アームと前記第2搬送アームにおける一方の搬送台の直線移動と他方の退避動作とを、同期をとって行うようにした基板搬送装置において、
前記第1搬送アームの第1平行リンクの旋回動作が付与されるアームと、前記第2搬送アームの第1平行リンクの旋回動作が付与されるアームとを所定屈曲角度をなし一体形成した旋回アームとし、該旋回アームに前記同軸駆動源の一方の駆動源から所定の旋回動作を付与するとともに、前記第1あるいは第2搬送アームのいずれかに、前記同軸駆動源の他方の駆動源から同期した同方向への旋回動作を付与し、前記第1あるいは第2搬送アームのうち、前記旋回動作が付与された搬送アームの搬送台を退避させるとともに、他の搬送アームの搬送台を直線移動させることを特徴とする基板搬送装置。
The short link of the first parallel link and the short link of the second parallel link are connected in common, and the arm of the first parallel link and the second are connected by a turning motion applied to the arm end of the first parallel link. A first transfer arm that linearly moves a transfer table provided at a short node on the free end side of the second parallel link by changing an angle formed by the arms of the parallel link; and substantially the same shape as the first transfer arm; A second transfer arm that operates, and a coaxial drive source that drives the first transfer arm and the second transfer arm are provided, and the first transfer arm and the second transfer arm are provided by applying an operation from the coaxial drive source. In the substrate transfer apparatus in which the linear movement of one transfer table and the retreat operation of the other are performed in synchronization with each other,
A swivel arm in which an arm to which a swiveling operation of the first parallel link of the first transfer arm is applied and an arm to which a swiveling operation of the first parallel link of the second transfer arm is provided are integrally formed with a predetermined bending angle. And a predetermined swivel operation is given to the swivel arm from one drive source of the coaxial drive source, and either the first or second transfer arm is synchronized with the other drive source of the coaxial drive source. A swiveling motion in the same direction is applied, and the transport base of the transport arm to which the swivel motion is imparted is retracted and the transport base of the other transport arm is linearly moved out of the first or second transport arms. A substrate transfer device.
第1搬送アーム及び第2搬送アームにおいて、それぞれ共有された前記短節を構成する各関節から、前記各第1平行リンクの各アームを所定量延長した端部支点間を連結する第1の連結部材と、前記各第2平行リンクの前記関節から各アーム上の所定量内側の中間支点間を連結した第2の連結部材とを、規制部材で連結してなることを特徴とする請求項1に記載の基板搬送装置。   In the first transfer arm and the second transfer arm, a first connection for connecting between the end fulcrums obtained by extending the arms of the first parallel links by a predetermined amount from the joints constituting the shared short nodes. 2. A member and a second connecting member that connects intermediate fulcrums on a predetermined amount on each arm from the joint of each of the second parallel links is connected by a restricting member. The board | substrate conveyance apparatus of description. 前記規制部材は、前記第1の連結部材と第2の連結部材との間に掛け渡された板状バネ部材であることを特徴とする請求項1または請求項2に記載の基板搬送装置。   3. The substrate transfer apparatus according to claim 1, wherein the restricting member is a plate-like spring member spanned between the first connecting member and the second connecting member.
JP2004303661A 2004-10-19 2004-10-19 Substrate transfer device Expired - Lifetime JP4549153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303661A JP4549153B2 (en) 2004-10-19 2004-10-19 Substrate transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303661A JP4549153B2 (en) 2004-10-19 2004-10-19 Substrate transfer device

Publications (2)

Publication Number Publication Date
JP2006120659A true JP2006120659A (en) 2006-05-11
JP4549153B2 JP4549153B2 (en) 2010-09-22

Family

ID=36538298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303661A Expired - Lifetime JP4549153B2 (en) 2004-10-19 2004-10-19 Substrate transfer device

Country Status (1)

Country Link
JP (1) JP4549153B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866094B1 (en) * 2008-04-28 2008-10-30 주식회사 싸이맥스 Stack-type dual arm robot with independent drive
KR100876950B1 (en) * 2007-05-10 2009-01-09 주식회사 싸이맥스 Robot Assembly
WO2009034795A1 (en) * 2007-09-10 2009-03-19 Ulvac, Inc. Substrate transfer robot and vacuum processing apparatus
JP2015044638A (en) * 2013-08-27 2015-03-12 川崎重工業株式会社 Workpiece conveyance device
JP2015053509A (en) * 2007-04-06 2015-03-19 ブルックス オートメーション インコーポレイテッド Substrate transportation device accompanying a plurality of independent movable arms

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195427A (en) * 1995-01-18 1996-07-30 Jeol Ltd Conveyance mechanism
JPH10163296A (en) * 1996-11-27 1998-06-19 Rootsue Kk Board carrying equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195427A (en) * 1995-01-18 1996-07-30 Jeol Ltd Conveyance mechanism
JPH10163296A (en) * 1996-11-27 1998-06-19 Rootsue Kk Board carrying equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053509A (en) * 2007-04-06 2015-03-19 ブルックス オートメーション インコーポレイテッド Substrate transportation device accompanying a plurality of independent movable arms
KR100876950B1 (en) * 2007-05-10 2009-01-09 주식회사 싸이맥스 Robot Assembly
WO2009034795A1 (en) * 2007-09-10 2009-03-19 Ulvac, Inc. Substrate transfer robot and vacuum processing apparatus
JPWO2009034795A1 (en) * 2007-09-10 2010-12-24 株式会社アルバック Substrate transfer robot, vacuum processing equipment
KR100866094B1 (en) * 2008-04-28 2008-10-30 주식회사 싸이맥스 Stack-type dual arm robot with independent drive
JP2015044638A (en) * 2013-08-27 2015-03-12 川崎重工業株式会社 Workpiece conveyance device

Also Published As

Publication number Publication date
JP4549153B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
TWI357375B (en)
JP5995404B2 (en) Wafer transfer robot
JP3558345B2 (en) Articulated arm transfer device
KR102465277B1 (en) A Robot, An electronic device processing system, and A method of transporting substrates
JP4258851B1 (en) Articulated robot
JP4022461B2 (en) Transfer arm
JP2011119556A (en) Horizontal multi-joint robot and transportation apparatus including the same
US7591625B2 (en) Carrying mechanism, a carrying device and a vacuum processing apparatus
JP2005317854A (en) Transfer robot
JP4549153B2 (en) Substrate transfer device
JP3804780B2 (en) Robot arm and robot
JP2006198768A (en) Double arm type robot
JP2001185596A (en) Transfer arm
JP2003209155A (en) Conveying arm
JP4757404B2 (en) Transfer arm
JP4543249B2 (en) Transfer arm
JP4228245B1 (en) Articulated robot
JP2002200583A (en) Transfer arm
JP2004323165A (en) Substrate carrying device
JP4521746B2 (en) Link-type workpiece transfer robot
JP2001077174A (en) Conveyor
JP2947182B2 (en) Transfer robot and transfer method
JP2011104695A (en) Robot arm and conveying device
CN102554909A (en) Arm component for plane multi-joint type robot
JP4168409B1 (en) Articulated robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4549153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250