JP2006077627A - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP2006077627A
JP2006077627A JP2004261014A JP2004261014A JP2006077627A JP 2006077627 A JP2006077627 A JP 2006077627A JP 2004261014 A JP2004261014 A JP 2004261014A JP 2004261014 A JP2004261014 A JP 2004261014A JP 2006077627 A JP2006077627 A JP 2006077627A
Authority
JP
Japan
Prior art keywords
energization
power supply
fuel injection
value
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004261014A
Other languages
Japanese (ja)
Other versions
JP4363280B2 (en
Inventor
Yukifumi Kikutani
享史 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004261014A priority Critical patent/JP4363280B2/en
Priority to CNB2005100994272A priority patent/CN100526626C/en
Priority to DE200510042530 priority patent/DE102005042530A1/en
Publication of JP2006077627A publication Critical patent/JP2006077627A/en
Application granted granted Critical
Publication of JP4363280B2 publication Critical patent/JP4363280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/503Battery correction, i.e. corrections as a function of the state of the battery, its output or its type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/006Springs assisting hydraulic closing force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection device preventing deviation between target injection quantity and actual injection quantity without increasing load of a control device even if power source voltage drops. <P>SOLUTION: A control device measures power source voltage and changes a target value of first fixed current I1 for lifting a needle according to the measured value, and corrects electricity carry start timing command value and electricity carry period command value according to the target value. Consequently, the target value of first fixed current I1 can be changed to a lower value which has margin in relation to power source voltage. As a result, it is not necessary to always monitor power source voltage. Moreover, even if needle lift condition fluctuates with accompanying drop of the target value of first fixed current I1, deviation of the target injection quantity and actual injection quantity can be prevented by correcting electricity carry start timing command value and electricity carry period command value. Consequently, deviation of target injection quantity and actual injection quantity can be prevented without always monitoring power source voltage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関(エンジン)に燃料を噴射供給する燃料噴射装置に関する。   The present invention relates to a fuel injection device that injects and supplies fuel to an internal combustion engine (engine).

〔従来の技術〕
従来より、エンジンに燃料を噴射供給する燃料噴射装置は、エンジンの気筒に搭載され気筒内に燃料を噴射供給するインジェクタを備えている。このインジェクタは、燃料通路および噴孔が形成されたボディ、このボディに収容され噴孔を開閉するニードル、ニードルをリフトさせる電磁アクチュエータなどを有する。
[Conventional technology]
2. Description of the Related Art Conventionally, a fuel injection device that injects and supplies fuel to an engine includes an injector that is mounted on a cylinder of the engine and injects and supplies fuel into the cylinder. The injector includes a body in which a fuel passage and an injection hole are formed, a needle that is accommodated in the body, opens and closes the injection hole, and an electromagnetic actuator that lifts the needle.

そして、電磁アクチュエータのソレノイドへ通電が行われると磁気吸引力が発生し、この磁気吸引力により、直接的または間接的に、ニードルがリフトされて噴孔を開放する。これにより、燃料の噴射が開始する。また、ソレノイドへの通電が停止されると磁気吸引力が消滅し、ニードルが噴孔を閉鎖する。これにより、燃料の噴射が終了する。   When the solenoid of the electromagnetic actuator is energized, a magnetic attractive force is generated, and the needle is lifted directly or indirectly by this magnetic attractive force to open the nozzle hole. Thereby, fuel injection is started. When the energization of the solenoid is stopped, the magnetic attractive force disappears and the needle closes the nozzle hole. Thereby, the fuel injection is completed.

ところで、ソレノイドへの通電電流は、1通電期間(1噴射期間に相当する)で、例えば図7に示すように変化する。すなわち、通電開始時にはピーク電流Ipが通電され、その後にはピーク電流Ipよりも低い第1定電流I1が通電され、さらにその後には第1定電流I1よりも低い第2定電流I2が通電されて、1通電期間が終了する。   By the way, the energization current to the solenoid changes in one energization period (corresponding to one injection period), for example, as shown in FIG. That is, at the start of energization, the peak current Ip is energized, thereafter the first constant current I1 lower than the peak current Ip is energized, and thereafter the second constant current I2 lower than the first constant current I1 is energized. Thus, one energization period ends.

ピーク電流Ipは、極めて大きな磁気吸引力を瞬間的に発生させ、ニードルのリフトを開始するために通電される。すなわち、磁気吸引力により駆動すべきニードル等の部材には、高圧燃料をシールするために極めて大きな付勢力が作用しており、この付勢力に抗してニードル等の部材の駆動を開始するには、極めて大きな磁気吸引力を必要とするからである。   The peak current Ip is energized in order to instantaneously generate a very large magnetic attractive force and start the needle lift. That is, an extremely large urging force acts on a member such as a needle to be driven by a magnetic attractive force in order to seal high-pressure fuel, and driving of the member such as a needle is started against this urging force. This is because an extremely large magnetic attractive force is required.

第1定電流I1は、ニードルを所定の保持位置までリフトすることができる強さの磁気吸引力を連続的に発生させるために通電される。このため、第1定電流I1は、ピーク電流Ipほどの高電流を必要とせず、ピーク電流Ipよりも小さく設定される。
第2定電流I2は、リフトを停止したニードルを所定の保持位置で保持できる強さの磁気吸引力を連続的に発生させるために通電される。このため、第2定電流I2は、ニードルのリフトを継続するための第1定電流I1よりも小さく設定される。
The first constant current I1 is energized in order to continuously generate a magnetic attractive force that can lift the needle to a predetermined holding position. For this reason, the first constant current I1 does not require a current as high as the peak current Ip, and is set smaller than the peak current Ip.
The second constant current I2 is energized in order to continuously generate a magnetic attractive force that can hold the needle that has stopped lifting at a predetermined holding position. For this reason, the second constant current I2 is set smaller than the first constant current I1 for continuing the needle lift.

ソレノイドへの通電制御は、燃料噴射装置を構成する制御装置により行われる。この制御装置は、電源電圧を昇圧して充電し、充電された高電圧を放電することによりピーク電流Ipをソレノイドに通電させる高電圧印加手段、ソレノイドへの通電量を第1、第2定電流I1、I2の目標値に制御する定電流制御手段、ソレノイドへの通電電流を検出する電流検出手段、これらの手段を作動させるための指令信号を出力するマイクロコンピュータ(マイコン)等を具備する。   The energization control to the solenoid is performed by a control device constituting the fuel injection device. The control device boosts and charges the power supply voltage, discharges the charged high voltage, and supplies the peak current Ip to the solenoid. The control device sets the energization amount to the solenoid to the first and second constant currents. There are provided constant current control means for controlling the target values of I1 and I2, current detection means for detecting energization current to the solenoid, and a microcomputer (microcomputer) for outputting a command signal for operating these means.

ここで、マイコンは、インジェクタにエンジンの運転状態に応じた噴射量(目標噴射量)の燃料を噴射供給させるため、エンジンの運転状態を示す各種の信号が入力され、これらの信号に基づいてインジェクタによる燃料噴射を制御するための指令値を算出する。そして、マイコンは、これらの指令値や第1、第2定電流の目標値に基づき通電制御を行うための指令信号を高電圧印加手段や定電流制御手段に出力する。そして、マイコンからの指令信号に応じて、まず高電圧印加手段がピーク電流Ipをソレノイドに通電させ、続いて定電流制御手段が通電電流を順次に第1、第2定電流I1、I2の目標値に制御する。   Here, since the microcomputer causes the injector to inject and supply fuel of an injection amount (target injection amount) according to the engine operating state, various signals indicating the operating state of the engine are input, and the injector is based on these signals. A command value for controlling the fuel injection is calculated. Then, the microcomputer outputs a command signal for performing energization control based on these command values and target values of the first and second constant currents to the high voltage applying unit and the constant current control unit. Then, in response to a command signal from the microcomputer, the high voltage applying means first causes the peak current Ip to flow through the solenoid, and then the constant current control means sequentially applies the energized current to the first and second constant currents I1 and I2. Control to value.

また、定電流制御手段は、例えば、電流検出手段により検出された通電量の現在値と、マイコンから指令された通電量の目標値とを比較する比較回路、この比較回路からの制御信号に応じて電源からソレノイドへの給電を断続するスイッチング素子を具備する制御回路を有する。これにより、通電電流は、中間値が目標値に略一致するように鋸歯状に制御される。   In addition, the constant current control means, for example, a comparison circuit that compares the current value of the energization amount detected by the current detection means with a target value of the energization amount commanded by the microcomputer, and according to a control signal from this comparison circuit And a control circuit having a switching element for intermittently supplying power from the power source to the solenoid. Thus, the energization current is controlled in a sawtooth shape so that the intermediate value substantially matches the target value.

ところで、電源電圧は、例えばエンジン起動時のように、大きく消費され大幅に低下するときがある。そして、電源電圧が低下すると、図8(a)に示す相関に応じて、通電量が目標値に到達するための応答時間が長くなる。このため、電源電圧が低いほど、スイッチング素子がソレノイドと電源との間を断続する回数が少なくなる。そして、さらに電源電圧が低くなると、図9に示すように、通電量が上限値に到達して通電がOFFされることなく、通電制御は、第1定電流I1の制御から第2定電流I2の制御に切り替わってしまう。
このため、ニードルのリフト条件が変動し、図8(b)に示すように電源電圧の低下に伴い実噴射量の誤差が大きくなり、目標噴射量と実噴射量との乖離が大きくなってしまう。
By the way, the power supply voltage may be greatly consumed and greatly reduced, for example, when the engine is started. And when a power supply voltage falls, according to the correlation shown to Fig.8 (a), the response time for energization amount to reach a target value becomes long. For this reason, the lower the power supply voltage, the fewer times the switching element intermittently connects between the solenoid and the power supply. When the power supply voltage is further lowered, as shown in FIG. 9, the energization control reaches the upper limit value and the energization control is changed from the control of the first constant current I1 to the second constant current I2 without turning off the energization. Will be switched to the control.
For this reason, the lift condition of the needle fluctuates, and as shown in FIG. 8B, the error in the actual injection amount increases as the power supply voltage decreases, and the difference between the target injection amount and the actual injection amount increases. .

〔従来技術の不具合〕
このような目標噴射量と実噴射量との乖離に対し、電源電圧の大きさに応じて指令値を補正することにより目標噴射量と実噴射量との乖離を防止する技術が考えられている。しかし、この技術を採用するには、電源電圧を、常時、監視する必要があり極めて高速で電源電圧を計測しなければならない。このため、制御装置の負荷が大幅に増加してしまう。したがって、電源電圧の計測周期を大きくせざるを得ないので、遅れが大きくなり制御の応答性が悪い。
[Problems with conventional technology]
For such a divergence between the target injection amount and the actual injection amount, a technique for preventing the divergence between the target injection amount and the actual injection amount by correcting the command value according to the magnitude of the power supply voltage is considered. . However, in order to employ this technique, it is necessary to constantly monitor the power supply voltage, and the power supply voltage must be measured at an extremely high speed. For this reason, the load of the control device is greatly increased. Therefore, since the measurement cycle of the power supply voltage must be increased, the delay is increased and the control response is poor.

なお、電源電圧の燃料噴射に対する影響を考慮した技術として、電源電圧が所定の閾値よりも小さいときに燃料噴射を禁止して確実にエンジンを停止させる技術が考えられている(例えば、特許文献1参照)。しかし、この技術は、電源電圧に異常があるときに迅速にエンジンを停止することを目的とするものであり、電源電圧の低下に伴う目標噴射量と実噴射量との乖離を防止することができない。
特開平1−92544号公報
As a technique that considers the influence of the power supply voltage on the fuel injection, a technique that prohibits fuel injection and reliably stops the engine when the power supply voltage is smaller than a predetermined threshold is considered (for example, Patent Document 1). reference). However, this technology aims to stop the engine quickly when there is an abnormality in the power supply voltage, and can prevent the difference between the target injection amount and the actual injection amount due to a decrease in the power supply voltage. Can not.
JP-A-1-92544

本発明は、上記の問題点を解決するためになされたものであり、制御装置の負荷を増やすことなく、電源電圧の低下が発生しても目標噴射量と実噴射量との乖離を防止することができる燃料噴射装置を提供することにある。   The present invention has been made to solve the above-described problems, and prevents a deviation between the target injection amount and the actual injection amount even when the power supply voltage is reduced without increasing the load on the control device. An object of the present invention is to provide a fuel injection device that can perform the above-described operation.

〔請求項1の手段〕
請求項1に記載の燃料噴射装置は、ソレノイドへの通電により磁気吸引力を発生させる電磁アクチュエータ、および磁気吸引力によりリフトされ噴孔を開放するニードルを有するインジェクタと、内燃機関の運転状態に応じて、インジェクタによる燃料噴射を制御するための指令値を算出する指令値算出手段と、ソレノイドへの通電量を、所定の強さの磁気吸引力を得るための目標値に制御する通電量制御手段と、ソレノイドへ電力を供給する電源の電圧を計測する電源電圧計測手段と、電源の電圧の計測値に応じて通電量の目標値を変更する通電量目標値変更手段と、通電量の目標値に応じて指令値を補正する指令値補正手段とを備える。
これにより、電源電圧が低下しても、通電電流を鋸歯状に制御できるように通電量の目標値を充分に低い値に変更することができる。このため、電源電圧に対し余裕のある状態を容易に維持することができるので、電源電圧を、常時、監視する必要がなくなる。さらに、通電量の目標値の低下に伴いニードルのリフト条件が変動しても、指令値を補正することにより目標噴射量と実噴射量との乖離を防止できる。この結果、制御装置の負荷を増やして電源電圧を、常時、監視しなくても、目標噴射量と実噴射量との乖離を防止することができる。
[Means of Claim 1]
According to a first aspect of the present invention, there is provided a fuel injection device according to an electromagnetic actuator that generates a magnetic attractive force by energizing a solenoid, an injector that has a needle that is lifted by the magnetic attractive force to open a nozzle hole, and an operating state of the internal combustion engine. Command value calculating means for calculating a command value for controlling fuel injection by the injector, and energization amount control means for controlling the energization amount to the solenoid to a target value for obtaining a magnetic attraction force of a predetermined strength Power supply voltage measuring means for measuring the voltage of the power supply for supplying power to the solenoid, energization amount target value changing means for changing the target value of the energization amount according to the measured value of the power supply voltage, and the target value of the energization amount Command value correcting means for correcting the command value according to
As a result, even if the power supply voltage decreases, the target value of the energization amount can be changed to a sufficiently low value so that the energization current can be controlled in a sawtooth shape. For this reason, since it is possible to easily maintain a state having a margin with respect to the power supply voltage, it is not necessary to constantly monitor the power supply voltage. Further, even if the lift condition of the needle fluctuates with a decrease in the target value of the energization amount, a deviation between the target injection amount and the actual injection amount can be prevented by correcting the command value. As a result, the difference between the target injection amount and the actual injection amount can be prevented without increasing the load on the control device and constantly monitoring the power supply voltage.

〔請求項2の手段〕
請求項2に記載の燃料噴射装置では、電源電圧計測手段の計測周期がインジェクタの噴射周期よりも長い。
これにより、電源電圧の計測による制御装置の負荷への影響を大幅に減らすことができる。
[Means of claim 2]
In the fuel injection device according to claim 2, the measurement cycle of the power supply voltage measuring means is longer than the injection cycle of the injector.
Thereby, the influence on the load of a control apparatus by measurement of a power supply voltage can be reduced significantly.

〔請求項3の手段〕
請求項3に記載の燃料噴射装置では、指令値の少なくとも1つが、噴孔から噴射が開始される噴射開始時期に相当する通電開始時期の指令値である。
[Means of claim 3]
In the fuel injection device according to claim 3, at least one of the command values is a command value of an energization start timing corresponding to an injection start timing at which injection is started from the injection hole.

〔請求項4の手段〕
請求項4に記載の燃料噴射装置では、電源電圧計測手段による電源の電圧の計測が、ソレノイドへの通電が開始される前に行われる。
これにより、ソレノイドへの通電が開始される前に、通電量の目標値を変更して指令値を補正することができる。ここで、通電開始時期の指令値は、通電開始時以降は補正することができない。このため、この手段によれば、通電開始時期の指令値を補正することにより、目標噴射量と実噴射量との乖離を防止することができる。
[Means of claim 4]
In the fuel injection device according to claim 4, the power supply voltage is measured by the power supply voltage measuring means before the energization of the solenoid is started.
Thereby, before energization to the solenoid is started, the command value can be corrected by changing the target value of the energization amount. Here, the command value of the energization start time cannot be corrected after the energization start. For this reason, according to this means, the deviation between the target injection amount and the actual injection amount can be prevented by correcting the command value of the energization start timing.

〔請求項5の手段〕
請求項5に記載の燃料噴射装置では、指令値の少なくとも1つが、噴孔からの噴射が継続する噴射期間に相当する通電期間の指令値である。
[Means of claim 5]
In the fuel injection device according to claim 5, at least one of the command values is a command value of an energization period corresponding to an injection period in which the injection from the nozzle hole is continued.

〔請求項6の手段〕
請求項6に記載の燃料噴射装置では、電源電圧計測手段による電源の電圧の計測が、ソレノイドへの通電が開始された後に行われる。
これにより、ソレノイドへの通電が開始された後に、通電量の目標値を変更して指令値を補正することができる。ここで、通電期間の指令値は、通電開始時以降でも補正することができる。このため、この手段によれば、通電開始時期の指令値を補正することにより、目標噴射量と実噴射量との乖離を防止することができる。
[Means of claim 6]
In the fuel injection device according to the sixth aspect, the power supply voltage is measured by the power supply voltage measuring means after the energization of the solenoid is started.
Thereby, after the energization to the solenoid is started, the command value can be corrected by changing the target value of the energization amount. Here, the command value for the energization period can be corrected even after the start of energization. For this reason, according to this means, the deviation between the target injection amount and the actual injection amount can be prevented by correcting the command value of the energization start timing.

〔請求項7の手段〕
請求項7に記載の燃料噴射装置によれば、磁気吸引力の所定の強さとは、ニードルを所定の保持位置までリフトすることができる強さである。
これにより、確実にニードルを所定の保持位置までリフトすることができる。
[Means of Claim 7]
According to the fuel injection device of the seventh aspect, the predetermined strength of the magnetic attractive force is a strength capable of lifting the needle to a predetermined holding position.
Thereby, the needle can be reliably lifted to a predetermined holding position.

最良の形態1の燃料噴射装置は、ソレノイドへの通電により磁気吸引力を発生させる電磁アクチュエータ、および磁気吸引力によりリフトされ噴孔を開放するニードルを有するインジェクタと、内燃機関の運転状態に応じて、インジェクタによる燃料噴射を制御するための指令値を算出する指令値算出手段と、ソレノイドへの通電量を、所定の強さの磁気吸引力を得るための目標値に制御する通電量制御手段と、ソレノイドへ電力を供給する電源の電圧を計測する電源電圧計測手段と、電源の電圧の計測値に応じて通電量の目標値を変更する通電量目標値変更手段と、通電量の目標値に応じて指令値を補正する指令値補正手段とを備える。
また、電源電圧計測手段の計測周期は、インジェクタの噴射周期よりも長い。また、指令値の少なくとも1つは、噴孔から噴射が開始される噴射開始時期に相当する通電開始時期の指令値であり、電源電圧計測手段による電源の電圧の計測は、ソレノイドへの通電が開始される前に行われる。また、所定の強さの磁気吸引力は、ニードルを所定の保持位置までリフトすることができる強さである。
The fuel injection device of the best mode 1 includes an electromagnetic actuator that generates a magnetic attractive force by energizing a solenoid, an injector that has a needle that is lifted by the magnetic attractive force to open a nozzle hole, and an operating state of the internal combustion engine. A command value calculating means for calculating a command value for controlling fuel injection by the injector; an energization amount control means for controlling the energization amount to the solenoid to a target value for obtaining a magnetic attraction force of a predetermined strength; The power supply voltage measuring means for measuring the voltage of the power supply for supplying power to the solenoid, the energization amount target value changing means for changing the target value of the energization amount according to the measured value of the power supply voltage, and the target value of the energization amount And command value correcting means for correcting the command value accordingly.
Further, the measurement cycle of the power supply voltage measuring means is longer than the injection cycle of the injector. Further, at least one of the command values is a command value of the energization start timing corresponding to the injection start timing at which the injection is started from the nozzle hole, and the power supply voltage measuring means measures the power supply voltage when the solenoid is energized. Done before it starts. The magnetic attraction force having a predetermined strength is a strength that can lift the needle to a predetermined holding position.

〔実施例1の構成〕
実施例1の燃料噴射装置1の構成を図1および図2を用いて説明する。燃料噴射装置1は、例えば、4気筒のディーゼルエンジン(図示せず:以下、単にエンジンと呼ぶ)の各気筒内に燃料を噴射供給する装置である。この燃料噴射装置1は、図1に示すように、燃料タンク1aから燃料を吸入するとともに高圧化して吐出する燃料供給ポンプ1b、高圧燃料を噴射圧力に相当するコモンレール圧で蓄圧するコモンレール1c、各気筒に搭載され、各気筒内に高圧燃料を噴射供給するインジェクタ2、および燃料供給ポンプ1bやインジェクタ2などを制御する制御装置3を備える。
[Configuration of Example 1]
The configuration of the fuel injection device 1 according to the first embodiment will be described with reference to FIGS. 1 and 2. The fuel injection device 1 is, for example, a device that injects and supplies fuel into each cylinder of a four-cylinder diesel engine (not shown: hereinafter simply referred to as an engine). As shown in FIG. 1, the fuel injection device 1 includes a fuel supply pump 1b that draws fuel from a fuel tank 1a and discharges the fuel at a high pressure, a common rail 1c that accumulates high-pressure fuel at a common rail pressure corresponding to the injection pressure, It is equipped with an injector 2 that is mounted on each cylinder and supplies high-pressure fuel into each cylinder, and a control device 3 that controls the fuel supply pump 1b, the injector 2, and the like.

インジェクタ2は、コモンレール1cより分岐する燃料供給配管1dの下流端に接続されている。このインジェクタ2は、気筒内に高圧燃料を噴射供給する噴射ノズル2a、ソレノイド4(図2参照)への通電により磁気吸引力を発生させ噴射ノズル2aを作動させる電磁アクチュエータとしての電磁弁2bを有する。   The injector 2 is connected to the downstream end of the fuel supply pipe 1d branched from the common rail 1c. The injector 2 includes an injection nozzle 2a that injects high-pressure fuel into the cylinder, and an electromagnetic valve 2b that serves as an electromagnetic actuator that generates a magnetic attractive force by energizing the solenoid 4 (see FIG. 2) to operate the injection nozzle 2a. .

噴射ノズル2aは、磁気吸引力により間接的にリフトされ噴孔2cを開放するニードル部2d、噴孔2cが形成されるとともにニードル部2dを移動自在に収容するボディ部2e、噴孔2cを閉じる方向にニードル部2dを付勢するノズルスプリング2fなどを有する。また、噴射ノズル2aは、燃料供給配管1dおよび燃料通路2iによりコモンレール1cと連通し、コモンレール圧とほぼ同等の燃料圧力に維持される燃料溜り2j、燃料通路2kを介してコモンレール圧の供給が行われ、燃料排出路2mを介してコモンレール圧の排出が行われる制御室2nを具備する。   The injection nozzle 2a is lifted indirectly by a magnetic attractive force to form a needle portion 2d and an injection hole 2c that open the injection hole 2c, and closes the body portion 2e and the injection hole 2c that movably accommodates the needle portion 2d. A nozzle spring 2f for urging the needle portion 2d in the direction is provided. The injection nozzle 2a communicates with the common rail 1c through the fuel supply pipe 1d and the fuel passage 2i, and supplies the common rail pressure through the fuel reservoir 2j and the fuel passage 2k that are maintained at a fuel pressure substantially equal to the common rail pressure. And a control chamber 2n in which the common rail pressure is discharged through the fuel discharge passage 2m.

ニードル部2dは、ボディ部2eに形成された弁座2pから離座および着座することにより噴孔2cを開閉するニードル2q、制御室2nを形成するとともに制御室2nの燃料圧力を受けて軸方向に移動するコマンドピストン2rなどにより構成される。また、ニードル2qとコマンドピストン2rとは、プレッシャピン2sにより連結され、一体となってボディ部2e内を軸方向に移動する。なお、プレッシャピン2sは、ノズルスプリング2fが取り付けられるフランジ2tを有する。   The needle portion 2d is separated from and seated on the valve seat 2p formed in the body portion 2e to form a needle 2q that opens and closes the nozzle hole 2c, a control chamber 2n, and receives the fuel pressure in the control chamber 2n in the axial direction. It is comprised by the command piston 2r etc. which move to. Further, the needle 2q and the command piston 2r are connected by a pressure pin 2s and integrally move in the body portion 2e in the axial direction. The pressure pin 2s has a flange 2t to which the nozzle spring 2f is attached.

ボディ部2eは、燃料溜り2jおよび燃料通路2iが形成されるとともに、ニードル2qを収容するノズルボディ2u、制御室2nおよび燃料通路2kが形成されるとともに、ノズルスプリング2fおよびコマンドピストン2rを収容するノズルホルダ2vなどにより構成される。ノズルボディ2uとノズルホルダ2vとの間には、チップパッキン2wが介在しニードル部2dのリフト時の移動を規制する。また、ノズルホルダ2vの反ノズルボディ2u側には、2枚のオリフィスプレート2xが取り付けられ、制御室2nへのコモンレール圧の供給を規制する入側オリフィス2y、および制御室2nからのコモンレール圧の排出を規制する出側オリフィス2zが形成されている。なお、出側オリフィス2zは、入側オリフィス2yよりも径大である。   The body portion 2e is formed with a fuel reservoir 2j and a fuel passage 2i, a nozzle body 2u for accommodating the needle 2q, a control chamber 2n and a fuel passage 2k, and a nozzle spring 2f and a command piston 2r. The nozzle holder 2v is used. A tip packing 2w is interposed between the nozzle body 2u and the nozzle holder 2v to restrict the movement of the needle portion 2d during the lift. Further, two orifice plates 2x are attached to the nozzle holder 2v on the side opposite to the nozzle body 2u, and the inlet-side orifice 2y for restricting the supply of the common rail pressure to the control chamber 2n and the common rail pressure from the control chamber 2n. An outlet orifice 2z that restricts discharge is formed. The outlet orifice 2z is larger in diameter than the inlet orifice 2y.

そして、ソレノイド4へ通電が開始され磁気吸引力が発生すると、電磁弁2b内の弁体(図示せず)が駆動されて、燃料排出路2mを開放する。燃料排出路2mが開放されると、出側オリフィス2zが入側オリフィス2yよりも径大であるため、制御室2nからのコモンレール圧の排出が、制御室2nへのコモンレール圧の供給を上回り、制御室2nの燃料圧力が低下する。この結果、燃料溜り2jの燃料圧力による付勢力が、ノズルスプリング2fによる付勢力と制御室2nの燃料圧力による付勢力との和よりも大きくなり、ニードル2qが弁座2pから離座しニードル部2dがリフトする。これにより、噴孔2cから燃料の噴射が始まる。   When energization of the solenoid 4 is started and a magnetic attractive force is generated, a valve body (not shown) in the electromagnetic valve 2b is driven to open the fuel discharge path 2m. When the fuel discharge path 2m is opened, the outlet orifice 2z is larger in diameter than the inlet orifice 2y, so that the discharge of the common rail pressure from the control chamber 2n exceeds the supply of the common rail pressure to the control chamber 2n, The fuel pressure in the control chamber 2n decreases. As a result, the urging force due to the fuel pressure in the fuel reservoir 2j becomes larger than the sum of the urging force due to the nozzle spring 2f and the urging force due to the fuel pressure in the control chamber 2n, and the needle 2q is separated from the valve seat 2p and the needle portion. 2d lifts. Thereby, fuel injection starts from the nozzle hole 2c.

そして、ソレノイド4への通電が停止され磁気吸引力が消滅すると、弁体が電磁弁2b内の電磁弁スプリング(図示せず)により付勢されて、燃料排出路2mを閉鎖する。燃料排出路2mが閉鎖されると、制御室2nからのコモンレール圧の排出がなくなるので、制御室2nの燃料圧力は低下を止め上昇を開始する。そして、制御室2nの燃料圧力は、コモンレール圧と同等になるまで(すなわち、燃料溜り2jの燃料圧力と同等になるまで)上昇する。この結果、ノズルスプリング2fによる付勢力と制御室2nの燃料圧力による付勢力との和が、燃料溜り2jの燃料圧力による付勢力よりも大きくなり、ニードル2qが弁座2pに着座する。これにより、噴孔2cからの燃料の噴射が終わる。   When the energization of the solenoid 4 is stopped and the magnetic attractive force disappears, the valve body is urged by an electromagnetic valve spring (not shown) in the electromagnetic valve 2b to close the fuel discharge path 2m. When the fuel discharge path 2m is closed, the common rail pressure is not discharged from the control chamber 2n, so the fuel pressure in the control chamber 2n stops decreasing and starts to increase. Then, the fuel pressure in the control chamber 2n increases until it becomes equal to the common rail pressure (that is, until it becomes equal to the fuel pressure in the fuel reservoir 2j). As a result, the sum of the urging force caused by the nozzle spring 2f and the urging force caused by the fuel pressure in the control chamber 2n becomes larger than the urging force caused by the fuel pressure in the fuel reservoir 2j, and the needle 2q is seated on the valve seat 2p. Thereby, the fuel injection from the nozzle hole 2c is completed.

このように、電磁弁2bは、ソレノイド4への通電により磁気吸引力を発生させ、この磁気吸引力により燃料排出路2mを開放する。そして、電磁弁2bは、磁気吸引力により燃料排出路2mを開放することによって、ニードル部2d(すなわち、ニードル2q)を間接的にリフトさせ噴孔2cを開放する。以上のように、電磁弁2bは、磁気吸引力を発生させることにより、噴射ノズル2aを作動させる。また、燃料排出路2mの開度は磁気吸引力の大きさ(すなわち、ソレノイド4への通電量)に応じた値となり、この開度に応じてニードル2qの保持位置やリフト速度が決まる。   Thus, the electromagnetic valve 2b generates a magnetic attractive force by energizing the solenoid 4, and opens the fuel discharge path 2m by the magnetic attractive force. The electromagnetic valve 2b opens the fuel discharge passage 2m by a magnetic attractive force, thereby indirectly lifting the needle portion 2d (that is, the needle 2q) and opening the nozzle hole 2c. As described above, the electromagnetic valve 2b operates the injection nozzle 2a by generating a magnetic attractive force. Further, the opening degree of the fuel discharge path 2m is a value corresponding to the magnitude of the magnetic attractive force (that is, the energization amount to the solenoid 4), and the holding position and the lift speed of the needle 2q are determined according to this opening degree.

ソレノイド4への通電電流は、1通電期間で、図7に示すものと同様に変化する。すなわち、通電開始時にはピーク電流Ipが通電され、その後にはピーク電流Ipよりも低い第1定電流I1が通電され、さらに、その後には第1定電流I1よりも低い第2定電流I2が通電されて、1通電期間が終了する。   The energization current to the solenoid 4 changes in the same way as that shown in FIG. 7 in one energization period. That is, at the start of energization, the peak current Ip is energized, thereafter the first constant current I1 lower than the peak current Ip is energized, and thereafter the second constant current I2 lower than the first constant current I1 is energized. Thus, one energization period ends.

ピーク電流Ipは、極めて大きな磁気吸引力を瞬間的に発生させ、ニードル2qのリフトを開始するために通電される。すなわち、電磁弁2bの弁体には高圧燃料をシールするために、電磁弁スプリング等による極めて大きな付勢力が作用しており、この付勢力に抗して弁体の駆動を開始させるには、極めて大きな磁気吸引力を必要とするからである。   The peak current Ip is energized in order to instantaneously generate a very large magnetic attractive force and to start the lift of the needle 2q. That is, in order to seal the high pressure fuel on the valve body of the electromagnetic valve 2b, an extremely large urging force acts by an electromagnetic valve spring or the like, and in order to start driving the valve body against this urging force, This is because an extremely large magnetic attractive force is required.

第1定電流I1は、ニードル2qを所定の保持位置までリフトすることができる強さの磁気吸引力を連続的に発生させるために通電される。このため、第1定電流I1は、ピーク電流Ipほどの高電流を必要とせず、ピーク電流Ipよりも小さく設定される。
第2定電流I2は、リフトを停止したニードル2qを所定の保持位置で保持できる強さの磁気吸引力を連続的に発生させるために通電される。このため、第2定電流I2は、ニードル2qのリフトを継続するための第1定電流I1よりも小さく設定される。
The first constant current I1 is energized in order to continuously generate a magnetic attractive force that can lift the needle 2q to a predetermined holding position. For this reason, the first constant current I1 does not require a current as high as the peak current Ip, and is set smaller than the peak current Ip.
The second constant current I2 is energized in order to continuously generate a magnetic attractive force that is strong enough to hold the needle 2q that has stopped lifting at a predetermined holding position. For this reason, the second constant current I2 is set smaller than the first constant current I1 for continuing the lift of the needle 2q.

制御装置3は、図2に示すように、各種センサから入力される信号や、記憶されたデータおよびプログラム等に基づき制御処理、演算処理を行うマイクロコンピュータ(マイコン)5、電源6の電圧を昇圧して充電し、充電された高電圧を放電することによりピーク電流Ipをソレノイド4に通電させる高電圧印加手段7、ソレノイド4への通電量を第1、第2定電流I1、I2の目標値に制御する定電流制御手段8、ソレノイド4への通電電流を検出する電流検出手段9、マイコン5からの指令に応じて、高電圧印加手段7または定電流制御手段8からソレノイド4への通電を断続するスイッチング素子10などを有する。   As shown in FIG. 2, the control device 3 boosts the voltage of a microcomputer 5 and a power source 6 that perform control processing and arithmetic processing based on signals input from various sensors, stored data, programs, and the like. The high voltage application means 7 for energizing the solenoid 4 with the peak current Ip by discharging the charged high voltage, and the energization amount to the solenoid 4 for the first and second constant currents I1 and I2 The constant current control means 8 for controlling the current, the current detection means 9 for detecting the energization current to the solenoid 4, and the energization to the solenoid 4 from the high voltage applying means 7 or the constant current control means 8 in accordance with a command from the microcomputer 5. The switching element 10 is intermittent.

マイコン5は、インジェクタ2に目標噴射量の燃料を噴射供給させるため、エンジンの運転状態を示す各種の信号に基づいてインジェクタ2による燃料噴射を制御するための指令値を算出する。すなわち、マイコン5は、エンジンの運転状態に応じて、インジェクタ2による燃料噴射を制御するための指令値を算出する指令値算出手段として機能する。   The microcomputer 5 calculates a command value for controlling the fuel injection by the injector 2 based on various signals indicating the operating state of the engine in order to cause the injector 2 to inject and supply the target injection amount of fuel. That is, the microcomputer 5 functions as command value calculation means for calculating a command value for controlling fuel injection by the injector 2 in accordance with the operating state of the engine.

そして、マイコン5は、これらの指令値や第1、第2定電流I1、I2の目標値に基づき通電制御を行うための指令信号を高電圧印加手段7や定電流制御手段8に出力する。そして、マイコン5からの指令信号に応じて、まず高電圧印加手段7がピーク電流Ipをソレノイド4に通電させ、続いて定電流制御手段8が通電電流を順次に第1、第2定電流I1、I2の目標値に制御する。   Then, the microcomputer 5 outputs a command signal for performing energization control to the high voltage applying unit 7 and the constant current control unit 8 based on these command values and the target values of the first and second constant currents I1 and I2. In response to a command signal from the microcomputer 5, first, the high voltage applying means 7 energizes the peak current Ip to the solenoid 4, and then the constant current control means 8 sequentially applies the energizing current to the first and second constant currents I1. , I2 is controlled to the target value.

定電流制御手段8は、電流検出手段9により検出された通電量の現在値と、マイコン5から指令された通電量の目標値とを比較する比較回路11、比較回路11からの制御信号に応じて電源6からソレノイド4への給電を断続するスイッチング素子12を具備する制御回路13を有する。これにより、通電電流は、図7に示すように、中間値が目標値に略一致するように鋸歯状に制御される。   The constant current control unit 8 compares the current value of the energization amount detected by the current detection unit 9 with the target value of the energization amount commanded from the microcomputer 5 according to the control signal from the comparison circuit 11 and the comparison circuit 11. And a control circuit 13 having a switching element 12 for intermittently supplying power from the power source 6 to the solenoid 4. Thus, the energization current is controlled in a sawtooth shape so that the intermediate value substantially matches the target value, as shown in FIG.

すなわち、定電流制御手段8は、ソレノイド4への通電量を、所定の強さの磁気吸引力を得るための目標値に制御する通電量制御手段として機能する。より具体的には、ニードル2qを所定の保持位置までリフトすることができる強さの磁気吸引力を得るため、定電流制御手段8はソレノイド4への通電量を第1定電流I1の目標値に制御する。また、リフトを停止したニードル2qを所定の保持位置で保持できる強さの磁気吸引力を得るため、定電流制御手段8はソレノイド4への通電量を第2定電流I2の目標値に制御する。
なお、電流検出手段9は、電流検出抵抗14などを組み込んだ周知の電流検出回路として構成されている。
That is, the constant current control means 8 functions as an energization amount control means for controlling the energization amount to the solenoid 4 to a target value for obtaining a magnetic attractive force having a predetermined strength. More specifically, in order to obtain a magnetic attractive force that can lift the needle 2q to a predetermined holding position, the constant current control means 8 sets the energization amount to the solenoid 4 to the target value of the first constant current I1. To control. The constant current control means 8 controls the energization amount of the solenoid 4 to the target value of the second constant current I2 in order to obtain a magnetic attractive force that can hold the needle 2q that has stopped the lift at a predetermined holding position. .
The current detection means 9 is configured as a known current detection circuit incorporating a current detection resistor 14 and the like.

〔実施例1の特徴〕
実施例1の燃料噴射装置1の特徴を、図2ないし図4を用いて説明する。
実施例1のマイコン5は、ソレノイド4へ電力を供給する電源6の電圧(電源電圧)を計測する電源電圧計測手段、電源電圧の計測値に応じて通電量の目標値を変更する通電量目標値変更手段、通電量の目標値に応じて指令値を補正する指令値補正手段としての機能を有する。
[Features of Example 1]
Features of the fuel injection device 1 according to the first embodiment will be described with reference to FIGS.
The microcomputer 5 according to the first embodiment includes a power supply voltage measuring unit that measures the voltage (power supply voltage) of the power supply 6 that supplies power to the solenoid 4, and an energization amount target that changes the target value of the energization amount in accordance with the measured value of the power supply voltage. It has a function as a value change means and a command value correction means for correcting the command value according to the target value of the energization amount.

すなわち、マイコン5は、周知の電圧検出手段15により検出された電源電圧を示す信号を用いて、電源電圧を計測する。また、マイコン5による電源電圧の計測周期は、インジェクタ2の噴射周期よりも長い。また、マイコン5による電源電圧の計測は、ソレノイド4への通電が開始される前に行われ、これに伴い、通電量の目標値の変更、および指令値の補正も、ソレノイド4への通電が開始される前に行われる。   That is, the microcomputer 5 measures the power supply voltage using a signal indicating the power supply voltage detected by the known voltage detecting means 15. Moreover, the measurement cycle of the power supply voltage by the microcomputer 5 is longer than the injection cycle of the injector 2. In addition, the power supply voltage is measured by the microcomputer 5 before the energization of the solenoid 4 is started. Accordingly, the energization of the solenoid 4 is also performed when the target value of the energization amount is changed and the command value is corrected. Done before it starts.

そして、マイコン5は、図3に示すように、電源電圧の計測値に応じて第1定電流I1の目標値を変更する。すなわち、電源電圧の計測値が閾値v1よりも大きいときには、第1定電流I1の目標値をI1aとし、電源電圧の計測値が閾値v1以下、かつ閾値v2よりも大きいときには、第1定電流I1の目標値をI1bとし、電源電圧の計測値が閾値v2以下、かつ閾値v3よりも大きいときには、第1定電流I1の目標値をI1cとする。閾値v1、v2、v3および第1定電流I1の目標値I1a、I1b、I1cは、安全を考慮して、電源電圧と通電量との相関のばらつきの下限に基づいて決定されている。   And the microcomputer 5 changes the target value of the 1st constant current I1 according to the measured value of a power supply voltage, as shown in FIG. That is, when the measured value of the power supply voltage is larger than the threshold value v1, the target value of the first constant current I1 is set to I1a, and when the measured value of the power supply voltage is equal to or less than the threshold value v1 and larger than the threshold value v2, the first constant current I1. Is set to I1b, and the target value of the first constant current I1 is set to I1c when the measured value of the power supply voltage is equal to or less than the threshold value v2 and larger than the threshold value v3. The threshold values v1, v2, v3 and the target values I1a, I1b, I1c of the first constant current I1 are determined based on the lower limit of the variation in the correlation between the power supply voltage and the energization amount in consideration of safety.

なお、第1定電流I1の目標値の変更を、ヒステリシス方式により行うようにしてもよい。例えば、第1定電流I1の目標値がI1bであるときに、バッテリ電圧の計測値が複数回続けて閾値v1よりも大きい値となるときにのみ、第1定電流I1の目標値をI1bからI1aへ上げることができるようにしてもよい。   Note that the target value of the first constant current I1 may be changed by a hysteresis method. For example, when the target value of the first constant current I1 is I1b, the target value of the first constant current I1 is changed from I1b only when the measured value of the battery voltage becomes a value larger than the threshold value v1 continuously several times. It may be possible to increase to I1a.

さらに、マイコン5は、第1定電流I1の目標値に応じて指令値を補正する。マイコン5が算出する指令値は、噴孔2cから噴射が開始される噴射開始時期に相当する通電開始時期指令値、および噴孔2cからの噴射が継続する噴射期間に相当する通電期間指令値である。そして、マイコン5は、図4に示すように、第1定電流I1の目標値ごとに異なる補正量を記憶し、目標値に応じた補正量を用いて指令値を補正する。なお、補正量は、通電開始時期指令値、通電期間指令値ともに、第1定電流I1の目標値が小さいほど大きい値が設定されている。   Further, the microcomputer 5 corrects the command value according to the target value of the first constant current I1. The command value calculated by the microcomputer 5 is an energization start timing command value corresponding to an injection start timing at which injection starts from the nozzle hole 2c, and an energization period command value corresponding to an injection period in which the injection from the nozzle hole 2c continues. is there. Then, as shown in FIG. 4, the microcomputer 5 stores a different correction amount for each target value of the first constant current I1, and corrects the command value using the correction amount according to the target value. The correction amount is set to a larger value as the target value of the first constant current I1 is smaller for both the energization start timing command value and the energization period command value.

〔実施例1の効果〕
実施例1のマイコン5は、電源電圧を計測するとともにその計測値に応じて第1定電流I1の目標値を変更し、さらにその目標値に応じて通電開始時期指令値および通電期間指令値を補正する。
これにより、第1定電流I1の目標値を、電源電圧に対し余裕のある低い値に変更することができる。このため、図5に示すように、電源電圧が低下しても、断続周期が大きくなることなく第1定電流I1は鋸歯状に制御される。この結果、電源電圧を、常時、監視する必要がなくなる。さらに、第1定電流I1の目標値の低下に伴いニードル2qのリフト条件が変動しても、通電開始時期指令値および通電期間指令値を補正することにより目標噴射量と実噴射量との乖離を防止でき、噴射開始時期の精度も確保できる。以上により、制御装置3の負荷を増やして電源電圧を、常時、監視しなくても、目標噴射量と実噴射量との乖離を防止することができるとともに噴射開始時期の精度も確保できる。
[Effect of Example 1]
The microcomputer 5 of the first embodiment measures the power supply voltage, changes the target value of the first constant current I1 according to the measured value, and further sets the energization start timing command value and the energization period command value according to the target value. to correct.
Thereby, the target value of the first constant current I1 can be changed to a low value with a margin with respect to the power supply voltage. For this reason, as shown in FIG. 5, even if the power supply voltage decreases, the first constant current I1 is controlled in a sawtooth shape without increasing the intermittent period. As a result, it is not necessary to constantly monitor the power supply voltage. Furthermore, even if the lift condition of the needle 2q fluctuates as the target value of the first constant current I1 decreases, the difference between the target injection amount and the actual injection amount is corrected by correcting the energization start timing command value and the energization period command value. And the accuracy of the injection start timing can be secured. As described above, even if the load of the control device 3 is increased and the power supply voltage is not constantly monitored, the deviation between the target injection amount and the actual injection amount can be prevented and the accuracy of the injection start timing can be ensured.

また、マイコン5による電源電圧の計測周期は、インジェクタ2の噴射周期よりも長い。
これにより、電源電圧の計測による制御装置3の負荷への影響を大幅に減らすことができる。
Moreover, the measurement cycle of the power supply voltage by the microcomputer 5 is longer than the injection cycle of the injector 2.
Thereby, the influence on the load of the control apparatus 3 by measurement of a power supply voltage can be reduced significantly.

また、マイコン5による電源電圧の計測は、ソレノイド4への通電が開始される前に行われる。
これにより、ソレノイド4への通電が開始される前に、第1定電流I1の目標値を変更して通電開始時期指令値および通電期間指令値を補正することができる。
The power supply voltage is measured by the microcomputer 5 before the energization of the solenoid 4 is started.
Thereby, before energization to the solenoid 4 is started, the target value of the first constant current I1 can be changed to correct the energization start timing command value and the energization period command value.

〔変形例〕
本実施例では、第1定電流I1の目標値に応じて、通電開始時期指令値および通電期間指令値を補正したが、通電開始前に電源電圧の計測を行なう場合には、補正する指令値を通電開始時期指令値のみとしても、目標噴射量と実噴射量との乖離を防止することができ噴射開始時期の精度も確保できる。また、通電開始後に電源電圧の計測を行う場合には、少なくとも通電期間指令値を補正すれば、目標噴射量と実噴射量との乖離を防止することができる。
[Modification]
In this embodiment, the energization start timing command value and the energization period command value are corrected according to the target value of the first constant current I1, but when the power supply voltage is measured before the energization start, the corrected command value Even when only the energization start timing command value is set, the deviation between the target injection amount and the actual injection amount can be prevented, and the accuracy of the injection start timing can be ensured. Further, when measuring the power supply voltage after the start of energization, it is possible to prevent a deviation between the target injection amount and the actual injection amount by correcting at least the energization period command value.

本実施例の通電電流は、図7に示すようなパターンであったが、図6(a)のようにピーク電流Ipの後に、第1定電流I1のみを通電させるパターンや、図6(b)のようにピーク電流Ipを通電させずに大き目の第1定電流I1を持続的に通電させ、その後に第2定電流を通電させるパターンにも、本発明を適用することができる。   The energization current of the present embodiment has a pattern as shown in FIG. 7, but a pattern in which only the first constant current I1 is energized after the peak current Ip as shown in FIG. The present invention can also be applied to a pattern in which the large first constant current I1 is continuously energized without energizing the peak current Ip and the second constant current is energized thereafter.

本実施例のインジェクタ2は、ニードル2qを磁気吸引力により間接的に駆動(リフト)するものであったが、ニードル2qを磁気吸引力により直接的に駆動(リフト)するものに本発明を適用することもできる。   The injector 2 according to the present embodiment indirectly drives (lifts) the needle 2q with a magnetic attraction force, but the present invention is applied to the needle 2q directly driven (lift) with a magnetic attraction force. You can also

燃料噴射装置の構成を示す説明図である(実施例)。It is explanatory drawing which shows the structure of a fuel-injection apparatus (Example). 燃料噴射装置の要部を示す説明図である(実施例)。It is explanatory drawing which shows the principal part of a fuel-injection apparatus (Example). 電源電圧の計測値と第1定電流の目標値との関係を示す相関図である(実施例)。It is a correlation diagram which shows the relationship between the measured value of a power supply voltage, and the target value of a 1st constant current (Example). (a)は、第1定電流の目標値と通電開始時期指令値の補正量との関係を示す相関図であり、(b)は、第1定電流の目標値と通電期間指令値の補正量との関係を示す相関図である(実施例)。(A) is a correlation diagram showing the relationship between the target value of the first constant current and the correction amount of the energization start timing command value, and (b) is the correction of the target value of the first constant current and the energization period command value. It is a correlation diagram which shows the relationship with quantity (Example). 通電電流の推移を示すパターン図である(実施例)。It is a pattern figure which shows transition of an energization current (Example). (a)は、ピーク電流の後に第1定電流のみを通電させるパターン図であり、(b)は、ピーク電流を通電させずに、第1定電流を通電させ、その後に第2定電流を通電させるパターン図である(変形例)。(A) is a pattern diagram in which only the first constant current is energized after the peak current, and (b) is the first constant current energized without energizing the peak current, and then the second constant current is energized. It is a pattern figure to which it supplies with electricity (modification example). ピーク電流の後に第1定電流を通電させ、その後に第2定電流を通電させるパターン図である(実施例、従来例)。It is a pattern figure which energizes the 1st constant current after the peak current, and energizes the 2nd constant current after that (an example and a conventional example). (a)は、電源電圧と通電量が目標値に到達するための応答時間との関係を示す相関図であり、(b)は、電源電圧と実噴射量の誤差との関係を示す相関図である(従来例)。(A) is a correlation diagram showing the relationship between the power supply voltage and the response time for the energization amount to reach the target value, and (b) is a correlation diagram showing the relationship between the power supply voltage and the error in the actual injection amount. (Conventional example). 電源電圧の低下に伴う通電電流の推移の変化を示すパターン図である(従来例)。It is a pattern diagram which shows the change of transition of the energization current accompanying the fall of a power supply voltage (conventional example).

符号の説明Explanation of symbols

1 燃料噴射装置
2 インジェクタ
2c 噴孔
2q ニードル
5 マイコン(指令値算出手段、電源電圧計測手段、通電量目標値変更手段、指令値補正手段)
6 電源
8 定電流制御手段(通電量制御手段)
DESCRIPTION OF SYMBOLS 1 Fuel injection apparatus 2 Injector 2c Injection hole 2q Needle 5 Microcomputer (command value calculation means, power supply voltage measurement means, energization amount target value change means, command value correction means)
6 Power supply 8 Constant current control means (energization amount control means)

Claims (7)

ソレノイドへの通電により磁気吸引力を発生させる電磁アクチュエータ、および前記磁気吸引力によりリフトされ噴孔を開放するニードルを有するインジェクタと、
内燃機関の運転状態に応じて、前記インジェクタによる燃料噴射を制御するための指令値を算出する指令値算出手段と、
前記ソレノイドへの通電量を、所定の強さの磁気吸引力を得るための目標値に制御する通電量制御手段と、
前記ソレノイドへ電力を供給する電源の電圧を計測する電源電圧計測手段と、
前記電源の電圧の計測値に応じて前記通電量の目標値を変更する通電量目標値変更手段と、
前記通電量の目標値に応じて前記指令値を補正する指令値補正手段と
を備える燃料噴射装置。
An electromagnetic actuator that generates a magnetic attractive force by energizing the solenoid, and an injector that has a needle that is lifted by the magnetic attractive force to open the nozzle hole;
Command value calculating means for calculating a command value for controlling fuel injection by the injector according to an operating state of the internal combustion engine;
An energization amount control means for controlling the energization amount to the solenoid to a target value for obtaining a magnetic attraction force of a predetermined strength;
Power supply voltage measuring means for measuring the voltage of a power supply for supplying power to the solenoid;
Energization amount target value changing means for changing the target value of the energization amount according to the measured value of the voltage of the power source;
A fuel injection device comprising command value correcting means for correcting the command value according to the target value of the energization amount.
請求項1に記載の燃料噴射装置において、
前記電源電圧計測手段の計測周期は、前記インジェクタの噴射周期よりも長いことを特徴とする燃料噴射装置。
The fuel injection device according to claim 1,
The fuel injection device according to claim 1, wherein a measurement cycle of the power supply voltage measuring means is longer than an injection cycle of the injector.
請求項1に記載の燃料噴射装置において、
前記指令値の少なくとも1つは、前記噴孔から噴射が開始される噴射開始時期に相当する通電開始時期の指令値であることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1,
At least one of the command values is a command value of an energization start timing corresponding to an injection start timing at which injection is started from the nozzle hole.
請求項3に記載の燃料噴射装置において、
前記電源電圧計測手段による前記電源の電圧の計測は、前記ソレノイドへの通電が開始される前に行われることを特徴とする燃料噴射装置。
The fuel injection device according to claim 3, wherein
The fuel injection device according to claim 1, wherein the power supply voltage is measured by the power supply voltage measuring means before the solenoid is energized.
請求項1に記載の燃料噴射装置において、
前記指令値の少なくとも1つは、前記噴孔からの噴射が継続する噴射期間に相当する通電期間の指令値であることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1,
At least one of the command values is a command value for an energization period corresponding to an injection period during which injection from the nozzle holes continues.
請求項5に記載の燃料噴射装置において、
前記電源電圧計測手段による前記電源の電圧の計測は、前記ソレノイドへの通電が開始された後に行われることを特徴とする燃料噴射装置。
The fuel injection device according to claim 5, wherein
The fuel injection apparatus according to claim 1, wherein the power supply voltage is measured by the power supply voltage measuring means after energization of the solenoid is started.
請求項1に記載の燃料噴射装置において、
前記所定の強さの磁気吸引力は、前記ニードルを所定の保持位置までリフトすることができる強さであることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1,
The fuel injection device according to claim 1, wherein the magnetic attraction force having a predetermined strength is a strength capable of lifting the needle to a predetermined holding position.
JP2004261014A 2004-09-08 2004-09-08 Fuel injection device Expired - Fee Related JP4363280B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004261014A JP4363280B2 (en) 2004-09-08 2004-09-08 Fuel injection device
CNB2005100994272A CN100526626C (en) 2004-09-08 2005-08-31 Fuel-jetting system
DE200510042530 DE102005042530A1 (en) 2004-09-08 2005-09-07 Fuel injection system for internal combustion engine has device for changing current to solenoid depending on measured battery voltage, device for correcting command signal depending on changed desired value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261014A JP4363280B2 (en) 2004-09-08 2004-09-08 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2006077627A true JP2006077627A (en) 2006-03-23
JP4363280B2 JP4363280B2 (en) 2009-11-11

Family

ID=36011816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261014A Expired - Fee Related JP4363280B2 (en) 2004-09-08 2004-09-08 Fuel injection device

Country Status (3)

Country Link
JP (1) JP4363280B2 (en)
CN (1) CN100526626C (en)
DE (1) DE102005042530A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159049A (en) * 2011-02-02 2012-08-23 Hitachi Automotive Systems Ltd Injector drive circuit
JP2016153615A (en) * 2015-02-20 2016-08-25 株式会社デンソー Drive unit of fuel injection valve
WO2016170738A1 (en) * 2015-04-24 2016-10-27 株式会社デンソー Fuel injection control device for internal combustion engine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789072B2 (en) 2006-06-01 2010-09-07 Continental Automotive Systems Us, Inc. Fuel injection circuit with selectable peak injection currents
JP4297158B2 (en) * 2006-11-22 2009-07-15 トヨタ自動車株式会社 Fuel cell system
EP2045459B1 (en) * 2007-10-04 2012-03-07 Delphi Technologies Holding S.à.r.l. A method of controlling fuel injection apparatus
JP4917556B2 (en) * 2008-01-07 2012-04-18 日立オートモティブシステムズ株式会社 Fuel injection control device for internal combustion engine
JP5698938B2 (en) * 2010-08-31 2015-04-08 日立オートモティブシステムズ株式会社 Drive device for fuel injection device and fuel injection system
DE102010042844B4 (en) 2010-10-25 2022-02-03 Robert Bosch Gmbh Method for monitoring a control device for an injection system in a motor vehicle
CN102062007B (en) * 2010-12-22 2012-11-21 潍柴动力股份有限公司 Rail pressure control method and rail pressure pre-control method and system for engine
DE102011075269B4 (en) * 2011-05-04 2014-03-06 Continental Automotive Gmbh Method and device for controlling a valve
JP5772788B2 (en) * 2012-11-05 2015-09-02 株式会社デンソー Fuel injection control device and fuel injection system
DE102013204725A1 (en) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Method for operating an electric fuel pump
JP6413582B2 (en) * 2014-10-03 2018-10-31 株式会社デンソー Control device for internal combustion engine
CN108488466B (en) * 2018-03-16 2020-03-17 芜湖美的厨卫电器制造有限公司 Control method and control device for gas proportional valve
FR3094408B1 (en) * 2019-03-26 2021-03-05 Continental Automotive Method of controlling a high pressure fuel injector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159049A (en) * 2011-02-02 2012-08-23 Hitachi Automotive Systems Ltd Injector drive circuit
JP2016153615A (en) * 2015-02-20 2016-08-25 株式会社デンソー Drive unit of fuel injection valve
WO2016170738A1 (en) * 2015-04-24 2016-10-27 株式会社デンソー Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP4363280B2 (en) 2009-11-11
CN100526626C (en) 2009-08-12
CN1746474A (en) 2006-03-15
DE102005042530A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4363280B2 (en) Fuel injection device
US10634083B2 (en) Drive device for fuel injection device
US7305971B2 (en) Fuel injection system ensuring operation in event of unusual condition
EP2538061B1 (en) Fuel injection device
KR101682997B1 (en) Method and device for determining a fuel pressure present at a direct injection valve
JP4532490B2 (en) Method for determining drive control voltage of a piezoelectric actuator of an injection valve
JP4207010B2 (en) Fuel injection device
WO2007115439A1 (en) Driving controlling method and apparatus for electromagnetic fuel pump nozzle
JP6521725B2 (en) Control device of fuel injection valve
JP4144360B2 (en) Accumulated fuel injection system
JP4688922B2 (en) Control device for internal combustion engine
CN117418955A (en) Fuel injector variability reduction
JP4650458B2 (en) Supply pump controller
JP6250712B2 (en) Fuel injection device
JP6686508B2 (en) Internal combustion engine and fuel injection control method for internal combustion engine
JP2016200242A (en) Drive control device of solenoid valve
US20240151189A1 (en) Fuel Injection Control Device
JP6217396B2 (en) Fuel injection control device
JP7459834B2 (en) Fuel injection control device for internal combustion engine
CN114729615B (en) Fuel injection control device
JP2007138772A (en) Fuel injection control device
JP2006090176A (en) Injector
JP2018189033A (en) Fuel injection control device
JP2011122489A (en) Fuel injection device
KR20000076448A (en) Control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees