JP2005233477A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2005233477A
JP2005233477A JP2004041378A JP2004041378A JP2005233477A JP 2005233477 A JP2005233477 A JP 2005233477A JP 2004041378 A JP2004041378 A JP 2004041378A JP 2004041378 A JP2004041378 A JP 2004041378A JP 2005233477 A JP2005233477 A JP 2005233477A
Authority
JP
Japan
Prior art keywords
heat transfer
groove
liquid
evaporator
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004041378A
Other languages
Japanese (ja)
Inventor
Yutaka Tazaki
豊 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004041378A priority Critical patent/JP2005233477A/en
Publication of JP2005233477A publication Critical patent/JP2005233477A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator improved in its wetting property by supplying the sufficient amount of evaporated liquid to an evaporation face by capillary pressure. <P>SOLUTION: In this evaporator having a path for the evaporated liquid, narrower than a diameter of released bubbles, a groove 3 is formed on an evaporated liquid-side surface of a heat transfer base 2 heating the evaporated liquid, and a skin 4 having a plurality of holes 5 for communicating the groove 3 and a heating surface is diffusion-joined to a surface of the heat transfer base at a joint face 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被蒸発液体の通路が離脱気泡の直径より小さいマイクロチャネル型の蒸発器に関する。   The present invention relates to a microchannel evaporator in which the passage of a liquid to be evaporated is smaller than the diameter of a detached bubble.

従来より蒸発器の性能を向上させる方法には、大別して2つの方法がある。第1の方法はフィンチューブに見られるような伝熱面積の拡大による性能向上であり、第2の方法は加熱板の表面に設けた焼結粒子層のような沸騰伝熱機構から見た伝熱性能の向上である。   Conventional methods for improving the performance of an evaporator are roughly divided into two methods. The first method is to improve the performance by expanding the heat transfer area as seen in the fin tube, and the second method is a heat transfer mechanism viewed from a boiling heat transfer mechanism such as a sintered particle layer provided on the surface of the heating plate. This is an improvement in thermal performance.

第2の方法の従来技術として、例えば蒸発器の被蒸発液側の加熱板の構造として、図12に示すような多孔質伝熱面を用いたものがある(特許文献1)。   As a conventional technique of the second method, for example, there is a structure using a porous heat transfer surface as shown in FIG. 12 as a structure of a heating plate on an evaporation target side of an evaporator (Patent Document 1).

この多孔質伝熱面は、焼結粒子層11と、焼結粒子層の表面上に、規則的な開孔13を持った表皮12により構成されている。伝熱壁10の上には焼結粒子層11を設け、更にそれを、多数の規則的な開孔13が設けられた表皮12で覆っている。この多孔質伝熱面を蒸発器に用いれば、表皮12の開孔13が焼結粒子層へ出入りする気泡及び沸騰液の抵抗となる。このため、気泡及び沸騰液の挙動に対して焼結粒子層11内の圧力が支配因子として加わることになり、この圧力を介して気泡の成長、離脱と液の流入がリンクする。従って、気泡の放出量に応じて液の流入量が決まるというように、気液の流出入がセルフコントロールされるため、広い熱流束範囲で焼結粒子層11内に薄い液膜が形成され、高い熱伝達率が得られるとしている。
特公平5−059357号公報(第3頁、図2)
This porous heat transfer surface is constituted by a sintered particle layer 11 and a skin 12 having regular openings 13 on the surface of the sintered particle layer. A sintered particle layer 11 is provided on the heat transfer wall 10 and is further covered with a skin 12 provided with a number of regular openings 13. If this porous heat transfer surface is used in an evaporator, the opening 13 of the skin 12 becomes the resistance of bubbles and boiling liquid entering and exiting the sintered particle layer. For this reason, the pressure in the sintered particle layer 11 is applied as a governing factor to the behavior of the bubbles and the boiling liquid, and the growth and separation of the bubbles and the inflow of the liquid are linked through this pressure. Therefore, since the inflow and outflow of gas and liquid is self-controlled so that the inflow amount of the liquid is determined according to the amount of bubbles released, a thin liquid film is formed in the sintered particle layer 11 in a wide heat flux range, It is said that a high heat transfer coefficient can be obtained.
JP-B-5-059357 (page 3, Fig. 2)

しかしながら、特許文献1記載のような構造の伝熱面を蒸発器の被蒸発液側に適用しようとすると、下記のような3つの問題点があった。   However, when the heat transfer surface having the structure described in Patent Document 1 is applied to the evaporation target liquid side of the evaporator, there are the following three problems.

(1)空隙の断面積が均一でないので流体抵抗が大きく、毛管圧力による十分な被蒸発液体の質量輸送能力が得られない。 (1) Since the cross-sectional area of the air gap is not uniform, the fluid resistance is large, and sufficient mass transport capability of the liquid to be evaporated due to capillary pressure cannot be obtained.

(2)表皮と焼結粒子、または伝熱壁と焼結粒子との十分な接触面積が確保されず、熱抵抗が大きい。 (2) A sufficient contact area between the skin and the sintered particles or between the heat transfer wall and the sintered particles is not ensured, and the thermal resistance is large.

(3)開孔部を焼結粒子が塞いでしまう部位が存在し、液滴の取り込み及び焼結粒子部空隙からの蒸発など開孔部を介しての効率的な熱及び物質の移動が阻害される。 (3) There is a portion where the sintered particles block the pores, and efficient heat and mass transfer through the pores, such as taking in droplets and evaporating from the voids of the sintered particles, are obstructed. Is done.

〔マイクロチャネルの定義〕
本発明では、マイクロチャネルを以下のように定義する。伝熱面から離脱する離脱気泡の直径がチャネル間隙と比較して大きい場合をマイクロチャネルと定義する。言い換えれば気泡が壁により離脱径より小さい段階で押しつぶされ気泡と加熱面間にマイクロレイヤを形成する場合をマイクロチャネルと定義する。
[Definition of microchannels]
In the present invention, the microchannel is defined as follows. The case where the diameter of the bubble that leaves from the heat transfer surface is larger than the channel gap is defined as a microchannel. In other words, a case where bubbles are crushed by a wall at a stage smaller than the separation diameter to form a microlayer between the bubbles and the heating surface is defined as a microchannel.

離脱気泡直径は表面性状、過熱度によって異なる。具体的には図7に示す様に、例えば親水性が高い酸化チタン皮膜の場合には0.8〔mm〕程度、疎水性が高いシリコーン皮膜場合には2.5〔mm〕程度の離脱気泡直径を示しており、すなわちその値以下がその加熱面におけるマイクロチャネルの寸法ということになる。   The detached bubble diameter varies depending on the surface properties and the degree of superheat. Specifically, as shown in FIG. 7, for example, about 0.8 [mm] in the case of a highly hydrophilic titanium oxide film and about 2.5 [mm] in the case of a highly hydrophobic silicone film. The diameter is shown, that is, the value below that value is the dimension of the microchannel on the heated surface.

〔伝熱面における薄液膜形成の必要性〕
図8(a)は、平行平板型蒸発器における伝熱面同士の間隙が狭い(実線)場合と広い(破線)場合との伝熱面の過熱度と熱流束との関係を示すグラフである。図8(a)に示す様にある温度と熱流束の点で2本の実線が交差し、伝熱面同士の間隙が狭い場合、熱流束が低い領域では良好な熱伝達特性を示すが、熱流束が高い領域では熱伝達特性が低下し、それに伴い限界熱流束(Critical Heat Flux)も低下する特性を示す。逆に、伝熱面同士の間隙が広い場合には、熱流束が高い領域では良好な熱伝達特性を示すが、熱流束が低い領域では熱伝達特性が低下する。
[Necessity of forming a thin liquid film on the heat transfer surface]
FIG. 8A is a graph showing the relationship between the degree of superheat and heat flux of the heat transfer surface when the gap between the heat transfer surfaces in the parallel plate evaporator is narrow (solid line) and wide (broken line). . As shown in FIG. 8 (a), when two solid lines intersect at a certain temperature and heat flux, and the gap between the heat transfer surfaces is narrow, the heat transfer characteristics are good in the low heat flux region. In the region where the heat flux is high, the heat transfer characteristic decreases, and the critical heat flux (Critical Heat Flux) decreases accordingly. On the other hand, when the gap between the heat transfer surfaces is wide, good heat transfer characteristics are exhibited in a region where the heat flux is high, but heat transfer characteristics are degraded in a region where the heat flux is low.

このメカニズムとして、伝熱面のドライアウトによる熱伝達率の低下があげられる。図8(b)に蒸発管における流動、伝熱様式の変化を示す。蒸発管内の液体は、上流(図中下方)ではほぼ100%液相であるが、下流(図中上方)へ行くに従って、徐々に液相中に気泡分が増加する2相状態となり、ドライアウト位置より下流(ポスト・ドライアウト)では、伝熱面上に被蒸発液体は存在せず、完全に乾いた伝熱面となる。ポストドライアウトの噴霧流域では、伝熱面に常に接触する液体がないので、著しい熱伝達特性の低下が示されている。   As this mechanism, there is a decrease in heat transfer coefficient due to dryout of the heat transfer surface. FIG. 8B shows changes in the flow and heat transfer mode in the evaporator tube. The liquid in the evaporator tube is almost 100% liquid phase upstream (lower part in the figure), but gradually becomes a two-phase state in which bubbles increase in the liquid phase as it goes downstream (upper part in the figure). Downstream from the position (post-dryout), there is no liquid to be evaporated on the heat transfer surface, and the heat transfer surface is completely dry. In the post-dryout spray basin, there is no liquid that is always in contact with the heat transfer surface, indicating a significant decrease in heat transfer characteristics.

また図8(c)には、蒸発管における加熱熱流束と熱伝達率分布を示す。図中A→B→C→Dの順で熱流束が大きくなる。熱流束の増大に伴い熱伝達率低下(噴霧流)の領域が上流へと移動していることが示されている。これら熱伝達率の低下を改善するためには、噴霧流(ポストドライアウト)領域に被蒸発液体を供給して伝熱面が濡れた状態を保持する必要がある。   FIG. 8 (c) shows the heating heat flux and heat transfer coefficient distribution in the evaporator tube. In the figure, the heat flux increases in the order of A → B → C → D. It is shown that the region of reduced heat transfer coefficient (spray flow) moves upstream as the heat flux increases. In order to improve the decrease in the heat transfer coefficient, it is necessary to supply the liquid to be vaporized to the spray flow (post dry out) region to keep the heat transfer surface wet.

図9は、高熱流束領域におけるマイクロチャネルの沸騰様相を示す模式図である。伝熱面101の図中下方(上流)から被蒸発液体106が供給され、蒸気107は上方(下流)から排出される。被蒸発液体106は、伝熱面101で加熱され、気液界面104より上方では、被蒸発液体は、噴霧流105となっている。   FIG. 9 is a schematic diagram showing the boiling aspect of the microchannel in the high heat flux region. The evaporation target liquid 106 is supplied from the lower side (upstream) of the heat transfer surface 101 in the figure, and the vapor 107 is discharged from the upper side (downstream). The liquid to be evaporated 106 is heated by the heat transfer surface 101, and the liquid to be evaporated becomes a spray flow 105 above the gas-liquid interface 104.

伝熱面101のウエット領域(ドライアウト位置より上流)102と噴霧流領域103との界面である気液界面104は、熱流束の増大に伴い下方(上流)に移動し、熱移動として効率的に利用できる伝熱面のウエット領域102は限られ、伝熱面全体での熱交換効率は低下する。熱交換効率を向上させるには、伝熱面中の熱伝達率の高いウエット領域102の比率を高める必要がある。   The gas-liquid interface 104, which is an interface between the wet region (upstream from the dryout position) 102 of the heat transfer surface 101 and the spray flow region 103, moves downward (upstream) as the heat flux increases, and is efficient as heat transfer. The wet region 102 of the heat transfer surface that can be used for the heat transfer surface is limited, and the heat exchange efficiency of the entire heat transfer surface is reduced. In order to improve the heat exchange efficiency, it is necessary to increase the ratio of the wet region 102 having a high heat transfer coefficient in the heat transfer surface.

図10は、(a)9〔kW/m2 〕、(b)14〔kW/m2 〕、(c)19〔kW/m2 〕の各熱流束における沸騰の様子を撮影した写真を図式化したものである。図10に示すように、熱流束の増大に伴い伝熱表面のぬれ面積が小さくなっている。すなわち伝熱表面のぬれ性を確保するには、熱流束を図11(a)に示すように限界熱流束以下に制御するか、または伝熱表面のぬれ性を向上させ限界熱流束を図11(b)の実線から破線のように改善させるための構造、構成を提供する必要がある。本発明は、後者のアプローチで蒸発器の性能を向上させるものである。 FIG. 10 is a schematic diagram of photographs of boiling states in each heat flux of (a) 9 [kW / m 2 ], (b) 14 [kW / m 2 ], and (c) 19 [kW / m 2 ]. It has become. As shown in FIG. 10, the wetting area of the heat transfer surface is reduced as the heat flux increases. That is, in order to ensure the wettability of the heat transfer surface, the heat flux is controlled to be below the limit heat flux as shown in FIG. It is necessary to provide a structure and a configuration for improving the solid line from (b) to the broken line. The present invention improves the performance of the evaporator with the latter approach.

本発明は、上記問題点を解決するため、離脱気泡の直径より狭い被蒸発液体の通路を有する蒸発器において、被蒸発液体を加熱する伝熱基板の被蒸発液体側表面に溝を設け、前記溝と加熱表面とを連通する複数の開孔を有する表皮を前記伝熱基板の前記表面に接合したことを要旨とする。   In order to solve the above problems, the present invention provides an evaporator having a passage of the liquid to be evaporated which is narrower than the diameter of the separation bubble, and a groove is provided on the surface of the heat transfer substrate that heats the liquid to be evaporated. The gist is that a skin having a plurality of openings communicating the groove and the heating surface is joined to the surface of the heat transfer substrate.

本発明によれば、被蒸発液体の気液二相領域において、毛細管現象によって被蒸発液体が溝を伝って伝熱面下流まで供給され、この溝から孔を介して伝熱面表面に薄液膜が供給されるので、高い熱伝達率を維持することが可能となり、熱交換性能の向上により蒸発器のコンパクト化と蒸発器コア温度の均一化が図れるという効果がある。   According to the present invention, in the gas-liquid two-phase region of the liquid to be evaporated, the liquid to be evaporated is supplied to the downstream of the heat transfer surface through the groove by capillary action, and the thin liquid is supplied from the groove to the surface of the heat transfer surface through the hole. Since the film is supplied, it is possible to maintain a high heat transfer coefficient, and there is an effect that the evaporator can be made compact and the evaporator core temperature can be made uniform by improving the heat exchange performance.

次に図面を参照して、本発明に係る蒸発器の実施例を詳細に説明する。尚、特に限定されないが本発明に係る蒸発器は、水や炭化水素系の原燃料を蒸発させて燃料電池用の燃料改質器に供給する蒸発器に好適なものである。   Next, an embodiment of an evaporator according to the present invention will be described in detail with reference to the drawings. Although not particularly limited, the evaporator according to the present invention is suitable for an evaporator that evaporates water or hydrocarbon-based raw fuel and supplies it to a fuel reformer for a fuel cell.

図1は、本発明に係る蒸発器の実施例1を説明する加熱板1の(a)平面図、(b)A−A断面図である。図1に示すように、本実施例における加熱板1は、溝3が形成された伝熱基板2と、複数の孔5を設けた表皮4とを接合面6で接合して構成される。伝熱基板2と表皮4とは、両者を接合面5で拡散接合したものである。   FIG. 1 is a (a) plan view and (b) AA sectional view of a heating plate 1 for explaining an embodiment 1 of an evaporator according to the present invention. As shown in FIG. 1, the heating plate 1 in this embodiment is configured by joining a heat transfer substrate 2 in which a groove 3 is formed and a skin 4 provided with a plurality of holes 5 at a joining surface 6. The heat transfer substrate 2 and the skin 4 are formed by diffusion bonding at the bonding surface 5.

伝熱基板2の溝3の幅及び表皮4の孔5の直径は、被蒸発液体を水とした場合、蒸発器の温度(言い換えれば、蒸気圧力)にもよるが、それぞれ0.5〔mm〕以下、好ましくは、0.2〔mm〕〜0.3〔mm〕程度が毛管現象の効果を期待できると考えられる。また、孔5の経は、溝3の幅以下とすることが好ましい。   The width of the groove 3 of the heat transfer substrate 2 and the diameter of the hole 5 of the skin 4 are 0.5 [mm] depending on the temperature of the evaporator (in other words, the vapor pressure) when the liquid to be evaporated is water. In the following, it is considered that the effect of capillary action is expected to be preferably about 0.2 [mm] to 0.3 [mm]. Further, it is preferable that the length of the hole 5 is equal to or less than the width of the groove 3.

さらに、伝熱基板2及び表皮4の材質は、耐食性の金属素材、例えばステンレススチール、チタン、チタン合金等を用い、それぞれ溝3,孔5をエッチングにて形成した。   Furthermore, the heat transfer substrate 2 and the skin 4 were made of corrosion-resistant metal materials such as stainless steel, titanium, titanium alloy, etc., and the grooves 3 and the holes 5 were formed by etching, respectively.

孔5は、好ましくは伝熱基板2の縦横の溝3が交わる位置に対応して設けられ、毛管圧力により溝3を介して上昇した薄液膜7を加熱表面へ浸透させ、また加熱表面上流からの液滴をトラップする。溝3に形成された薄液膜7は、表面張力により圧力が上昇し、その飽和蒸気温度は外部のそれと比較し高い。その結果、加熱表面の薄液膜が蒸発しても溝3の薄液膜7は維持され、加熱表面へ液を供給し薄液膜の形成を可能にする。   The holes 5 are preferably provided corresponding to the positions where the vertical and horizontal grooves 3 of the heat transfer substrate 2 intersect, and penetrate the thin liquid film 7 that has risen through the grooves 3 by capillary pressure into the heating surface, and upstream of the heating surface. Trap droplets from. The thin liquid film 7 formed in the groove 3 increases in pressure due to surface tension, and its saturated vapor temperature is higher than that of the outside. As a result, even if the thin liquid film on the heating surface evaporates, the thin liquid film 7 in the groove 3 is maintained, and the liquid is supplied to the heating surface to enable the formation of the thin liquid film.

さらに、加熱板1の被蒸発液体が接する表面に酸化チタン等の被膜を形成して親水処理することにより、より大きな毛管圧力及び加熱表面への浸透力を得ることが可能になり、更なる限界熱流束の向上を可能とする。   Furthermore, by forming a film of titanium oxide or the like on the surface of the heating plate 1 that contacts the liquid to be evaporated and performing a hydrophilic treatment, it becomes possible to obtain a larger capillary pressure and a penetrating power to the heating surface, which are further limited. The heat flux can be improved.

また本発明においては、溝3は伝熱基板2に形成し、表皮4に孔5を設けたため、伝熱基板2と表皮4との拡散接合時の高温高圧状態においても、溝3、孔5の変形が抑制される。表皮4に溝と孔を形成した場合には、拡散接合時の高温高圧状態において変形を起こしてしまい、溝の形状が維持できないという問題が発生する。   In the present invention, since the groove 3 is formed in the heat transfer substrate 2 and the surface 5 is provided with the hole 5, the groove 3 and the hole 5 are formed even in the high temperature and high pressure state at the time of diffusion bonding between the heat transfer substrate 2 and the skin 4. Is prevented from being deformed. When grooves and holes are formed in the skin 4, deformation occurs in a high-temperature and high-pressure state at the time of diffusion bonding, causing a problem that the shape of the grooves cannot be maintained.

図2は、本発明に係る蒸発器の実施例2を説明する加熱板1の(a)平面図、(b)B−B断面図、(c)A−A断面図である。本実施例は、被蒸発液体の流れ方向に沿って溝3を設けるとともに、上流から下流へ向かって順次溝3の断面積を減少させた例を示す。加熱板1を構成する伝熱基板2及び表皮4の材質、溝3及び孔5を形成する方法、伝熱基板2と表皮4との接合方法等は、実施例1と同様である。   FIG. 2: is the (a) top view of the heating plate 1 explaining the Example 2 of the evaporator based on this invention, (b) BB sectional drawing, (c) AA sectional drawing. The present embodiment shows an example in which the groove 3 is provided along the flow direction of the liquid to be evaporated and the cross-sectional area of the groove 3 is sequentially reduced from the upstream toward the downstream. The materials of the heat transfer substrate 2 and the skin 4 constituting the heating plate 1, the method of forming the grooves 3 and the holes 5, the method of joining the heat transfer substrate 2 and the skin 4 and the like are the same as in the first embodiment.

本実施例では、被蒸発液体の上流側の(c)A−A断面図に示す溝3の断面の大きさが同下流側の(b)B−B断面図に示す溝3の断面より大きくしてある。また孔5の大きさも溝3の大きさと対応させ、上流から下流へ行くに従って、孔5の大きさを小さくしている。   In the present embodiment, the size of the cross section of the groove 3 shown in (c) AA cross section on the upstream side of the liquid to be evaporated is larger than the cross section of the groove 3 shown in (b) BB cross section on the downstream side. It is. The size of the hole 5 is also made to correspond to the size of the groove 3, and the size of the hole 5 is made smaller from upstream to downstream.

このような構成をとることにより、被蒸発液体上流側のより大きな溝断面によって、より多量の液膜を上昇させ、下流においても溝3の表面からの薄液膜7の分離を抑制し毛管圧力の維持を図ることが可能となる。   By adopting such a configuration, a larger amount of the liquid film is raised by the larger groove cross section on the upstream side of the liquid to be evaporated, and the capillary pressure is suppressed by suppressing the separation of the thin liquid film 7 from the surface of the groove 3 also downstream. Can be maintained.

図3は、本発明に係る蒸発器の実施例3を説明する加熱板1の(a)平面図、(b)A−A断面図(a<b)、(c)A−A断面図(a>b)である。本実施例は、伝熱基板2に設けた溝の断面形状を末広がり(図3(b))または末狭まり(図3(c))にした加熱板1を示す。加熱板1を構成する伝熱基板2及び表皮4の材質、溝3及び孔5を形成する方法、伝熱基板2と表皮4との接合方法等は、実施例1と同様である。   3A is a plan view of a heating plate 1 for explaining an embodiment 3 of the evaporator according to the present invention, FIG. 3B is a sectional view taken along the line AA (a <b), and FIG. a> b). The present embodiment shows the heating plate 1 in which the cross-sectional shape of the groove provided in the heat transfer substrate 2 is widened (FIG. 3B) or narrowed (FIG. 3C). The materials of the heat transfer substrate 2 and the skin 4 constituting the heating plate 1, the method of forming the grooves 3 and the holes 5, the method of joining the heat transfer substrate 2 and the skin 4 and the like are the same as in the first embodiment.

図3(b)に示すように、溝底部の幅bを溝上部の幅aより広くすることにより、伝熱基板2に設けた溝の断面形状を末広がりとした場合、伝熱基板2と表皮4との接触面積を維持しながら溝3の断面積の拡大が可能となり、伝熱基板2から表皮4への熱抵抗を小さく維持しながら、より多量の液膜の上昇を可能にすることができる。   As shown in FIG. 3B, when the width b of the groove bottom portion is made wider than the width a of the groove upper portion so that the cross-sectional shape of the groove provided in the heat transfer substrate 2 is divergent, the heat transfer substrate 2 and the skin It is possible to increase the cross-sectional area of the groove 3 while maintaining the contact area with 4, and to increase the amount of liquid film while maintaining a small thermal resistance from the heat transfer substrate 2 to the skin 4. it can.

また図3(c)に示すように、溝底部の幅bを溝上部の幅aより狭くすることにより、伝熱基板2に設けた溝の断面形状を末狭まりとした場合、伝熱基板2に溝3を形成するエッチングが容易となり、生産コスト低減が可能となる。   As shown in FIG. 3C, when the width b of the groove bottom is made narrower than the width a of the groove upper portion so that the cross-sectional shape of the groove provided in the heat transfer substrate 2 is narrowed, the heat transfer substrate 2 Etching for forming the groove 3 in the groove becomes easy, and the production cost can be reduced.

図4は、本発明に係る蒸発器の実施例4を説明する加熱板1の(a)平面図、(b)B−B断面図、(c)A−A断面図である。本実施例は、加熱板1に形成した溝3の断面形状を円形状にした実施例を示す。加熱板1を構成する伝熱基板2及び表皮4の材質、溝3及び孔5を形成する方法、伝熱基板2と表皮4との接合方法等は、実施例1と同様である。   FIG. 4: is the (a) top view of the heating plate 1 explaining the Example 4 of the evaporator based on this invention, (b) BB sectional drawing, (c) AA sectional drawing. This embodiment shows an embodiment in which the cross-sectional shape of the groove 3 formed in the heating plate 1 is circular. The materials of the heat transfer substrate 2 and the skin 4 constituting the heating plate 1, the method of forming the grooves 3 and the holes 5, the method of joining the heat transfer substrate 2 and the skin 4 and the like are the same as in the first embodiment.

本実施例では、溝3の被加熱液体の流れ方向に垂直な断面形状を円形とすることにより、溝表面に保持される被蒸発液体薄膜の厚さの均一性が改善され、より薄い液膜厚さまで薄液膜の溝からの分離を抑制し、毛管圧力の維持を図ることが可能となる。   In the present embodiment, by making the cross-sectional shape perpendicular to the flow direction of the liquid to be heated in the groove 3 circular, the thickness uniformity of the evaporated liquid thin film held on the groove surface is improved, and a thinner liquid film It is possible to suppress the separation of the thin liquid film from the groove to the thickness and maintain the capillary pressure.

図5は、本発明に係る蒸発器の実施例5を説明する加熱板1の(a)平面図、(b)A−A断面図である。本実施例は、被蒸発液体の流れ方向に沿って設けた溝である縦溝3aを横溝3bで連通させた例を示す。加熱板1を構成する伝熱基板2及び表皮4の材質、溝3a、溝3b及び孔5を形成する方法、伝熱基板2と表皮4との接合方法等は、実施例1と同様である。   FIG. 5: is the (a) top view and (b) AA sectional drawing of the heating plate 1 explaining Example 5 of the evaporator based on this invention. The present embodiment shows an example in which the vertical groove 3a, which is a groove provided along the flow direction of the liquid to be evaporated, is communicated with the horizontal groove 3b. The material of the heat transfer substrate 2 and the skin 4 constituting the heating plate 1, the method of forming the grooves 3 a, the grooves 3 b and the holes 5, the method of joining the heat transfer substrate 2 and the skin 4, and the like are the same as in the first embodiment. .

図5の例では、縦溝3aと横溝3bとが直交する加熱板1の例を示しているが、隣り合う縦溝3a間を連通する溝は、必ずしも縦溝3aと直交する必要はなく、縦溝3aに対して斜めに連通する溝でもよい。   In the example of FIG. 5, the example of the heating plate 1 in which the vertical grooves 3a and the horizontal grooves 3b are orthogonal to each other is shown. A groove communicating obliquely with respect to the longitudinal groove 3a may be used.

本実施例によれば、被蒸発液体の流れ方向に沿って設けた溝である縦溝3aを連通する横溝3bを設けたことにより、縦溝3aにおける被蒸発液体の液膜のバラツキを補正し、限界熱流束の向上が可能となる。   According to the present embodiment, by providing the horizontal groove 3b that communicates with the vertical groove 3a that is a groove provided along the flow direction of the liquid to be evaporated, variations in the liquid film of the liquid to be evaporated in the vertical groove 3a are corrected. The critical heat flux can be improved.

図6は、本発明に係る蒸発器の実施例6を説明する加熱板1の(a)平面図、(b)A−A断面図である。本実施例は、溝と加熱表面とを結ぶ孔5を面取りして、孔5の断面が鈍角により構成されるよう加工を施した例を示す。このような構造とすることにより溝3から加熱表面への薄液膜7の浸透を促進し、限界熱流束の向上が可能となる。   FIG. 6: is (a) top view of the heating plate 1 explaining the Example 6 of the evaporator based on this invention, (b) AA sectional drawing. In this example, the hole 5 connecting the groove and the heating surface is chamfered, and processing is performed so that the cross section of the hole 5 is configured with an obtuse angle. By adopting such a structure, the penetration of the thin liquid film 7 from the groove 3 to the heating surface is promoted, and the critical heat flux can be improved.

以上述べた実施例1から実施例6の加熱板において、その溝と加熱表面とを結ぶ孔を有する表皮を拡散接合にて一体化することにより、鑞付けする場合の接合鑞詰まりによる溝及び孔の断面積の低下・変形を回避することが可能となる。   In the heating plates of Examples 1 to 6 described above, grooves and holes caused by clogging of joints when brazing is performed by integrating the skin having holes connecting the grooves and the heating surface by diffusion bonding. It is possible to avoid the reduction and deformation of the cross-sectional area.

また、同様に実施例1から実施例6の加熱板において、その溝と孔の加工をエッチングとすることにより0.5〔mm〕以下の微細な形状とし、且つ酸化チタン等の親水処理を施すことにより、より大きな毛管圧力、加熱表面への浸透力を得ることが可能となり、更なる限界熱流束の向上を可能とする。   Similarly, in the heating plates of Examples 1 to 6, the grooves and holes are processed by etching to form a fine shape of 0.5 [mm] or less and subjected to a hydrophilic treatment such as titanium oxide. By this, it becomes possible to obtain a larger capillary pressure and a penetrating force to the heating surface, and to further improve the critical heat flux.

本発明に係る蒸発器の実施例1を説明する加熱板1の(a)平面図、(b)A−A断面図である。It is (a) top view of the heating plate 1 explaining Example 1 of the evaporator based on this invention, (b) It is AA sectional drawing. 本発明に係る蒸発器の実施例2を説明する加熱板1の(a)平面図、(b)B−B断面図、(c)A−A断面図である。It is (a) top view, (b) BB sectional drawing, (c) AA sectional drawing of the heating plate 1 explaining Example 2 of the evaporator which concerns on this invention. 本発明に係る蒸発器の実施例3を説明する加熱板1の(a)平面図、(b)A−A断面図(a<b)、(c)A−A断面図(a>b)である。(A) Plan view, (b) AA sectional view (a <b), (c) AA sectional view (a> b) of the heating plate 1 for explaining an embodiment 3 of the evaporator according to the present invention. It is. 本発明に係る蒸発器の実施例4を説明する加熱板1の(a)平面図、(b)B−B断面図、(c)A−A断面図である。It is (a) top view, (b) BB sectional drawing, (c) AA sectional drawing of the heating plate 1 explaining Example 4 of the evaporator based on this invention. 本発明に係る蒸発器の実施例5を説明する加熱板1の(a)平面図、(b)A−A断面図である。It is (a) top view of the heating plate 1 explaining Example 5 of the evaporator based on this invention, (b) It is AA sectional drawing. 本発明に係る蒸発器の実施例6を説明する加熱板1の(a)平面図、(b)A−A断面図である。It is (a) top view of the heating plate 1 explaining Example 6 of the evaporator based on this invention, (b) It is AA sectional drawing. 伝熱面の表面性状及び過熱度による離脱気泡の直径を示す図である。It is a figure which shows the surface property of a heat-transfer surface, and the diameter of the isolation | separation bubble by superheat degree. (a)マイクロチャネル型蒸発器の過熱度と熱流束の関係を説明する図、(b)蒸発管における流動及び伝熱様式の変化を説明する図、(c)加熱熱流束と熱伝達分布の関係を説明する図である。(A) The figure explaining the relationship between the superheat degree and heat flux of a microchannel type evaporator, (b) The figure explaining the change of the flow and heat transfer mode in an evaporation pipe, (c) Heating heat flux and heat transfer distribution It is a figure explaining a relationship. 高熱流束領域におけるマイクロチャネルの沸騰様相を説明する図である。It is a figure explaining the boiling aspect of the microchannel in a high heat flux area | region. (a)9〔kW/m2 〕、(b)14〔kW/m2 〕、(c)19〔kW/m2 〕の各熱流束における沸騰の様子を撮影した写真を図式化したものである。(A) 9 [kW / m 2 ], (b) 14 [kW / m 2 ], (c) 19 [kW / m 2 ] each of which is a photograph of the state of boiling in each heat flux. is there. (a)気液二相のクオリティに対する熱伝達係数、(b)気液二相のクオリティに対する限界熱流束(CHF)を示す図である。(A) It is a figure which shows the heat transfer coefficient with respect to the quality of a gas-liquid two phase, (b) Critical heat flux (CHF) with respect to the quality of a gas-liquid two phase. 従来例の蒸発器用加熱面を説明する断面斜視図である。It is a cross-sectional perspective view explaining the heating surface for evaporators of a prior art example.

符号の説明Explanation of symbols

1…加熱板
2…伝熱基板
3…溝
4…表皮
5…孔
6…接合面
7…薄液膜
8…面取り部
DESCRIPTION OF SYMBOLS 1 ... Heating plate 2 ... Heat transfer board 3 ... Groove 4 ... Skin 5 ... Hole 6 ... Joining surface 7 ... Thin liquid film 8 ... Chamfer

Claims (9)

離脱気泡の直径より狭い被蒸発液体の通路を有する蒸発器において、
被蒸発液体を加熱する伝熱基板の被蒸発液体側表面に溝を設け、前記溝と加熱表面とを連通する複数の開孔を有する表皮を前記伝熱基板の前記表面に接合したことを特徴とする蒸発器。
In an evaporator having a passage of the liquid to be evaporated which is narrower than the diameter of the separation bubble,
A groove is provided on the surface of the heat transfer substrate that heats the liquid to be evaporated, and a skin having a plurality of openings communicating the groove and the heating surface is joined to the surface of the heat transfer substrate. And the evaporator.
前記溝は、被蒸発液体の流れに沿って設けられたことを特徴とする請求項1に記載の蒸発器。   The evaporator according to claim 1, wherein the groove is provided along a flow of the liquid to be evaporated. 被蒸発液体の流れの上流から下流に向かって前記溝の断面積を減少させたことを特徴とする請求項2に記載の蒸発器。   The evaporator according to claim 2, wherein the cross-sectional area of the groove is decreased from the upstream to the downstream of the flow of the liquid to be evaporated. 前記被蒸発液体の流れに沿う溝同士を連通する溝を設けたことを特徴とする請求項2または請求項3に記載の蒸発器。   The evaporator according to claim 2 or 3, wherein a groove that communicates the grooves along the flow of the liquid to be evaporated is provided. 伝熱基板に設けた溝の前記流れに直交する断面形状を末広がりまたは末狭まりとしたことを特徴とする請求項1乃至請求項4の何れか1項に記載の蒸発器。   The evaporator according to any one of claims 1 to 4, wherein a cross-sectional shape orthogonal to the flow of the groove provided in the heat transfer substrate is divergent or divergent. 前記溝の断面形状を略円形としたことを特徴とする請求項1乃至請求項5の何れか1項に記載の蒸発器。   The evaporator according to any one of claims 1 to 5, wherein a cross-sectional shape of the groove is substantially circular. 前記開孔の断面が鈍角により構成されるよう加工を施したことを特徴とする請求項1乃至請求項6の何れか1項に記載の蒸発器。   The evaporator according to any one of claims 1 to 6, wherein the opening is processed so that a cross-section of the hole has an obtuse angle. 前記伝熱基板と前記表皮とを拡散接合にて一体化したことを特徴とする請求項1乃至請求項7の何れか1項に記載の蒸発器。   The evaporator according to any one of claims 1 to 7, wherein the heat transfer substrate and the skin are integrated by diffusion bonding. 前記伝熱基板と前記表皮との表面に親水処理を施したことを特徴とする請求項1乃至請求項8の何れか1項に記載の蒸発器。   The evaporator according to any one of claims 1 to 8, wherein a surface of the heat transfer substrate and the skin is subjected to a hydrophilic treatment.
JP2004041378A 2004-02-18 2004-02-18 Evaporator Pending JP2005233477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041378A JP2005233477A (en) 2004-02-18 2004-02-18 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041378A JP2005233477A (en) 2004-02-18 2004-02-18 Evaporator

Publications (1)

Publication Number Publication Date
JP2005233477A true JP2005233477A (en) 2005-09-02

Family

ID=35016625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041378A Pending JP2005233477A (en) 2004-02-18 2004-02-18 Evaporator

Country Status (1)

Country Link
JP (1) JP2005233477A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090726A1 (en) * 2007-01-24 2008-07-31 Nec Corporation Heat transfer apparatus
JP2009227526A (en) * 2008-03-24 2009-10-08 Sanyo Electric Co Ltd Reforming apparatus
US7780748B2 (en) 2005-09-30 2010-08-24 Samsung Electro-Mechanics Co., Ltd. Thin type micro reforming apparatus
JP2012201583A (en) * 2011-03-28 2012-10-22 Osaka Gas Co Ltd Fuel reforming apparatus
JP2022011553A (en) * 2020-06-30 2022-01-17 古河電気工業株式会社 Heat transfer member and cooling device having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780748B2 (en) 2005-09-30 2010-08-24 Samsung Electro-Mechanics Co., Ltd. Thin type micro reforming apparatus
WO2008090726A1 (en) * 2007-01-24 2008-07-31 Nec Corporation Heat transfer apparatus
JP2009227526A (en) * 2008-03-24 2009-10-08 Sanyo Electric Co Ltd Reforming apparatus
JP2012201583A (en) * 2011-03-28 2012-10-22 Osaka Gas Co Ltd Fuel reforming apparatus
JP2022011553A (en) * 2020-06-30 2022-01-17 古河電気工業株式会社 Heat transfer member and cooling device having the same
JP7444715B2 (en) 2020-06-30 2024-03-06 古河電気工業株式会社 Heat transfer member and cooling device having heat transfer member

Similar Documents

Publication Publication Date Title
JP6648824B2 (en) Loop heat pipe, method for manufacturing the same, and electronic equipment
US10420253B2 (en) Loop heat pipe, manufacturing method thereof, and electronic device
JP5618419B2 (en) Boiling cooling system
TWI297766B (en) Flat plate-type heat pipe
US10018430B2 (en) Heat transfer system and method incorporating tapered flow field
JP2018503058A5 (en)
JP2016142416A (en) Loop heat pipe and process of manufacture of loop heat pipe
JP2007212028A (en) Heat pipe
TW202117258A (en) Non-oriented vapor chamber
KR20040105683A (en) Evaporative hydrophilic surface for a heat exchanger, method of making the same and composition therefor
US20210239403A1 (en) Stacked heat exchanger
JP2005233477A (en) Evaporator
US20210392781A1 (en) Wick sheet for vapor chamber, vapor chamber, and electronic apparatus
JP2008111653A (en) Cooler
JP3930351B2 (en) Stacked evaporator
JP2002343382A (en) Fuel cell
JP2007205701A (en) Flat heat pipe and its manufacturing method
JP5300394B2 (en) Micro loop heat pipe evaporator
JPWO2008075452A1 (en) Heat exchanger used for cooling semiconductor element and method for manufacturing the same
WO2005116563A1 (en) Microchannel-type evaporator and system using the same
JP2005093179A (en) Microchannel type evaporator
JP2019020068A (en) Heat exchanger
JP2005090830A (en) Micro channel type evaporator
JPH0356133B2 (en)
JPH0559357B2 (en)