JP2005210202A - Offset adjustment method of operational amplifier for power measurement - Google Patents
Offset adjustment method of operational amplifier for power measurement Download PDFInfo
- Publication number
- JP2005210202A JP2005210202A JP2004012018A JP2004012018A JP2005210202A JP 2005210202 A JP2005210202 A JP 2005210202A JP 2004012018 A JP2004012018 A JP 2004012018A JP 2004012018 A JP2004012018 A JP 2004012018A JP 2005210202 A JP2005210202 A JP 2005210202A
- Authority
- JP
- Japan
- Prior art keywords
- operational amplifier
- offset
- resistors
- operational amplifiers
- operational
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Amplifiers (AREA)
Abstract
Description
本発明は、複数の電力計測用オペアンプのオフセット調整方法に関するものである。 The present invention relates to an offset adjustment method for a plurality of power measurement operational amplifiers.
図2は、住宅分電盤Aの内部構成を示しており、外部からの電力線L1、L2とニュートラル線Nとが、まず電流制限器1の1次側に接続され、電流制限器1の2次側から主幹漏電ブレーカ2の1次側に接続される。主幹漏電ブレーカ2の2次側は複数の分岐ブレーカ3の各1次側に接続されて、各分岐ブレーカ3の2次側から後段の回路に接続される。
FIG. 2 shows the internal configuration of the residential distribution board A. The external power lines L1, L2 and the neutral line N are first connected to the primary side of the
また住宅分電盤A内には、電力線L1及び電力線L2の2系統で各々消費される電力を計測する電力計測器4が収納されている。電力計測器4は、電源送り端子5を介して主幹漏電ブレーカ2の2次側に接続して、電力線L1−ニュートラル線N間電圧、電力線L2−ニュートラル線N間電圧を各々計測し、さらに、主幹漏電ブレーカ2の1次側で電力線L1,L2を各々挿通させた変流器CT1,CT2の各電流検出信号を用いて、電力線L1,L2を各々流れる電流を計測する。そして、電力線L1−ニュートラル線N間電圧と、電力線L1を流れる電流とから、電力線L1の系統で消費される電力を演算し、電力線L2−ニュートラル線N間電圧と、電力線L2を流れる電流とから、電力線L2の系統で消費される電力を演算して、各系統における電力の計測結果を電力表示部で表示するとともに、モニター表示用端子4aから外部へ各系統における電力の計測結果を出力する。
Further, in the residential distribution board A, there is housed a
このような電力計測器4は変流器CT1,CT2からの各電流検出信号を増幅するため、図3に示すように、非反転入力端子をグランドレベルに接続した電力計測用のオペアンプOPと、オペアンプOPの反転入力端子に一端を接続し、変流器からの電流検出信号を他端に接続した抵抗Raと、オペアンプOPの反転入力端子−出力端子間に接続した抵抗Rbとから構成される反転増幅回路を各変流器毎に備えており、その増幅率は、−Rb/Raで表される。また、図4のようにオペアンプOPの非反転入力端子とグランドレベルとの間に抵抗Rcを設ける場合もある。
Since such a
さらに電力計測器4は、変流器からの電流検出信号の入力可能範囲を広範囲とするために、1つの変流器からの電流検出信号に対して、増幅率が異なる複数の反転増幅回路を有しているものがあり、例えば図5に示すように、3つの電力計測用のオペアンプOP1,OP2,OP3と、オペアンプOP1,OP2,OP3の各反転入力端子に各一端を接続し、変流器からの電流検出信号を各他端に接続した抵抗Ra1,Ra2,Ra3と、オペアンプOP1,OP2,OP3の各反転入力端子−出力端子間に接続した抵抗Rb1,Rb2,Rb3と、オペアンプOP1,OP2,OP3の各非反転入力端子に各一端を接続した抵抗Rc1,Rc2,Rc3と、抵抗Rc1,Rc2,Rc3の各他端に各一端を接続し、グランドレベルに各他端を接続した抵抗Rd1,Rd2,Rd3と、抵抗Rc1,Rc2,Rc3の各他端に各一端を接続した抵抗Re1,Re2,Re3と、正の電圧源+Vccと負の電圧源−Vccとの間に両端を接続し、可動端子を抵抗Re1,Re2,Re3の各他端に接続した可変抵抗VR1,VR2,VR3とから各々なる3つの反転増幅回路を有するものがある。これらの3つの反転増幅回路の各増幅率は互いに異なり、オペアンプOP1の増幅率(−Rb1/Ra1)=30、オペアンプOP2の増幅率(−Rb2/Ra3)=100、オペアンプOP3の増幅率(−Rb3/Ra3)=300に設定されている。
Furthermore, the
そして、オペアンプOP1,OP2,OP3の各出力は、マイコンで構成される電力演算部に接続される。しかし、マイコンが取り込める電圧範囲は上限及び下限が決まっており、オペアンプOP1,OP2,OP3の各出力の正振幅及び負振幅の各許容範囲を同一にするためには、オペアンプOP1,OP2,OP3の各オフセット電圧を、マイコンが取り込める電圧範囲の上限、下限の中心電圧に設定する必要があった。例えば図6に示すように、マイコンが取り込める電圧範囲が0mV〜5000mVである場合、オペアンプOP1,OP2,OP3の各オフセット電圧が2500mVであれば、オペアンプの出力は波形S1のようにオフセット電圧2500mVを中心に変化し、オペアンプの出力の正振幅及び負振幅の各許容範囲を2500mVづつ設けることができる。しかし、オペアンプOP1,OP2,OP3の各オフセット電圧が3500mVにずれると、オペアンプの出力は波形S2のようにオフセット電圧3500mVを中心に変化し、オペアンプの出力の正振幅の許容範囲が1500mV、負振幅の許容範囲が3500mVとなって、正振幅及び負振幅の各許容範囲が互いに異なってしまう。
And each output of operational amplifier OP1, OP2, OP3 is connected to the electric power calculating part comprised with a microcomputer. However, the upper and lower limits of the voltage range that can be taken in by the microcomputer are determined. It was necessary to set each offset voltage to the upper and lower center voltages of the voltage range that the microcomputer can capture. For example, as shown in FIG. 6, when the voltage range that the microcomputer can capture is 0 mV to 5000 mV, if each offset voltage of the operational amplifiers OP1, OP2, and OP3 is 2500 mV, the output of the operational amplifier has an offset voltage of 2500 mV as shown in the waveform S1. The allowable range of the positive amplitude and the negative amplitude of the output of the operational amplifier can be provided by 2500 mV. However, when the offset voltages of the operational amplifiers OP1, OP2, and OP3 are shifted to 3500 mV, the output of the operational amplifier changes around the
そこで従来は、複数のオペアンプに対して、オペアンプ毎に可変抵抗を備えて、複数の可変抵抗の抵抗値を各々調整することでオペアンプ毎にオフセット電圧を調整していた。(例えば、特許文献1参照)。例えば図5では、可変抵抗VR1の抵抗値を調整することでオペアンプOP1のオフセット電圧を調整し、可変抵抗VR2の抵抗値を調整することでオペアンプOP2のオフセット電圧を調整し、可変抵抗VR3の抵抗値を調整することでオペアンプOP3のオフセット電圧を調整していた。 Therefore, conventionally, with respect to a plurality of operational amplifiers, a variable resistor is provided for each operational amplifier, and the offset voltage is adjusted for each operational amplifier by adjusting the resistance values of the plurality of variable resistors. (For example, refer to Patent Document 1). For example, in FIG. 5, the offset voltage of the operational amplifier OP1 is adjusted by adjusting the resistance value of the variable resistor VR1, the offset voltage of the operational amplifier OP2 is adjusted by adjusting the resistance value of the variable resistor VR2, and the resistance of the variable resistor VR3. The offset voltage of the operational amplifier OP3 was adjusted by adjusting the value.
なお、図2に示す電力計測器4は、図3〜図5いずれかに示す回路を2回路備えており、変流器CT1,CT2からの各電流検出信号から電力線L1,L2の電流値を各々出力している。
しかし上記従来例では、反転増幅回路を構成する各オペアンプOP1〜OP3毎に、抵抗Rd1〜Rd3,Re1〜Re3、可変抵抗VR1〜VR3からなるオフセット電圧調整手段を各々接続して各オペアンプのオフセット電圧を調整しているため、各抵抗間、及び各可変抵抗間の温度バラツキによって、オペアンプOP1〜OP3の各オフセット電圧が互いに合わなくなるという課題があった。 However, in the above conventional example, offset voltage adjusting means comprising resistors Rd1 to Rd3, Re1 to Re3 and variable resistors VR1 to VR3 are connected to each of the operational amplifiers OP1 to OP3 constituting the inverting amplifier circuit, and the offset voltage of each operational amplifier. Therefore, there is a problem that the offset voltages of the operational amplifiers OP1 to OP3 do not match each other due to temperature variation between the resistors and between the variable resistors.
本発明は、上記事由に鑑みてなされたものであり、その目的は、複数のオペアンプの各オフセット電圧を互いに合わすことが容易にできる電力計測用オペアンプのオフセット調整方法を提供することにある。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide an offset adjustment method for an operational amplifier for power measurement that can easily combine offset voltages of a plurality of operational amplifiers.
請求項1の発明は、同一チップ上に形成されて同一パッケージに収納された複数のオペアンプと、各オペアンプの反転入力端子に一端を各々接続し、同一の計測信号を他端に各々接続した複数の第1の抵抗と、各オペアンプの反転入力端子と出力端子との間に各々接続した複数の第2の抵抗と、各オペアンプの非反転入力端子に一端を各々接続し、各他端を互いに接続して、各オペアンプのオフセット電流が最小となる抵抗値を各々有する複数の第3の抵抗と、複数の第3の抵抗の各他端の接続点の電圧を可変とする1つの可変抵抗を有するオフセット電圧調整手段とを備えて、前記可変抵抗の抵抗値を調整して増幅率が最も大きいオペアンプの出力のオフセット電圧を所定値に調整することで、複数のオペアンプの各オフセット電圧を所定値に調整することを特徴とする。
The invention of
この発明によれば、複数のオペアンプの各オフセット電圧を互いに合わすことが容易にできる。 According to the present invention, the offset voltages of a plurality of operational amplifiers can be easily combined with each other.
以上説明したように、本発明では、同一チップ上に形成されて同一パッケージに収納された複数のオペアンプを用いて、1つの可変抵抗で複数のオペアンプの各オフセット電圧を調整することで、複数のオペアンプの各オフセット電圧を互いに合わせることが容易にできるという効果がある。 As described above, in the present invention, a plurality of operational amplifiers formed on the same chip and housed in the same package are used to adjust each offset voltage of the plurality of operational amplifiers with one variable resistor, thereby There is an effect that the offset voltages of the operational amplifier can be easily matched with each other.
以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施形態)
本実施形態において、住宅分電盤Aの構成は従来例と同様に図2に示され、住宅分電盤A内に収納されて電力線L1及び電力線L2の2系統で各々消費される電力を計測する電力計測器4の構成は、図1に示される。なお、図1は、1系統の電力線の計測に対応した構成であり、実際の電力計測器4は、図2の電力線L1,L2の各計測に対応できるように、図1に示す回路を2回路備えている。
(Embodiment)
In the present embodiment, the configuration of the residential distribution board A is shown in FIG. 2 as in the conventional example, and the electric power stored in the residential distribution board A and consumed by the two systems of the power line L1 and the power line L2 is measured. The configuration of the power measuring
電力計測器4は、電力線の電圧の検出信号からノイズを低減させるフィルタ部40と、フィルタ部40を通過した電圧検出信号を増幅する増幅部41と、電力線を流れる電流を検出する変流器等の電流検出部CTからの電流検出信号からノイズを低減させるフィルタ部42と、フィルタ部42を通過した電流検出信号を増幅する増幅部43と、増幅部41が出力する電圧検出信号と増幅部43が出力する電流検出信号とから各系統の電力を演算する電力演算部44と、各系統における電力の計測結果を表示する電力表示部45とを備える。
The
増幅部43は、3つの電力計測用のオペアンプOP1,OP2,OP3と、オペアンプOP1,OP2,OP3の各反転入力端子に各一端を接続し、フィルタ部42からの電流検出信号(計測信号)を各他端に接続した抵抗Ra1,Ra2,Ra3と、オペアンプOP1,OP2,OP3の各反転入力端子−出力端子間に接続した抵抗Rb1,Rb2,Rb3と、オペアンプOP1,OP2,OP3の各非反転入力端子に各一端を接続した抵抗Rc1,Rc2,Rc3と、抵抗Rc1,Rc2,Rc3の各他端の接続点に一端を接続し、グランドレベルに他端を接続した抵抗Rdと、抵抗Rc1,Rc2,Rc3の各他端の接続点に一端を接続した抵抗Reと、正の電圧源+Vccと負の電圧源−Vccとの間に両端を接続し、可動端子を抵抗Reの他端に接続した可変抵抗VRとを備え、オペアンプOP1,OP2,OP3からなる3つの反転増幅回路を構成する。これらの3つの反転増幅回路の各増幅率は互いに異なり、オペアンプOP1の増幅率(−Rb1/Ra1)=30、オペアンプOP2の増幅率(−Rb2/Ra2)=100、オペアンプOP3の増幅率(−Rb3/Ra3)=300に設定されている。そして、電力演算部44では、オペアンプOP1,OP2,OP3のうち、増幅率が大きく、且つ出力が飽和していないオペアンプの出力を用いて電力を求める。
The
そして、抵抗Rc1,Rc2,Rc3の各値は、反転増幅回路毎に設定されており、例えば、オペアンプOP1では、Rc1=Ra1・Rb1/(Ra1+Rb1)に設定することで、オペアンプOP1のオフセット電流を最小値にしてオフセット電流の影響を最小にしている。オペアンプOP2,OP3においても、上記同様に抵抗Rc2,Rc3の各値を設定する。さらに、オペアンプOP1,OP2,OP3は、同一ウェハ上に形成された複数のオペアンプのうち、該ウェハを分割した同一チップ上に形成されて同一パッケージに収納されたものであり、同一チップ上に形成されて同一パッケージに収納されたオペアンプOP1,OP2,OP3はほぼ同一の温度特性を有しており、温度変化に対して各オペアンプの出力のオフセット電圧が同様に変化して、オペアンプ毎の各オフセット電圧はほぼ同じ値となる。したがって、オペアンプOP1,OP2,OP3の各オフセット調整電圧を1つの可変抵抗VRを介して供給しても、オペアンプOP1,OP2,OP3の各出力のオフセット電圧はほぼ同一となる。このように、各オペアンプのオフセット電流を最小値にし、且つ各オペアンプのオフセット電圧をほぼ同一とすることで、上記増幅部43では、複数のオペアンプのオフセット電圧の互いの差を低減させている。
The values of the resistors Rc1, Rc2, and Rc3 are set for each inverting amplifier circuit. For example, in the operational amplifier OP1, the offset current of the operational amplifier OP1 is set by setting Rc1 = Ra1 · Rb1 / (Ra1 + Rb1). The effect of offset current is minimized by setting the minimum value. In the operational amplifiers OP2 and OP3, the values of the resistors Rc2 and Rc3 are set in the same manner as described above. Furthermore, the operational amplifiers OP1, OP2, and OP3 are formed on the same chip, which is formed on the same chip obtained by dividing the wafer, among the plurality of operational amplifiers formed on the same wafer, and is formed on the same chip. The operational amplifiers OP1, OP2, and OP3 housed in the same package have substantially the same temperature characteristics, and the offset voltage of the output of each operational amplifier similarly changes with respect to the temperature change, and each offset for each operational amplifier. The voltage is almost the same value. Therefore, even if the offset adjustment voltages of the operational amplifiers OP1, OP2, and OP3 are supplied via one variable resistor VR, the offset voltages of the outputs of the operational amplifiers OP1, OP2, and OP3 are substantially the same. Thus, by making the offset current of each operational amplifier the minimum value and making the offset voltage of each operational amplifier substantially the same, the
このような増幅部43においては、1つの可変抵抗VRの抵抗値を調整することで、抵抗Rc1,Rc2,Rc3と抵抗Reとの接続点の電圧を可変として、オペアンプOP1,OP2,OP3の各出力のオフセット電圧を調整する。具体的には、増幅率が最も大きいオペアンプOP3の出力を監視しながら可変抵抗VRの抵抗値を調整し、オペアンプOP3の出力のオフセット電圧を所定値(図6においては2500mV)に調整する。そして、上述のようにオペアンプOP1,OP2,OP3の各オフセット電圧の互いの差は小さいので、増幅率が最も大きいオペアンプOP3のオフセット電圧を所定値に調整することで、増幅率がオペアンプOP3より小さいオペアンプOP1,OP2のオフセット電圧も所定値に調整される。
In such an
すなわち、従来のように各オペアンプにオフセット電圧調整用の可変抵抗や抵抗を各々接続したものは、各可変抵抗間及び各抵抗間の温度バラツキや、各オペアンプの温度特性の違いによって、各オペアンプのオフセット電圧が互いに合わなくなるが、本実施形態では、同一チップ上に形成されて同一パッケージに収納された複数のオペアンプOP1,OP2,OP3を用いて、1つの可変抵抗VR、1つの抵抗Rd,1つの抵抗Reからなるオフセット電圧調整手段で複数のオペアンプの各オフセット電圧を調整することで、各オペアンプのオフセット電圧を互いに容易に合わせることができる。 In other words, the variable voltage resistors and resistors for adjusting the offset voltage are connected to the respective operational amplifiers as in the prior art, depending on the temperature variation between the variable resistors and between the resistors, and the temperature characteristics of the operational amplifiers. Although the offset voltages do not match each other, in the present embodiment, one variable resistor VR, one resistor Rd, 1 are formed using a plurality of operational amplifiers OP1, OP2, OP3 formed on the same chip and housed in the same package. By adjusting each offset voltage of a plurality of operational amplifiers with an offset voltage adjusting means comprising two resistors Re, the offset voltages of the respective operational amplifiers can be easily matched to each other.
また、オフセット電圧、オフセット電流が小さいオペアンプは一般に高価であるが、上記増幅部43は、オフセット電圧、オフセット電流が大きいオペアンプを用いて構成することができる。
An operational amplifier with a small offset voltage and offset current is generally expensive, but the amplifying
4 電力計測器
40 フィルタ部
41 増幅部
42 フィルタ部
43 増幅部
44 電力演算部
45 電力表示部
CT 電流検出部
OP1,OP2,OP3 オペアンプ
Ra1,Ra2,Ra3 抵抗
Rb1,Rb2,Rb3 抵抗
Rc1,Rc2,Rc3 抵抗
Rd,Re 抵抗
VR 可変抵抗
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004012018A JP2005210202A (en) | 2004-01-20 | 2004-01-20 | Offset adjustment method of operational amplifier for power measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004012018A JP2005210202A (en) | 2004-01-20 | 2004-01-20 | Offset adjustment method of operational amplifier for power measurement |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005210202A true JP2005210202A (en) | 2005-08-04 |
Family
ID=34898529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004012018A Pending JP2005210202A (en) | 2004-01-20 | 2004-01-20 | Offset adjustment method of operational amplifier for power measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005210202A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109061543A (en) * | 2018-08-14 | 2018-12-21 | 国电南瑞科技股份有限公司 | A kind of intelligent electric energy meter measuring accuracy calibration method of adaptive dynamic adjustment |
CN115065234A (en) * | 2022-08-15 | 2022-09-16 | 英彼森半导体(珠海)有限公司 | Analog filter framework working at various power supply voltages and filtering method |
JP7436081B1 (en) | 2023-08-31 | 2024-02-21 | 東京ファシリティーズ株式会社 | How to measure electricity consumption |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61246672A (en) * | 1985-01-09 | 1986-11-01 | リフアツク エレクトロニクス コ−ポレ−シヨン | Power measuring device |
JPS6470997A (en) * | 1987-08-12 | 1989-03-16 | Honeywell Inc | Amplifier device interchangeable between operational mode |
JPH01320803A (en) * | 1988-06-22 | 1989-12-26 | Mitsubishi Electric Corp | Offset voltage adjusting circuit for operational amplifier |
JP2003315388A (en) * | 2002-04-18 | 2003-11-06 | Matsushita Electric Works Ltd | Phase adjusting device and power measuring device using the same |
-
2004
- 2004-01-20 JP JP2004012018A patent/JP2005210202A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61246672A (en) * | 1985-01-09 | 1986-11-01 | リフアツク エレクトロニクス コ−ポレ−シヨン | Power measuring device |
JPS6470997A (en) * | 1987-08-12 | 1989-03-16 | Honeywell Inc | Amplifier device interchangeable between operational mode |
JPH01320803A (en) * | 1988-06-22 | 1989-12-26 | Mitsubishi Electric Corp | Offset voltage adjusting circuit for operational amplifier |
JP2003315388A (en) * | 2002-04-18 | 2003-11-06 | Matsushita Electric Works Ltd | Phase adjusting device and power measuring device using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109061543A (en) * | 2018-08-14 | 2018-12-21 | 国电南瑞科技股份有限公司 | A kind of intelligent electric energy meter measuring accuracy calibration method of adaptive dynamic adjustment |
CN115065234A (en) * | 2022-08-15 | 2022-09-16 | 英彼森半导体(珠海)有限公司 | Analog filter framework working at various power supply voltages and filtering method |
CN115065234B (en) * | 2022-08-15 | 2022-11-18 | 英彼森半导体(珠海)有限公司 | Analog filter framework working at various power supply voltages and filtering method |
JP7436081B1 (en) | 2023-08-31 | 2024-02-21 | 東京ファシリティーズ株式会社 | How to measure electricity consumption |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200081037A1 (en) | Sensing apparatus for sensing current through a conductor and methods therefor | |
US10139432B2 (en) | Methods and systems relating to improved AC signal performance of dual stage transformers | |
US8742748B2 (en) | Calibration of non-contact current sensors | |
WO2007061390A1 (en) | Precision flexible current sensor | |
US8493059B2 (en) | Shunt sensor and shunt sensor assembly | |
US9702909B2 (en) | Manufacturing method for current sensor and current sensor | |
CN110546519A (en) | Current measuring method and current measuring device | |
CN105264389B (en) | Current measuring device and current calculation method | |
JP2002055126A (en) | Non-contact type voltage measuring method and device therefor | |
JP4723353B2 (en) | Impedance measuring device | |
MD279Z (en) | Impedance meter | |
JP6566188B2 (en) | Current sensor | |
JP2020204524A (en) | Current sensor and measuring device | |
JP2013200253A (en) | Power measurement device | |
JP3790993B2 (en) | Ground resistance measuring instrument and ground resistance measuring method | |
CN108732414B (en) | Current sensor and circuit breaker | |
JP2005210202A (en) | Offset adjustment method of operational amplifier for power measurement | |
JP2019152558A (en) | Current sensor and voltmeter | |
CN115980639B (en) | Magneto-resistance sensor | |
US20130043892A1 (en) | Resistance measurement circuit | |
JP4877214B2 (en) | Current sensor | |
JP7455400B2 (en) | Clamp type earth resistance measuring device | |
US20120158345A1 (en) | Current balance testing system | |
JP2013053914A (en) | Current measuring device | |
JP2021196248A (en) | Current detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100803 |