【0001】
【発明の属する技術分野】
本発明は、冷凍サイクルと、この冷凍サイクルに設けた床冷暖房熱交換器により加熱もしくは冷却された2次側熱媒体が床冷暖房パネルを循環するヒートポンプ式空調装置およびその運転方法に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ床暖房空調装置は、低温低圧のガス冷媒を吸入して圧縮し高温高圧のガス冷媒を吐出する圧縮機の吐出側に一端が接続された四方弁を介して室外熱交換器が接続される。この室外熱交換器の他端に一端が絞り装置を介して接続された室内熱交換器の他端が四方弁へ接続されるとともに、室外熱交換器の他端に一端が別の絞り装置を介して接続された床暖房用熱交換器が室内熱交換器と並列に四方弁へ接続される。一方、床暖房パネルの一端は床暖房用熱交換器に接続され、他端はポンプを介して床暖房用熱交換器に接続され2次側熱媒体である温水を循環する構成である。
【0003】
以上のように構成された従来のヒートポンプ床暖房空調装置において、例えば床暖房+空調暖房運転の場合について動作を説明する。圧縮機より高温高圧のガス冷媒が吐出し、四方弁を通った後室内熱交換器に接続される配管と床暖房用熱交換器に接続される配管に分岐される。室内熱交換器に分岐したガス冷媒の一部は室内空気と熱交換することにより、気液二相冷媒または液冷媒に凝縮し、室内熱交換器を流出する。また、床暖房用熱交換器に分岐した残りのガス冷媒は2次側熱媒体と熱交換することにより、気液二相冷媒または液冷媒に凝縮し、床暖房用熱交換器を流出する。室内熱交換器を流出した冷媒は絞り装置により減圧され、床暖房用熱交換器を流出した冷媒は別の絞り装置により減圧されたのち合流し、室外熱交換器に流入する。ここで外気と熱交換することにより冷媒は蒸発し、乾き度の高い二相冷媒またはガス冷媒となって流出し、四方弁を通って圧縮機に吸入される。(特許文献1参照)
【0004】
一方、他の構成である従来のヒートポンプ床冷暖房空調装置では、圧縮機、四方弁、室外熱交換器、絞り装置、および室内熱交換器を接続して一次冷媒流路を形成させ、この一次冷媒流路と熱交換する二次熱交換器を第2の絞り装置と直列に設け、絞り装置と第2の絞り装置の間に二次熱交換器を接続して、この二次熱交換器と二次側ポンプと利用側熱交換器で二次冷媒流路を形成させる構成が提案されている。絞り装置と第2の絞り装置の間に二次熱交換器を設けるこの構成により、一次冷媒と二次冷媒の間の冷房・暖房のための熱交換制御が容易で二次熱交換器による冷暖房切り替え運転や室内熱交換器との同時運転が可能になるとともに、施工が容易な構造が得られるものである。(特許文献2参照)
【0005】
【特許文献1】
特開2000−46417号公報(図1他)
【特許文献2】
特開2002−195609号公報(図1、0006欄他)
【0006】
【発明が解決しようとする課題】
前記のような従来のヒートポンプ床暖房空調装置は、室内熱交換器と床暖房用熱交換器が並列の回路となっている。床暖房用熱交換器は40℃以上の2次側熱媒体温度を確保するために、常に比較的高めの冷媒温度を必要とするのに対し、室内熱交換器は暖房負荷に応じて必要な冷媒温度は変化し、また伝熱面積が広く伝熱性能の良い室内熱交換器では冷媒温度は床暖房用熱交換器で必要な冷媒温度よりも低い温度で十分である。しかし、従来のヒートポンプ床暖房空調装置では室内熱交換器と床暖房用熱交換器は並列に配管接続されているため、圧縮機から吐出した同じ温度の吐出ガス冷媒が流入する構造となっており、床暖房能力に合わせて圧縮機周波数を調整すると室内空調暖房能力が過大となったり、逆に空調暖房能力に合わせて圧縮機周波数を調整すると床暖房能力が不足し床暖房パネルの表面温度が不足するという不具合があった。
【0007】
また、圧縮機から吐出したガス冷媒は室内熱交換器と床暖房用熱交換器に分岐されるため、それぞれの熱交換器を流れる冷媒流量は減少し、伝熱性能が低下し効率が悪くなるという不具合があった、また、それぞれの熱交換器に対応して絞り装置を有するため、制御が複雑になり、コストも高いという問題があった。
【0008】
又従来のヒートポンプ床冷暖房空調装置では、絞り装置と第2の絞り装置の間に二次熱交換器を設ける構成により、常に一次冷媒流路である室内熱交換器中心の運転に補助的に二次冷媒流路による冷房・暖房を追加して空調を少しでも改善しようと言うもので、床暖房や床冷房主体による快適な空調や、床暖房しながらの除湿運転、等、実用的で安価な空調が得られないと言う問題があった。
【0009】
本発明は、かかる課題を解決するためになされたもので、床暖房や床冷房と空調の冷暖房除湿を同時に、且つ各種併用運転が簡単に実現できる使い勝手の良い安価な装置、運転方法を得ることを目的とする。更に本発明は、空調のみならず床冷暖房や除湿を高い能力で運転でき、床冷暖房パネルの冷暖房能力が不足する等の不具合を回避することを目的としている。
【0010】
【課題を解決するための手段】
本発明にかかわるヒートポンプ式空調装置は、圧縮機、熱源側熱交換器、絞り装置、負荷側熱交換器を順に接続し圧縮機から吐出した冷媒を圧縮機に戻す冷凍サイクルと、負荷側熱交換器を形成する空調用の室内熱交換器と床冷暖房用熱交換器を直列に配管接続しこの床冷暖房用熱交換器の冷媒流入部と冷媒流出部をバイパスさせる第1バイパス配管と、第1バイパス配管上に冷凍サイクルが冷房運転回路時に冷媒を流通可能で暖房運転回路時に冷媒を流通させない流路制御手段と、を備えたものである。
【0011】
本発明にかかわるヒートポンプ式空調装置は、圧縮機、床冷暖房用熱交換器、副絞り装置、室内側熱交換器を順に接続し圧縮機から吐出された冷媒を循環させる冷凍サイクルと、冷凍サイクルを循環させる冷媒を熱源側熱交換器をバイパスさせて圧縮機へ戻す第2のバイパス配管と、床冷暖房用熱交換器の2次側熱媒体をポンプにより循環させ2次側熱媒体が温熱を放出する床冷暖房パネルと、を備え、床冷暖房用熱交換器を凝縮器とし、室内熱交換器を蒸発器とするように副絞り装置を開閉するものである。
【0012】
本発明にかかわるヒートポンプ式空調装置の運転方法は、圧縮機、熱源側熱交換器、絞り装置、室内側熱交換器、副絞り装置、床冷暖房用熱交換器を順に接続した冷凍サイクルが冷媒を循環させて冷房運転を行うステップと、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱もしくは冷熱を放出するステップと、を備え、冷凍サイクルを動作させる前にポンプを運転させて2次側熱媒体の温度を検出するステップと、を備えたものである。
【0013】
本発明にかかわるヒートポンプ式空調装置の運転方法は、圧縮機、床冷暖房用熱交換器、副絞り装置、室内側熱交換器を順に接続した冷凍サイクルに冷媒を循環させ運転を行うステップと、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱を放出するステップと、を備え、床冷暖房パネルにて暖房しながら室内熱交換器にて冷房除湿を行うものである。
【0014】
本発明にかかわるヒートポンプ式空調装置の運転方法は、圧縮機、床冷暖房用熱交換器、室内側熱交換器、絞り装置、室外側熱交換器を順に接続した冷凍サイクルに冷媒を循環させ運転を行うステップと、冷凍サイクルを所定時間運転後、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱を放出するステップと、を備え、2次側熱媒体の温度が所定温度に達するまで、またはポンプ起動後所定時間経過するまで、2次側熱媒体の流量を床暖房運転時より減らす運転を行うものである。
【0015】
【発明の実施の形態】
実施の形態1.
図1、図2は本発明の実施の形態1に係るヒートポンプ式空調装置を示すブロック図である。なお、図1の冷凍サイクルは空調冷房+床冷房運転時の状態を示している。
【0016】
図1、図2において、室外機に配置される熱源側熱交換器である室外熱交換器6と、負荷側には室内機に配置される室内熱交換器3とを接続する冷媒配管には絞り装置5が室外機に設けられている。冷媒を循環させる圧縮機1には流れ方向を切換える四方弁2が接続され同様に室外機に設けられている。このような冷凍サイクルの負荷側には床冷暖房用熱交換器4が室内熱交換器と配管で直結されており、図に示すように冷房運転時の冷媒流れ方向において、室内熱交換器3の下流側に冷媒配管により直列接続されている。したがって、熱源側熱交換器である室外熱交換器6に対応した負荷側熱交換器は直列に接続された床冷暖房用熱交換器4と室内熱交換器3となる。室外機に取り付けられた床冷暖房用熱交換器4にはブラインなどの2次側熱媒体を循環させるためのポンプ8が同様に室外機に設けられ、室内の床面に載置された床冷暖房パネル7を配管で接続し2次側熱媒体で順次環状に循環させている。なお図1では床冷暖房用熱交換器4と並列に逆止弁9と開閉弁11が直列に設けられたバイパス配管が、図2では床冷暖房用熱交換器4と並列に開閉弁11が設けられたバイパス配管が室外機に配置されている。このバイパス配管により、冷凍サイクルが冷房運転を行うときはバイパス回路に冷媒が流れるが、暖房運転を行うときはバイパス回路に冷媒が流れないように設定することができる。
【0017】
このヒートポンプ式空調装置の構成について説明する。図1、図2に示すように、圧縮機1から四方弁2を介して一端は室外熱交換器6から絞り装置5を経て室内熱交換器3へ順次配管接続され、四方弁2のもう一端は床冷暖房用熱交換器4へ配管接続されている。そして、前記室内熱交換器3の絞り装置逆側の一端と前記床冷暖房用熱交換器4の四方弁とは逆側の一端を配管接続することで圧縮機1から吐出した冷媒が循環する冷凍サイクルが形成されている。なお、圧縮機1、四方弁2、室外熱交換器6及び絞り装置5は通常一般的に用いられている空気調和機室外機の主要冷媒回路部であり、また室内熱交換器3は空気調和機室内機の主要冷媒回路部、床冷暖房用熱交換器4は床冷暖房用熱交換ユニットの主要冷媒回路部である。したがって、通常一般的に用いられている空気調和機室外機と空気調和機室内機、および床冷暖房用熱交換ユニットとを冷媒配管で順次接続した構成となっている。また、床冷暖房用熱交換器4は圧縮機から吐出された冷媒と熱交換する2次側熱媒体を流通させる配管により床冷暖房パネル7へ接続され、さらに床冷暖房パネルの他端からポンプ8を介して床冷暖房熱交換器4へ配管接続して2次側熱媒体の循環回路を形成している。
【0018】
次に、このように構成された冷凍サイクルにおいて空調冷房+床冷房運転時の動作を図3にて説明する。圧縮機1より高温高圧のガス冷媒が吐出し、四方弁2を通った後室外熱交換器6に流入する。室外交換器6に流入した高温高圧のガス冷媒は記載されていない室外送風機により室外の空気と熱交換することにより、吐出温度より冷却されたガス冷媒または気液二相冷媒に凝縮した後で、絞り装置5により膨張し減圧液化する。この冷媒は室内熱交換器3に流入し、室内空気と熱交換することにより蒸発し、一方室内熱交換器を通った室内空気は冷媒との熱交換により温度が下がり、室内の空調冷房運転を実現する。更に冷媒は床暖房用熱交換器4に流入し、2次側熱媒体であるブラインを冷却させ、温度の下がったブラインは床冷暖房パネル7内の配管に入り床冷暖房パネルの表面温度を下げて、床冷房運転を実現させる。床冷暖房用熱交換器4にて蒸発しガス化した低温低圧の冷媒は、四方弁2を通って圧縮機1に吸入される。
【0019】
以上のように、空調冷房+床冷房運転を実施する場合、先ず室外熱交換器6で凝縮させ、膨張させて中温低圧にした液冷媒を先ず室内熱交換器3で先ず蒸発させ、より低温の冷媒を床冷暖房用熱交換器4に流し、その後床冷暖房用熱交換器4で放熱し温度の低下したガス冷媒とする構成としているため、1次冷媒を有効に利用してブライン温度を低温化することができ、空調冷房負荷が大きく室内熱交換器3の冷媒の蒸発温度が高い運転をしても、床冷暖房用熱交換器4には必要なブライン温度を確保することが可能となり、必要な床暖房パネルの表面温度を実現することができる。
【0020】
また、圧縮機1から吐出された冷媒が全て直列に配管接続された室外熱交換器6、室内熱交換器3、床冷暖房用熱交換器4へと順に流れるため、冷媒流速を確保し伝熱性能の低下を防止することができる。
【0021】
また、圧縮機、四方弁、室外熱交換器、絞り装置、室内熱交換器で構成される部分の冷媒回路は、一般的に量産されている空調機の冷媒回路とまったく同じであり、床暖房用熱交換器を空調機の冷媒回路に直列に配管接続して組合せることによってヒートポンプ床冷暖房空調装置を構成することが可能となり、低コストでヒートポンプ床冷暖房空調装置を提供することができる。
【0022】
図3は本発明のヒートポンプ床冷暖房空調装置の動作を示すブロック図である。図3の(a)は空調冷房運転を示し、(b)は床冷房と空調冷房の運転を示している。図中、10は冷房運転時に逆止弁9を介して床暖房用熱交換器4をバイパスする第1バイパス配管である。ここで、逆止弁9は室内熱交換器3から四方弁2を介して圧縮機1へ向かう流れ方向を流通可能とするものである。なお、暖房運転時にはこのバイパス回路を冷媒は流れない。更に開閉弁11によりバイパス回路10を流れる冷媒量を調整することもできる。なお図2のように逆止弁9がない状態でも開閉弁11が閉鎖して暖房時のように圧縮機1からの冷媒をバイパス回路10に流さないようにすることができる。
【0023】
図3に示すように、空調冷房運転時は圧縮機1から吐出された高温高圧の冷媒が室外熱交換器6で外気と熱交換し凝縮し、絞り装置5で減圧してから、室内熱交換器3で室内ファンにより室内空気と熱交換して蒸発し、室内空気を冷却して冷房運転を行う。すなわち図3(a)では圧縮機1より高温高圧のガス冷媒が吐出し、四方弁2を経て室外熱交換器6に流入する。室外熱交換器6に流入したガス冷媒は室外熱交換器6のファンにより空気と熱交換し、冷媒は二相冷媒または過冷却液冷媒となって流通する。そして、室外熱交換器6を流出した冷媒は絞り装置5を通って減圧され、0℃以下の低温状態となって室内熱交換器3に流入する。室内熱交換器3では室内ファンで送風されて熱交換が行われ、冷媒は蒸発して室内熱交換器3を流出する。室内熱交換器3を流出した低温の冷媒は床冷暖房用熱交換器4と逆止弁9、開閉弁11を有した第1バイパス配管10にそれぞれの配管抵抗に反比例して分岐するが、第1バイパス配管10の配管抵抗は床冷暖房用熱交換器4の配管抵抗に比べて非常に小さいため、ほとんどの低温冷媒が第1バイパス配管10側に流れて床冷暖房用熱交換器4側をバイパスする。第1バイパス配管10を流出した冷媒は四方弁2を通って圧縮機1に吸入される。一方、図3(b)の床冷房+空調冷房運転時は冷媒の流れを開閉弁11によって第1バイパス配管に流さないようにするため、開閉弁11が閉となり第1バイパス配管10は機能せず、冷媒は空調冷房用の室内熱交換器3から床冷暖房用熱交換器4へと流通する動作となる。このように第1バイパス配管10に開閉弁11を設けた構成としたので、簡単な装置で床冷房を行ったり、止めたりすることができる。
【0024】
以上のように冷房運転時に0℃以下となる低温冷媒を逆止弁9を有した第1バイパス配管10に流通させ、床冷暖房用熱交換器4をバイパスさせることができるため、外気温度が低すぎるような場合は床冷暖房用熱交換器4内部の床冷房暖房パネル7へ循環する2次側熱媒体のブラインが冷却凍結して床冷暖房用熱交換器4が破壊されることを防止できる。なお、上記第1バイパス配管10に逆止弁9を設けた構成で説明したが、逆止弁に限ることはなく、開閉弁でもよく、四方弁による流路切換えに応じてこの開閉弁を操作すれば同様の効果が得られる。
【0025】
また、図4は本発明のヒートポンプ床冷暖房空調装置を示すブロック図である。図4の冷凍サイクルは床冷房と空調冷房を行う運転時の状態を示している。図4の床冷房を行う2次側回路はボンプ8でブラインを循環させており、送水温度センサ13は床冷暖房用熱交換器4で冷却又は温められたブラインを床冷暖房パネル7へ送水する位置でのブラインである2次側熱媒体の温度を検出しており、戻水温度センサ14は床冷暖房パネル7で空気に熱を伝えた後でバッファータンク12を経由してから床冷暖房用熱交換器4ヘ戻る戻り水の温度を検出している。
【0026】
図4のヒートポンプ床冷暖房空調装置における室内空調冷房と床冷房運転時の動作を、図5ヒートポンプ床冷暖房空調装置を示すブロック図及び図6この制御動作を示すフローチャートで説明する。圧縮機1より高温高圧のガス冷媒が吐出し、四方弁2を通った後、冷媒は室外熱交換器6にて凝縮し外気に放熱して温度が低下する。次に絞り装置5により減圧され低温低圧の液冷媒は室内熱交換器3にて室内の空気から熱を吸収し、室内空気温度を下げて冷媒は蒸発する。室内の冷房は予め設定されている目標とする室内空気温度に到達したかどうかを室内吸込み空気温度センサ16にて検出した室内空気の温度から判断しており、冷房運転が必要な場合は室内ファンモータ18を回転させて冷凍サイクルの冷媒と室内空気との熱伝達を促進させる。次に冷媒は第1バイパス配管10の開閉弁11が閉鎖されており、床冷暖房用熱交換器4に流入し更に2次側熱媒体であるブラインから熱を奪い蒸発を行う。床冷暖房用熱交換器4に流入した液もしくは2相状態の冷媒は床暖房パネル7へ循環する2次側熱媒体のブラインと熱交換することにより、2相状態もしくはガス冷媒に蒸発して流出し、四方弁2を通って圧縮機1に吸入される。これらの動作における圧縮機1の運転停止、室内ファンモータ18の運転停止や開閉弁11の開閉、絞り装置5の開度調整などは室内吸込み空気温度センサ16の検出値などをもとに制御回路15で制御している。床冷暖房を行う2次側回路では同様に戻水温度センサ14の検出値によりポンプ8の運転停止を制御回路15で制御している。
【0027】
図5におけるヒートポンプ床冷暖房空調装置の動作を図6のフローチャートで示す。運転開始指令S1があると2次側回路における目標戻り水温度が設定S3される。この床冷房と空調冷房を同時に行う運転時における2次側熱媒体の戻水温度設定は、床冷暖房パネル7の表面温度が予め定められた温度範囲値、例えば26℃‐28℃程度となるように、床冷暖房パネル7の材質、設置パターン、設置される床面積、住宅熱損失係数Q値などから推定される室内の熱負荷を考慮した上で決定S2される。即ち床冷暖房パネル7の表面温度は冷房時や暖房時を通して25℃ぐらいから35℃ぐらいまでの範囲で選ばれるが、床冷房を得ようとする場合、体温に比べひんやりとした感覚を与える温度とする。この設定された温度を得るための水温は、床冷暖房パネル7の熱伝達による低下や床への熱の逃げ、室内の熱負荷状況による放熱などを演算の上求める必要があり、床冷暖房パネル7の設置条件、例えばフローリングの種類、施行方法、断熱材の厚み、や室内からの放熱である部屋の広さ高さ、室内機の能力、室内機と室外機の関係などの諸条件を含め床冷暖房パネルデータや住宅データなどを予め入力しておくことにより目標戻水温度が設定可能になる。なおこれらは標準データを準備しておき予め2次側熱媒体の戻水設定値を入力しておいて良いことは当然であり、更に、この設定値を変更可能にしておいて快適さに応じて変えられるようにしておいても良い。
【0028】
以上の制御は戻水温度を検出し目標値と比較して行ったが送水温度センサ13で行っても良い。床暖房時は快適性を得るため床冷暖房パネル7の表面温度を高く取り勝ちである。又このため、第1に圧縮機から直接床冷暖房用熱交換器4に流入させ、高温冷媒である圧縮機吐出温度を先ず床冷暖房用熱交換器4にて凝縮させ必要な温度が得られる構造にしている。室内熱交換器と床冷暖房熱交換器の両方とも凝縮器として使用することで床暖房と空調暖房の併用運転も可能であるが、第2に、この暖房時には第1バイパス配管10に設けた逆止弁9により開閉弁11の開閉にかかわらずバイパスをさせない様にし、或いは暖房時は開閉弁を閉じて確実に冷媒が床冷暖房用熱交換器4を通す構造にしている。更に第3に圧縮機の運転周波数のみならずポンプ運転においても床暖房能力を空調能力より高く取ることができ、即ち床暖房能力を空調能力より優先して制御できる様にしてあるので快適な暖房が得られる。この暖房時には、床冷暖房パネル温度の目標値が高い分低温やけどを避けるため、高温側の精度の良い温度制御が得やすい床冷暖房パネル7ヘ供給する送水温度を計測すると良い。
【0029】
図6では続いて戻水温度を検出S4し、この目標値と検出値を比較S5する。もし目標値が検出値より低い時は、即ち戻水温度の検出値が高く床冷房が必要と判断されたときは床冷房と空調冷房を併用する運転が開始S6され、戻水の温度差に応じて圧縮機1の回転数である運転周波数或いはポンプ8の送水量である回転数が調整S8される。一方戻水を検出した温度が目標温度より低く床冷房が必要ないと判断されるときは空調冷房の運転S7が室内吸込み空気温度センサ16の検出値により開始される。この時ポンプ8は停止したままで、圧縮機1の回転や室内ファン17を駆動する室内ファンモータの駆動が制御され空調冷房が行われる。室内熱交換器と床冷暖房熱交換器の両方とも蒸発器として使用することで床冷房と空調冷房の併用運転は上述の様に可能であるが、圧縮機の運転周波数を床冷房能力によって決定する、即ち床冷房能力を空調冷房能力より優先して制御できる様にしてあるので、床冷房によって躯体の負荷分を取り去り、空調冷房能力を低く設定することができるので、空調によるドラフト感の少ない快適な冷房が得られる。
【0030】
以上のように、床冷暖房パネル7へ流すブライン温度はボンプ8を使用しなくとも圧縮機周波数の調節によってもあらかじめ設定された目標温度となるように調節することができるため、床暖房パネルの表面温度は環境条件が変化しても常に快適な状態を維持することが可能であり、また、空調機室内機は吸込み空気温度と目標室温との温度差が大きくなれば室内ファンを運転し、吸込み空気温度と目標室温の温度差が小さくなれば室内ファンを停止または低回転で運転し冷暖房運転を停止または能力を下げるため、室内温度は快適な温度範囲内に維持することができる。更に開閉弁11を開くことにより床冷暖房用熱交換器4に冷房時に冷媒を流入させない様にすることもでき、床冷房を行わないで空調だけの運転も可能で使用目的に合わせた使い勝手の良い運転が行える。
【0031】
図7は本発明のヒートポンプ床冷暖房空調装置であり、この装置の動作を図8の制御フローチャートで示す。図7、図8は室内空気の温度と湿度から露点温度を求め、この露点温度以上の2次側熱媒体温度として床冷暖房パネルの設置した床における床冷房時の結露を防止する制御を説明する。図7の装置構成図では図5の装置構成図に対し室内空気の湿度を計測する室内吸込み湿度センサ19を設けていることが相違し他は同一である。室内と室外の絶対湿度差によって室内と室外を分ける床フローリング、床冷暖房を行うための構成部材である床暖房パネル、床との間やパネル上に敷く断熱材を水分が透過してくる。これらの構成品の内、露点を下まわる個所ができると結露する。室内外の温度や湿度などと構成部材により、結露ができないようにするには、床冷房を行う2次側熱媒体の温度を露点以上にすれば良い。冷熱をパネルに供給する、より低い温度である送水温度が望ましいが、冷熱をパネルに供給した後の戻水温度でも床冷暖房パネル7の温度制御の基準温度であるため比較のため設定することが有効である。
【0032】
図8のフローチャートを説明する。運転開始指令S11が行われると、室内吸込み空気温度と湿度を空気温度センサ16と相対湿度を計測する空気湿度センサ19にて検出S12し、室内露点温度を算出S13する。次に戻水温度センサ14にて2次側熱媒体の温度を検出S14し、露点温度と2次側熱媒体温度を比較S15する。この比較により露点温度が高ければ圧縮機1の運転周波数やポンプ8の吐出量を2次側熱媒体の温度が高くなるように変更S16する。もし露点温度が2次側熱媒体温度よりも低ければ床冷房のような運転指令の運転が行われる。この様に床冷房を結露の問題が無く実行できる。さらに、結露の問題があるときには冷房運転停止時に床冷暖房用熱交換器4だけを凝縮させる運転を行い床冷暖房パネル配管周りを結露しない様に温める、運転前の操作を行うこともできる。以上の様に2次側熱媒体の温度を調整し冷やし過ぎや結露など問題の無い床冷房をコントロールできる。
【0033】
また、図9、図10は別のヒートポンプ床冷暖房空調装置を示すブロック図である。なお、図9、図10の冷凍サイクルは空調冷房+床暖房運転時の状態を示しており、圧縮機1、四方弁2、床冷暖房用熱交換器4、副絞り装置22、室内側熱交換器3を順に接続し圧縮機から吐出された冷媒を、絞り装置5と熱源側熱交換器6をバイパスさせて圧縮機へ戻す様に、室内熱交換器3と絞り装置5との間から圧縮機1へ戻す第2のバイパス配管20を設ける。この第2のバイパス配管には開閉弁21を設け必要な時以外はこのバイパスを冷媒が流れないようにしている。また床冷暖房用熱交換器4の2次側熱媒体をポンプ8により循環させ2次側熱媒体が温熱を放出する床冷暖房パネル7にて床暖房を行うことができる。即ちこの冷凍サイクルでは床冷暖房用熱交換器4を凝縮器とし、室内熱交換器3を蒸発器とするように副絞り装置22を開閉し、室外熱交換器をバイパスさせている。図9に対し図10は、室内熱交換器3と床冷暖房用熱交換器4との間に設けられる副絞り装置22に並列に二方弁23を介してバイパスするバイパス回路を配設している。
【0034】
図9、図10のヒートポンプ床冷暖房空調装置において、床冷暖房用熱交換器4を凝縮器とし、室内熱交換器3を蒸発器とした空調冷房+床暖房運転時の運転の動作を説明する。熱源側熱交換器6がバイパスされているため、室内熱交換器3による冷房能力は小さく、室内空気は室内熱交換器3によって弱冷房除湿されて室内の温度・湿度はともに低下するが、同時に床冷暖房用熱交換器4によって床面が温められるため、結果的に暖気味除湿運転となる。この運転により、梅雨時などに室内機で除湿しながら床暖房で足元の寒さ感を解消するという効果が得られる。圧縮機1より高温高圧のガス冷媒が吐出し、四方弁2を通った後床冷暖房用熱交換器4に流入する。バイパス回路10には逆止弁9のため冷媒は流入できない。床冷暖房用熱交換器4に流入したガス冷媒はポンプ8により循環している2次側熱媒体であるブラインと熱交換することにより、吐出温度より冷却されたガス冷媒または乾き度の高い二相冷媒に凝縮し、床冷暖房用熱交換器4を流出する。一方、温度の上昇したブラインは床暖房パネル7内の配管に入り床暖房パネルの表面温度を上昇させ、床暖房運転を実現させる。床冷暖房用熱交換器4を流出したガス冷媒または二相冷媒は副絞り装置22により減圧され、室内熱交換器3に流入する。ここで室内ファンで送られてくる室内空気と熱交換することにより冷媒は蒸発し、乾き度の高い気液二相冷媒またはガス冷媒となって室内熱交換器3を流出し、第2バイパス配管の開放された開閉弁21を通り圧縮機1に吸入される。図10では副絞り装置22に並列に二方弁23を設けているが、このニ方弁23は閉鎖されている。床冷暖房用熱交換器4を凝縮器とし、室内熱交換器3を蒸発器とするように副絞り装置22の開度を調整することにより、床冷暖房用熱交換器4からの2次側熱媒体により床冷暖房パネル7は床暖房運転を実現し、一方の室内熱交換器3は冷房除湿の運転を実現する。
【0035】
この様に梅雨時などを対象としているので顕熱負荷は小さくでき、バイパス回路20を使用して省エネルギーで寒さを感じない快適な除湿が行える。更に副絞り装置22を床冷暖房用熱交換器4とともに室外機に配置するので室内で冷媒音などうるさい音が聞こえず、除湿は室内熱交換器3の温度を選択できる様に室内機をドライにして行うので床などでの結露の問題もなくなる。結露対策としては床冷暖房用熱交換器4からの2次側熱媒体により床冷暖房パネル7は床暖房運転を実現し、一方の室内熱交換器3は冷房除湿の運転を実現する図9ないし図11の回路構成だけでなく、図1の回路構成における室内機空調冷房と床冷房の組合せ運転でも重要である。両方のケースにおいて、即ち室内熱交換器3にて冷房を行う空調冷房運転途中で、冷房動作や除湿動作を停止しているときに、ポンプ8だけを低速で運転させることで結露対策が可能である。冷房動作停止時には室内ファンを停止させて行う場合冷凍サイクルには冷媒の流が存在する。図1の回路では第1バイパス配管10を流れるので床冷暖房熱交換器では熱交換は行われず2次側熱媒体はポンプ8でゆっくり循環したところで外気の影響を受ける程度である。図9などの場合はもともと床冷暖房熱交換器に高温冷媒を流し第2バイパス回路20から圧縮機に戻す除湿運転であり、ポンプ8を低速で回転させても除湿運転停止時には床冷暖房熱交換器4では低温冷媒との熱交換は行われない。このように室内熱交換器3を冷房運転途中でこれを停止させたときにポンプ8を低速で運転させると2次側熱媒体を流動させることにより冷凍サイクルを循環する低音冷媒の影響を防ぎ配管を含め床冷暖房パネル周りなど室内側での結露が防止できる。
【0036】
図11、図12、図13は別のヒートポンプ床冷暖房空調装置を示すブロック図及び制御動作を示すフローチャートである。なお、図11の冷凍サイクルは空調冷房+床暖房運転時の状態を示しており、圧縮機1、四方弁2、床冷暖房用熱交換器4、副絞り装置22、室内側熱交換器3を順に接続し圧縮機から吐出された冷媒を、絞り装置5と熱源側熱交換器6をバイパスさせて圧縮機へ戻す様に、室内熱交換器3と絞り装置5との間から圧縮機1へ戻す第2のバイパス配管21を設ける。この第2のバイパス配管には開閉弁21を設け必要な時以外はこのバイパスを冷媒が流れないようにしている。また床冷暖房用熱交換器4の2次側熱媒体をポンプ8により循環させ2次側熱媒体が温熱を放出する床冷暖房パネル7にて床暖房を行うことができる。即ちこの冷凍サイクルでは床冷暖房用熱交換器4を凝縮器とし、室内熱交換器3を蒸発器とするように副絞り装置22を開閉し、室外熱交換器をバイパスさせていることは図10等と同一であるが、図11は、2次側熱媒体の温度を計測する送水温度センサ13、戻り水温度センサ14を設けてあることと、室内吸込み空気温度センサ16を設け、制御回路15にて圧縮機1の運転周波数、福絞り装置22の弁開度調整、ポンプ8による2次側熱媒体であるブラインなどの吐出量をポンプの回転数を変化させて変更させるなどの制御を行っている。
【0037】
図11のヒートポンプ式空調装置の構成では、床暖房と空調冷房の併用運転を行ない、床冷暖房パネル7にて床暖房を行ないながら、室内熱交換器3で冷房により除湿を行っている。床暖房システムである2次側は、ポンプ8で循環し冷暖房パネル7へ送られる2次側熱媒体の温度が一定となるように圧縮機の運転周波数およびポンプの吐出量および副絞り装置の開度の少なくとも一つを制御している。これにより室内機による空調を冷房除湿運転としているにもかかわらず寒さを感じることが無くなる。
【0038】
更に、このような暖気味除湿を行うために床暖房と空調冷房の併用運転を行う際、ポンプ8で循環し冷暖房用熱交換器に戻る2次側熱媒体の温度を戻水温度センサ14で検出しており、この検出値が予め設定された温度より、例えば2℃以上小さくなった範囲内の時、空調冷房+床暖房運転という併用運転である除湿運転を停止する。これにより無駄なエネルギーを使わずに快適な除湿が行える。この除湿運転中止には2次側熱媒体の温度が一定となるように制御しているのにもかかわらず、戻水温度センサ14で検出した温度が設定値より所定値以上小さくなったとき、を判断しているが、送水センサの検出値を使用しても良いし、室内吸込み空気温度センサ16の検出値を用いても良い。室内吸込み空気温度センサ16の検出値に対しては例えば初期室温よりも2℃程度さがったことを併用運転を停止させる条件にしても良い。特に2次側熱媒体の温度検出と室内空気の温度検出を組合せどちらかの条件に達した時を除湿運転中止とすればエネルギーを使わずに快適な空調を行うことができる。
【0039】
図12は除湿を行う運転方法を説明するフローチャートである。図11の構成のように圧縮機1で圧縮された高温高圧の冷媒を四方弁2を介して床冷暖房用熱交換器4にて凝縮して2次側熱媒体に熱を伝え、副絞り装置22にて減圧し、室内側熱交換器3にて蒸発させ、これらの公製品を配管で順に接続した冷凍サイクルに冷媒を循環させる。床冷暖房用熱交換器4の2次側熱媒体はポンプ8により床冷暖房パネル7にする。床冷暖房パネル7に2次側熱媒体が温熱を放出して床冷暖房パネル7は暖房を行う。一方室内機では室内熱交換器3にて冷房除湿を行う。図12が示す様に、先ず運転開始指令S21が出ると、予め入力されている床冷暖房パネルデータ、住宅データなどのデータS22と、室内吸込み空気温度センサ16、室内吸込み空気湿度センサ19にて検出された室内空気の初期温度、初期湿度S24と、から、2次側熱媒体の設定温度である目標送水温度や目標戻水温度が設定S23、S25される。
【0040】
圧縮機1やポンプ8が運転され除湿運転が行われる。この運転時に送水温度センサ13にて送水温度が検出S26されて設定された目標値と所定の範囲で一定かどうか判断S27される。もし一定と判断されると次に戻水温度検出値S28が設定値に対し2℃以内の低い温度範囲内にあるかどうかと、室内空気温度センサ16で検出した空気温度S30もやはり初期値に対し2℃以内の低い温度範囲内にあるかが判断S31される。少なくとも一方がその通りという判断結果になれば除湿運転は停止S32される。もし両方のデータが所定の温度範囲を外れていれば除湿運転が継続されるか、或いは停止していたら再開S33される。一方、送水温度が検出S26されて設定された目標値と所定の範囲で一定かどうか判断S27されたときに、一定とは判断されない場合は圧縮機1の運転周波数、副絞り装置22の開度、ポンプ8の送水量のいずれかを変更したり、或いは組合せて変更して一定となるように運転する。この制御により確実な除湿運転が行えるとともに無駄な運転を防止している。
【0041】
図13は床冷暖房パネル7にて暖房しながら室内熱交換器3にて冷房除湿を行う制御を示すフローチャートである。図11におけるポンプ8で循環する2次側冷媒体の冷暖房パネル7へ送水する送水温度を送水温度センサ13で検出S42し、更にポンプで循環する2次側冷媒体の床冷暖房用熱交換器4に戻る戻水温度を戻水温度センサ14で検出S43し、更にこれらの温度およびポンプ8の送水量、即ちポンプの吐出量はポンプ回転数から得られるが、から床暖房能力を制御回路15で算出S44している。室内熱交換器前後の空気の温度差から得られる冷房能力を算出S45してから、この算出された床暖房能力と冷房能力の能力比が予め設定S46された能力比許容範囲内に入るかどうか判断S47し、一定範囲内に入るように、圧縮機1の運転周波数および副絞り装置22の開度、ポンプ8送水量の少なくとも一つを変更S48するように制御する。図12、図13の制御を行うことにより第1に室内の温湿度が、快適な範囲に常に入るように、ヒートポンプ式空調装置が設置される条件や室内の熱負荷などを考慮されて目標となる2次側熱媒体温度、即ち目標戻水温度が設定され、床冷暖房パネルの表面温度や室内機蒸発温度である室内機吹出し温度を決定している。更に第2に床暖房と室内機の空調冷房のコントロールを、例えば室温が大幅に低下するなど一方に偏らせずに快適さを失わない安定した運転を行わせることができる。即ち床暖と室内冷房との能力分配を安定させることにより制御の変動を押さえ目標値を確保する確実な運転が可能になる。更に第3に室内機に設置された温度センサ及び湿度センサから検出される室内温湿度をエネルギーの無駄無しに目標とする温湿度に早く収束させることができる。
【0042】
更に本発明の制御として、図1のヒートポンプ式空調装置構成を暖房運転させる場合、圧縮機1、床冷暖房用熱交換器4、室内側熱交換器3、絞り装置5、室外側熱交換器6を順に接続した冷凍サイクルに冷媒を循環させ運転を行なわせる。圧縮機から吐出された高温高圧の冷媒は床冷暖房用熱交換器4にて凝縮可能であるが、先ず室内ファン17を運転させ室内機で暖房運転を行う。この時床暖房、即ちポンプ8の運転はしばらく停止のまま、或いは起動したとしてもポンプの流量を大幅に下げた運転を行う。これは冷凍サイクルを所定時間運転後、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱を放出させるもので、2次側熱媒体の温度が所定温度に達するまで、またはポンプ起動後所定時間経過するまで、2次側熱媒体の流量を床暖房運転時より減らす運転である。先ず冷凍サイクルの運転を開始してから室内機による空調暖房をはじめ、これと同じ、又は少し時間を置いてから、いきなり床暖房を2次側熱媒体の温度が所定温度に達するまで能力一杯運転させると空調暖房より優先させた運転となり、床暖房起動時床冷暖房熱交換器の熱交換で供給熱量の大半が2次側熱媒体の温度上昇に使われ冷凍サイクルの圧力が低下し空調暖房に影響して室温の低下をもたらすだけでなく、室温の変動が続き使用者にとって不快感をもたらす。このため、ポンプ起動時の流量をフル運転の半分ぐらいまで落とし2次側熱媒体の温度上昇をゆっくり行う様にすると床暖房起動時に床冷暖房熱交換器の熱交換による空調暖房の能力低下を若干量に押さえ床暖及び室内熱交換器の能力の両方を確保できるので室温低下を防止でき、且つ、床暖房も急速に立ち上げることができる。
【0043】
次に床冷暖房熱交換器4の説明を行う。図14は床冷暖房用熱交換器を二重管熱交換器とした熱交換器説明図で、24、25はそれぞれ冷凍サイクルが冷房暖房など行う際の冷媒入口管、冷媒出口管、26、27はそれぞれ床冷暖房運転時の2次側熱媒体のブライン入口管、ブライン出口管である。断面AAの図に示すように、大小の円管が互いに接しないように二重に配置され、内側の小さい円管の内部を冷媒が流通し、その外側の大円管と小円管で挟まれた流路を床冷暖房パネル7へ循環する2次側熱媒体のブラインが流通する構成となっている。
【0044】
本発明のヒートポンプ式空調装置において、床暖房+空調冷房運転時で除湿を行うなどに床冷暖房用熱交換器4を利用する場合の床冷暖房用熱交換器4内の冷媒およびブラインの流れについて図9の構成をもとに説明する。圧縮機1を吐出した高温高圧のガス冷媒は冷媒入口管24より流入する(実線矢印)。一方、2次側熱媒体であるブラインはブライン入口管26より流入する(二重線矢印)。ガス冷媒は熱交換器4内を流れながら、ブラインと熱交換し、冷媒出口管25では過熱度の小さいガス冷媒または乾き度の高い二相冷媒となって流出し、下流側の室内熱交換器3側へ流れる。ブラインは床冷暖房用熱交換器4内を流れながらガス冷媒と熱交換し、ブライン出口管24では高温のブラインとなって流出する。
【0045】
本ヒートポンプ床冷暖房空調装置の床冷暖房用熱交換器4は、冷媒と2次側熱媒体であるブラインをお互いに逆方向で流すいわゆる対向流で流す構成としているため、床冷暖房用熱交換器4冷媒側流路の多くの部分を顕熱変化をする過熱ガス冷媒で占められる場合、2次側熱媒体であるブラインとの平均温度差を小さくする事が可能となり効率を向上することができるとともに、冷媒出口温度よりも高いブライン出口温度を得ることができる。但し室内熱交換器及び床冷暖房熱交換器とも冷房運転を行う場合、バイパイ管10を通さずに熱交換器4を通すときは冷媒は25から24へと流れるが、床冷暖房パネル表面での冷却では室内熱交換器3での空調冷房と同程度の温度であって、もしくは空調より床冷房の温度を下げることを行わないのでブラインの流と冷媒の流が同方向になっても影響がない。ここでは二重管熱交換器を例に挙げたが、別の形態として波状のプレートを積層してブレージング加工によりプレート同士を接合して流路を形成し、冷媒とブラインを交互の流路に流すことにより熱交換をさせるプレート式熱交換器を用いても、同様の効果を得ることができる。またさらに、二重管熱交換器の冷媒が流通する内側円管に伝熱促進手段として溝付伝熱管としてもよく、これにより熱交換を促進させて、二重管熱交換器をコンパクトにできる効果もある。
【0046】
なお図9等では、2次側熱媒体であるブラインを循環させるポンプ8の吸入側に余分なブラインを貯溜することができるバッファータンク12を有しており、床暖房運転時にバッファータンク12内に貯溜されたブラインは床暖房で必要な温度に昇温された状態で保たれている。なおバッファータンク12の出口側ブライン配管はブラインをポンプ8で吸引する必要があるため、タンクの下部に配設する。そして、ポンプ8を床冷暖房用熱交換器4の下流側に配置してブラインをポンプ8で床冷暖房用熱交換器4へ押し込む形態とすると、この床冷暖房用熱交換器4により熱交換された2次側熱媒体のブラインの温度が上昇するので、ポンプ8の信頼性を保つために高温になったブラインの影響を受けないような配置とすることができる。また冷媒流入口24を冷媒流出口25よりも重力方向に高い位置となるように構成することにより、重力により冷凍機油の移動を促進することが可能となり、冷凍機油が床冷暖房用熱交換器4内に滞留することを防止できる。プレート式熱交換器を使用する場合でも暖房時に冷凍サイクルの冷媒が上から下へ流れる構造とすると重力により冷凍機油が移動しやすい。また、床暖房パネル7はフローリングタイプのものが一般的であるが、カーペットの内部にブライン配管を通したカーペットタイプのものでもよい。なお今までの説明では床冷暖房パネル7を使用する床冷暖房の説明を行ってきたが、居室などの床面に敷くパネルでなくとも、例えば室内壁面、ベッド上面、自動車・電車のシート面などに強いたり取り付けたりするパネルに応用できることは当然である。床に敷く絨毯の代わりに壁に取り付けて空調と冷暖房を併用することはより簡単な構造で得られるまた自動車や電車などにヒートポンプ式空調装置が使用されており、このようなパネルを取り付ける構造もまた簡単に得られる。。
【0047】
以上のように、本発明のヒートポンプ式空調装置は一般的な空調用室外機と空調用室内機と床暖房パネルを温水ユニットと冷媒配管およびブライン配管で接続することによりシステムを構成することができるため、既設の空調用室外機と空調用室内機による空調機をそのまま用いて容易にヒートポンプ床冷暖房空調装置にシステム化する事が可能となる。また、空調用室外機と温水ユニットと空調用室内機と床暖房パネルを別々分けて設置場所へ搬入し、現地で接続し組立てることで本システムを容易に構成できるため、少ない人数でも本システムを搬入し設置することができる。また、一部のユニットで故障が発生した場合、故障したユニットだけを取り外し交換することで修理が完了するため、修理時間も短縮でき、さらに修理費用も安価にすることができる。
【0048】
ここで、上述したヒートポンプ式空調装置を現地の据付け現場で組み立てる場合について説明する。工場から搬出してきた空調機室外ユニットの上部に床冷暖房用熱交換ユニットである温水ユニットを搭載固定し、冷媒配管の接続を行う。次に、空調機室内ユニットを延長配管で空調機室外ユニットおよび温水ユニットに接続し、空調機室内ユニットと温水ユニットの冷媒回路での真空引きを行う。その後、空調機室外ユニットのバルブを開いて冷媒を回路へまわす。一方、床冷暖房側は、床冷暖房パネル7と温水ユニットをブライン配管で接続した後、2次側熱媒体であるブラインを充填してポンプ8を運転しながらブラインを床冷暖房側回路へ流通させて組立てが完了する。なお、空調用室外機は、空調用室内機を1台接続するタイプを用いて説明したが、空調用室内機を複数台接続するマルチタイプの空調用室外機を用いても良く同様の効果が得られる。
【0049】
また、本発明のヒートポンプ式空調装置は使用する冷凍機油として使用する冷媒がHFCに対して例えば弱溶解性の油を用いたものである。冷媒に対して弱溶解性の油であるアルキルベンゼン油は、非常に安定性が高い油として知られており、水分などの異物が混入しても分解することなくスラッジの発生により冷媒回路が閉塞することを低減できる。冷凍機油として非常に安定性が高い弱溶解性油を用いているため、設置工事などの際、異物が混入しても冷凍サイクルに故障を起こすことは少なく高い信頼性を確保することができる。また、本発明のヒートポンプ式空調装置は使用する冷媒としてR134a、R410A、R407C、R407E、R407AなどのHFC冷媒またはR290、R600aなどのHC冷媒もしくはCO2冷媒のような自然冷媒を用いたものでも良い。これにより地球環境への悪影響を防止することができる。このヒートポンプ床冷暖房空調装置の冷凍サイクルに、HFC冷媒またはHC冷媒を用いているため、オゾン層破壊や地球温暖化など地球環境に悪影響を与えないヒートポンプ床冷暖房空調装置を提供することができる。
【0050】
本発明の図10のような構成で第2のバイパス回路20の開閉弁21を閉鎖し冷媒をバイパスせず室外熱交換器6へ流して、空調暖房+床暖房運転を実施する場合、副絞り装置22によって2つの凝縮温度を作りだし、高温高圧の吐出ガス冷媒を室内熱交換器3より優先して床冷暖房用熱交換器4に流し、床冷暖房用熱交換器4で放熱し温度の低下したガス冷媒または二相冷媒を副絞り装置22によって減圧させ中圧中温の二相冷媒として下流の室内熱交換器3に流す構成とすることができる。この場合、圧縮機から吐出された過熱ガス冷媒を有効に利用しさらに高凝縮温度の二相冷媒と熱交換することによってブライン温度を高温化することができ床暖房能力を増加することが可能となり、一方室内熱交換器3へは凝縮温度の低下した中圧中温の冷媒を流すため、暖房能力を抑制することが可能となり、暖房能力を過大にすることなく床暖房能力を優先する運転が可能となり、室温を適性に保ちながら、床暖房パネルの表面温度の上昇を実現することができる。また第2のバイパス回路20の開閉弁21を閉鎖し冷媒をバイパスせず室外熱交換器6へ流し、さらに絞り装置5を全開として副絞り装置22を主絞り装置として使用することにより、室内熱交換器3と室外熱交換器6がともに蒸発器となり、空調冷房除湿+床暖房運転が可能となる。この場合、室外熱交換器6をバイパスするときよりも熱源側の熱交換量増えるので、床暖房パネルにおける能力が大幅に向上し、梅雨時で特に湿度の高さよりも気温の低さが気になる時などに、室内機で除湿しながら床暖房で床温を短時間で上昇させ、足元の寒さ感を解消するという効果が得られる。
【0051】
また、圧縮機1から吐出された冷媒が全て直列に配管接続された床冷暖房用熱交換器4および室内熱交換器3を順に流れるため、冷媒流速を確保し伝熱性能の低下を防止することができる。また、圧縮機、四方弁、室外熱交換器、絞り装置、室内熱交換器で構成される部分の冷媒回路は、一般的に量産されている空調機の冷媒回路とまったく同じであり、床冷暖房用熱交換器を空調機の冷媒回路に配管接続して組合せることによってヒートポンプ床冷暖房空調装置を構成することが可能となり、低コストでヒートポンプ床冷暖房空調装置を提供することができる。ここで、副絞り装置22は可動式で絞り量の調整が可能であるため必要に応じて絞り量を変更し、床冷暖房用熱交換器4の凝縮温度と室内熱交換器3の凝縮温度を同じにしたり床冷暖房用熱交換器側を室内熱交換器よりも高くすることで、空調暖房優先運転と床暖房優先運転を切換えることができる。このように空調暖房優先モードにおいては、二方弁23を開で運転するため、床冷暖房用熱交換器4と室内熱交換器3を流れる冷媒は同じ高圧となり、相対的に伝熱面積が大きく伝熱性能の良い室内熱交換器3の凝縮能力によって高圧の動作圧力が決まる。したがって、空調暖房能力が床暖房能力に比べて相対的に大きくなり、空調暖房優先の運転を実現することができる。空調暖房優先モードは特に室温が低い立ち上がり時に適用され、床温度よりも室温の上昇を優先する場合の運転モードである。
【0052】
また、もう一つの運転モードである床暖房優先モードにおいては、二方弁19を閉の状態で運転する。圧縮機1より高温高圧のガス冷媒が吐出し、四方弁2を通った後床冷暖房用熱交換器4に流入する。床冷暖房用熱交換器4に流入したガス冷媒はポンプ8により循環している2次側熱媒体であるブラインと熱交換することにより、吐出温度より冷却されたガス冷媒または乾き度の高い二相冷媒に凝縮し、床冷暖房用熱交換器4を流出する。一方、温度の上昇したブラインは床冷暖房パネル7内の配管に入り床冷暖房パネルの表面温度を上昇させ、床暖房運転を実現させる。床冷暖房用熱交換器4を流出したガス冷媒または二相冷媒は副絞り装置22によって高圧から中圧に減圧され、凝縮温度は床暖房用熱交換器内の高温から中温に低下して室内熱交換器3に流入する。中圧中温の二相冷媒は室内空気と熱交換することにより、乾き度の低い気液二相冷媒または過冷却液冷媒に凝縮し、室内熱交換器3を流出する。一方室内熱交換器を通った室内空気は冷媒との熱交換により温度が上昇し、空調暖房運転を実現する。室内熱交換器3を流出した冷媒は絞り装置5により減圧され、室外熱交換器6に流入する。ここで外気と熱交換することにより冷媒は蒸発し、乾き度の高い気液二相冷媒またはガス冷媒となって室外熱交換器6を流出し、四方弁2を通って圧縮機1に吸入される。
【0053】
このように床暖房優先モードにおいては、空調暖房+床暖房運転を実施する場合、副絞り装置22によって2つの凝縮温度を作りだし、高温高圧の吐出ガス冷媒を室内熱交換器3より優先して床冷暖房用熱交換器4に流し、床冷暖房用熱交換器4で放熱し温度の低下したガス冷媒または二相冷媒を副絞り装置22によって減圧させ中圧中温の二相冷媒として下流の室内熱交換器3に流す構成としているため、圧縮機から吐出された過熱ガス冷媒を有効に利用しさらに高凝縮温度の二相冷媒と熱交換することによってブライン温度を高温化することができ床暖房能力を増加することが可能となり、一方室内熱交換器3へは凝縮温度の低下した中圧中温の冷媒を流すため、空調暖房能力を抑制することが可能となり、空調暖房能力を過大にすることなく床暖房能力を優先する運転が可能となり、室温を適性に保ちながら、床暖房パネルの表面温度の上昇を実現することができる。床暖房優先モードは特に室温が設定温度付近で床温度が十分に上がっていない場合に適用され、室温よりも床温度の上昇を優先する場合の運転モードである。
【0054】
以上のように、本発明においては副絞り装置22を二方弁を介してバイパスするバイパス回路を配設しているため、二方弁の開閉によって空調冷暖房優先運転と床冷暖房優先運転を切換えることが可能となり、負荷に応じて適切な運転をすることができる。本発明のヒートポンプ床冷暖房空調装置は床冷暖房優先運転開始時に室内風量制御をも行う。床冷暖房優先指令を受けると二方弁23を閉じると共に室内ファン17に連結された室内ファンモータ18の回転数を落とし、室内風量を小さくする。
【0055】
以上本発明は、床冷暖房用熱交換器から床冷暖房パネルへ2次側熱媒体を循環させるポンプと、を備え、2次側熱媒体が前記床冷暖房パネルに温熱もしくは冷熱を放出して床暖もしくは床冷を行うものであり、従来のエアコンの冷凍サイクルに、室内熱交換器に床冷暖房用熱交換器を直列に直結するだけで床冷暖房ユニットを接続することができ簡単な構造で信頼性が高く性能の良い空調装置が得られる。
【0056】
以上本発明は、床冷暖房用熱交換器の冷媒流入部と冷媒流出部をバイパスさせる流路制御手段として第1バイパス配管上に設けられ、前記第1バイパス配管を開閉する開閉弁、または前記室内熱交換器への流れを阻止する逆止弁と開閉弁を直列に接続したものであるので、簡単な回路と素子で空調冷暖房、除湿、床冷暖房などの各種の組合せ条件の運転が容易に得られる。
【0057】
以上本発明は、冷凍サイクルを循環する冷媒が室内熱交換器から第1バイパス回路へ流通する空調運転と、冷媒が室内熱交換器から床冷暖房用熱交換器へ流通し床冷暖房用熱交換器にて2次側熱媒体へ熱交換させる運転と、のいずれかの運転への切り替えを前記第1バイパス配管を開閉する開閉弁にて行うので信頼性の高い運転を確実に行うことができる。
【0058】
以上本発明は、圧縮機から床冷暖房用熱交換器および室内熱交換器を循環させた冷媒を熱源側熱交換器をバイパスさせて圧縮機へ戻す第2のバイパス配管と、第2のバイパス配管上に設けられ、第2のバイパス配管を開閉させる第2の開閉弁と、床冷暖房用熱交換器と室内熱交換器との間に設けられ各熱交換器を凝縮および膨張させる副絞り装置と、を備えたので少ないエネルギーで快適な空調が得られる。
【0059】
以上本発明は、室内熱交換器と床冷暖房用熱交換器の間に設けられる副絞り装置に並列で二方弁を介してバイパスするバイパス回路を配設したので、室内熱交換器と床冷暖房用熱交換器ともにフルに活用できる。
【0060】
以上本発明は、床冷暖房用熱交換器は二重管熱交換器としたので熱伝達が良好で、流量変化に対しても能力変化が小さくでき急速な床冷暖房立ち上げにも効果的である。
【0061】
以上本発明は、床冷暖房用熱交換器から床冷暖房パネルに送られる2次側熱媒体の温度を検出する送水温度センサー、および、前記床冷暖房パネルから前記床冷暖房用熱交換器に戻る2次側熱媒体の温度を検出する戻水温度センサー、の少なくとも一方を設けたので各種組合せ運転が精度よく行える。
【0062】
以上本発明は、負荷側熱交換器は室内熱交換器と床冷暖房用熱交換器を直列に配管接続しともに凝縮器として使用して床暖房と空調暖房の併用運転を行う際、圧縮機の運転周波数は床暖房能力を空調暖房能力に優先して制御するとともに、空調暖房能力は前記室内熱交換器に送風する室内ファンの断続運転または回転数増減により制御するので、快適な暖房が得られる。
【0063】
以上本発明は、負荷側熱交換器は室内熱交換器と床冷暖房用熱交換器を直列に配管接続しともに蒸発器として使用して床冷房と空調冷房の併用運転を行う際、圧縮機の運転周波数は床冷房能力を空調冷房能力に優先して制御するとともに、空調冷房能力は室内熱交換器に送風する室内ファンの断続運転または回転数増減により制御するので、快適な冷房が短時間で得られる。
【0064】
以上本発明は、負荷側熱交換器は室内熱交換器と床冷暖房用熱交換器を直列に配管接続しともに蒸発器として使用して床冷房と空調冷房の併用運転を行う際、ポンプで循環する2次側熱媒体の温度が、予め設定された温度に近づくように前記圧縮機の運転周波数および前記ポンプの送水量の少なくとも一方を制御するので、冷やし過ぎや不安定な運転を避けることができる。
【0065】
以上本発明は、負荷側熱交換器は室内熱交換器と床冷暖房用熱交換器を直列に配管接続しともに蒸発器として使用して床冷房と空調冷房の併用運転を行う際、ポンプで循環する2次側熱媒体の温度が、予め設定された温度より大きいときは床冷房と空調冷房の併用運転を継続し、設定された温度より小さいときは空調冷房のみの運転を行うので無駄な運転を避けることができる。
【0066】
以上本発明は、負荷側熱交換器は室内熱交換器と床冷暖房用熱交換器を直列に配管接続しともに蒸発器として使用して床冷房と空調冷房の併用運転を行う際、ポンプで循環する2次側熱媒体の温度が、算出された室内空気の露点温度よりも高くなるように圧縮機の運転周波数およびポンプの送水量の少なくとも一方を制御するので結露を発生させない。
【0067】
以上本発明は、床冷暖房用熱交換器から送水される2次側熱媒体が温熱もしくは冷熱を放出する床冷暖房パネルの表面温度をほぼ25℃ないし35℃程度になるように前記圧縮機の運転周波数および前記ポンプの送水量の少なくとも一方を制御するので安定した人にやさしい空調が得られる。
【0068】
以上本発明は、冷凍サイクルを循環させる冷媒として、HFC冷媒、または、HC冷媒やCO2冷媒のような自然冷媒を用い、2次側熱媒体としてブラインを用いたので環境にやさしい空調が得られる。
【0069】
以上本発明は、圧縮機、床冷暖房用熱交換器、副絞り装置、室内側熱交換器を順に接続し圧縮機から吐出された冷媒を循環させる冷凍サイクルと、冷凍サイクルを循環させる冷媒を熱源側熱交換器をバイパスさせて圧縮機へ戻す第2のバイパス配管と、床冷暖房用熱交換器の2次側熱媒体をポンプにより循環させ2次側熱媒体が温熱を放出する床冷暖房パネルと、を備え、床冷暖房パネルにて暖房しながら室内熱交換器にて冷房除湿を行うので、有効な除湿が快適に行える。
【0070】
以上本発明は、床暖房と空調冷房の併用運転を行う際、ポンプで循環し冷暖房パネルへ送られる2次側熱媒体の温度が一定となるように圧縮機の運転周波数およびポンプの吐出量および副絞り装置の開度の少なくとも一つを制御するので快適な空調が簡単に確実に得られる。
【0071】
以上本発明は、床暖房と空調冷房の併用運転を行う際、ポンプで循環し冷暖房用熱交換器に戻る2次側熱媒体の温度が、設定された温度より所定値以上小さくなったとき、併用運転を停止させるので無駄な運転を避けることができる。
【0072】
以上本発明は、圧縮機、床冷暖房用熱交換器、副絞り装置、室内側熱交換器を順に接続した冷凍サイクルに冷媒を循環させ運転を行うステップと、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱を放出するステップと、を備え、床冷暖房パネルにて暖房しながら室内熱交換器にて冷房除湿を行うので寒さを感じないで除湿を行える。
【0073】
以上本発明は、床冷暖房パネルにて暖房しながら室内熱交換器にて冷房除湿を行う際、ポンプで循環する2次側冷媒体の冷暖房パネルへ送水する送水温度およびポンプで循環する2次側冷媒体の冷暖房用熱交換器に戻る戻水温度およびポンプの送水量から床暖房能力を算出するステップと、を備え、この算出された床暖房能力と室内熱交換器前後の空気の温度差から得られる冷房能力との能力比が一定範囲となるように、圧縮機の運転周波数および前記副絞り装置の開度の少なくとも一つを制御するので、少ないエネルギーで快適な空調が得られる。
【0074】
以上本発明は、圧縮機、床冷暖房用熱交換器、室内側熱交換器、絞り装置、室外側熱交換器を順に接続した冷凍サイクルに冷媒を循環させ運転を行うステップと、冷凍サイクルを所定時間運転後、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱を放出するステップと、を備え、2次側熱媒体の温度が所定温度に達するまで、またはポンプ起動後所定時間経過するまで、2次側熱媒体の流量を床暖房運転時より減らす運転を行うので、快適な空調を安定した制御で行える。
【0075】
【発明の効果】
以上のように本発明のヒートポンプ式空調装置は、圧縮機、熱源側熱交換器、絞り装置、負荷側熱交換器を順に接続し圧縮機から吐出した冷媒を圧縮機に戻す冷凍サイクルと、負荷側熱交換器を形成する空調用の室内熱交換器と床冷暖房用熱交換器を直列に配管接続しこの床冷暖房用熱交換器の冷媒流入部と冷媒流出部をバイパスさせる第1バイパス配管と、第1バイパス配管上に冷凍サイクルが冷房運転回路時に冷媒を流通可能で暖房運転回路時に冷媒を流通させない流路制御手段と、を備えたので、冷暖房を含め各種運転が伝熱性能の低下を起すことなく実現でき、一般的に量産されている空調機の冷媒回路に床冷暖房用熱交換器を組合せることによってヒートポンプ床冷暖房空調装置を構成することが可能となり、低コストでこのヒートポンプ式空調装置を提供することができる。
【0076】
本発明のヒートポンプ式空調装置は、圧縮機、床冷暖房用熱交換器、副絞り装置、室内側熱交換器を順に接続し圧縮機から吐出された冷媒を循環させる冷凍サイクルと、冷凍サイクルを循環させる冷媒を熱源側熱交換器をバイパスさせて圧縮機へ戻す第2のバイパス配管と、床冷暖房用熱交換器の2次側熱媒体をポンプにより循環させ2次側熱媒体が温熱を放出する床冷暖房パネルと、を備え、床冷暖房用熱交換器を凝縮器とし、室内熱交換器を蒸発器とするように副絞り装置を開閉するので、快適で無駄のない運転が可能になる。
【0077】
本発明のヒートポンプ式空調装置の運転方法は、圧縮機、熱源側熱交換器、絞り装置、室内側熱交換器、副絞り装置、床冷暖房用熱交換器を順に接続した冷凍サイクルが冷媒を循環させて冷房運転を行うステップと、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱もしくは冷熱を放出するステップと、を備え、冷凍サイクルを動作させる前にポンプを運転させて2次側熱媒体の温度を検出するステップと、を備えたので、安全で信頼性の高い空調運転が可能になる。
【0078】
本発明にかかわるヒートポンプ式空調装置の運転方法は、圧縮機、床冷暖房用熱交換器、副絞り装置、室内側熱交換器を順に接続した冷凍サイクルに冷媒を循環させ運転を行うステップと、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱を放出するステップと、を備え、床冷暖房パネルにて暖房しながら室内熱交換器にて冷房除湿を行うので、快適で無駄のない除湿運転が可能になる。
【0079】
本発明にかかわるヒートポンプ式空調装置の運転方法は、圧縮機、床冷暖房用熱交換器、室内側熱交換器、絞り装置、室外側熱交換器を順に接続した冷凍サイクルに冷媒を循環させ運転を行うステップと、冷凍サイクルを所定時間運転後、床冷暖房用熱交換器の2次側熱媒体をポンプにより床冷暖房パネルに循環させて、床冷暖房パネルに2次側熱媒体が温熱を放出するステップと、を備え、2次側熱媒体の温度が所定温度に達するまで、またはポンプ起動後所定時間経過するまで、2次側熱媒体の流量を床暖房運転時より減らす運転を行うので、安定した動作の運転で快適な空調が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るヒートポンプ式空調装置を示すブロック図である。
【図2】本発明の実施の形態に係る別のヒートポンプ式空調装置を示すブロック図である。
【図3】本発明の実施の形態に係るヒートポンプ式空調装置の動作を示すブロック図である。
【図4】本発明の実施の形態に係る別のヒートポンプ式空調装置を示すブロック図である。
【図5】本発明の実施の形態に係る別のヒートポンプ式空調装置を示すブロック図である。
【図6】本発明の実施の形態に係わるヒートポンプ式空調装置の制御動作を示すフローチャートである。
【図7】本発明の実施の形態に係るに別のヒートポンプ式空調装置を示すブロック図である。
【図8】本発明の実施の形態に係わるヒートポンプ式空調装置の制御動作を示すフローチャートである。
【図9】本発明の実施の形態に係る別のヒートポンプ式空調装置を示すブロック図である。
【図10】本発明の実施の形態に係る別のヒートポンプ式空調装置を示すブロック図である。
【図11】本発明の実施の形態に係る別のヒートポンプ床暖房空調装置を示すブロック図である。
【図12】本発明の実施の形態に係わるヒートポンプ式空調装置の制御動作を示すフローチャートである。
【図13】本発明の実施の形態に係わるヒートポンプ式空調装置の制御動作を示すフローチャートである。
【図14】本発明の実施の形態の床冷暖房熱交換器の構造を説明する図である。
【符号の説明】
1 圧縮機、 2 四方弁、 3 室内熱交換器、 4 床冷暖房用熱交換器、 5 絞り装置、 6 室外熱交換器、 7 床冷暖房パネル、 8 ポンプ、 9 逆止弁、 10 第1バイパス配管、 11 開閉弁、 12 バッファータンク、 13 送水温度センサ、 14 戻水温度センサ、 15 制御回路、 16 室内吸込み空気温度センサ、 17 室内ファン、 18 室内ファンモータ、 19 室内吸込み空気湿度センサ、 20 第2バイパス配管、 21 開閉弁、 22 副絞り装置、 23 二方弁、 24 冷媒入口管(暖房回路時)、 25 冷媒出口管(暖房回路時)、 26 ブライン入口管、 27 ブライン出口管。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration cycle, a heat pump air conditioner in which a secondary heat medium heated or cooled by a floor cooling / heating heat exchanger provided in the refrigeration cycle circulates in a floor cooling / heating panel, and an operating method thereof.
[0002]
[Prior art]
A conventional heat pump floor heating air conditioner is connected to an outdoor heat exchanger via a four-way valve with one end connected to the discharge side of a compressor that sucks and compresses low-temperature and low-pressure gas refrigerant and discharges high-temperature and high-pressure gas refrigerant. Is done. The other end of the indoor heat exchanger, one end of which is connected to the other end of the outdoor heat exchanger via the expansion device, is connected to the four-way valve, and the other end of the outdoor heat exchanger is connected to another expansion device. The heat exchanger for floor heating connected via is connected to the four-way valve in parallel with the indoor heat exchanger. On the other hand, one end of the floor heating panel is connected to the floor heating heat exchanger, and the other end is connected to the floor heating heat exchanger via a pump to circulate hot water as a secondary heat medium.
[0003]
In the conventional heat pump floor heating air conditioner configured as described above, the operation will be described in the case of floor heating + air conditioning heating operation, for example. A high-temperature and high-pressure gas refrigerant is discharged from the compressor, and after passing through the four-way valve, is branched into a pipe connected to the indoor heat exchanger and a pipe connected to the floor heating heat exchanger. A part of the gas refrigerant branched to the indoor heat exchanger is condensed into gas-liquid two-phase refrigerant or liquid refrigerant by exchanging heat with room air, and flows out of the indoor heat exchanger. The remaining gas refrigerant branched to the floor heating heat exchanger is condensed into a gas-liquid two-phase refrigerant or liquid refrigerant by exchanging heat with the secondary heat medium, and flows out of the floor heating heat exchanger. The refrigerant flowing out of the indoor heat exchanger is depressurized by the expansion device, and the refrigerant flowing out of the floor heating heat exchanger is depressurized by another expansion device, and then merges and flows into the outdoor heat exchanger. Here, the refrigerant evaporates by exchanging heat with the outside air, flows out as a two-phase refrigerant or gas refrigerant having a high degree of dryness, and is sucked into the compressor through the four-way valve. (See Patent Document 1)
[0004]
On the other hand, in a conventional heat pump floor heating / cooling air conditioner having another configuration, a primary refrigerant flow path is formed by connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger. A secondary heat exchanger for exchanging heat with the flow path is provided in series with the second expansion device, a secondary heat exchanger is connected between the expansion device and the second expansion device, and the secondary heat exchanger There has been proposed a configuration in which a secondary refrigerant flow path is formed by a secondary side pump and a use side heat exchanger. With this configuration in which a secondary heat exchanger is provided between the expansion device and the second expansion device, heat exchange control for cooling and heating between the primary refrigerant and the secondary refrigerant is easy, and cooling and heating by the secondary heat exchanger The switching operation and the simultaneous operation with the indoor heat exchanger are possible, and a structure that can be easily constructed is obtained. (See Patent Document 2)
[0005]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-46417 (FIG. 1 and others)
[Patent Document 2]
JP 2002-195609 A (FIG. 1, column 0006, etc.)
[0006]
[Problems to be solved by the invention]
In the conventional heat pump floor heating air conditioner as described above, an indoor heat exchanger and a floor heating heat exchanger are arranged in parallel. The floor heating heat exchanger always requires a relatively high refrigerant temperature in order to ensure the secondary heat medium temperature of 40 ° C. or higher, whereas the indoor heat exchanger is required depending on the heating load. For indoor heat exchangers that change the refrigerant temperature and have a wide heat transfer area and good heat transfer performance, a refrigerant temperature that is lower than the refrigerant temperature required for the floor heating heat exchanger is sufficient. However, in the conventional heat pump floor heating air conditioner, the indoor heat exchanger and the floor heating heat exchanger are connected in parallel to each other, so that the discharge gas refrigerant discharged from the compressor flows at the same temperature. If the compressor frequency is adjusted according to the floor heating capacity, the indoor air conditioning heating capacity becomes excessive, or conversely, if the compressor frequency is adjusted according to the air conditioning heating capacity, the floor heating capacity becomes insufficient and the surface temperature of the floor heating panel There was a problem of shortage.
[0007]
Moreover, since the gas refrigerant discharged from the compressor is branched into the indoor heat exchanger and the floor heating heat exchanger, the flow rate of the refrigerant flowing through each heat exchanger is reduced, the heat transfer performance is lowered, and the efficiency is deteriorated. In addition, there is a problem that the control is complicated and the cost is high because the expansion device is provided for each heat exchanger.
[0008]
In addition, in the conventional heat pump floor cooling / heating air conditioner, a secondary heat exchanger is provided between the expansion device and the second expansion device, so that the operation at the center of the indoor heat exchanger, which is always the primary refrigerant flow path, is supplementarily performed. It is intended to improve air conditioning as much as possible by adding cooling and heating using the secondary refrigerant flow path. It is practical and inexpensive, such as comfortable air conditioning mainly using floor heating and floor cooling, and dehumidifying operation with floor heating. There was a problem that air conditioning could not be obtained.
[0009]
The present invention has been made to solve such a problem, and to obtain an inexpensive and easy-to-use apparatus and operation method capable of easily realizing both floor heating and floor cooling and air conditioning air conditioning dehumidification simultaneously and various combined operation. With the goal. It is another object of the present invention to avoid problems such as not only air conditioning but also floor cooling / heating and dehumidifying operation with high capacity, and insufficient cooling / heating capacity of the floor cooling / heating panel.
[0010]
[Means for Solving the Problems]
A heat pump air conditioner according to the present invention includes a refrigeration cycle in which a compressor, a heat source side heat exchanger, a throttling device, a load side heat exchanger are connected in order, and refrigerant discharged from the compressor is returned to the compressor, and load side heat exchange An air conditioning indoor heat exchanger and a floor heating / cooling heat exchanger that form a heating pipe are connected in series to bypass the refrigerant inflow portion and the refrigerant outflow portion of the floor cooling / heating heat exchanger; And a flow path control means for allowing the refrigerant to flow through the bypass pipe during the cooling operation circuit and not allowing the refrigerant to flow during the heating operation circuit.
[0011]
A heat pump type air conditioner according to the present invention includes a refrigeration cycle in which a compressor, a floor heat / heat exchanger, a sub-throttle device, and an indoor heat exchanger are connected in order to circulate refrigerant discharged from the compressor, and a refrigeration cycle. The second bypass pipe that bypasses the heat source side heat exchanger to return the refrigerant to be circulated to the compressor and the secondary side heat medium of the heat exchanger for floor cooling and heating are circulated by a pump, and the secondary side heat medium releases the heat. The sub-throttle device is opened and closed so that the floor-cooling / heating heat exchanger is a condenser and the indoor heat exchanger is an evaporator.
[0012]
The operation method of the heat pump type air conditioner according to the present invention is such that the refrigeration cycle in which the compressor, the heat source side heat exchanger, the expansion device, the indoor heat exchanger, the sub expansion device, and the floor heating / cooling heat exchanger are connected in order A step of circulating and performing a cooling operation; a step of circulating a secondary heat medium of a heat exchanger for floor cooling and heating to a floor cooling and heating panel by a pump, and a step of releasing the heat or cold by the secondary heat medium to the floor cooling and heating panel And detecting the temperature of the secondary heat medium by operating the pump before operating the refrigeration cycle.
[0013]
The operation method of the heat pump type air conditioner according to the present invention includes a step of circulating the refrigerant through a refrigeration cycle in which a compressor, a floor air-conditioning heat exchanger, a sub-throttle device, and an indoor heat exchanger are connected in order, Circulating the secondary side heat medium of the heat exchanger for cooling and heating to the floor cooling and heating panel by a pump, and releasing the heat from the secondary side heating medium to the floor cooling and heating panel, while heating on the floor cooling and heating panel Cooling dehumidification is performed with an indoor heat exchanger.
[0014]
The operation method of the heat pump type air conditioner according to the present invention is such that the refrigerant is circulated through a refrigeration cycle in which a compressor, a floor heating / cooling heat exchanger, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger are sequentially connected. And a step of circulating the secondary heat medium of the heat exchanger for floor cooling / heating to the floor cooling / heating panel by a pump after the refrigeration cycle is operated for a predetermined time, and releasing the heat from the secondary heat medium to the floor cooling / heating panel. Until the temperature of the secondary heat medium reaches a predetermined temperature, or until a predetermined time elapses after the pump is started, an operation is performed in which the flow rate of the secondary heat medium is reduced from that during floor heating operation.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 and 2 are block diagrams showing a heat pump type air conditioner according to Embodiment 1 of the present invention. In addition, the refrigerating cycle of FIG. 1 has shown the state at the time of air conditioning cooling + floor cooling operation.
[0016]
In FIG. 1 and FIG. 2, the refrigerant pipe connecting the outdoor heat exchanger 6 that is a heat source side heat exchanger disposed in the outdoor unit and the indoor heat exchanger 3 disposed in the indoor unit on the load side is provided in the refrigerant pipe. The expansion device 5 is provided in the outdoor unit. A four-way valve 2 for switching the flow direction is connected to the compressor 1 for circulating the refrigerant, and is similarly provided in the outdoor unit. The floor cooling / heating heat exchanger 4 is directly connected to the indoor heat exchanger by piping on the load side of such a refrigeration cycle, and as shown in the figure, in the refrigerant flow direction during the cooling operation, the indoor heat exchanger 3 The refrigerant pipe is connected in series on the downstream side. Therefore, the load-side heat exchanger corresponding to the outdoor heat exchanger 6 that is the heat source-side heat exchanger is the floor cooling / heating heat exchanger 4 and the indoor heat exchanger 3 connected in series. The floor heating / cooling heat exchanger 4 attached to the outdoor unit is similarly provided with a pump 8 for circulating a secondary heat medium such as brine in the outdoor unit, and is mounted on the indoor floor surface. The panels 7 are connected by piping and are sequentially circulated in an annular manner by the secondary heat medium. In FIG. 1, a bypass pipe in which a check valve 9 and an opening / closing valve 11 are provided in series in parallel with the floor cooling / heating heat exchanger 4 is provided, and in FIG. 2, an opening / closing valve 11 is provided in parallel with the floor cooling / heating heat exchanger 4. The bypass pipe is arranged in the outdoor unit. This bypass pipe can be set so that the refrigerant flows through the bypass circuit when the refrigeration cycle performs the cooling operation, but does not flow through the bypass circuit when the heating operation is performed.
[0017]
The structure of this heat pump type air conditioner will be described. As shown in FIG. 1 and FIG. 2, one end of the four-way valve 2 is sequentially piped from the compressor 1 via the four-way valve 2 to the indoor heat exchanger 3 via the expansion device 5 from the outdoor heat exchanger 6. Is connected to the floor heating / cooling heat exchanger 4 by piping. And the refrigerant | coolant discharged from the compressor 1 circulates by pipe-connecting the end of the indoor heat exchanger 3 on the opposite side of the expansion device and the one end of the floor cooling / heating heat exchanger 4 on the opposite side. A cycle is formed. Note that the compressor 1, the four-way valve 2, the outdoor heat exchanger 6 and the expansion device 5 are main refrigerant circuit portions of an air conditioner outdoor unit that is generally used, and the indoor heat exchanger 3 is an air conditioner. The main refrigerant circuit section of the indoor unit and the floor cooling / heating heat exchanger 4 are the main refrigerant circuit section of the floor cooling / heating heat exchange unit. Therefore, the air conditioner outdoor unit, the air conditioner indoor unit, and the floor cooling / heating heat exchange unit that are generally used are sequentially connected by the refrigerant pipe. In addition, the floor cooling / heating heat exchanger 4 is connected to the floor cooling / heating panel 7 through a pipe for circulating a secondary side heat medium that exchanges heat with the refrigerant discharged from the compressor, and the pump 8 is connected to the other end of the floor cooling / heating panel. The secondary side heat medium circulation circuit is formed by pipe connection to the floor cooling / heating heat exchanger 4.
[0018]
Next, the operation at the time of air-conditioning cooling + floor cooling operation in the refrigeration cycle configured as described above will be described with reference to FIG. High-temperature and high-pressure gas refrigerant is discharged from the compressor 1 and flows into the rear outdoor heat exchanger 6 after passing through the four-way valve 2. After the high-temperature and high-pressure gas refrigerant flowing into the outdoor exchanger 6 is condensed into a gas refrigerant or a gas-liquid two-phase refrigerant cooled from the discharge temperature by exchanging heat with outdoor air by an outdoor fan not described, It expands by the expansion device 5 and is liquefied under reduced pressure. This refrigerant flows into the indoor heat exchanger 3 and evaporates by exchanging heat with the indoor air. On the other hand, the temperature of the indoor air that has passed through the indoor heat exchanger decreases due to the heat exchange with the refrigerant, and the indoor air conditioning cooling operation is performed. Realize. Further, the refrigerant flows into the floor heating heat exchanger 4 to cool the brine which is the secondary heat medium, and the cooled brine enters the piping in the floor cooling / heating panel 7 to lower the surface temperature of the floor cooling / heating panel. Realize floor cooling operation. The low-temperature and low-pressure refrigerant evaporated and gasified in the floor heating / cooling heat exchanger 4 is sucked into the compressor 1 through the four-way valve 2.
[0019]
As described above, when air-conditioning cooling + floor cooling operation is performed, the liquid refrigerant first condensed in the outdoor heat exchanger 6 and expanded to a medium temperature and low pressure is first evaporated in the indoor heat exchanger 3, and then the lower temperature is reduced. Since the refrigerant is passed through the floor heating / cooling heat exchanger 4 and then radiated by the floor cooling / heating heat exchanger 4 to form a gas refrigerant having a lowered temperature, the primary refrigerant is effectively used to lower the brine temperature. Even if the air conditioning cooling load is large and the refrigerant evaporating temperature of the indoor heat exchanger 3 is high, it is possible to secure the necessary brine temperature in the heat exchanger 4 for floor cooling and heating. The surface temperature of the floor heating panel can be realized.
[0020]
In addition, since all the refrigerant discharged from the compressor 1 flows in order to the outdoor heat exchanger 6, the indoor heat exchanger 3, and the floor heating / cooling heat exchanger 4 connected in series by piping, the refrigerant flow rate is secured and heat transfer is performed. A decrease in performance can be prevented.
[0021]
In addition, the refrigerant circuit of the part composed of the compressor, four-way valve, outdoor heat exchanger, expansion device, and indoor heat exchanger is exactly the same as the refrigerant circuit of air conditioners that are generally mass-produced. It is possible to configure a heat pump floor heating / cooling air conditioner by connecting the heat exchanger for piping in series with the refrigerant circuit of the air conditioner, and to provide the heat pump floor cooling / heating air conditioner at low cost.
[0022]
FIG. 3 is a block diagram showing the operation of the heat pump floor cooling and heating air conditioner of the present invention. FIG. 3A shows air conditioning cooling operation, and FIG. 3B shows floor cooling and air conditioning cooling operation. In the figure, reference numeral 10 denotes a first bypass pipe that bypasses the floor heating heat exchanger 4 via the check valve 9 during the cooling operation. Here, the check valve 9 allows the flow direction from the indoor heat exchanger 3 to the compressor 1 through the four-way valve 2 to flow. Note that the refrigerant does not flow through the bypass circuit during heating operation. Further, the amount of refrigerant flowing through the bypass circuit 10 can be adjusted by the on-off valve 11. In addition, even if there is no check valve 9 as shown in FIG. 2, the on-off valve 11 can be closed so that the refrigerant from the compressor 1 does not flow to the bypass circuit 10 during heating.
[0023]
As shown in FIG. 3, during the air-conditioning cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 exchanges heat with the outside air in the outdoor heat exchanger 6 to condense, depressurizes it in the expansion device 5, and then performs indoor heat exchange. In the chamber 3, heat is exchanged with indoor air by an indoor fan to evaporate, and the indoor air is cooled to perform cooling operation. That is, in FIG. 3A, high-temperature and high-pressure gas refrigerant is discharged from the compressor 1 and flows into the outdoor heat exchanger 6 through the four-way valve 2. The gas refrigerant flowing into the outdoor heat exchanger 6 exchanges heat with air by the fan of the outdoor heat exchanger 6, and the refrigerant flows as a two-phase refrigerant or a supercooled liquid refrigerant. Then, the refrigerant that has flowed out of the outdoor heat exchanger 6 is decompressed through the expansion device 5, becomes a low temperature state of 0 ° C. or less, and flows into the indoor heat exchanger 3. The indoor heat exchanger 3 is blown by an indoor fan to exchange heat, and the refrigerant evaporates and flows out of the indoor heat exchanger 3. The low-temperature refrigerant that has flowed out of the indoor heat exchanger 3 branches to the first bypass pipe 10 having the floor heating / cooling heat exchanger 4, the check valve 9, and the opening / closing valve 11 in inverse proportion to the respective pipe resistances. Since the piping resistance of the 1 bypass piping 10 is very small compared to the piping resistance of the floor heating / cooling heat exchanger 4, most low-temperature refrigerant flows to the first bypass piping 10 side and bypasses the floor cooling / heating heat exchanger 4 side. To do. The refrigerant flowing out of the first bypass pipe 10 is sucked into the compressor 1 through the four-way valve 2. On the other hand, during the floor cooling + air conditioning cooling operation of FIG. 3B, the on-off valve 11 is closed and the first bypass pipe 10 does not function in order to prevent the refrigerant flow from flowing into the first bypass pipe by the on-off valve 11. Instead, the refrigerant flows from the indoor heat exchanger 3 for air conditioning and cooling to the heat exchanger 4 for floor cooling and heating. Thus, since it was set as the structure which provided the on-off valve 11 in the 1st bypass piping 10, floor cooling can be performed or stopped with a simple apparatus.
[0024]
As described above, since the low-temperature refrigerant that is 0 ° C. or less during the cooling operation can be circulated through the first bypass pipe 10 having the check valve 9 and the heat exchanger 4 for floor cooling / heating can be bypassed, the outside air temperature is low. In such a case, it is possible to prevent the brine on the secondary side heat medium circulating to the floor cooling / heating panel 7 inside the floor cooling / heating heat exchanger 4 from being cooled and frozen to destroy the floor cooling / heating heat exchanger 4. Although the first bypass pipe 10 is described as having the check valve 9, the present invention is not limited to the check valve, and may be an open / close valve. The same effect can be obtained.
[0025]
FIG. 4 is a block diagram showing a heat pump floor cooling / heating air conditioner of the present invention. The refrigeration cycle of FIG. 4 shows a state during operation in which floor cooling and air conditioning cooling are performed. The secondary side circuit for performing the floor cooling in FIG. 4 circulates the brine in the pump 8, and the water supply temperature sensor 13 supplies the brine cooled or warmed by the floor cooling / heating heat exchanger 4 to the floor cooling / heating panel 7. The temperature of the secondary side heat medium, which is a brine in the tank, is detected, and the return water temperature sensor 14 transmits heat to the air by the floor cooling / heating panel 7 and then passes through the buffer tank 12 before exchanging heat for floor cooling / heating. The temperature of the return water returning to the vessel 4 is detected.
[0026]
The operation during indoor air conditioning cooling and floor cooling operation in the heat pump floor cooling and heating air conditioner of FIG. 4 will be described with reference to FIG. 5 a block diagram showing the heat pump floor cooling and heating air conditioner and FIG. 6 a flowchart showing this control operation. After the high-temperature and high-pressure gas refrigerant is discharged from the compressor 1 and passes through the four-way valve 2, the refrigerant is condensed in the outdoor heat exchanger 6 and dissipated to the outside air, and the temperature is lowered. Next, the low-temperature and low-pressure liquid refrigerant decompressed by the expansion device 5 absorbs heat from the indoor air in the indoor heat exchanger 3, lowers the indoor air temperature, and the refrigerant evaporates. Whether the indoor cooling has reached a preset target indoor air temperature is determined from the temperature of the indoor air detected by the indoor intake air temperature sensor 16, and if a cooling operation is required, the indoor fan The motor 18 is rotated to promote heat transfer between the refrigerant in the refrigeration cycle and the room air. Next, the on-off valve 11 of the first bypass pipe 10 is closed, and the refrigerant flows into the floor cooling / heating heat exchanger 4 and further evaporates by removing heat from the brine as the secondary heat medium. The liquid or two-phase refrigerant flowing into the floor heating / cooling heat exchanger 4 evaporates into a two-phase or gas refrigerant and flows out by exchanging heat with the secondary side heat medium brine circulating to the floor heating panel 7. Then, it is sucked into the compressor 1 through the four-way valve 2. In these operations, the operation stop of the compressor 1, the operation stop of the indoor fan motor 18, the opening / closing of the on-off valve 11, the opening adjustment of the expansion device 5, etc. are controlled based on the detected value of the indoor intake air temperature sensor 16. 15 is controlled. Similarly, in the secondary side circuit that performs floor heating and cooling, the operation stop of the pump 8 is controlled by the control circuit 15 based on the detection value of the return water temperature sensor 14.
[0027]
The operation of the heat pump floor cooling / heating air conditioner in FIG. 5 is shown in the flowchart of FIG. When there is an operation start command S1, the target return water temperature in the secondary circuit is set S3. The return water temperature setting of the secondary side heat medium during the operation in which the floor cooling and the air conditioning cooling are performed simultaneously is such that the surface temperature of the floor cooling / heating panel 7 becomes a predetermined temperature range value, for example, about 26 ° C.-28 ° C. In addition, it is determined S2 in consideration of the indoor heat load estimated from the material, installation pattern, floor area to be installed, house heat loss coefficient Q value and the like of the floor cooling / heating panel 7. That is, the surface temperature of the floor cooling / heating panel 7 is selected in the range from about 25 ° C. to about 35 ° C. during cooling and heating, but when trying to obtain floor cooling, a temperature that gives a cooler sensation than body temperature To do. The water temperature for obtaining the set temperature needs to be calculated after calculating a decrease due to heat transfer of the floor cooling / heating panel 7, escape of heat to the floor, heat radiation due to the heat load in the room, and the like. Floor conditions including various conditions such as flooring type, enforcement method, insulation thickness, room height and height, which is heat radiation from the room, indoor unit capacity, and relationship between indoor unit and outdoor unit The target return water temperature can be set by inputting air conditioning panel data, house data, and the like in advance. Of course, standard data may be prepared, and the return water set value for the secondary heat medium may be input in advance, and this set value can be changed to suit the comfort level. It can be changed.
[0028]
The above control is performed by detecting the return water temperature and comparing it with the target value, but it may be performed by the water supply temperature sensor 13. During floor heating, the surface temperature of the floor cooling / heating panel 7 is easily increased in order to obtain comfort. For this reason, first, a structure in which the required temperature is obtained by allowing the compressor discharge temperature, which is a high-temperature refrigerant, to first flow into the floor cooling / heating heat exchanger 4 by flowing directly into the floor cooling / heating heat exchanger 4 from the compressor. I have to. Although both the indoor heat exchanger and the floor cooling / heating heat exchanger can be used as a condenser, the combined operation of floor heating and air conditioning heating is also possible. Second, the reverse is provided in the first bypass pipe 10 during this heating. The stop valve 9 prevents the bypass regardless of whether the open / close valve 11 is open or close, or closes the open / close valve during heating to ensure that the refrigerant passes through the heat exchanger 4 for floor heating / cooling. Third, the floor heating capacity can be set higher than the air conditioning capacity not only in the operation frequency of the compressor but also in the pump operation, that is, the floor heating capacity can be controlled in preference to the air conditioning capacity. Is obtained. During this heating, in order to avoid low-temperature burns due to the high floor cooling / heating panel temperature target value, it is preferable to measure the water supply temperature supplied to the floor cooling / heating panel 7 where high-temperature accurate temperature control is easy to obtain.
[0029]
In FIG. 6, the return water temperature is subsequently detected S4, and this target value is compared with the detected value S5. If the target value is lower than the detected value, that is, if the detected value of the return water temperature is high and it is determined that floor cooling is required, an operation using both floor cooling and air conditioning cooling is started S6, and the temperature difference between the returned water Accordingly, the operation frequency that is the rotation speed of the compressor 1 or the rotation speed that is the water supply amount of the pump 8 is adjusted S8. On the other hand, when the temperature at which the return water is detected is lower than the target temperature and it is determined that the floor cooling is not necessary, the air conditioning cooling operation S7 is started by the detected value of the indoor intake air temperature sensor 16. At this time, while the pump 8 is stopped, the rotation of the compressor 1 and the driving of the indoor fan motor that drives the indoor fan 17 are controlled to perform air conditioning cooling. By using both indoor heat exchanger and floor cooling / heating heat exchanger as an evaporator, combined operation of floor cooling and air conditioning cooling is possible as described above, but the operating frequency of the compressor is determined by the floor cooling capacity. In other words, because the floor cooling capacity can be controlled with priority over the air conditioning cooling capacity, the load on the frame can be removed by floor cooling, and the air conditioning cooling capacity can be set low, so there is less draft feeling due to air conditioning. Air conditioning.
[0030]
As described above, the brine temperature flowing to the floor cooling / heating panel 7 can be adjusted to the preset target temperature by adjusting the compressor frequency without using the pump 8. Even if the environmental conditions change, the temperature can always be maintained in a comfortable state. Also, the air conditioner indoor unit operates the indoor fan when the temperature difference between the intake air temperature and the target room temperature increases, and the intake If the temperature difference between the air temperature and the target room temperature becomes small, the indoor fan is stopped or operated at a low speed, and the cooling / heating operation is stopped or the capacity is lowered. Therefore, the indoor temperature can be maintained within a comfortable temperature range. Further, by opening the on-off valve 11, it is possible to prevent the refrigerant from flowing into the floor-heating / heating heat exchanger 4 during cooling, and it is possible to operate only by air-conditioning without performing floor-cooling. You can drive.
[0031]
FIG. 7 shows the heat pump floor cooling / heating air conditioner of the present invention, and the operation of this apparatus is shown in the control flowchart of FIG. FIG. 7 and FIG. 8 explain the control for obtaining the dew point temperature from the temperature and humidity of the room air and preventing condensation during floor cooling on the floor where the floor cooling / heating panel is installed as the secondary side heat medium temperature above this dew point temperature. . The apparatus configuration diagram of FIG. 7 is the same as the apparatus configuration diagram of FIG. 5 except that an indoor suction humidity sensor 19 for measuring the humidity of the room air is provided. Moisture permeates through floor flooring that separates the room and the outside depending on the absolute humidity difference between the room and the room, a floor heating panel that is a component for performing floor cooling and heating, and a heat insulating material laid between and on the floor. Condensation occurs when there is a part below the dew point in these components. In order to prevent dew condensation due to indoor and outdoor temperatures, humidity, and other components, the temperature of the secondary heat medium that performs floor cooling may be set to a dew point or higher. A lower water supply temperature for supplying cold heat to the panel is desirable, but the return water temperature after supplying cold heat to the panel is also a reference temperature for temperature control of the floor cooling / heating panel 7 and may be set for comparison. It is valid.
[0032]
The flowchart of FIG. 8 will be described. When the operation start command S11 is performed, the indoor intake air temperature and humidity are detected by the air temperature sensor 16 and the air humidity sensor 19 that measures the relative humidity, and the indoor dew point temperature is calculated S13. Next, the return water temperature sensor 14 detects the temperature of the secondary heat medium S14, and compares the dew point temperature with the secondary heat medium temperature S15. If the dew point temperature is high as a result of this comparison, the operation frequency of the compressor 1 and the discharge amount of the pump 8 are changed S16 so that the temperature of the secondary heat medium becomes high. If the dew point temperature is lower than the secondary heat medium temperature, an operation command operation such as floor cooling is performed. In this way, floor cooling can be performed without the problem of condensation. Furthermore, when there is a problem of dew condensation, it is possible to perform an operation before operation in which only the floor cooling / heating heat exchanger 4 is condensed when the cooling operation is stopped, and the floor cooling / heating panel piping is heated to prevent condensation. As described above, the temperature of the secondary heat medium can be adjusted to control floor cooling without problems such as excessive cooling and condensation.
[0033]
9 and 10 are block diagrams showing another heat pump floor cooling / heating air conditioner. The refrigeration cycle shown in FIGS. 9 and 10 shows a state during the air conditioning cooling + floor heating operation, and includes the compressor 1, the four-way valve 2, the floor cooling / heating heat exchanger 4, the sub-throttle device 22, and the indoor heat exchange. The refrigerant discharged from the compressor by connecting the compressor 3 in order is compressed from between the indoor heat exchanger 3 and the expansion device 5 so as to bypass the expansion device 5 and the heat source side heat exchanger 6 and return to the compressor. A second bypass pipe 20 that returns to the machine 1 is provided. The second bypass pipe is provided with an on-off valve 21 so that the refrigerant does not flow through this bypass except when necessary. Further, floor heating can be performed by the floor cooling / heating panel 7 in which the secondary heat medium of the floor heat exchanger 4 is circulated by the pump 8 and the secondary heat medium releases the heat. That is, in this refrigeration cycle, the sub-throttle device 22 is opened and closed so that the floor heat exchanger 4 is a condenser and the indoor heat exchanger 3 is an evaporator, and the outdoor heat exchanger is bypassed. In contrast to FIG. 9, FIG. 10 is provided with a bypass circuit for bypassing via the two-way valve 23 in parallel with the sub-throttle device 22 provided between the indoor heat exchanger 3 and the floor heat exchanger 4. Yes.
[0034]
In the heat pump floor heating / air conditioning air conditioner of FIGS. 9 and 10, the operation of the air conditioning cooling + floor heating operation using the floor cooling / heating heat exchanger 4 as a condenser and the indoor heat exchanger 3 as an evaporator will be described. Since the heat source side heat exchanger 6 is bypassed, the cooling capacity of the indoor heat exchanger 3 is small, and the indoor air is weakly dehumidified by the indoor heat exchanger 3 to reduce both the indoor temperature and humidity. Since the floor surface is warmed by the heat exchanger 4 for cooling and heating the floor, the warm dehumidifying operation is performed as a result. By this operation, the effect of eliminating the feeling of cold at the floor with floor heating while dehumidifying with an indoor unit in the rainy season or the like can be obtained. A high-temperature and high-pressure gas refrigerant is discharged from the compressor 1, passes through the four-way valve 2, and then flows into the floor heat exchanger 4. The refrigerant cannot flow into the bypass circuit 10 because of the check valve 9. The gas refrigerant that has flowed into the floor heating / cooling heat exchanger 4 is heat-exchanged with brine, which is the secondary heat medium circulating by the pump 8, so that the gas refrigerant cooled from the discharge temperature or a two-phase dryness It condenses into the refrigerant and flows out of the heat exchanger 4 for floor cooling / heating. On the other hand, the brine whose temperature has increased enters the piping in the floor heating panel 7 and raises the surface temperature of the floor heating panel, thereby realizing the floor heating operation. The gas refrigerant or the two-phase refrigerant that has flowed out of the floor heating / cooling heat exchanger 4 is decompressed by the sub-throttle device 22 and flows into the indoor heat exchanger 3. Here, the refrigerant evaporates by exchanging heat with the indoor air sent by the indoor fan, becomes a gas-liquid two-phase refrigerant or a gas refrigerant having a high degree of dryness, flows out of the indoor heat exchanger 3, and the second bypass pipe Through the opened on-off valve 21 and sucked into the compressor 1. In FIG. 10, a two-way valve 23 is provided in parallel with the sub-throttle device 22, but this two-way valve 23 is closed. By adjusting the opening degree of the sub-throttle device 22 so that the floor cooling / heating heat exchanger 4 is a condenser and the indoor heat exchanger 3 is an evaporator, the secondary side heat from the floor cooling / heating heat exchanger 4 is adjusted. With the medium, the floor cooling / heating panel 7 realizes floor heating operation, and the one indoor heat exchanger 3 realizes cooling dehumidification operation.
[0035]
In this way, the sensible heat load can be reduced because it is in the rainy season and the like, and by using the bypass circuit 20, it is possible to perform energy-saving and comfortable dehumidification without feeling cold. Further, since the sub-throttle device 22 is arranged in the outdoor unit together with the floor heating / cooling heat exchanger 4, noisy noise such as refrigerant sound is not heard indoors, and dehumidification is performed by drying the indoor unit so that the temperature of the indoor heat exchanger 3 can be selected. This eliminates the problem of condensation on the floor. As a countermeasure against condensation, the floor heating / cooling panel 7 realizes floor heating operation by the secondary side heat medium from the floor cooling / heating heat exchanger 4, while the indoor heat exchanger 3 realizes cooling / dehumidifying operation. This is important not only in the circuit configuration of 11, but also in the combined operation of indoor unit air conditioning cooling and floor cooling in the circuit configuration of FIG. In both cases, that is, during the air-conditioning cooling operation in which cooling is performed by the indoor heat exchanger 3, when the cooling operation or the dehumidifying operation is stopped, it is possible to take measures against condensation by operating only the pump 8 at a low speed. is there. When the cooling operation is stopped and the indoor fan is stopped, a refrigerant flow exists in the refrigeration cycle. In the circuit of FIG. 1, since the first bypass pipe 10 flows, heat exchange is not performed in the floor cooling / heating heat exchanger, and the secondary heat medium is affected by outside air when it is slowly circulated by the pump 8. In the case of FIG. 9 and the like, it is a dehumidifying operation in which a high-temperature refrigerant is originally passed through the floor heating / cooling heat exchanger and returned to the compressor from the second bypass circuit 20, and even when the pump 8 is rotated at a low speed, the dehumidifying operation is stopped. In 4, heat exchange with a low-temperature refrigerant is not performed. Thus, when the indoor heat exchanger 3 is stopped during the cooling operation and the pump 8 is operated at a low speed, the secondary heat medium is caused to flow, thereby preventing the influence of the low-frequency refrigerant circulating in the refrigeration cycle. Condensation on the indoor side such as around the floor cooling and heating panel can be prevented.
[0036]
FIG. 11, FIG. 12, and FIG. 13 are a block diagram showing another heat pump floor cooling and heating air conditioner and a flowchart showing the control operation. The refrigeration cycle in FIG. 11 shows a state during the air conditioning cooling + floor heating operation. The compressor 1, the four-way valve 2, the heat exchanger 4 for floor cooling / heating, the sub-throttle device 22, and the indoor heat exchanger 3 are provided. The refrigerant connected in order and discharged from the compressor bypasses the expansion device 5 and the heat source side heat exchanger 6 and returns to the compressor so as to return to the compressor 1 from between the indoor heat exchanger 3 and the expansion device 5. A second bypass pipe 21 to be returned is provided. The second bypass pipe is provided with an on-off valve 21 so that the refrigerant does not flow through this bypass except when necessary. Further, floor heating can be performed by the floor cooling / heating panel 7 in which the secondary heat medium of the floor heat exchanger 4 is circulated by the pump 8 and the secondary heat medium releases the heat. That is, in this refrigeration cycle, the sub-throttle device 22 is opened and closed so that the floor heat exchanger 4 is a condenser and the indoor heat exchanger 3 is an evaporator, and the outdoor heat exchanger is bypassed. 11, the water supply temperature sensor 13 and the return water temperature sensor 14 for measuring the temperature of the secondary heat medium are provided, the indoor intake air temperature sensor 16 is provided, and the control circuit 15 is provided. The control of the operating frequency of the compressor 1, the valve opening adjustment of the valve throttle device 22, the amount of discharge of brine, which is the secondary heat medium by the pump 8, is changed by changing the number of revolutions of the pump. ing.
[0037]
In the configuration of the heat pump type air conditioner of FIG. 11, floor heating and air conditioning cooling are used together, and floor heating is performed by the floor cooling and heating panel 7, while the indoor heat exchanger 3 performs dehumidification by cooling. The secondary side, which is a floor heating system, opens the compressor operating frequency, the pump discharge amount, and the sub-throttle device opening so that the temperature of the secondary heat medium circulated by the pump 8 and sent to the air conditioning panel 7 is constant. Control at least one of the degrees. As a result, the air does not feel cold even though the air conditioning by the indoor unit is in the cooling and dehumidifying operation.
[0038]
Further, when performing the combined use of floor heating and air conditioning cooling in order to perform such warm-air dehumidification, the temperature of the secondary heat medium that circulates in the pump 8 and returns to the heat exchanger for air conditioning is returned by the return water temperature sensor 14. When the detected value is within a range that is, for example, 2 ° C. or more lower than a preset temperature, the dehumidifying operation, which is a combined operation of air conditioning cooling and floor heating operation, is stopped. This allows comfortable dehumidification without using wasted energy. When the temperature detected by the return water temperature sensor 14 becomes lower than a set value by a predetermined value or more, although the temperature of the secondary heat medium is controlled to be constant for stopping the dehumidifying operation, However, the detection value of the water supply sensor may be used, or the detection value of the indoor intake air temperature sensor 16 may be used. For the detection value of the indoor intake air temperature sensor 16, for example, a condition that the combined operation is stopped may be that the temperature is about 2 ° C. lower than the initial room temperature. In particular, if the dehumidifying operation is stopped when the temperature detection of the secondary side heat medium and the temperature detection of the room air are combined, the dehumidifying operation is stopped, and comfortable air conditioning can be performed without using energy.
[0039]
FIG. 12 is a flowchart illustrating an operation method for performing dehumidification. As shown in FIG. 11, the high-temperature and high-pressure refrigerant compressed by the compressor 1 is condensed in the heat exchanger 4 for floor cooling and heating via the four-way valve 2 to transmit heat to the secondary heat medium, and the sub-throttle device The pressure is reduced at 22 and evaporated by the indoor heat exchanger 3, and the refrigerant is circulated through a refrigeration cycle in which these official products are connected in order by piping. The secondary heat medium of the heat exchanger 4 for floor cooling / heating is made into a floor cooling / heating panel 7 by a pump 8. The secondary side heat medium emits warm heat to the floor cooling / heating panel 7, and the floor cooling / heating panel 7 performs heating. On the other hand, the indoor unit performs cooling and dehumidification in the indoor heat exchanger 3. As shown in FIG. 12, first, when an operation start command S21 is issued, data S22 such as floor cooling / heating panel data and house data inputted in advance, and the indoor intake air temperature sensor 16 and the indoor intake air humidity sensor 19 are detected. From the initial temperature of the indoor air and the initial humidity S24, the target water supply temperature and the target return water temperature, which are the set temperatures of the secondary heat medium, are set S23 and S25.
[0040]
The compressor 1 and the pump 8 are operated and the dehumidifying operation is performed. During this operation, the water supply temperature is detected by the water supply temperature sensor 13, and it is determined whether or not the water supply temperature is constant within a predetermined range with the set target value. If it is determined to be constant, whether or not the return water temperature detection value S28 is within a low temperature range within 2 ° C. with respect to the set value and the air temperature S30 detected by the indoor air temperature sensor 16 are also set to the initial values. On the other hand, it is determined whether the temperature is within a low temperature range within 2 ° C. S31. If at least one of the determination results is true, the dehumidifying operation is stopped S32. If both data are outside the predetermined temperature range, the dehumidifying operation is continued, or if stopped, the process is resumed S33. On the other hand, when it is determined whether the water supply temperature is constant within a predetermined range with the target value set after detection S26, if it is not determined that it is constant, the operating frequency of the compressor 1 and the opening of the sub-throttle device 22 are determined. The pump 8 is operated so as to be constant by changing any one of the water supply amounts of the pump 8 or by changing it in combination. This control enables reliable dehumidification operation and prevents unnecessary operation.
[0041]
FIG. 13 is a flowchart showing the control for performing cooling and dehumidification by the indoor heat exchanger 3 while heating by the floor cooling and heating panel 7. The water supply temperature of the secondary refrigerant circulating in the pump 8 in FIG. 11 is detected by the water supply temperature sensor S42, and the secondary refrigerant heat exchanger 4 for cooling and cooling the secondary refrigerant circulating in the pump in FIG. The return water temperature returned to step S is detected by the return water temperature sensor 14, and further, the temperature and the water supply amount of the pump 8, that is, the discharge amount of the pump, are obtained from the pump rotation speed. Calculation S44 is performed. After calculating the cooling capacity obtained from the temperature difference between the air before and after the indoor heat exchanger S45, whether or not the calculated capacity ratio between the floor heating capacity and the cooling capacity is within the capacity ratio allowable range set in advance S46 In step S47, control is performed so that at least one of the operating frequency of the compressor 1, the opening degree of the sub-throttle device 22, and the pump 8 water supply amount is changed S48 so as to fall within a certain range. 12 and 13, by controlling the conditions in which the heat pump air conditioner is installed and the heat load in the room so that the indoor temperature and humidity always fall within a comfortable range, The secondary side heat medium temperature, that is, the target return water temperature is set, and the surface temperature of the floor cooling / heating panel and the indoor unit blowing temperature, which is the indoor unit evaporation temperature, are determined. Secondly, stable operation without losing comfort can be performed without biasing the control of floor heating and air conditioning cooling of the indoor unit to one side, for example, the room temperature greatly decreases. That is, by stabilizing the capacity distribution between the floor warming and the room cooling, it is possible to perform a reliable operation that suppresses control fluctuations and secures a target value. Thirdly, the indoor temperature and humidity detected from the temperature sensor and humidity sensor installed in the indoor unit can be quickly converged to the target temperature and humidity without wasting energy.
[0042]
Further, as a control of the present invention, when the heat pump type air conditioner configuration in FIG. 1 is operated for heating, the compressor 1, the heat exchanger 4 for floor cooling and heating, the indoor heat exchanger 3, the expansion device 5, and the outdoor heat exchanger 6 are used. The refrigerant is circulated through the refrigeration cycle connected in order to perform operation. The high-temperature and high-pressure refrigerant discharged from the compressor can be condensed in the heat exchanger 4 for floor cooling and heating. First, the indoor fan 17 is operated to perform heating operation in the indoor unit. At this time, the floor heating, that is, the operation of the pump 8 is stopped for a while or even if it is started, the operation is performed with the pump flow rate greatly reduced. This is a method in which after the refrigeration cycle is operated for a predetermined time, the secondary heat medium of the heat exchanger for floor cooling and heating is circulated to the floor cooling and heating panel by the pump, and the secondary heat medium is released from the heat to the floor cooling and heating panel. This is an operation in which the flow rate of the secondary heat medium is reduced from that in the floor heating operation until the temperature of the secondary heat medium reaches a predetermined temperature or until a predetermined time elapses after the pump is started. First, after starting the refrigeration cycle, start air conditioning and heating with indoor units. After the same or a little time, the floor heating is suddenly operated until the temperature of the secondary heat medium reaches the specified temperature. This will give priority to air conditioning and heating, and when the floor heating is started, the heat exchange of the floor cooling and heating heat exchanger will use most of the supplied heat to increase the temperature of the secondary heat medium, reducing the pressure in the refrigeration cycle and reducing the air conditioning heating. Not only does it cause a reduction in room temperature, but it also continues to fluctuate in room temperature, causing discomfort to the user. For this reason, if the flow rate at the start of the pump is reduced to about half of the full operation and the temperature of the secondary heat medium is slowly increased, there will be a slight decrease in the capacity of the air conditioning heating due to the heat exchange of the floor cooling / heating heat exchanger at the start of floor heating. Since both the floor warming and the capacity of the indoor heat exchanger can be ensured, the room temperature can be prevented from being lowered, and the floor heating can be started up rapidly.
[0043]
Next, the floor cooling / heating heat exchanger 4 will be described. FIG. 14 is an explanatory diagram of a heat exchanger in which a floor-cooling / heating heat exchanger is a double-pipe heat exchanger. Reference numerals 24 and 25 respectively denote a refrigerant inlet pipe, a refrigerant outlet pipe, and 26 and 27 when the refrigeration cycle performs cooling and heating. Are respectively a brine inlet pipe and a brine outlet pipe for the secondary side heat medium during floor cooling and heating operation. As shown in the cross-sectional view AA, the large and small circular tubes are doubly arranged so as not to contact each other, the refrigerant flows through the inside small circular tube, and is sandwiched between the large circular tube and the small circular tube on the outside. The secondary side heat medium brine circulating through the flow path to the floor cooling / heating panel 7 circulates.
[0044]
In the heat pump air conditioner of the present invention, the flow of refrigerant and brine in the floor cooling / heating heat exchanger 4 when the floor cooling / heating heat exchanger 4 is used for dehumidification during floor heating + air conditioning cooling operation, etc. Description will be made based on the configuration of FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows from the refrigerant inlet pipe 24 (solid arrow). On the other hand, the brine as the secondary heat medium flows in from the brine inlet pipe 26 (double line arrow). The gas refrigerant exchanges heat with the brine while flowing in the heat exchanger 4, and flows out as a gas refrigerant having a low degree of superheat or a two-phase refrigerant having a high degree of dryness in the refrigerant outlet pipe 25, and the indoor heat exchanger on the downstream side. Flows to the 3rd side. The brine exchanges heat with the gas refrigerant while flowing in the floor heating / cooling heat exchanger 4, and flows out as a high-temperature brine in the brine outlet pipe 24.
[0045]
Since the heat exchanger 4 for floor cooling / heating of the present heat pump floor cooling / air conditioning system is configured to flow the refrigerant and the brine which is the secondary heat medium in opposite directions to each other, the floor heat / cooling heat exchanger 4 When a large portion of the refrigerant side flow path is occupied by the superheated gas refrigerant that changes sensible heat, the average temperature difference with the secondary side heat medium brine can be reduced, and the efficiency can be improved. A brine outlet temperature higher than the refrigerant outlet temperature can be obtained. However, when both the indoor heat exchanger and the floor heating / cooling heat exchanger perform cooling operation, the refrigerant flows from 25 to 24 when passing through the heat exchanger 4 without passing through the bypass tube 10, but cooling on the floor cooling / heating panel surface Then, the temperature is about the same as the air conditioning cooling in the indoor heat exchanger 3, or the floor cooling temperature is not lowered by the air conditioning, so there is no effect even if the flow of the brine and the flow of the refrigerant are in the same direction. . Here, a double-tube heat exchanger has been taken as an example, but as another form, corrugated plates are laminated and the plates are joined together by brazing to form channels, and refrigerant and brine are used as alternate channels. The same effect can be obtained even if a plate heat exchanger that exchanges heat by flowing is used. Furthermore, a grooved heat transfer tube may be used as a heat transfer promoting means on the inner circular tube through which the refrigerant of the double tube heat exchanger flows, thereby promoting heat exchange and making the double tube heat exchanger compact. There is also an effect.
[0046]
In addition, in FIG. 9 etc., it has the buffer tank 12 which can store an excess brine on the suction | inhalation side of the pump 8 which circulates the brine which is a secondary side heat medium, and it has in the buffer tank 12 at the time of floor heating operation. The stored brine is kept heated to the required temperature by floor heating. The outlet side brine piping of the buffer tank 12 is disposed at the lower part of the tank because it is necessary to suck the brine with the pump 8. When the pump 8 is disposed downstream of the floor cooling / heating heat exchanger 4 and the brine is pushed into the floor cooling / heating heat exchanger 4 by the pump 8, heat is exchanged by the floor cooling / heating heat exchanger 4. Since the temperature of the brine of the secondary heat medium rises, it can be arranged so as not to be affected by the brine that has become hot in order to maintain the reliability of the pump 8. Further, by configuring the refrigerant inlet 24 so as to be higher in the direction of gravity than the refrigerant outlet 25, it becomes possible to promote the movement of the refrigeration oil by gravity, and the refrigeration oil is used in the heat exchanger 4 for floor cooling and heating. It can prevent staying in. Even when a plate heat exchanger is used, if the refrigerant of the refrigeration cycle flows from top to bottom during heating, the refrigeration oil can easily move due to gravity. The floor heating panel 7 is generally a flooring type, but may be a carpet type in which brine piping is passed through the carpet. In the above description, the floor cooling / heating using the floor cooling / heating panel 7 has been described. However, for example, on the wall surface of the room, the upper surface of the bed, the seat surface of an automobile / train, etc. Of course, it can be applied to panels that are strong or attached. It is possible to use air conditioning and air conditioning together with a wall instead of a carpet on the floor, and it is possible to obtain a simpler structure. Heat pump air conditioners are used in automobiles and trains. Also easily obtained. .
[0047]
As described above, the heat pump air conditioner of the present invention can constitute a system by connecting a general air conditioning outdoor unit, an air conditioning indoor unit, and a floor heating panel with a hot water unit, a refrigerant pipe, and a brine pipe. Therefore, it becomes possible to easily systemize the heat pump floor cooling / heating air conditioner by using the existing air conditioner outdoor unit and the air conditioner indoor unit as they are. In addition, the system can be easily configured by transporting the air conditioning outdoor unit, hot water unit, air conditioning indoor unit, and floor heating panel separately to the installation location and connecting and assembling them locally. Can be carried in and installed. Further, when a failure occurs in some units, the repair is completed by removing and replacing only the failed unit, so that the repair time can be shortened and the repair cost can be reduced.
[0048]
Here, the case where the heat pump type air conditioner mentioned above is assembled at a local installation site will be described. A hot water unit, which is a heat exchange unit for floor cooling and heating, is mounted and fixed on the upper part of the outdoor unit of the air conditioner that has been transported from the factory, and the refrigerant piping is connected. Next, the air conditioner indoor unit is connected to the air conditioner outdoor unit and the hot water unit by extension piping, and vacuuming is performed in the refrigerant circuit of the air conditioner indoor unit and the hot water unit. After that, the valve of the air conditioner outdoor unit is opened and the refrigerant is sent to the circuit. On the other hand, the floor cooling / heating side connects the floor cooling / heating panel 7 and the hot water unit with a brine pipe, and then fills the brine, which is the secondary heat medium, and distributes the brine to the floor cooling / heating circuit while operating the pump 8. Assembly is complete. In addition, although the outdoor unit for air conditioning demonstrated using the type which connects one indoor unit for air conditioning, the multi-type outdoor unit for air conditioning which connects two or more indoor units for air conditioning may be used, and the same effect is obtained. can get.
[0049]
In the heat pump air conditioner of the present invention, the refrigerant used as the refrigerating machine oil uses, for example, weakly soluble oil for HFC. Alkylbenzene oil, which is weakly soluble in refrigerant, is known as a highly stable oil, and even if foreign matter such as moisture is mixed in, the refrigerant circuit is blocked by the generation of sludge without being decomposed. Can be reduced. Since weakly soluble oil with very high stability is used as the refrigerating machine oil, there is little failure in the refrigeration cycle even when foreign matters are mixed during installation work, and high reliability can be ensured. Moreover, the heat pump type air conditioner of the present invention may use HFC refrigerants such as R134a, R410A, R407C, R407E, and R407A, or HC refrigerants such as R290 and R600a, or natural refrigerants such as CO2 refrigerant. As a result, adverse effects on the global environment can be prevented. Since the HFC refrigerant or the HC refrigerant is used in the refrigeration cycle of the heat pump floor cooling / heating air conditioner, it is possible to provide a heat pump floor cooling / air conditioning air conditioner that does not adversely affect the global environment such as ozone layer destruction and global warming.
[0050]
When the on-off valve 21 of the second bypass circuit 20 is closed and the refrigerant is allowed to flow to the outdoor heat exchanger 6 without bypassing the air-conditioning / floor heating operation with the configuration shown in FIG. Two condensing temperatures are created by the device 22, and the high-temperature and high-pressure discharge gas refrigerant is given priority over the indoor heat exchanger 3 and flows into the floor-cooling / heating heat exchanger 4. The gas refrigerant or the two-phase refrigerant can be depressurized by the sub-throttle device 22 and flow to the indoor heat exchanger 3 downstream as a two-phase refrigerant having an intermediate pressure and medium temperature. In this case, the brine temperature can be increased by effectively using the superheated gas refrigerant discharged from the compressor and exchanging heat with the two-phase refrigerant having a high condensation temperature, thereby increasing the floor heating capacity. On the other hand, since the medium-pressure medium-temperature refrigerant having a reduced condensation temperature flows to the indoor heat exchanger 3, it becomes possible to suppress the heating capacity and to give priority to the floor heating capacity without making the heating capacity excessive. Thus, it is possible to increase the surface temperature of the floor heating panel while keeping the room temperature appropriate. Further, the on-off valve 21 of the second bypass circuit 20 is closed to flow the refrigerant to the outdoor heat exchanger 6 without bypassing the refrigerant. Further, the expansion device 5 is fully opened and the sub expansion device 22 is used as the main expansion device. The exchanger 3 and the outdoor heat exchanger 6 are both evaporators, and air conditioning cooling and dehumidification + floor heating operation is possible. In this case, the amount of heat exchange on the heat source side is increased as compared to when the outdoor heat exchanger 6 is bypassed, so the capacity of the floor heating panel is greatly improved, and the low temperature is particularly important than the high humidity during the rainy season. In such a case, the floor temperature can be raised in a short time by floor heating while dehumidifying with an indoor unit, and the effect of eliminating the feeling of cold at the feet can be obtained.
[0051]
In addition, since the refrigerant discharged from the compressor 1 flows in sequence through the floor cooling / heating heat exchanger 4 and the indoor heat exchanger 3 connected in series with each other, the refrigerant flow rate is ensured to prevent deterioration in heat transfer performance. Can do. In addition, the refrigerant circuit of the part composed of the compressor, four-way valve, outdoor heat exchanger, expansion device, and indoor heat exchanger is exactly the same as the refrigerant circuit of air conditioners that are generally mass-produced. It is possible to configure a heat pump floor cooling and heating air conditioner by connecting a heat exchanger for piping to a refrigerant circuit of an air conditioner, and to provide a heat pump floor cooling and heating air conditioner at a low cost. Here, since the sub-throttle device 22 is movable and the throttle amount can be adjusted, the throttle amount is changed as necessary, and the condensation temperature of the heat exchanger 4 for floor cooling and heating and the condensation temperature of the indoor heat exchanger 3 are changed. It is possible to switch between the air conditioning heating priority operation and the floor heating priority operation by making the same or setting the floor heat / cooling heat exchanger side higher than the indoor heat exchanger. Thus, in the air-conditioning / heating priority mode, since the two-way valve 23 is opened, the refrigerant flowing through the floor-cooling / heating heat exchanger 4 and the indoor heat exchanger 3 have the same high pressure, and the heat transfer area is relatively large. The high operating pressure is determined by the condensation capacity of the indoor heat exchanger 3 having good heat transfer performance. Therefore, the air conditioning heating capacity is relatively larger than the floor heating capacity, and the air conditioning heating priority operation can be realized. The air-conditioning / heating priority mode is an operation mode that is applied particularly when the room temperature is low, and prioritizes an increase in the room temperature over the floor temperature.
[0052]
In the floor heating priority mode, which is another operation mode, the two-way valve 19 is operated in a closed state. A high-temperature and high-pressure gas refrigerant is discharged from the compressor 1, passes through the four-way valve 2, and then flows into the floor heat exchanger 4. The gas refrigerant that has flowed into the floor heating / cooling heat exchanger 4 is heat-exchanged with brine, which is the secondary heat medium circulating by the pump 8, so that the gas refrigerant cooled from the discharge temperature or a two-phase dryness It condenses into the refrigerant and flows out of the heat exchanger 4 for floor cooling / heating. On the other hand, the brine whose temperature has increased enters the piping in the floor cooling / heating panel 7 and raises the surface temperature of the floor cooling / heating panel, thereby realizing the floor heating operation. The gas refrigerant or two-phase refrigerant that has flowed out of the floor heating / cooling heat exchanger 4 is reduced from high pressure to medium pressure by the sub-throttle device 22, and the condensing temperature is lowered from the high temperature in the floor heating heat exchanger to the middle temperature, thereby increasing the indoor heat. It flows into the exchanger 3. The two-phase refrigerant of medium pressure and intermediate temperature is condensed into a gas-liquid two-phase refrigerant or a supercooled liquid refrigerant having a low dryness by exchanging heat with room air, and flows out of the indoor heat exchanger 3. On the other hand, the temperature of the indoor air that has passed through the indoor heat exchanger rises due to heat exchange with the refrigerant, thereby realizing air conditioning heating operation. The refrigerant flowing out of the indoor heat exchanger 3 is decompressed by the expansion device 5 and flows into the outdoor heat exchanger 6. Here, the refrigerant evaporates by exchanging heat with the outside air, becomes a gas-liquid two-phase refrigerant or gas refrigerant having a high degree of dryness, flows out of the outdoor heat exchanger 6, and is sucked into the compressor 1 through the four-way valve 2. The
[0053]
As described above, in the floor heating priority mode, when air conditioning heating + floor heating operation is performed, the sub-throttle device 22 creates two condensing temperatures, and the high-temperature and high-pressure discharge gas refrigerant is given priority over the indoor heat exchanger 3. The indoor heat exchange downstream as a two-phase refrigerant having a medium pressure and medium temperature is caused to flow through the heat exchanger 4 for cooling and heating, and the gas refrigerant or two-phase refrigerant whose temperature is lowered by the heat exchanger 4 for floor cooling and heating is reduced in pressure by the sub-throttle device 22. Since the superheated gas refrigerant discharged from the compressor is effectively used and the heat exchange with the high-condensation two-phase refrigerant is performed, the brine temperature can be increased and the floor heating capacity can be increased. On the other hand, since the medium-pressure medium-temperature refrigerant having a reduced condensation temperature is allowed to flow into the indoor heat exchanger 3, it is possible to suppress the air-conditioning / heating capacity and to increase the air-conditioning / heating capacity. No priority operation floor heating capacity becomes possible, while keeping the room temperature suitability, it is possible to realize an increase in surface temperature of the floor heating panel. The floor heating priority mode is applied particularly when the room temperature is close to the set temperature and the floor temperature is not sufficiently raised, and is an operation mode in the case where priority is given to an increase in the floor temperature over the room temperature.
[0054]
As described above, in the present invention, since the bypass circuit for bypassing the sub-throttle device 22 via the two-way valve is provided, switching between the air conditioning / cooling priority operation and the floor heating / cooling priority operation is performed by opening and closing the two-way valve. Therefore, it is possible to perform an appropriate operation according to the load. The heat pump floor heating / cooling air conditioner of the present invention also performs indoor air volume control at the start of floor cooling / heating priority operation. When the floor cooling / heating priority command is received, the two-way valve 23 is closed and the rotational speed of the indoor fan motor 18 connected to the indoor fan 17 is decreased to reduce the indoor air volume.
[0055]
As described above, the present invention includes a pump that circulates a secondary side heat medium from a floor air conditioner heat exchanger to a floor air conditioner panel, and the secondary side heat medium releases the heat or cold to the floor air conditioner panel to warm the floor. Or, floor cooling is performed, and a floor cooling / heating unit can be connected to a conventional air conditioner refrigeration cycle by simply connecting a floor heat / cooling heat exchanger in series to an indoor heat exchanger, and it is simple and reliable. A high performance air conditioner can be obtained.
[0056]
As described above, the present invention is provided on the first bypass pipe as a flow path control means for bypassing the refrigerant inflow portion and the refrigerant outflow portion of the heat exchanger for floor cooling and heating, and the on-off valve for opening and closing the first bypass piping, or the indoor Since a check valve and on-off valve that block the flow to the heat exchanger are connected in series, operation with various combinations of conditions such as air conditioning and heating, dehumidification, and floor heating and cooling can be easily achieved with simple circuits and elements. It is done.
[0057]
As described above, the present invention relates to an air conditioning operation in which the refrigerant circulating in the refrigeration cycle flows from the indoor heat exchanger to the first bypass circuit, and the refrigerant flows from the indoor heat exchanger to the heat exchanger for floor heating / cooling. Since the switching to any one of the operation for exchanging heat with the secondary heat medium at the open / close valve is performed by the on-off valve that opens and closes the first bypass pipe, a reliable operation can be performed reliably.
[0058]
As described above, the present invention includes the second bypass pipe that returns the refrigerant circulated from the compressor to the floor cooling / heating heat exchanger and the indoor heat exchanger to the compressor by bypassing the heat source side heat exchanger, and the second bypass pipe. A second on-off valve that is provided above and opens and closes the second bypass pipe; and a sub-throttle device that is provided between the heat exchanger for floor cooling and heating and the indoor heat exchanger and that condenses and expands each heat exchanger; , So you can get comfortable air conditioning with less energy.
[0059]
As described above, the present invention is provided with the bypass circuit that bypasses through the two-way valve in parallel with the sub-throttle device provided between the indoor heat exchanger and the floor heating / cooling heat exchanger. Both heat exchangers can be fully utilized.
[0060]
As described above, since the heat exchanger for floor cooling and heating is a double-pipe heat exchanger, heat transfer is good, capacity change can be reduced even with flow rate change, and it is effective for rapid floor cooling and heating startup. .
[0061]
As described above, the present invention provides a water supply temperature sensor for detecting the temperature of the secondary heat medium sent from the floor cooling / heating heat exchanger to the floor cooling / heating panel, and the secondary returning from the floor cooling / heating panel to the floor cooling / heating heat exchanger. Since at least one of the return water temperature sensors for detecting the temperature of the side heat medium is provided, various combination operations can be performed with high accuracy.
[0062]
In the present invention, the load side heat exchanger is connected to the indoor heat exchanger and the floor cooling / heating heat exchanger in series, and both are used as a condenser to perform the combined operation of floor heating and air conditioning heating. The operating frequency is controlled by giving priority to the floor heating capacity over the air conditioning heating capacity, and the air conditioning heating capacity is controlled by intermittent operation or increase / decrease in the number of rotations of the indoor fan that blows air to the indoor heat exchanger, so that comfortable heating can be obtained. .
[0063]
In the present invention, the load-side heat exchanger is connected to the indoor heat exchanger and the floor cooling / heating heat exchanger in series, and both are used as an evaporator to perform the combined operation of the floor cooling and the air conditioning cooling. The operating frequency is controlled by giving priority to the floor cooling capacity over the air conditioning cooling capacity, and the air conditioning cooling capacity is controlled by intermittent operation or increase / decrease in the number of rotations of the indoor fan that blows air to the indoor heat exchanger. can get.
[0064]
In the present invention, the load-side heat exchanger is circulated by a pump when the indoor heat exchanger and the heat exchanger for floor cooling / heating are connected in series and both are used as an evaporator to perform combined operation of floor cooling and air conditioning cooling. Since at least one of the operation frequency of the compressor and the amount of water delivered by the pump is controlled so that the temperature of the secondary heat medium to be brought close to a preset temperature, avoiding overcooling and unstable operation it can.
[0065]
As described above, in the present invention, the load-side heat exchanger is connected to the indoor heat exchanger and the floor cooling / heating heat exchanger in series, and both are used as an evaporator to circulate with a pump when performing combined operation of floor cooling and air conditioning cooling. When the temperature of the secondary heat medium to be performed is higher than the preset temperature, the combined use of floor cooling and air conditioning cooling is continued, and when the temperature is lower than the preset temperature, only air conditioning cooling is operated. Can be avoided.
[0066]
As described above, in the present invention, the load-side heat exchanger is connected to the indoor heat exchanger and the floor cooling / heating heat exchanger in series, and both are used as an evaporator to circulate with a pump when performing combined operation of floor cooling and air conditioning cooling. Since at least one of the operating frequency of the compressor and the amount of pumped water is controlled so that the temperature of the secondary heat medium to be performed becomes higher than the calculated dew point temperature of the indoor air, dew condensation does not occur.
[0067]
As described above, the operation of the compressor is performed so that the surface temperature of the floor cooling / heating panel from which the secondary heat medium fed from the floor heating / cooling heat exchanger emits heat or cold becomes approximately 25 ° C to 35 ° C. Since at least one of the frequency and the amount of water delivered by the pump is controlled, stable air-conditioning that is friendly to humans is obtained.
[0068]
As described above, the present invention uses HFC refrigerant or natural refrigerant such as HC refrigerant or CO2 refrigerant as the refrigerant circulating in the refrigeration cycle and brine as the secondary heat medium, so that environmentally friendly air conditioning can be obtained.
[0069]
As described above, the present invention includes a refrigeration cycle in which a compressor, a floor heat exchanger for heating and cooling, a sub-throttle device, and an indoor heat exchanger are connected in order to circulate the refrigerant discharged from the compressor, and the refrigerant that circulates in the refrigeration cycle as a heat source. A second bypass pipe that bypasses the side heat exchanger and returns to the compressor, and a floor cooling and heating panel that circulates the secondary side heat medium of the heat exchanger for floor cooling and heating by a pump and releases the heat from the secondary side heat medium; Therefore, effective dehumidification can be performed comfortably because air-conditioning dehumidification is performed by the indoor heat exchanger while heating by the floor air-conditioning panel.
[0070]
As described above, when the combined operation of floor heating and air conditioning cooling is performed, the present invention operates the compressor so that the temperature of the secondary heat medium circulated by the pump and sent to the cooling and heating panel is constant, the pump discharge amount, and Since at least one of the openings of the sub-throttle device is controlled, comfortable air conditioning can be obtained easily and reliably.
[0071]
As described above, when performing the combined operation of floor heating and air conditioning cooling, when the temperature of the secondary side heat medium that is circulated by the pump and returns to the heat exchanger for cooling and heating is smaller than a set temperature by a predetermined value or more, Since the combined operation is stopped, unnecessary operation can be avoided.
[0072]
As described above, the present invention includes the step of circulating the refrigerant through the refrigeration cycle in which the compressor, the floor air-conditioning heat exchanger, the sub-throttle device, and the indoor heat exchanger are connected in order, and the secondary of the floor air-conditioning heat exchanger. Circulating the side heat medium to the floor cooling / heating panel by a pump, and releasing the heat from the secondary side heat medium to the floor cooling / heating panel. So you can dehumidify without feeling cold.
[0073]
As described above, the present invention, when heating and dehumidifying with an indoor heat exchanger while heating with a floor cooling and heating panel, supplies water to the cooling and heating panel of the secondary refrigerant circulating through the pump and the secondary side circulating through the pump. Calculating the floor heating capacity from the return water temperature returned to the heat exchanger for cooling and heating the refrigerant body and the amount of water delivered from the pump, and from the calculated floor heating capacity and the temperature difference between the air before and after the indoor heat exchanger. Since at least one of the operation frequency of the compressor and the opening degree of the sub-throttle device is controlled so that the capacity ratio with the obtained cooling capacity is within a certain range, comfortable air conditioning with less energy can be obtained.
[0074]
As described above, the present invention includes a step of circulating a refrigerant through a refrigeration cycle in which a compressor, a floor-cooling / heating heat exchanger, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger are connected in order, and a predetermined refrigeration cycle. A step of circulating the secondary heat medium of the heat exchanger for floor cooling and heating to the floor cooling and heating panel by a pump after the time operation, and releasing the heat from the secondary heat medium to the floor cooling and heating panel; Until the temperature of the heat medium reaches a predetermined temperature or until a predetermined time elapses after the pump is started, the operation of reducing the flow rate of the secondary heat medium from the floor heating operation is performed, so that comfortable air conditioning can be performed with stable control.
[0075]
【The invention's effect】
As described above, the heat pump type air conditioner of the present invention includes a refrigeration cycle in which a compressor, a heat source side heat exchanger, a throttling device, and a load side heat exchanger are connected in order and the refrigerant discharged from the compressor is returned to the compressor, An air conditioning indoor heat exchanger and a floor cooling / heating heat exchanger forming a side heat exchanger connected in series, and a first bypass pipe that bypasses the refrigerant inflow portion and the refrigerant outflow portion of the floor cooling / heating heat exchanger; And a flow path control means for allowing the refrigerant to flow through the first bypass pipe during the cooling operation circuit and not allowing the refrigerant to flow during the heating operation circuit. By combining a refrigerant circuit of a mass-produced air conditioner with a heat exchanger for floor cooling / heating, it is possible to configure a heat pump floor cooling / heating air conditioner. It is possible to provide a pump-type air conditioner.
[0076]
The heat pump type air conditioner of the present invention includes a refrigerating cycle in which a compressor, a floor heat exchanger for heating and cooling, a sub-throttle device, and an indoor heat exchanger are connected in order to circulate the refrigerant discharged from the compressor, and the refrigerating cycle is circulated The secondary side heat medium of the second bypass pipe that bypasses the heat source side heat exchanger and returns the refrigerant to the compressor to the compressor and the secondary side heat medium of the heat exchanger for floor cooling and heating is circulated by the pump, and the secondary heat medium releases the heat. And the sub-throttle device is opened and closed so that the floor-cooling / heating heat exchanger is a condenser and the indoor heat exchanger is an evaporator, so that a comfortable and lean operation is possible.
[0077]
The operation method of the heat pump type air conditioner of the present invention is such that the refrigerant is circulated through a refrigeration cycle in which a compressor, a heat source side heat exchanger, an expansion device, an indoor heat exchanger, a sub expansion device, and a floor heating / cooling heat exchanger are connected in order. Performing the cooling operation, and circulating the secondary heat medium of the heat exchanger for floor cooling / heating to the floor cooling / heating panel by a pump, and releasing the heat or cold from the secondary heat medium to the floor cooling / heating panel; And a step of detecting the temperature of the secondary heat medium by operating the pump before operating the refrigeration cycle. Therefore, safe and highly reliable air conditioning operation is possible.
[0078]
The operation method of the heat pump type air conditioner according to the present invention includes a step of circulating the refrigerant through a refrigeration cycle in which a compressor, a floor air-conditioning heat exchanger, a sub-throttle device, and an indoor heat exchanger are connected in order, Circulating the secondary side heat medium of the heat exchanger for cooling and heating to the floor cooling and heating panel by a pump, and releasing the heat from the secondary side heating medium to the floor cooling and heating panel, while heating on the floor cooling and heating panel Since the cooling and dehumidification is performed by the indoor heat exchanger, the dehumidifying operation can be performed comfortably and without waste.
[0079]
The operation method of the heat pump type air conditioner according to the present invention is such that the refrigerant is circulated through a refrigeration cycle in which a compressor, a floor heating / cooling heat exchanger, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger are sequentially connected. And a step of circulating the secondary heat medium of the heat exchanger for floor cooling / heating to the floor cooling / heating panel by a pump after the refrigeration cycle is operated for a predetermined time, and releasing the heat from the secondary heat medium to the floor cooling / heating panel. So that the flow rate of the secondary heat medium is reduced from that during floor heating operation until the temperature of the secondary heat medium reaches a predetermined temperature or until a predetermined time elapses after the pump is started. Comfortable air conditioning can be obtained by operation.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a heat pump air conditioner according to an embodiment of the present invention.
FIG. 2 is a block diagram showing another heat pump type air conditioner according to the embodiment of the present invention.
FIG. 3 is a block diagram showing the operation of the heat pump air conditioner according to the embodiment of the present invention.
FIG. 4 is a block diagram showing another heat pump type air conditioner according to the embodiment of the present invention.
FIG. 5 is a block diagram showing another heat pump air conditioner according to the embodiment of the present invention.
FIG. 6 is a flowchart showing a control operation of the heat pump type air conditioner according to the embodiment of the present invention.
FIG. 7 is a block diagram showing another heat pump type air conditioner according to the embodiment of the present invention.
FIG. 8 is a flowchart showing a control operation of the heat pump type air conditioner according to the embodiment of the present invention.
FIG. 9 is a block diagram showing another heat pump type air conditioner according to an embodiment of the present invention.
FIG. 10 is a block diagram showing another heat pump air conditioner according to the embodiment of the present invention.
FIG. 11 is a block diagram showing another heat pump floor heating air conditioner according to the embodiment of the present invention.
FIG. 12 is a flowchart showing a control operation of the heat pump type air conditioner according to the embodiment of the present invention.
FIG. 13 is a flowchart showing a control operation of the heat pump air conditioner according to the embodiment of the present invention.
FIG. 14 is a diagram illustrating the structure of a floor cooling / heating heat exchanger according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four-way valve, 3 Indoor heat exchanger, 4 Heat exchanger for floor heating / cooling, 5 Expansion device, 6 Outdoor heat exchanger, 7 Floor cooling / heating panel, 8 Pump, 9 Check valve, 10 First bypass piping 11 Open / close valve, 12 Buffer tank, 13 Water supply temperature sensor, 14 Return water temperature sensor, 15 Control circuit, 16 Indoor intake air temperature sensor, 17 Indoor fan, 18 Indoor fan motor, 19 Indoor intake air humidity sensor, 20 Second Bypass piping, 21 On-off valve, 22 Sub-throttle device, 23 Two-way valve, 24 Refrigerant inlet pipe (during heating circuit), 25 Refrigerant outlet pipe (during heating circuit), 26 Brine inlet pipe, 27 Brine outlet pipe