【0001】
【発明の属する技術分野】
本発明は、LEDランプに関するものである。
【0002】
【従来の技術】
この種の従来例として、特開2001−243809号公報に示されるものがある。このものは、一端に口金が設けられ、他端の開口部に向けてラッパ状に拡がるラッパ状金属放熱部と、このラッパ状金属放熱部の開口部に取り付けられた透光性カバーと、前記ラッパ状金属放熱部と前記透光性カバーにより形成された略球体の内部に設けられた金属基板と、この金属基板の前記透光性カバーに対向する外面に実装されたLED素子とを備えたものである。この構成により、LED素子に発生した熱は、略球体内での対流などにより放熱されるほか、金属基板から高熱伝導部材を介してラッパ状金属放熱部に流れ、ラッパ状金属放熱部から外部の空気に放熱される。
【0003】
【特許文献1】
特開2001−243809号公報
【0004】
【発明が解決しようとする課題】
前記従来例によれば、簡単な冷却構造により、LED素子の発熱を抑制して発光効率を高くすることができる。
【0005】
しかしながら、LED素子を高密度実装する場合などにおいては、LED素子の寿命の確保及び発光効率の向上の点から、さらに放熱効果を高めLED素子の温度を抑制することが望ましい。
【0006】
本発明は、かかる事由に鑑みてなしたものであり、その目的とするところは、LED素子の温度上昇を抑制することのできるLEDランプを提供することである。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、LED素子と、LED素子が実装される実装基板を支持する支持部材と、実装基板を収納するバルブと、を備えるLEDランプにおいて、バルブ壁に対向する一対の孔を設け、一対の孔にLED素子の熱を放熱させる放熱機能を有する支持部材を貫通させて設けたことを特徴とする。
【0008】
請求項2に係る発明は、請求項1記載の発明において、前記LED素子は、支持部材の軸周りに複数実装されるものであることを特徴とする。
【0009】
請求項3に係る発明は、請求項1又は請求項2記載の発明において、前記支持部材を筒形状にし、支持部材内に空気の流れを発生させることにより、LED素子の熱を放熱させるようにしたことを特徴とする。
【0010】
請求項4に係る発明は、請求項1又は請求項2記載の発明において、前記支持部材はヒートパイプからなり、ヒートパイプで伝熱させることにより、LED素子の熱を放熱させるようにしたことを特徴とする。
【0011】
請求項5に係る発明は、請求項3又は請求項4記載の発明において、前記支持部材は、バルブから突出した部分に放熱フィンを有するものであることを特徴とする。
【0012】
請求項6に係る発明は、請求項1乃至請求項5記載の発明において、周囲に照明用の反射板を備え、前記支持部材と反射板を熱的に接続したことを特徴とする。
【0013】
請求項7に係る発明は、複数のLED素子と、複数のLED素子が実装される実装基板を支持する支持部材と、実装基板を収納するバルブと、を備えるLEDランプにおいて、ヒートパイプを実装基板に沿わすとともに、ヒートパイプをバルブから突出させることにより、LED素子が発生する熱をヒートパイプを介して伝熱させ、外部に放熱させるようにしたことを特徴とする
【0014】
【発明の実施の形態】
(第1の実施形態)
第1の実施形態を図1に基づいて説明する。図1(a)は、本実施形態のLEDランプ100の斜視図である。図1(b)は、本実施形態のLEDランプ100の断面図である。
【0015】
本実施形態のLEDランプ100は、LED素子1と、LED素子1が実装される実装基板7を支持する支持部材2と、実装基板7を収納するバルブ8とを有して構成されている。
【0016】
LED素子1は、チップ型のもので、例えば青色LEDと蛍光体用いた白色LEDである。支持部材2は、たとえばアルミ等の材料で略円筒形状に形成されてなるもので、その基端部2aが、口金3に接続されている。口金3は、一般の電球の口金に用いられるもので、鉄等の材料により、ネジ溝が形成されてなるものである。そして、支持部材2の口金3近傍には、電源部4が設けられている。電源部4は、口金3に印加される商用電源からの交流電圧を、直流電圧に変換してLED素子1に印加するもので、支持部材2の外側に向かって広がる傾斜面を有する電源基板ボックス4a内に、支持部材2の軸に対して直交するように設置される電源基板4bを収納している。
【0017】
支持部材2の電源部4近傍には、支持部材2の先端部2bから流入した空気が流出する複数の放熱孔2cが設けられている。そして、放熱孔2cの口金3側近傍には、先端部2bから支持部材2内に流入した空気が、放熱孔2cから、スムーズに流出するように、先端部2bに向かって突出した凸部を有するガイド2dが設けられている。
【0018】
支持部材2の放熱孔2cと先端部2b間には、熱伝導絶縁シート(図示はしない)及びホルダー6を介してLED素子1が複数実装された実装基板7が配設されている。熱伝導絶縁シートは、例えばシリコン系のゴムに、鉄又はセラミック等の高熱伝導率のフィラーを混ぜたものである。なお、熱伝導絶縁シートに変えて、高熱伝導率のグリース又は接着剤を用いてもよい。ホルダー6は、LED素子1が複数実装された実装基板7を保持するもので、高熱伝導率の材料により、支持部材2が貫通する孔を有して、略六角柱形状に形成されるものである。そして、ホルダー6の支持部材2の軸に平行に位置する6つの各長方形面には、略長方形の実装基板7が配設されている。実装基板7は、略長方形であり、複数のLED素子1が各実装基板7につき5個、支持部材2の軸に沿って実装されている。また、電源部4から各LED素子1に電力を供給するため、実装基板7と口金3を接続する配線(図示はしない)が、支持部材2内に設けられている。
【0019】
バルブ8は、実装基板7を収納するもので、透光性の樹脂材料によりで略球形に形成され、バルブ壁に対向する一対の孔8aを有し、一対の孔8aには、支持部材2が貫通している。また、支持部材2の先端部2bには、支持部材2内への埃等の浸入を防止するため、フィルタ5を設けている。
【0020】
次に本実施形態のLEDランプ100の放熱作用について説明する。LEDランプ100が、支持部材2の先端部2bを垂下させて照明器具のソケット(図示はしない)に装着されることにより、商用電源に電気的に接続されると、電源部4は、商用電源から受けた交流電圧を直流電圧に変換して、各LED素子1に電力を供給し、これにより、各LED素子1は発光する。ここで、LED素子1において光に変換されなかった電力は、熱損失となる。そして、この熱は、実装基板7及びホルダー6を介して支持部材2に流れる。ここで、支持部材2内に存在する空気は、支持部材2に流れた熱により、暖められることにより浮力が生じ、口金3方向に向かう空気の流れが発生する。そしてこの空気の流れは、ガイド2dに突き当たり、ガイド2dの凸部によって、支持部材2の軸方向に直交するように流れの方向を変える。そして、空気の流れは、放熱孔2cを通って、LEDランプ100の外部に放出される。また、支持部材2の先端部2bには、外部から新たな空気が流入する。この空気の流れにより、支持部材2内部の熱は、放熱孔2cから放出される。これにより、LED素子1が発生する熱は、LEDランプ100の外部に放出されることになり、LED素子1がバルブ8に覆われていても、LED素子1の温度上昇を抑制することができる。
【0021】
なお、本実施形態においては、バルブ8に樹脂材料を用いたがガラス等の透光性の材料であればよい。
(第2の実施形態)
第2の実施形態を図2に基づいて説明する。図2(a)は、本実施形態のLEDランプ100の斜視図である。図2(b)は、本実施形態のLEDランプ100の断面図である。
【0022】
本実施形態は、支持部材2の表面に放熱フィン10を設けた点が第1の実施形態と異なり、他は同じである。すなわち、支持部材2に設けた放熱孔2cとLED素子1が実装されたのホルダー6の間に、アルミ等の金属からなり、支持部材2の表面から放射状に広がる複数枚の羽を有する放熱フィン10を設けているのである。この羽の形状は略四辺形であり、その面は支持部材2の軸に平行に位置するように配設されている。
【0023】
この放熱フィン10を設けることにより、第1の実施形態で述べた熱の流れに加え、LED素子1が発生した熱は、実装基板7及びホルダー6を介して支持部材2に流れ、さらに放熱フィン10にまで熱が流れる。そして、放熱フィン10の表面からLEDランプ100の外部に熱が放熱されるのである。
【0024】
これにより、第1の実施形態で述べた放熱孔2cからの空気の放出による放熱のみの場合よりも、さらに放熱量を増加させることができることにより、LED素子1の温度上昇を抑制することが可能となる。
【0025】
なお、本実施形態においては、放熱孔2cとホルダー6の間に、放熱フィン10を設けたが、放熱孔2cと電源部4との間に放熱フィン10を設けるようにしてもよい。
(第3の実施形態)
第3の実施形態を図3に基づいて説明する。図3は、本実施形態のLEDランプ100の断面図である。
【0026】
本実施形態は、支持部材としてヒートパイプ30を用いた点が第2の実施形態と異なり、他は同じである。ヒートパイプ30は、両端を封じたパイプに、冷却液が封入されてなるものである。ここで、LEDランプ100は、口金3を下方向を向けて設置されている。
【0027】
第1の実施形態と同様に、LED素子1が発生した熱は、ホルダー6を介してヒートパイプ30に流れる。ホルダー6近傍に存在する冷却液は、LED素子1が発生する熱を受けて蒸発し、その蒸気はヒートパイプ30の先端部30bに移動する。先端部30bは、外部の空気により冷却された状態にあるため、先端部30bに移動した蒸気は、その熱を奪われて凝縮され冷却液に戻り、ホルダー6近傍に移動する。このサイクルを繰り返すことにより、LED素子1が発生する熱は、外部に放熱され、これによりLED素子1の温度上昇は抑制される。
(第4の実施形態)
第4の実施形態を図4に基づいて説明する。図4は、本実施形態のLEDランプ100及びその周囲の断面図である。
【0028】
本実施形態は、LEDランプ100の周囲に照明用の反射板40を備え、支持部材2と反射板40をばね状部材41により熱的に接続したものである。
【0029】
反射板40は、アルミ等の材料を用いて、略回転楕円形に形成されるもので、その内表面は、LED素子1から放射される光が反射するように、鏡面加工が施されている。また、反射板40の中心軸上には、LEDランプ100が装着されるソケット9が設けられている。
【0030】
ばね状部材41は、支持部材2と反射板40の間で、口金3方向に湾曲して支持部材2と反射板40を熱的に接続するものである。また、反射板40の開口部40a近傍には、熱伝導絶縁シートからなるガイド42が設けられている。
【0031】
この構成において、LED素子1が発生した熱は、実装基板7及びホルダー6を介して支持部材2に流れる。支持部材2に流れた熱は、ばね状部材41及びガイド42を介して反射板40に流れ、反射板40の表面から外部に放熱される。
【0032】
以上のようにばね状部材41を介して、LED素子1からの熱が反射板40に伝導して、反射板40で放出されるため、LED素子1の温度上昇を抑制することができるのである。
(第5の実施形態)
第5の実施形態を図5に基づいて説明する。図5(a)は、本実施形態の全体斜視図、図5(b)は、本実施形態の断面図である。
【0033】
本実施形態のLEDランプ100は、複数のLED素子1と、複数のLED素子1が実装される実装基板7と、実装基板7を収納するバルブ8と、を有し、LEDランプ100を支持するガイド51及びベース52を備えるものである。
【0034】
具体的には、略長方形の実装基板7に複数のLED素子1が実装され、実装基板7と略同一サイズのホルダー6に密着して設置されている。ホルダー6は、熱伝導率の大きい金属、例えばアルミ、銅等の金属からなるものである。また、ホルダー6を実装基板7とで挟むように、ヒートパイプ30が設けられている。更に、LED素子1の前面には、レンズ53が装着されており、LED素子1及びホルダー6の周囲には、レンズ53を一部に含んだバルブ8により、密閉構造を形成している。また、ヒートパイプ30は、バルブ8から突出しており、ヒートパイプ30のバルブ8から突出した部分の表面には、放熱フィン10が設けられている。さらに放熱フィン10の周囲には放熱孔56が複数設けられている。放熱フィン10の端部は、LEDランプ100を支持する樹脂からなる中空のガイド51に結合され、LEDランプ100及びガイド51を保持するベース52が、ガイド51に接続されている。
【0035】
以上の構成において、LED素子1が発生した熱は、ホルダー6を介してヒートパイプ30に流れる。ホルダー6近傍に存在する冷却液は、LED素子1が発生する熱を受けて蒸発し、その蒸気はヒートパイプ30の先端部30bに移動する。先端部30bは、外部の空気により冷却された状態にあるため、先端部30bに移動した蒸気は、その熱を奪われて凝縮され冷却液に戻り、ホルダー6近傍に移動する。このサイクルを繰り返すことにより、LED素子1が発生する熱は、外部に放熱されるのである。
(第6の実施形態)
第6の実施形態を図6に基づいて説明する。図6(a)は、本実施形態のLEDランプの斜視図、図6(b)は、本実施形態の断面図である。
【0036】
本実施形態は、LEDランプ100とガイド51とを接続するコネクタ54を設け、放熱フィン10を、ガイド51の内部に設けたものである。さらに、コネクタ54の端部には、LEDランプ100を回転させる回転機構55が設けられている。
【0037】
なお、放熱作用については、第5の実施形態と同じであるが、ガイド51内部に放熱フィン10を内在させたことにより、LEDランプ100がコンパクトになるという効果がある。
【0038】
なお、本実施形態においては、放熱フィン10を、ガイド51の内部に設けたが、図7に示すように、ガイド51内部に放熱フィン10を設け、さらにガイド51の両端部に放熱孔56を設けてもよい。この場合には、放熱フィン10が発生する熱により、放熱フィン10近傍の空気に浮力が生じ、この空気が放熱孔56から外部に流出することにより、放熱効果を高めることが可能となる。
【0039】
【発明の効果】
請求項1に係る発明は、LED素子と、LED素子が実装される実装基板を支持する支持部材と、実装基板を収納するバルブと、を備えるLEDランプにおいて、バルブ壁に対向する一対の孔を設け、一対の孔にLED素子の熱を放熱させる放熱機能を有する支持部材を貫通させて設けるようにしたので、熱が支持部材を介して流れて放熱されることにより、LED素子の温度を抑制することができる。
【0040】
請求項2に係る発明は、請求項1記載の発明において、前記LED素子は、支持部材の軸周りに複数実装されるものであることを特徴とする。
【0041】
請求項3に係る発明は、請求項1又は請求項2記載の発明において、前記支持部材を筒形状にし、支持部材内に空気の流れを発生させることにより、LED素子の熱を放熱させるようにしたので、LED素子が、発生する熱により空気の流れが発生し、支持部材の一端部から空気が流入し、他端部から空気が流出することにより、LED素子の温度を抑制することができる。
【0042】
請求項4に係る発明は、請求項1又は請求項2記載の発明において、前記支持部材はヒートパイプからなり、ヒートパイプで伝熱させることにより、LED素子の熱を放熱させるようにしたので、ヒートパイプ内の冷却液が、ヒートパイプ端部で冷却されることにより、LED素子の温度を抑制することができる。
【0043】
請求項5に係る発明は、請求項3又は請求項4記載の発明において、前記支持部材は、バルブから突出した部分に放熱フィンを有するものであるようにしたので、放熱フィンからの放熱量が増加するため、請求項1に比して、更に冷却効果を高めることができる。
【0044】
請求項6に係る発明は、請求項1乃至請求項5記載の発明において、周囲に照明用の反射板を備え、前記支持部材と反射板を熱的に接続したので、接続部材を介して、LED素子からの熱が反射板に伝導して、反射板で放出されるため、一層冷却効果を高めることができる。
【0045】
請求項7に係る発明は、複数のLED素子と、複数のLED素子が実装される実装基板を支持する支持部材と、実装基板を収納するバルブと、を備えるLEDランプにおいて、ヒートパイプを実装基板に沿わすとともに、ヒートパイプをバルブから突出させることにより、LED素子が発生する熱をヒートパイプを介して伝熱させ、外部に放熱させるようにしたので、LEDランプをコンパクトにすることができる。
【図面の簡単な説明】
【図1】(a)は、第1の実施形態のLEDランプ100の斜視図、(b)は、同LEDランプ100の断面図である。
【図2】(a)は、第2の実施形態のLEDランプ100の斜視図、(b)は、同LEDランプ100の断面図である。
【図3】第3の実施形態のLEDランプ100の断面図である。
【図4】第4の実施形態のLEDランプ100及びその周囲の断面図である。
【図5】(a)は、第5の実施形態の斜視図、(b)は、同断面図である。
【図6】(a)は、第6の実施形態の斜視図、(b)は、同断面図である。
【図7】(a)は、第6の実施形態の別例の斜視図、(b)は、同別例の断面図である。
【符号の説明】
1 LED素子
2 支持部材
2a 基端部
2b 先端部
2c 放熱孔
2d ガイド
3 口金
4 電源部
6 ホルダー
7 実装基板
8 バルブ
8a 孔[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an LED lamp.
[0002]
[Prior art]
A conventional example of this type is disclosed in Japanese Patent Application Laid-Open No. 2001-243809. This is provided with a base at one end, a trumpet-shaped metal heat radiating portion extending in a trumpet shape toward an opening at the other end, a light-transmitting cover attached to the opening of the trumpet-shaped metal heat radiating portion, A metal substrate provided inside a substantially spherical body formed by the trumpet-shaped metal heat radiating portion and the translucent cover; and an LED element mounted on an outer surface of the metal substrate facing the translucent cover. Things. With this configuration, the heat generated in the LED element is radiated by convection or the like in the substantially spherical body, flows from the metal substrate to the flared metal radiating portion via the high thermal conductive member, and is externally radiated from the flared metal radiating portion. Dissipated by air.
[0003]
[Patent Document 1]
JP 2001-243809 A
[Problems to be solved by the invention]
According to the above conventional example, with a simple cooling structure, it is possible to suppress the heat generation of the LED element and increase the luminous efficiency.
[0005]
However, when the LED elements are mounted at a high density, it is desirable to further increase the heat radiation effect and suppress the temperature of the LED elements from the viewpoint of securing the life of the LED elements and improving the luminous efficiency.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an LED lamp that can suppress a temperature rise of an LED element.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is an LED lamp including an LED element, a support member that supports a mounting board on which the LED element is mounted, and a bulb that houses the mounting board, wherein a pair of holes facing the bulb wall is formed. And a support member having a heat radiating function for radiating heat of the LED element penetrates the pair of holes.
[0008]
According to a second aspect of the present invention, in the first aspect, a plurality of the LED elements are mounted around an axis of a support member.
[0009]
According to a third aspect of the present invention, in the first or the second aspect of the present invention, the support member is formed in a cylindrical shape, and a flow of air is generated in the support member so that heat of the LED element is radiated. It is characterized by having done.
[0010]
According to a fourth aspect of the present invention, in the first or second aspect of the invention, the support member is formed of a heat pipe, and the heat of the LED element is radiated by conducting heat through the heat pipe. Features.
[0011]
The invention according to claim 5 is the invention according to claim 3 or 4, wherein the support member has a radiation fin in a portion protruding from the valve.
[0012]
According to a sixth aspect of the present invention, in the first to fifth aspects of the present invention, a reflector for illumination is provided around the periphery, and the support member and the reflector are thermally connected.
[0013]
The invention according to claim 7 is an LED lamp including a plurality of LED elements, a support member that supports a mounting board on which the plurality of LED elements are mounted, and a bulb that stores the mounting board, wherein the heat pipe is mounted on the mounting board. The heat generated by the LED element is transmitted through the heat pipe and radiated to the outside by projecting the heat pipe from the bulb.
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
A first embodiment will be described with reference to FIG. FIG. 1A is a perspective view of the LED lamp 100 of the present embodiment. FIG. 1B is a cross-sectional view of the LED lamp 100 of the present embodiment.
[0015]
The LED lamp 100 according to the present embodiment includes an LED element 1, a support member 2 that supports a mounting substrate 7 on which the LED element 1 is mounted, and a bulb 8 that houses the mounting substrate 7.
[0016]
The LED element 1 is of a chip type, for example, a white LED using a blue LED and a phosphor. The support member 2 is made of a material such as aluminum and has a substantially cylindrical shape, and has a base end 2 a connected to the base 3. The base 3 is used for a base of a general electric bulb, and has a thread groove formed of a material such as iron. A power supply unit 4 is provided near the base 3 of the support member 2. The power supply unit 4 converts an AC voltage from a commercial power supply applied to the base 3 into a DC voltage and applies the DC voltage to the LED element 1. The power supply board box has an inclined surface extending outward from the support member 2. A power supply board 4b installed to be orthogonal to the axis of the support member 2 is housed in 4a.
[0017]
In the vicinity of the power supply unit 4 of the support member 2, a plurality of heat radiation holes 2c through which the air flowing in from the tip 2b of the support member 2 flows out are provided. A protrusion protruding toward the distal end portion 2b is provided near the base 3 of the heat radiation hole 2c so that the air flowing into the support member 2 from the distal end portion 2b flows out smoothly from the heat radiation hole 2c. Guide 2d is provided.
[0018]
A mounting board 7 on which a plurality of LED elements 1 are mounted is disposed between the heat radiation hole 2 c and the tip 2 b of the support member 2 via a heat conductive insulating sheet (not shown) and a holder 6. The heat conductive insulating sheet is, for example, a mixture of a silicon-based rubber and a filler having a high thermal conductivity such as iron or ceramic. Note that grease or an adhesive having a high thermal conductivity may be used instead of the heat conductive insulating sheet. The holder 6 holds a mounting substrate 7 on which a plurality of LED elements 1 are mounted, and is formed of a material having high thermal conductivity, having a hole through which the support member 2 penetrates, and formed in a substantially hexagonal prism shape. is there. A substantially rectangular mounting board 7 is disposed on each of the six rectangular surfaces located parallel to the axis of the support member 2 of the holder 6. The mounting substrate 7 has a substantially rectangular shape, and a plurality of LED elements 1 are mounted on the mounting member 7 along the axis of the supporting member 2 for each mounting substrate 7. In order to supply power from the power supply unit 4 to each LED element 1, a wiring (not shown) for connecting the mounting board 7 and the base 3 is provided in the support member 2.
[0019]
The bulb 8 accommodates the mounting substrate 7 and is formed in a substantially spherical shape by a translucent resin material, has a pair of holes 8a facing the valve wall, and has a pair of holes 8a in the pair of holes 8a. Is penetrating. Further, a filter 5 is provided at the tip 2 b of the support member 2 in order to prevent intrusion of dust and the like into the support member 2.
[0020]
Next, the heat radiation effect of the LED lamp 100 of the present embodiment will be described. When the LED lamp 100 is attached to a socket (not shown) of the lighting fixture with the tip 2b of the support member 2 hanging down, and is electrically connected to a commercial power supply, the power supply unit 4 Is converted into a DC voltage to supply power to each LED element 1, whereby each LED element 1 emits light. Here, the power not converted into light in the LED element 1 becomes a heat loss. Then, this heat flows to the support member 2 via the mounting board 7 and the holder 6. Here, the air present in the support member 2 is heated by the heat flowing through the support member 2 to generate buoyancy by being heated, thereby generating a flow of air toward the base 3. Then, the flow of the air hits the guide 2d, and the direction of the flow is changed by the convex portion of the guide 2d so as to be orthogonal to the axial direction of the support member 2. Then, the flow of air is emitted to the outside of the LED lamp 100 through the heat radiation holes 2c. Further, new air flows into the distal end portion 2b of the support member 2 from outside. Due to this flow of air, the heat inside the support member 2 is released from the heat radiation holes 2c. As a result, the heat generated by the LED element 1 is released to the outside of the LED lamp 100, and even if the LED element 1 is covered by the bulb 8, the temperature rise of the LED element 1 can be suppressed. .
[0021]
In the present embodiment, a resin material is used for the bulb 8, but a light-transmitting material such as glass may be used.
(Second embodiment)
A second embodiment will be described with reference to FIG. FIG. 2A is a perspective view of the LED lamp 100 of the present embodiment. FIG. 2B is a cross-sectional view of the LED lamp 100 of the present embodiment.
[0022]
The present embodiment is different from the first embodiment in that a radiation fin 10 is provided on the surface of the support member 2, and the other is the same. That is, a radiating fin made of metal such as aluminum and having a plurality of wings radiating from the surface of the supporting member 2 between the radiating hole 2c provided in the supporting member 2 and the holder 6 on which the LED element 1 is mounted. 10 is provided. The shape of the wing is substantially a quadrilateral, and its surface is disposed so as to be positioned parallel to the axis of the support member 2.
[0023]
By providing the heat radiation fins 10, in addition to the heat flow described in the first embodiment, the heat generated by the LED element 1 flows to the support member 2 via the mounting board 7 and the holder 6, and furthermore, the heat radiation fins Heat flows up to 10. Then, heat is radiated from the surface of the radiation fin 10 to the outside of the LED lamp 100.
[0024]
This makes it possible to further increase the amount of heat radiation compared to the case of only heat radiation due to the release of air from the heat radiation holes 2c described in the first embodiment, thereby suppressing a temperature rise of the LED element 1. It becomes.
[0025]
In the present embodiment, the heat radiation fins 10 are provided between the heat radiation holes 2c and the holder 6, but the heat radiation fins 10 may be provided between the heat radiation holes 2c and the power supply unit 4.
(Third embodiment)
A third embodiment will be described with reference to FIG. FIG. 3 is a sectional view of the LED lamp 100 of the present embodiment.
[0026]
This embodiment is different from the second embodiment in that a heat pipe 30 is used as a support member, and the other is the same. The heat pipe 30 is formed by sealing a cooling liquid in a pipe whose both ends are sealed. Here, the LED lamp 100 is installed with the base 3 facing downward.
[0027]
As in the first embodiment, the heat generated by the LED element 1 flows to the heat pipe 30 via the holder 6. The cooling liquid present in the vicinity of the holder 6 receives the heat generated by the LED element 1 and evaporates, and the vapor moves to the tip 30 b of the heat pipe 30. Since the distal end portion 30b is in a state of being cooled by external air, the steam that has moved to the distal end portion 30b is deprived of its heat, condensed, returned to the coolant, and moves to the vicinity of the holder 6. By repeating this cycle, the heat generated by the LED element 1 is radiated to the outside, whereby the temperature rise of the LED element 1 is suppressed.
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. FIG. 4 is a cross-sectional view of the LED lamp 100 of the present embodiment and the periphery thereof.
[0028]
In this embodiment, a reflector 40 for illumination is provided around the LED lamp 100, and the support member 2 and the reflector 40 are thermally connected by a spring-like member 41.
[0029]
The reflection plate 40 is formed in a substantially spheroidal shape using a material such as aluminum, and its inner surface is mirror-finished so that light emitted from the LED element 1 is reflected. . The socket 9 on which the LED lamp 100 is mounted is provided on the central axis of the reflection plate 40.
[0030]
The spring-like member 41 curves between the support member 2 and the reflector 40 in the direction of the base 3 to thermally connect the support member 2 and the reflector 40. Further, a guide 42 made of a heat conductive insulating sheet is provided near the opening 40 a of the reflection plate 40.
[0031]
In this configuration, the heat generated by the LED element 1 flows to the support member 2 via the mounting board 7 and the holder 6. The heat flowing to the support member 2 flows to the reflector 40 via the spring-like member 41 and the guide 42, and is radiated to the outside from the surface of the reflector 40.
[0032]
As described above, the heat from the LED element 1 is transmitted to the reflection plate 40 via the spring-like member 41 and is released from the reflection plate 40, so that the temperature rise of the LED element 1 can be suppressed. .
(Fifth embodiment)
A fifth embodiment will be described with reference to FIG. FIG. 5A is an overall perspective view of the present embodiment, and FIG. 5B is a cross-sectional view of the present embodiment.
[0033]
The LED lamp 100 of the present embodiment includes a plurality of LED elements 1, a mounting board 7 on which the plurality of LED elements 1 are mounted, and a bulb 8 that stores the mounting board 7, and supports the LED lamp 100. A guide 51 and a base 52 are provided.
[0034]
Specifically, a plurality of LED elements 1 are mounted on a substantially rectangular mounting substrate 7, and are mounted in close contact with a holder 6 having substantially the same size as the mounting substrate 7. The holder 6 is made of a metal having a high thermal conductivity, for example, a metal such as aluminum and copper. A heat pipe 30 is provided so as to sandwich the holder 6 with the mounting board 7. Further, a lens 53 is mounted on the front surface of the LED element 1, and a hermetically sealed structure is formed around the LED element 1 and the holder 6 by a bulb 8 partially including the lens 53. Further, the heat pipe 30 protrudes from the valve 8, and a radiation fin 10 is provided on a surface of a portion of the heat pipe 30 protruding from the valve 8. Further, a plurality of heat radiation holes 56 are provided around the heat radiation fins 10. An end of the radiation fin 10 is coupled to a hollow guide 51 made of a resin that supports the LED lamp 100, and a base 52 that holds the LED lamp 100 and the guide 51 is connected to the guide 51.
[0035]
In the above configuration, the heat generated by the LED element 1 flows to the heat pipe 30 via the holder 6. The cooling liquid present in the vicinity of the holder 6 receives the heat generated by the LED element 1 and evaporates, and the vapor moves to the tip 30 b of the heat pipe 30. Since the distal end portion 30b is in a state of being cooled by external air, the steam that has moved to the distal end portion 30b is deprived of its heat, condensed, returned to the coolant, and moves to the vicinity of the holder 6. By repeating this cycle, the heat generated by the LED element 1 is radiated to the outside.
(Sixth embodiment)
A sixth embodiment will be described with reference to FIG. FIG. 6A is a perspective view of the LED lamp of the present embodiment, and FIG. 6B is a cross-sectional view of the present embodiment.
[0036]
In this embodiment, a connector 54 for connecting the LED lamp 100 and the guide 51 is provided, and the radiation fins 10 are provided inside the guide 51. Further, a rotating mechanism 55 for rotating the LED lamp 100 is provided at an end of the connector 54.
[0037]
Note that the heat radiation action is the same as that of the fifth embodiment, but the effect that the LED lamp 100 is made compact by disposing the heat radiation fins 10 inside the guide 51 is provided.
[0038]
In the present embodiment, the heat radiation fins 10 are provided inside the guide 51. However, as shown in FIG. 7, the heat radiation fins 10 are provided inside the guide 51, and the heat radiation holes 56 are provided at both ends of the guide 51. It may be provided. In this case, the heat generated by the radiation fins 10 generates buoyancy in the air near the radiation fins 10, and the air flows out of the radiation holes 56 to the outside, so that the heat radiation effect can be enhanced.
[0039]
【The invention's effect】
The invention according to claim 1 is an LED lamp including an LED element, a support member that supports a mounting board on which the LED element is mounted, and a bulb that houses the mounting board, wherein a pair of holes facing the bulb wall is formed. Since the support member having a heat dissipation function for dissipating heat of the LED element is provided so as to penetrate through the pair of holes, the heat flows through the support member and is dissipated, thereby suppressing the temperature of the LED element. can do.
[0040]
According to a second aspect of the present invention, in the first aspect, a plurality of the LED elements are mounted around an axis of a support member.
[0041]
According to a third aspect of the present invention, in the first or the second aspect of the present invention, the support member is formed in a cylindrical shape, and a flow of air is generated in the support member so that heat of the LED element is radiated. As a result, the LED elements generate air flow due to the generated heat, air flows in from one end of the support member, and air flows out from the other end, whereby the temperature of the LED elements can be suppressed. .
[0042]
According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the support member is formed of a heat pipe, and the heat of the LED element is radiated by conducting heat through the heat pipe. By cooling the cooling liquid in the heat pipe at the end of the heat pipe, the temperature of the LED element can be suppressed.
[0043]
According to a fifth aspect of the present invention, in the third or fourth aspect, the support member has a radiating fin at a portion protruding from the valve. As a result, the cooling effect can be further enhanced as compared with the first aspect.
[0044]
According to a sixth aspect of the present invention, in the first to fifth aspects of the present invention, an illumination reflector is provided around the periphery, and the support member and the reflector are thermally connected. Since the heat from the LED element is transmitted to the reflection plate and emitted from the reflection plate, the cooling effect can be further enhanced.
[0045]
The invention according to claim 7 is an LED lamp including a plurality of LED elements, a support member that supports a mounting board on which the plurality of LED elements are mounted, and a bulb that stores the mounting board, wherein the heat pipe is mounted on the mounting board. In addition, the heat generated by the LED element is transmitted through the heat pipe by projecting the heat pipe from the bulb, and is radiated to the outside, so that the LED lamp can be made compact.
[Brief description of the drawings]
FIG. 1A is a perspective view of an LED lamp 100 according to a first embodiment, and FIG. 1B is a cross-sectional view of the LED lamp 100.
FIG. 2A is a perspective view of an LED lamp 100 according to a second embodiment, and FIG. 2B is a cross-sectional view of the LED lamp 100.
FIG. 3 is a sectional view of an LED lamp 100 according to a third embodiment.
FIG. 4 is a sectional view of an LED lamp 100 according to a fourth embodiment and the periphery thereof.
FIG. 5A is a perspective view of a fifth embodiment, and FIG. 5B is a sectional view of the same.
FIG. 6A is a perspective view of a sixth embodiment, and FIG. 6B is a sectional view of the same.
FIG. 7A is a perspective view of another example of the sixth embodiment, and FIG. 7B is a cross-sectional view of the other example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 LED element 2 Support member 2a Base end 2b Tip 2c Heat radiating hole 2d Guide 3 Base 4 Power supply unit 6 Holder 7 Mounting board 8 Valve 8a Hole