JP2004149848A - Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device - Google Patents

Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device Download PDF

Info

Publication number
JP2004149848A
JP2004149848A JP2002315934A JP2002315934A JP2004149848A JP 2004149848 A JP2004149848 A JP 2004149848A JP 2002315934 A JP2002315934 A JP 2002315934A JP 2002315934 A JP2002315934 A JP 2002315934A JP 2004149848 A JP2004149848 A JP 2004149848A
Authority
JP
Japan
Prior art keywords
ozone
anode
catalyst
electrolytic
type ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002315934A
Other languages
Japanese (ja)
Inventor
Naohisa Kitazawa
直久 北澤
Naoya Kitamura
直也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002315934A priority Critical patent/JP2004149848A/en
Publication of JP2004149848A publication Critical patent/JP2004149848A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolysis type ozone-generating device which gives a low load to environment and further generates an ozone gas with high concentration just after energization. <P>SOLUTION: The catalyst for an electrolysis type ozone-generating anode employs oxides containing Bi and Ru. The electrolysis type ozone-generating device is provided with the above catalyst for the electrolysis type ozone-generating anode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電解式オゾン発生装置の陽極に使用する触媒に関するものである。
【0002】
【従来の技術】
強力な酸化剤であるオゾンは、脱色・殺菌・脱臭などの作用を有しており、広範囲に利用されている。例えば、上下水道や工場廃水の水処理、製薬用水や半導体製造用の高純度殺菌水の製造、各種食品の殺菌や食品工場内空気の清浄化、冷蔵庫内空気の脱臭などに使用されている。
【0003】
オゾン発生装置は発生原理で大別すると放電式と電解式がある。放電式は高圧の電気放電によって酸素を酸化してオゾンを生成させるものであり、電解式は低電圧の直流電流によって水を電気分解してオゾンを生成させるものである。
【0004】
電解式でオゾンを製造するためには固体高分子電解質を用いるのが一般的である。例えばパーフルオロカーボンスルホン樹脂やパーフルオロカーボンカルボン酸樹脂などを膜状にした、いわゆるイオン交換膜を電解質として、この膜の両面にある種の電極を適当な方法で配置し、いずれかの側を陽極に、他方を陰極にして数Vの直流電圧を印加すると水の電気分解により高濃度のオゾンガスを発生させることができる。
【0005】
従来の電解式オゾン発生装置において、陽極部の製造方法としては圧接法が広く知られている。これはイオン交換膜の陽極側表面を未処理の状態のままとし、表面に二酸化鉛の層を電析法などで形成させたチタンメッシュを陽極給電体として用い、この陽極給電体をイオン交換膜の未処理の表面に押し当てる方法である。また、イオン交換膜の陽極給電体を取り付けた面とは反対側の面に、白金触媒層を無電解メッキ法などによって取り付けて、陰極部としていた。このように、従来の電解式オゾン発生装置では、イオン交換樹脂膜の片面に二酸化鉛層を直接圧接して、一体に形成した、イオン交換樹脂膜−電極接合体を使用している。
【0006】
このような電解式オゾン発生装置では、陽極部に水を供給し、陽極と陰極の間に直流電流を通電すると、二酸化鉛の触媒作用により陽極からオゾンと酸素が発生し、白金の触媒作用により陰極から水素が発生する。
【0007】
従来の電解式オゾン発生装置の一般的な構造について説明する。図1は電解式オゾン発生装置の断面構造を示したもので、図1において、1はイオン交換膜、2は陰極、3は陽極、4は陰極給電体、5は陽極給電体、6はカソード出口、7はアノード入口、8はアノード出口、9はセルフレームである。陰極2は、イオン交換膜1に接合された水素発生に有効な触媒からなり、陽極3はオゾン発生に有効な触媒からなる。カソード出口6は水及び水素の取出口、アノード入口7は水供給口、アノード出口8は水と酸素とオゾンの取出口である。
【0008】
このような従来の電解式オゾン発生装置において、陰極と陽極間に1.5A/cm程度の直流電流を通電した場合、陰極2から水素が発生し、カソード出口6からは水及び水素を取り出すことができ、同時に、陽極3からオゾンと酸素が発生し、アノード出口8からは水と酸素とオゾンとを含むガスを取り出すことができる。
【0009】
【発明が解決しようとする課題】
従来の電解式オゾン発生装置は、陽極には二酸化鉛(PbO)電極を使用し、陰極には白金(Pt)電極を使用したものが一般的であった。陽極に二酸化鉛(PbO)電極を使用した場合、オゾン発生効率が高いという特徴を持っているが、オゾンが高濃度に溶解した陽極水を酸化剤や洗浄剤として利用する場合、陽極水中に、陽極材料である二酸化鉛(PbO)やその溶出成分のPbイオン等が混入し、人体や環境に悪影響を与えるという問題があった。
【0010】
そこで、陽極水中の二酸化鉛(PbO)やPbイオンを除去する必要があり、そのため、陽極水を気液分離装置に導き、二酸化鉛(PbO)やPbイオンを含む水と、オゾンを含むガスとに分離する必要があり、二酸化鉛(PbO)やPbイオンを含まないオゾンを含むガスを水に再溶解し、オゾンを含む水として利用しなければならなかった。そのために、オゾン発生装置のシステムが複雑になるという問題や、また、用途が制限されるという問題があり、鉛化合物を使用しない陽極材料が望まれていた。
【0011】
さらに、二酸化鉛(PbO)を陽極に用いた従来の電解式オゾン発生装置では、通電直後のオゾンガスの発生濃度が低く、高濃度のオゾンを発生させるためには、通電後数時間も必要であったため、オゾン発生装置としての使用方法や用途が制限されるという問題があった。
【0012】
そこで本発明の目的は、環境負荷が低く、さらに通電直後のオゾンガス発生濃度が高い電解式オゾン発生陽極用触媒およびこの触媒を備えた電解式オゾン発生装置を提供することにある。
【0013】
【課題を解決するための手段】
請求項1の発明は、オゾン発生陽極用触媒が、BiとRuとを含む酸化物からなることを特徴とする。
【0014】
請求項2の発明は、電解式オゾン発生装置において、請求項1記載の電解式オゾン発生陽極用触媒を備えたことを特徴とする。
【0015】
請求項1および請求項2の発明によれば、PbOを使用した場合と比較して、環境負荷が低く、さらに通電直後のオゾンガス発生濃度が高い電解式オゾン発生装置を得ることができる。
【0016】
【発明の実施の形態】
発明の実施の形態を、実施例にもとづき図面を参照して説明する。
【0017】
[実施例]
オゾン発生陽極用触媒として、BiとRuとを含む酸化物の中でパイロクロア構造を持つBiRuを用いた、電解式オゾン発生装置について説明する。
【0018】
化学量論比でBiRuになるように、BiとRuO・xHOをモル比で1:2で秤量、調合し、これに水を添加してスラリーとした。ボールミルあるいはミキサーで、15分間混合した後、乾燥器で乾燥させ、再度混合した後、650℃での24時間の予備焼成および750℃での24時間の本焼成を経て、BiRuを得た。このBiRuと同重量の5wt%Nafion溶液(Aldrich Chemical製)を混合してペーストとし、このペーストを、大きさ4.5cm×4.5cmの白金メッキしたチタンメッシュの基体上にコートし、130℃で1時間乾燥して、電解式オゾン発生用陽極を得た。
【0019】
次に、イオン交換膜としてのNafion117(DuPont社製)膜の片面に、陰極となる白金を無電解メッキした。この白金電極に、大きさ4.5cm×4.5cmの白金メッキしたチタンメッシュからなる陰極給電体を押し当てた。Nafion117膜の白金を無電解メッキしていない面に、陽極としての前述のBiRuをコートした4.5cm×4.5cmの白金メッキしたチタンメッシュを押し当て、電解式オゾン発生装置を作製した。
【0020】
ここで作製した電解式オゾン発生装置の断面構造は、図1に示したのと同じとした。
【0021】
[比較例]
4.5cm×4.5cmの白金をメッキしたチタンメッシュを、硝酸鉛溶液中に浸漬し、通電することにより、チタンメッシュの表面にPbOを電析させた。これを陽極とした以外は実施例と同様にして、電解式オゾン発生装置を作製した。
【0022】
[電流―電位測定によるオゾン発生量の比較]
発生したオゾンの濃度を測定するための、回転ディスク電極を用いた電流−電位測定装置の構成を図2に示す。図2において、10は金からなる回転ディスク電極(作用極)、11は白金電極(対極)、12は飽和カロメル電極(参照極)である。13はポテンショスタット、14は塩橋、15は冷却水入口、16は冷却水出口であり、冷却水は20℃にコントロールした。17、18は電解液、19はバブリング管19である。電解液17、18としては5M燐酸水溶液を用いた。図1に断面を示したオゾン発生装置において、アノード出口8から発生した水、酸素、オゾンを含むガスを気液分離した後の酸素およびオゾンを含むガスを、バブリング管19から電解液17の中にバブリングさせた。回転ディスク電極の回転速度は2500rpmとし、参照極12に対して作用極である回転ディスク電極10のスキャン速度を10mV/secとして、電流−電位測定を行った。
【0023】
この測定方法によれば、5M燐酸水溶液中における溶存オゾンでは、作用極電位が0.6V〜1.0Vの範囲で限界電流領域が見られる。従って、この限界電流領域の電流値を測定することで、オゾンの電解液中への溶解量を相対的に知ることができる。
【0024】
実施例で得られた本発明による電解式オゾン発生装置をAとし、比較例で得られた従来の電解式オゾン発生装置をBとし、それぞれの電解式オゾン発生装置のアノード出口から排出されたオゾンを電解液に溶解させ、電流−電位測定を行い、オゾンの還元電流の大きさを比較した。
【0025】
なお、ここで使用した回転ディスク電極を用いた電流−電位測定装置において、あらかじめオゾン濃度のわかっているガスをバブリング管から電解液中にバブリングさせ、その時のオゾン還元電流を測定しておき、オゾンの還元電流とオゾン濃度との関係を求めておけば、オゾン還元電流からオゾン濃度を求めることができる。
【0026】
測定結果を図3に示した。図3において、記号◆は実施例の電解式オゾン発生装置Aの結果を示し、記号■は比較例の従来の電解式オゾン発生装置Bの結果を示す。実施例の電解式オゾン発生装置Aでは、通電開始直後から約70μAのオゾン還元電流を示したのに対し、比較例の従来の電解式オゾン発生装置Bでは、通電開始直後のオゾン還元電流はほぼゼロに近く、通電を開始して7分後の測定で10μA、通電を開始して30分経過後でも40μAであった。
【0027】
この結果は、明らかに、電解式オゾン発生陽極用触媒としてBiRuを使用した本発明になる電解式オゾン発生器Aでは、通電開始直後から高い濃度のオゾンが発生していることを示している。
【0028】
上記実施例では、電解式オゾン発生陽極用触媒としてのBiとRuとを含む酸化物としてはBiRuを使用した。しかし、BiとRuとを含む酸化物において、Bi:Ru:Oの原子数比は必ずしも化学量論比とはならず、例えばBiRu7.3などの化合物も知られている。したがって、電解式オゾン発生陽極用触媒としては、化学量論比からずれた、一般式BiRu(但し、6≦x≦8)で表されるBiとRuとを含む酸化物も使用することができる。
【0029】
【発明の効果】
本発明になる、オゾン発生陽極用触媒としてBiとRuとを含む酸化物を使用した電解式オゾン発生装置では、従来の電解式オゾン発生装置と比較して、通電開始からきわめて短時間に、高い濃度のオゾンを発生することができる。
【0030】
また、本発明になる電解式オゾン発生装置では、陽極用触媒として鉛化合物を使用していないため、オゾンの発生と同時に二酸化鉛(PbO)やPbイオンなどが放出されることはなく、環境に対する負荷を小さくすることができる。
【0031】
さらに、陽極水中の二酸化鉛(PbO)やPbイオンなどを除去する必要がなく、陽極水を二酸化鉛(PbO)やPbイオンを含む水とオゾンを含むガスとに分離する気液分離装置は不必要となり、オゾン発生装置のシステムは簡単になるという効果も得られる。
【図面の簡単な説明】
【図1】電解式オゾン発生装置の断面構造を示す図。
【図2】電解式オゾン発生装置から発生したオゾンの濃度を測定するための、回転ディスク電極を用いた電流−電位測定装置の構成を示す図。
【図3】実施例および比較例の電解式オゾン発生装置についての、電流−電位測測定結果を示す図。
【符号の説明】
1 イオン交換膜
2 陰極
3 陽極
8 水と酸素とオゾンの取出口
10 回転ディスク電極(作用極)
11 白金電極(対極)
12 飽和カロメル電極(参照極)
13 ポテンショスタット
17、18 電解液
19 バブリング管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst used for an anode of an electrolytic ozone generator.
[0002]
[Prior art]
Ozone, which is a powerful oxidizing agent, has effects such as decolorization, sterilization, and deodorization, and is widely used. For example, it is used for water treatment of water and sewage and factory wastewater, production of high-purity sterilized water for pharmaceutical and semiconductor production, sterilization of various foods, purification of air in food factories, deodorization of air in refrigerators, and the like.
[0003]
Ozone generators are roughly classified into a discharge type and an electrolytic type according to the generation principle. The discharge method is a method in which oxygen is oxidized by high-voltage electric discharge to generate ozone, and the electrolytic method is a method in which water is electrolyzed by a low-voltage direct current to generate ozone.
[0004]
In order to produce ozone by an electrolytic method, a solid polymer electrolyte is generally used. For example, a so-called ion exchange membrane in which a perfluorocarbon sulfone resin or a perfluorocarbon carboxylic acid resin or the like is formed into a membrane is used as an electrolyte. When a DC voltage of several volts is applied with the other being a cathode, high concentration ozone gas can be generated by electrolysis of water.
[0005]
In a conventional electrolytic ozone generator, a pressure welding method is widely known as a method for manufacturing an anode portion. In this method, the anode-side surface of the ion-exchange membrane is left untreated, and a titanium mesh with a lead dioxide layer formed on the surface by electrodeposition is used as the anode feeder. Is a method of pressing against an untreated surface. In addition, a platinum catalyst layer was attached to the surface of the ion exchange membrane opposite to the surface to which the anode power supply was attached by an electroless plating method or the like, thereby forming a cathode portion. As described above, in the conventional electrolytic ozone generator, an ion-exchange resin membrane-electrode assembly that is integrally formed by directly pressing a lead dioxide layer on one side of an ion-exchange resin membrane is used.
[0006]
In such an electrolytic ozone generator, when water is supplied to the anode and a direct current is passed between the anode and the cathode, ozone and oxygen are generated from the anode by the catalytic action of lead dioxide, and the catalytic action of platinum causes the catalytic action of platinum. Hydrogen is generated from the cathode.
[0007]
The general structure of a conventional electrolytic ozone generator will be described. FIG. 1 shows a cross-sectional structure of an electrolytic ozone generator. In FIG. 1, 1 is an ion exchange membrane, 2 is a cathode, 3 is an anode, 4 is a cathode feeder, 5 is an anode feeder, and 6 is a cathode. An outlet, 7 is an anode inlet, 8 is an anode outlet, and 9 is a cell frame. The cathode 2 is made of a catalyst that is effective for generating hydrogen and is bonded to the ion exchange membrane 1, and the anode 3 is made of a catalyst that is effective for generating ozone. The cathode outlet 6 is an outlet for water and hydrogen, the anode inlet 7 is a water supply port, and the anode outlet 8 is an outlet for water, oxygen and ozone.
[0008]
In such a conventional electrolytic ozone generator, when a direct current of about 1.5 A / cm 2 is applied between the cathode and the anode, hydrogen is generated from the cathode 2 and water and hydrogen are taken out from the cathode outlet 6. At the same time, ozone and oxygen are generated from the anode 3, and a gas containing water, oxygen and ozone can be taken out from the anode outlet 8.
[0009]
[Problems to be solved by the invention]
Conventional electrolytic ozone generators generally use a lead dioxide (PbO 2 ) electrode for the anode and a platinum (Pt) electrode for the cathode. When a lead dioxide (PbO 2 ) electrode is used for the anode, the ozone generation efficiency is high. However, when the anode water in which ozone is dissolved at a high concentration is used as an oxidizing agent or a cleaning agent, the anode water is In addition, there is a problem that lead dioxide (PbO 2 ) as an anode material and Pb ions and the like eluted from the anode material are mixed in and have a bad influence on human bodies and the environment.
[0010]
Therefore, it is necessary to remove lead dioxide (PbO 2 ) and Pb ions in the anode water. Therefore, the anode water is guided to a gas-liquid separator, and water containing lead dioxide (PbO 2 ) and Pb ions and ozone are contained. A gas containing ozone without lead dioxide (PbO 2 ) or Pb ions must be redissolved in water and used as water containing ozone. For this reason, there is a problem that the system of the ozone generator becomes complicated, and there is a problem that the application is restricted. Therefore, an anode material that does not use a lead compound has been desired.
[0011]
Furthermore, in a conventional electrolytic ozone generator using lead dioxide (PbO 2 ) as an anode, the concentration of generated ozone gas immediately after energization is low, and it takes several hours after energization to generate high-concentration ozone. For this reason, there has been a problem that the method of use and application as an ozone generator are limited.
[0012]
Accordingly, an object of the present invention is to provide a catalyst for an electrolytic ozone generating anode having a low environmental load and a high ozone gas generation concentration immediately after energization, and an electrolytic ozone generating apparatus provided with the catalyst.
[0013]
[Means for Solving the Problems]
The invention of claim 1 is characterized in that the ozone generating anode catalyst is made of an oxide containing Bi and Ru.
[0014]
According to a second aspect of the present invention, there is provided an electrolysis-type ozone generation device, comprising the electrolysis-type ozone generation anode catalyst according to the first aspect.
[0015]
According to the first and second aspects of the present invention, it is possible to obtain an electrolytic ozone generator having a low environmental load and a high ozone gas generation concentration immediately after energization as compared with the case where PbO 2 is used.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described based on examples with reference to the drawings.
[0017]
[Example]
An electrolytic ozone generator using Bi 2 Ru 2 O 7 having a pyrochlore structure in an oxide containing Bi and Ru as an ozone generating anode catalyst will be described.
[0018]
Such that Bi 2 Ru 2 O 7 in a stoichiometric ratio, Bi 2 O 3 in the RuO 2 · xH 2 O in a molar ratio of 1: 2 by weighing, formulated, and the addition of water and slurry to . After mixing with a ball mill or a mixer for 15 minutes, the mixture was dried in a drier and mixed again. After pre-firing at 650 ° C. for 24 hours and main firing at 750 ° C. for 24 hours, Bi 2 Ru 2 O 7 Got. This Bi 2 Ru 2 O 7 and the same weight of a 5 wt% Nafion solution (manufactured by Aldrich Chemical) were mixed to form a paste, and the paste was placed on a platinum-plated titanium mesh substrate having a size of 4.5 cm × 4.5 cm. It was coated and dried at 130 ° C. for 1 hour to obtain an anode for electrolytic ozone generation.
[0019]
Next, platinum serving as a cathode was electrolessly plated on one surface of a Nafion 117 (manufactured by DuPont) membrane as an ion exchange membrane. A cathode feeder made of platinum-plated titanium mesh having a size of 4.5 cm × 4.5 cm was pressed against the platinum electrode. A 4.5 cm × 4.5 cm platinum-plated titanium mesh coated with Bi 2 Ru 2 O 7 as an anode was pressed against the surface of the Nafion 117 film on which platinum was not electrolessly plated with platinum, and an electrolytic ozone generator. Was prepared.
[0020]
The sectional structure of the electrolytic ozone generator manufactured here was the same as that shown in FIG.
[0021]
[Comparative example]
A 4.5 cm × 4.5 cm platinum-plated titanium mesh was immersed in a lead nitrate solution and energized to deposit PbO 2 on the surface of the titanium mesh. An electrolytic ozone generator was produced in the same manner as in the example except that this was used as an anode.
[0022]
[Comparison of ozone generation by current-potential measurement]
FIG. 2 shows a configuration of a current-potential measuring device using a rotating disk electrode for measuring the concentration of generated ozone. In FIG. 2, 10 is a rotating disk electrode (working electrode) made of gold, 11 is a platinum electrode (counter electrode), and 12 is a saturated calomel electrode (reference electrode). 13 is a potentiostat, 14 is a salt bridge, 15 is a cooling water inlet, 16 is a cooling water outlet, and the cooling water was controlled at 20 ° C. Reference numerals 17 and 18 denote an electrolytic solution and 19 denotes a bubbling tube 19. As the electrolytic solutions 17 and 18, a 5M phosphoric acid aqueous solution was used. In the ozone generating apparatus whose cross section is shown in FIG. 1, a gas containing oxygen and ozone generated by gas-liquid separation of a gas containing water, oxygen and ozone generated from the anode outlet 8 is supplied from the bubbling tube 19 into the electrolyte 17. Was bubbled. Current-potential measurement was performed with the rotation speed of the rotating disk electrode set to 2500 rpm and the scanning speed of the rotating disk electrode 10 serving as the working electrode with respect to the reference electrode 12 set to 10 mV / sec.
[0023]
According to this measuring method, in the case of dissolved ozone in a 5 M phosphoric acid aqueous solution, a limiting current region is observed when the working electrode potential is in the range of 0.6 V to 1.0 V. Therefore, by measuring the current value in this limit current region, the amount of ozone dissolved in the electrolyte can be relatively known.
[0024]
The electrolytic ozone generator according to the present invention obtained in the examples is denoted by A, the conventional electrolytic ozone generator obtained in the comparative example is denoted by B, and the ozone discharged from the anode outlet of each electrolytic ozone generator. Was dissolved in an electrolyte solution, current-potential measurement was performed, and the magnitude of ozone reduction current was compared.
[0025]
In the current-potential measuring device using the rotating disk electrode used here, a gas having a known ozone concentration was bubbled from the bubbling tube into the electrolytic solution, and the ozone reduction current at that time was measured. If the relationship between the reduction current and the ozone concentration is determined, the ozone concentration can be determined from the ozone reduction current.
[0026]
The measurement results are shown in FIG. In FIG. 3, the symbol ◆ indicates the result of the electrolytic ozone generator A of the example, and the symbol 示 す indicates the result of the conventional electrolytic ozone generator B of the comparative example. The electrolytic ozone generator A of the example showed an ozone reduction current of about 70 μA immediately after the start of energization, whereas the conventional electrolytic ozone generator B of the comparative example showed almost no ozone reduction current immediately after the start of energization. It was close to zero, and was 10 μA after 7 minutes from the start of energization, and was 40 μA even after 30 minutes from the start of energization.
[0027]
This result clearly shows that in the electrolytic ozone generator A according to the present invention using Bi 2 Ru 2 O 7 as the catalyst for the electrolytic ozone generating anode, a high concentration of ozone was generated immediately after the start of energization. Is shown.
[0028]
In the above example, Bi 2 Ru 2 O 7 was used as an oxide containing Bi and Ru as a catalyst for an electrolytic ozone generating anode. However, in the oxide containing Bi and Ru, the atomic ratio of Bi: Ru: O does not always become the stoichiometric ratio, and a compound such as Bi 2 Ru 2 O 7.3 is also known. Therefore, as the catalyst for an electrolytic ozone generating anode, an oxide containing Bi and Ru represented by the general formula Bi 2 Ru 2 O x (6 ≦ x ≦ 8), which deviates from the stoichiometric ratio, may be used. Can be used.
[0029]
【The invention's effect】
In the electrolytic ozone generator using the oxide containing Bi and Ru as the catalyst for the ozone generating anode according to the present invention, compared with the conventional electrolytic ozone generator, the electrolytic ozone generator has a very short time from the start of energization. A concentration of ozone can be generated.
[0030]
Further, in the electrolytic ozone generator according to the present invention, since a lead compound is not used as a catalyst for the anode, lead dioxide (PbO 2 ), Pb ions, and the like are not released at the same time as ozone is generated. Can be reduced.
[0031]
Further, there is no need to remove lead dioxide (PbO 2 ) and Pb ions in the anode water, and a gas-liquid separator for separating the anode water into water containing lead dioxide (PbO 2 ) and Pb ions and gas containing ozone. Is unnecessary, and the system of the ozone generator can be simplified.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional structure of an electrolytic ozone generator.
FIG. 2 is a diagram showing a configuration of a current-potential measuring device using a rotating disk electrode for measuring the concentration of ozone generated from an electrolytic ozone generating device.
FIG. 3 is a diagram showing current-potential measurement results of electrolytic ozone generators of an example and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ion exchange membrane 2 Cathode 3 Anode 8 Outlet of water, oxygen and ozone 10 Rotating disk electrode (working electrode)
11 Platinum electrode (counter electrode)
12 Saturated calomel electrode (reference electrode)
13 Potentiostat 17, 18 Electrolyte 19 Bubbling tube

Claims (2)

BiとRuとを含む酸化物からなることを特徴とする電解式オゾン発生陽極用触媒。An electrolytic ozone generating anode catalyst comprising an oxide containing Bi and Ru. 請求項1記載の電解式オゾン発生陽極用触媒を備えたことを特徴とする電解式オゾン発生装置。An electrolytic ozone generating apparatus comprising the electrolytic ozone generating anode catalyst according to claim 1.
JP2002315934A 2002-10-30 2002-10-30 Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device Pending JP2004149848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315934A JP2004149848A (en) 2002-10-30 2002-10-30 Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315934A JP2004149848A (en) 2002-10-30 2002-10-30 Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device

Publications (1)

Publication Number Publication Date
JP2004149848A true JP2004149848A (en) 2004-05-27

Family

ID=32459789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315934A Pending JP2004149848A (en) 2002-10-30 2002-10-30 Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device

Country Status (1)

Country Link
JP (1) JP2004149848A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142772A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment system
WO2008142771A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment equipment
JP2009209379A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Water electrolysis apparatus
CN107227482A (en) * 2017-07-14 2017-10-03 中国环境科学研究院 A kind of electro-deposition sample preparation instrument prepared suitable for αsource
JP2019195775A (en) * 2018-05-10 2019-11-14 国立大学法人 大分大学 Catalyst of oxygen generation reaction and oxygen reduction reaction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142772A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment system
WO2008142771A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment equipment
JP2009209379A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Water electrolysis apparatus
CN107227482A (en) * 2017-07-14 2017-10-03 中国环境科学研究院 A kind of electro-deposition sample preparation instrument prepared suitable for αsource
CN107227482B (en) * 2017-07-14 2023-07-25 中国环境科学研究院 Electrodeposition sample preparation instrument suitable for alpha radioactive source preparation
JP2019195775A (en) * 2018-05-10 2019-11-14 国立大学法人 大分大学 Catalyst of oxygen generation reaction and oxygen reduction reaction
JP7266271B2 (en) 2018-05-10 2023-04-28 国立大学法人 大分大学 Oxygen evolution reaction and oxygen reduction reaction catalyst

Similar Documents

Publication Publication Date Title
Stucki et al. In situ production of ozone in water using a membrel electrolyzer
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
US5460705A (en) Method and apparatus for electrochemical production of ozone
US4707229A (en) Method for evolution of oxygen with ternary electrocatalysts containing valve metals
EP2035599B1 (en) Electrode, method of manufacture and use thereof
US4457824A (en) Method and device for evolution of oxygen with ternary electrocatalysts containing valve metals
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JPH11104648A (en) Seawater electrolyzing apparatus
US20120138479A1 (en) Device for and method of generating ozone
US20110226634A1 (en) Bismuth metal oxide pyrochlores as electrode materials for electrolytic ozone and perchlorate generation
JP3274880B2 (en) Electrolytic ozone generator
KR20140073180A (en) electrode assembly for hydrogen peroxide generation and Electrochemical system for hydrogen peroxide generation
Girenko et al. Selection of the optimal cathode material to synthesize medical sodium hypochlorite solutions in a membraneless electrolyzer
Hosseini et al. Evaluation of the Performance of Platinum Nanoparticle–Titanium Oxide Nanotubes as a New Refreshable Electrode for Formic Acid Electro‐oxidation
JP2004149848A (en) Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device
JP2001327934A (en) Cleaning device and cleaning method
KR101900752B1 (en) Device and method for treating indoor carbon dioxide
JP2009106884A (en) Water treatment and gas treatment apparatus
JP5121008B2 (en) Method for producing mixed electrode catalyst material for solid electrolyte fuel cell
JPH10121283A (en) Ozone and hydrogen peroxide generator
JP3198898B2 (en) Solid polymer electrolytic device
JP3821529B2 (en) Electrolyzed water generator
JP3647663B2 (en) Ozone water production apparatus and production method thereof
JP3615814B2 (en) Method and apparatus for removing nitrate and / or nitrite nitrogen
KR102648323B1 (en) Pt-Ru-Ti catalyst electrode for ballast water electrolysis