JP2004129788A - Device for processing biological information - Google Patents
Device for processing biological information Download PDFInfo
- Publication number
- JP2004129788A JP2004129788A JP2002296449A JP2002296449A JP2004129788A JP 2004129788 A JP2004129788 A JP 2004129788A JP 2002296449 A JP2002296449 A JP 2002296449A JP 2002296449 A JP2002296449 A JP 2002296449A JP 2004129788 A JP2004129788 A JP 2004129788A
- Authority
- JP
- Japan
- Prior art keywords
- biological information
- processing apparatus
- information processing
- different
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、生体情報を表示する生体情報処理装置に関するものである。
【0002】
【従来の技術】
病院、診療所においては、医師等の医療スタッフが患者の容態を常時把握するできるようにするため、心電図信号、SpO2(酸素飽和度)等、重要な生体情報を測定し、その数値と計測されているリアルタイム波形を、患者個人用のベッドサイドモニタ、複数の患者の生体情報をモニタするセントラルモニタ等の生体情報処理装置に常時表示している。
本来、それぞれの生体情報の測定結果は現在の絶対値と、それらの上昇・下降の傾向の双方をもって診断のために参照されるべきであるが、これまでの生体情報処理装置、特にベッドサイドモニタでは、図7に示すように、画面スペースに制限があるため、常時すべての測定値とそのトレンドグラフおよびリアルタイムの波形を同時に表示しておくことは非常に困難である。
また、これまでの生体情報処理装置では各測定値(絶対値)の数値に対し、ある一定のアラーム範囲を設け、それを越えたときにアラームを鳴らす仕組みになっている。
しかし、アラーム範囲は極端に正常範囲から離れていることが多いため、このアラーム範囲内における緩やかな上昇または下降傾向を警告することをアラームや画面表示で指示する生体情報処理装置はこれまで存在しない。
【0003】
患者の容態の変化を示唆するものとして血圧値の変化を矢印で表示する提案がなされている(例えば、特許文献1)。
【0004】
[特許文献1] 特開平11−318841号
(段落[0058]−[0060]、図11、12、13)
【0005】
特許文献1は、NIBP(非観血血圧)の測定により得られた血圧値を基準とした推定血圧値の変化量の割合を矢印で表示しようとするものである。
【0006】
【発明が解決しようとする課題】
医師や看護婦は生体情報の各測定値の変化傾向を常に注意深く監視するか、非常に短い間隔でトレンドグラフを確認することが望ましいが、それを実施することは現実的に困難である。
本来急変する可能性が高い患者には間欠的でなく、心拍数をはじめSpO2や観血的血圧、呼吸数、CO2等の連続して得られる測定値を注意深く監視する必要があるため、重症な患者を監視するためにはこれらの連続的に得られる測定値の変化傾向を一つの画面で表示できることが必要である。
本発明は、このような問題に鑑みてなされたものであって、その目的の一つとして、医療スタッフが連続的に得られる各生体情報の現在の測定値とその変化傾向を同時に把握できるように表示させることで、より早く患者の急変に気づくことができる生体情報処理装置を提供することにある。
なお、簡易的に、複数の生体情報名称とその変化傾向のみを表示しても良い。
本発明のもう一つの目的は、測定値が緩やかに変化していったときにいち早く異常に気づかせることである。
生体情報処理装置は体動等のノイズの影響を受けることが多いため、一般的にアラーム範囲は正常範囲から大きくかけ離れていることが多い。(例えば正常な心拍数は60〜80であるが、アラームの設定は40以下か120以上の時といった設定が一般的である。)
従って、例えば心拍数が1時間毎に心拍数が5ずつ上昇したときには、その傾向の変化に医療スタッフが注意深く観察しない限り気づかないことがあり得る。本発明の表示方法により、前記のような問題点を解決することが可能となる。
【0007】
【課題を解決するための手段】
前記課題を解決するために、複数の異なる生体情報の測定結果を表示部に表示する生体情報処理装置として、
前記複数の異なる生体情報として、各々の現在の測定数値と各々の変化傾向を示す符号又は図形を対にして表示部に表示する表示制御部を具備することを特徴とする。(請求項1)
この構成により、測定部により複数の異なる生体情報の測定値が得られ、各々の現在の測定値(絶対値)と、その変化傾向を符号又は図形等の見易い形で対にして表示部に表示される。
【0008】
また、複数の異なる生体情報の測定結果を表示部に表示する生体情報処理装置であって、
前記複数の異なる生体情報として、各々の変化傾向を示す符号又は図形を表示部に表示しても良い。(請求項2)
この構成により、複数の異なる生体情報の変化傾向を符号又は図形等の見易い形で簡易的に表示部に表示される。
【0009】
さらに、前記符号又は図形は、生体情報の時間的な変化量に応じて勾配が変化する矢印で表示する。(請求項3)
この構成により、生体情報の測定値の変化傾向が矢印の勾配によって容易に把握することができる。
さらに、前記矢印の勾配は、複数段の変化が示されることを特徴とする請求項2に記載の生体情報処理装置。(請求項4)
この構成により、生体情報の測定値が過去にどのような変化をしてきたかが段階的に容易に把握することができる。
【0010】
さらに、前記表示制御部は前記生体情報の内の指定された少なくとも1つの生体情報のリアルタイム波形を同時に表示する。(請求項5)
この構成により、これまでの変化の経緯を知る必要がある生体情報の測定値について、そのリアルタイム波形(トレンドグラフ)を並べて表示させ、変化の経緯を容易に把握することができる。
【0011】
前記複数の異なる生体情報は、少なくとも呼吸数(RR)および酸素飽和度(SpO2)を含む。(請求項6)
この構成により、被験者が無呼吸状態であるかどうか早期に把握することができる。
【0012】
前記複数の異なる生体情報は、少なくとも心拍数およびSTを含む。(請求項7)
この構成により、被験者が虚血状態であるかどうか早期に把握することができる。
【0013】
前記複数の異なる生体情報は、少なくとも異なる誘導心電図から得られた複数のSTを含む。(請求項8)
この構成により、被験者が冠動脈が狭窄しているかどうか早期に把握することができる。
【0014】
前記複数の異なる生体情報は、少なくとも異なる生体部位で測定される酸素飽和度を含む。(請求項9)
この構成により、被験者に動脈管開存(PDA)があるかどうか早期に把握することができる。
【0015】
所定時間以上、生体情報の変化量が設定された閾値を上回りもしくは下回るときにアラームを発する。(請求項10)
この構成により、気づきにくい被験者の容態変化を医者又は看護婦に報知することができる。
【0016】
【発明の実施の形態】
図1〜6を参照して本発明に係る生体情報処理装置の実施の態様を詳細に説明する。
ここでは生体情報処理装置として、患者のベッドサイドに置かれ、その患者の生体情報を処理表示するベッドサイドモニタを例として説明を行なう。
図1は本発明に係るベッドサイドモニタ1の概略ブロツク構成図である。
【0017】
CPU2はROM3に格納されたプログラムに従い、本装置の制御を行う。
RAM4はCPU2の処理経過、処理するためのデータ等を一時記憶する。
表示制御部5はCPU2の指示に従い表示部6での表示処理を制御する。
心電アンプ8は生体電極7で検出した生体電圧を増幅する差動アンプ型のアンプである。
生体電極7により検出された心電図信号は心電アンプ8により処理され、CPU2により心拍数(HR)、ST値等が演算される。
前記STは、心電図から得られる誘導心電図波形の1つであって、図8において「ST」で示す部分である。
なお、STによる判断対象としては、STの上昇からは、貫壁性急性心筋梗塞の時期、異型狭心症発作、心膜炎等である。
また、STの低下からは、普通の狭心症発作、心筋炎、心筋症、心室肥大、ジキタリス効果等である。
【0018】
SpO2測定回路10はフィルタ、増幅器、A/D変換器等により構成される。SpO2測定回路10はSpO2プローブ9で検出した生体透過光量にフィルタをかけ、増幅器により増幅し、A/D変換器によりA/D変換する。
A/D変換されたデータを基に、CPU2で所定の処理を施し酸素飽和度を算出する。
【0019】
呼吸検出センサ11は患者の体のインピーダンスを検出するセンサであり、呼吸計測回路12により呼吸ごとに変動する体のインピーダンス波形から呼吸波形を測定する。
測定された呼吸波形はCPU2により処理され所定時間あたりの呼吸波形の変動からRR(Respiration Rate :呼吸数)を演算する。
その他、呼吸数の計測には、口や鼻付近にセンサーを付けて温度や圧力から呼吸数を算出する方法などもある。
【0020】
CPU2はNIBP計測ユニット14の制御を行う。
NIBP計測ユニット14は、コンプレッサー、電磁弁、圧力センサ等から構成され、カフ13の加圧制御を行い、カフ圧を測定する。
【0021】
図2は、本発明のベッドサイドモニタにおける表示部6での表示画面の例である。
画面は上から第1〜3の表示領域の3つに分かれている。
第1の表示領域には生体情報の各測定値(パラメータ)の数値データとその数値データの横に各々の変化傾向(トレンド状態)を示す符号又は図形(例えば矢印)で対になって表示されている。
具体的には、心電図波形から演算される心拍数HR、ST値、SpO2(酸素飽和度)、NIBP(非観血血圧値)、呼吸数RRそれぞれの数値データとその横にトレンド状態が矢印で対になって第1の表示領域に表示されている。
なお、これらの生体情報の測定値は例であり、他の生体情報パラメータに置き換え、追加または省略してもよい。
なお、表示部に表示される複数の異なる生体情報として、各々の生体情報の変化傾向を示す符号又は図形を簡易的に表示しても良い。
【0022】
第2の表示領域には、生体波形を常時把握することが重要な生体波形が表示される。ここでは心電図波形がリアルタイムで連続的に表示されている。
なお、第2の表示領域に表示される生体波形は心電図波形に限らず、他の生体波形に置き換え、または追加してもよい。
【0023】
第3の表示領域には、第1の表示領域に表示される生体情報の測定値のうち、指定された生体情報について、そのトレンドグラフが表示される。
指定方法は、第1の表示領域に表示される各測定値またはそのトレンドを示す矢印をカーソルにより指定可能にしておき、カーソルを用いていずれかの測定値を指定するようにしてもよい。
あるいはキー入力により指定するようにしてもよい。
図2では、心拍数HRが指定され、第3の表示領域にHRのトレンドグラフが表示されている。
このようにトレンドグラフを表示することにより、その生体情報の測定値のこれまでのトレンドを医療スタッフは正確に把握することができる。
【0024】
次に第1の表示領域に表示される、トレンドを表す矢印の傾きの決定手法について心拍数HRを例に挙げて説明する。
過去5分間分の心拍数データから3秒毎のデータを取得する。
データの取得には移動平均、補正を用いてよい。
過去5分間の平均を<y>、標準偏差をσとして、<y>±σから外れたデータは、矢印の傾きを決定するための用いるデータから除外する。
そして、3秒毎のデータをy、時間をxとして、重回帰分析から、次の1次式の回帰直線を求める(5分前を0秒後とする)。
y=a x + b (1)
そして、この式から5分前の回帰直線上の値bと現在(300秒経過時)の回帰直線上の値300a+bの値との比、すなわち
k=(300a+b)/b (2)
の値によって、例えば次のように矢印の勾配をつける。
なお、矢印の勾配角度は上記の角度でなくともよく適宜設定してよい。
また、矢印の勾配は、kの傾きを持たせてもよいし、aの傾きを持たせてもよく、生体情報の測定値の変化に応じて矢印の勾配が変化するように表示する。 これにより、矢印の勾配から、生体情報の変化の緩急がわかるようになる。
さらに矢印は、生体情報の変化の勾配に応じて色彩を変えるようにしてもよい。
このように、対として表示される矢印の勾配から、生体情報の変化の緩急が容易にわかので、医師や看護婦等が変化に応じた迅速な処置を促すことができる。
【0025】
また、心拍数HRの他、他の生体情報についても回帰直線等により、生体情報の測定値の横に表示する矢印の勾配が生体情報の変化の緩急を示すようにする。
なお、データが得られる周期は各測定値によって異なるので回帰直線を演算するために用いるデータの取得は適宜設定する。
【0026】
次に、第1の表示領域に表示する測定値を、標準12誘導心電図の特徴的なパラメータであるSTとした例を図3に示す。
この場合、生体電極7として標準12誘導心電図を測定するための胸部電極、四肢電極が用いられる。
図2に示すように、第1の表示領域には、CPU2で演算された標準12誘導心電図の各波形のST値およびその数値データの横にトレンド状態が矢印で対になって表示されている。
誘導心電図としては第I誘導〜第III誘導、aVr誘導、aVI誘導、Vf誘導、V1〜V6誘導についてのST値とそのトレンド状態がCPU2により演算され表示される。
なお、これらのST値の表示は例であり、他の生体情報の測定値が追加されていてもよく、あるいは診断のための主要なST値に絞った表示であってもよい。
【0027】
第2の表示領域には、標準12誘導心電図波形のうち、任意の波形を設定してリアルタイムで連続的に表示させることができる。図2では第II誘導の波形が表示されている例が示されている。
なお、第2の表示領域に表示される生体波形は心電図波形に限らず、他の生体波形に置き換え、または追加してもよい。
【0028】
第3の表示領域には、第1の表示領域に表示されるSTのうち、指定された生STについて、そのトレンドグラフが表示される。
指定方法は、図2で説明した方法と同じように、第1の表示領域に表示される各測定値またはそのトレンドを示す矢印をカーソルにより指定可能にしておき、カーソルを用いていずれかの測定値を指定するようにしてもよい。
あるいはキー入力により指定するようにしてもよい。
図2では、第II誘導のSTが指定され、第3の表示領域にそのSTのトレンドグラフが表示されている。
このようにトレンドグラフを表示することにより、そのSTのこれまでののトレンドを医療スタッフは正確に把握することができる。
【0029】
なお、第1の表示領域に表示される、トレンドを表す矢印の傾きの決定手法については、各心拍ごとに測定されたST値から図2で説明したのと同様の方法で回帰分析等を用いて決定することができる。
【0030】
図2に示した生体情報の変化の傾向を示す矢印を二段階にした例を図4に示す。図4に示された各測定値の矢印は二段階の勾配をもっている。
この矢印の詳細を図5のように前半、後半に分けて説明する。
矢印前半は現在から比較的短期期間、例えば過去1分間のデータに基づいて、回帰直線から得られた傾きとする。
矢印後半は比較的長期期間、例えば過去1〜15分の間のデータに基づいて、回帰直線から得られた傾きとする。
このようにすることで、過去の生体情報の変化を二段階にして把握することができる。なお、段階数は二段階に限らず、三段階以上でもよい。
【0031】
さらに、所定時間以上、係数k(生体情報の測定値の変化傾向)が設定された閾値を上回るもしくは下回ることをCPU2で判断し、アラーム報知部15によりアラームを発するように設定する。このことでユーザーに注意を促すことができる。
この二段階にした矢印の表示方法は、図3における第1の表示領域で示した矢印表示にも適用することができる。
【0032】
次に、複数の異なる生体情報の測定値の変化傾向を同時に看ることができることのメリットについて例を挙げる。
<呼吸数RRとSpO2の傾向を同時に看るメリット>
呼吸数RRやSpO2の平均値(安静状態値)は患者によって異なる。高めの患者もいれば低めの患者もいる。
新生児や無呼吸症候群の患者が、突然呼吸がとまったとき、呼吸数RRは急激に減少し、SpO2は徐々に低下し始める。この場合、医療スタッフが、生体情報パラメータの数値のみを看ていたのでは、患者の個体差の範囲の値であれば、呼吸がとまっていることに気づきにくい。
しかし、生体情報パラメータの数値が患者の個体差の範囲の値であっても、呼吸数RRの急激降下とSpO2の低下が連続的に生じていることを認識できれば、医療スタッフは呼吸停止を疑うことができる。
そして医療スタッフは人工呼吸器の装着等の迅速な対応をとることができる。
このように、図2に示すように、第1の表示領域に少なくとも呼吸数RRとSpO2の傾向を同時に表示するメリットがある。
【0033】
<心拍数HRとST値の傾向を同時に看るメリット>
ST値の上昇には虚血状態などいくつかの原因が考えられる。ST値の上昇が表示によって確認されたとき、虚血状態が原因であるのかどうかを看る手法として同時に心拍数HRが急激に上昇しているかどうかを看ることが判断のポイントにあることがある。
何ら心拍数HRに変化がないのに、ST値が上昇している場合は、虚血状態であることを疑うことができる。
一方、心拍数HRが急激に上昇している場合、ST値の上昇の原因は別の理由を考えることができる。
このように、図2に示すように、第1の表示領域に少なくとも心拍数HRとST値の傾向を同時に表示するメリットがある。
【0034】
<複数のST値の傾向を同時に看るメリット>
心筋梗塞の疑いがある患者やPTCA処置後の患者は冠動脈が狭窄しやすい状況であるため、複数の誘導心電図を連続的に測定することが多い。
この場合、冠動脈が狭窄する部位によってST値が変動する場合としない場合がある。(例えば第II誘導のST(II)は変動するが、V2誘導のST(V2)は変動しない等)
このため、どの誘電心電図波形のSTに変化があったか医療スタッフが気づけば、狭窄した冠動脈がある程度特定できスムーズに治療に移行できる。
このように、図3に示すように、第1の表示領域に少なくとも複数のST値の傾向(例えば、ST(II)とST(V2))を同時に表示するメリットがある。
【0035】
<複数のSpO2値の傾向を同時に看るメリット>
新生児遷延性肺高血圧症(Persistent Pulmonary Hypertension of the Newborn:PPHN)の診断に有効である。動脈管開存(PDA)により、動脈に静脈血が混ざってしまうことがあり、穴が空く場所と動脈管の関係により、右腕に流れる動脈管には動脈血が流れるが、下肢に向かう動脈には静脈血が混ざってしまうことがある。
このため右手と下肢(左右どちらでも良い)の2カ所のSpO2を測定すると絶対値や傾向に差が出てくる。
したがって、図1におけるSpO2プローブ9からSpO2計測回路10で処理されCPU2で処理される回路系を複数構成させ、異なる生体部位でSpO2を測定し、第1の表示領域に少なくとも複数のSpO2値の傾向(例えば、右手と下肢のSpO2値)を同時に表示するメリットがある。
【0036】
このように、複数の異なる生体情報パラメータの変化傾向を同時に看ることができることによって、患者の容態をいち早く把握することに資するのである。
【0037】
上記の実施の態様では、図2ないし図4に示す画面表示は、ベッドサイドモニタに表示される例を示したが、これに限られなくともよい。
図6は、院内システムで用いられるベッドモニタ−セントラルモニタ−携帯端末システムである。
患者に装着された生体電極、プローブ等により検出された生体情報はベッドサイドモニタ1において表示される。
さらにセントラルモニタ20で、複数のベッドサイドモニタ1で測定された生体情報を集中管理する。
セントラルモニタ20に送られた生体情報はさらに無線送信機20aにより、医療スタッフが携帯する携帯端末30に無線で送信される。
なお、生体情報はセントラルモニタ20を経由せずに無線送信機20bを介して携帯端末30に送信されるようにしてもよい。
また、図2ないし図4に示す画面表示と同様の表示を、セントラルモニタ20やあるいは携帯端末30で行ってもよい。
これにより、複数の異なる生体情報パラメータの変化傾向を同時に看ることが、患者から離れた位置にあるセントラルモニタ20や携帯した医療スタッフが即確認できる携帯端末30でもできることになり、患者に迅速に処置することができる。
【0038】
【発明の効果】
以上詳記したように、本発明の生体情報処理装置によれば、複数の異なる生体情報パラメータの変化傾向を同時に看ることができることによって、患者の容態をいち早く把握し、患者への処置を迅速に行うことができる。
【図面の簡単な説明】
【図1】本発明に係るベッドサイドモニタの概略ブロック構成を示す図である。
【図2】本発明に係る表示部での表示画面の例を示す図である。
【図3】本発明に係る表示部での別の表示画面の例を示す図である。
【図4】本発明に係る表示部での別の表示画面の例を示す図である。
【図5】図3の生体情報変化を表示する矢印の説明をするための図である。
【図6】本発明に係る画面表示を採用できるシステムの構成を示す図である。
【図7】従来の生体情報処理装置における画面表示の例を示す図である。
【図8】心電図から得られる誘導心電図のSTを説明するための図である。
【符号の説明】
1 ベッドサイドモニタ
2 CPU
3 ROM
4 RAM
5 表示制御部
6 表示部
7 生体電極
8 心電アンプ
9 SpO2プローブ
10 SpO2計測回路
11 呼吸検出センサ
12 呼吸計測回路
13 カフ
14 NIBP計測回路
20 セントラルモニタ
30 携帯端末
20a無線送信機
20b無線送信機[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biological information processing apparatus that displays biological information.
[0002]
[Prior art]
In hospitals and clinics, important biological information, such as electrocardiogram signals and SpO 2 (oxygen saturation), is measured, and numerical values and measurements are taken so that medical staff such as doctors can constantly grasp the condition of patients. The displayed real-time waveform is constantly displayed on a biological information processing apparatus such as a bedside monitor for the individual patient and a central monitor for monitoring biological information of a plurality of patients.
Originally, the measurement results of each biological information should be referred to for diagnosis based on both the current absolute value and their upward and downward trends. However, conventional biological information processing devices, especially bedside monitors In this case, as shown in FIG. 7, since the screen space is limited, it is very difficult to simultaneously display all measured values, their trend graphs, and real-time waveforms at the same time.
Further, in the conventional biological information processing apparatus, a certain alarm range is provided for the numerical value of each measured value (absolute value), and an alarm is sounded when the alarm range is exceeded.
However, since the alarm range is extremely far from the normal range in many cases, there has been no biological information processing apparatus that gives an alarm or a screen display to warn of a gradual upward or downward tendency within this alarm range. .
[0003]
It has been proposed to display a change in blood pressure value with an arrow as a suggestion of a change in a patient's condition (for example, Patent Document 1).
[0004]
[Patent Document 1] JP-A-11-318841 (paragraphs [0058] to [0060], FIGS. 11, 12, and 13)
[0005]
[0006]
[Problems to be solved by the invention]
It is desirable for doctors and nurses to always carefully monitor the changing trend of each measurement value of the biological information or to check the trend graph at very short intervals, but it is practically difficult to implement it.
It is not intermittent for patients who are likely to change suddenly, and it is necessary to carefully monitor continuously measured values such as heart rate, SpO 2 , invasive blood pressure, respiratory rate, CO 2, etc. In order to monitor critically ill patients, it is necessary to be able to display the change tendency of these continuously obtained measurement values on one screen.
The present invention has been made in view of such a problem, and as one of its objects, a medical staff can simultaneously grasp current measurement values of continuously obtained biological information and its changing tendency. The object of the present invention is to provide a biological information processing apparatus that can promptly recognize a sudden change in a patient by displaying the information on the subject.
It should be noted that only a plurality of biometric information names and their changing trends may be displayed simply.
Another object of the present invention is to quickly notice an abnormality when the measured value changes slowly.
Since the biological information processing apparatus is often affected by noise such as body motion, the alarm range is generally far from the normal range in many cases. (For example, the normal heart rate is 60 to 80, but the setting of the alarm is generally set to 40 or less or 120 or more.)
Therefore, for example, when the heart rate increases by 5 every hour, the change in the tendency may not be noticed unless the medical staff carefully observes the change. According to the display method of the present invention, it is possible to solve the above problems.
[0007]
[Means for Solving the Problems]
In order to solve the problem, as a biological information processing apparatus that displays a plurality of different biological information measurement results on a display unit,
A display control unit is provided as the plurality of different pieces of biometric information, the display control unit displaying a pair of a current measured value and a code or graphic indicating a change tendency on a display unit. (Claim 1)
With this configuration, the measurement unit obtains a plurality of measurement values of different biological information, and displays the current measurement value (absolute value) and its change tendency on the display unit in a pair such as a code or a figure in an easy-to-read form. Is done.
[0008]
Further, a biological information processing apparatus that displays a plurality of different biological information measurement results on a display unit,
As the plurality of different pieces of biometric information, a code or a graphic indicating each change tendency may be displayed on a display unit. (Claim 2)
With this configuration, a change tendency of a plurality of different pieces of biometric information is simply displayed on the display unit in an easy-to-read form such as a code or a graphic.
[0009]
Further, the code or graphic is displayed as an arrow whose gradient changes in accordance with the temporal change amount of the biological information. (Claim 3)
With this configuration, the change tendency of the measurement value of the biological information can be easily grasped by the gradient of the arrow.
3. The biological information processing apparatus according to
With this configuration, it is possible to easily understand in a stepwise manner how the measurement value of the biological information has changed in the past.
[0010]
Further, the display control unit simultaneously displays a real-time waveform of at least one of the specified pieces of biological information. (Claim 5)
With this configuration, real-time waveforms (trend graphs) of the measured values of the biological information for which it is necessary to know the history of the change are displayed side by side, and the history of the change can be easily grasped.
[0011]
The plurality of different pieces of biological information include at least a respiratory rate (RR) and an oxygen saturation (SpO 2 ). (Claim 6)
With this configuration, it is possible to grasp at an early stage whether or not the subject is in an apnea state.
[0012]
The plurality of different pieces of biological information include at least a heart rate and ST. (Claim 7)
With this configuration, it is possible to quickly determine whether the subject is in an ischemic state.
[0013]
The plurality of different biological information includes at least a plurality of STs obtained from different lead electrocardiograms. (Claim 8)
With this configuration, it is possible to grasp at an early stage whether or not the subject has a narrowed coronary artery.
[0014]
The plurality of different biological information include at least oxygen saturation measured at different biological sites. (Claim 9)
With this configuration, it is possible to grasp at an early stage whether or not the subject has a patent ductus arteriosus (PDA).
[0015]
An alarm is issued when the amount of change in the biological information exceeds or falls below a set threshold for a predetermined time or more. (Claim 10)
With this configuration, it is possible to notify the doctor or nurse of a change in the condition of the subject that is difficult to notice.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the biological information processing apparatus according to the present invention will be described in detail with reference to FIGS.
Here, as a biological information processing apparatus, a bedside monitor placed on a patient's bedside and processing and displaying biological information of the patient will be described as an example.
FIG. 1 is a schematic block diagram of a
[0017]
The
The
The
The
The electrocardiogram signal detected by the living
The ST is one of the lead electrocardiogram waveforms obtained from the electrocardiogram, and is a portion indicated by "ST" in FIG.
It should be noted that, as a target to be judged by the ST, from the elevation of the ST, the time of transmural acute myocardial infarction, atypical angina attack, pericarditis, etc.
In addition, a decrease in ST indicates normal angina pectoris attack, myocarditis, cardiomyopathy, ventricular hypertrophy, digitalis effect and the like.
[0018]
The SpO 2 measurement circuit 10 includes a filter, an amplifier, an A / D converter, and the like. The SpO 2 measuring circuit 10 filters the amount of light transmitted through the living body detected by the SpO 2 probe 9, amplifies the light with an amplifier, and performs A / D conversion with an A / D converter.
Based on the A / D converted data, the
[0019]
The respiration detection sensor 11 is a sensor that detects the impedance of the patient's body, and the respiration measurement circuit 12 measures a respiration waveform from an impedance waveform of the body that changes every breath.
The measured respiratory waveform is processed by the
In addition, there is a method of measuring the respiratory rate by attaching a sensor near the mouth or nose and calculating the respiratory rate from the temperature and pressure.
[0020]
The
The NIBP measurement unit 14 includes a compressor, an electromagnetic valve, a pressure sensor, and the like, controls pressurization of the cuff 13, and measures a cuff pressure.
[0021]
FIG. 2 is an example of a display screen on the display unit 6 in the bedside monitor of the present invention.
The screen is divided into three first to third display areas from the top.
In the first display area, numerical data of each measured value (parameter) of the biological information and a sign or a graphic (for example, an arrow) indicating a change tendency (trend state) beside the numerical data are displayed as a pair. ing.
Specifically, the heart rate HR, ST value, SpO2 ( oxygen saturation), NIBP (non-invasive blood pressure value), and respiratory rate RR calculated from the electrocardiogram waveform, and the trend status are indicated by arrows next to them. Are displayed in pairs in the first display area.
Note that these measured values of the biological information are examples, and may be replaced with other biological information parameters and added or omitted.
Note that, as a plurality of different pieces of biological information displayed on the display unit, a code or a graphic indicating a change tendency of each piece of biological information may be simply displayed.
[0022]
In the second display area, a biological waveform for which it is important to constantly grasp the biological waveform is displayed. Here, the electrocardiogram waveform is displayed continuously in real time.
The biological waveform displayed in the second display area is not limited to the electrocardiogram waveform, and may be replaced or added with another biological waveform.
[0023]
In the third display area, a trend graph of the specified biological information among the measured values of the biological information displayed in the first display area is displayed.
The designation method may be such that an arrow indicating each measured value displayed in the first display area or its trend can be designated by a cursor, and one of the measured values is designated by using the cursor.
Alternatively, it may be specified by key input.
In FIG. 2, the heart rate HR is specified, and the HR trend graph is displayed in the third display area.
By displaying the trend graph in this way, the medical staff can accurately grasp the trend of the measurement value of the biological information so far.
[0024]
Next, a method of determining the inclination of the arrow indicating the trend displayed in the first display area will be described using the heart rate HR as an example.
Data is acquired every 3 seconds from the heart rate data for the past 5 minutes.
Moving average and correction may be used for data acquisition.
Assuming that the average of the past 5 minutes is <y> and the standard deviation is σ, data deviating from <y> ± σ is excluded from data used for determining the inclination of the arrow.
Then, a regression line of the following linear equation is obtained from multiple regression analysis, where y is the data every 3 seconds and x is the time (0 minutes after 5 minutes before).
y = ax + b (1)
From this equation, the ratio of the value b on the
Depending on the value of, for example, the gradient of the arrow is given as follows.
The inclination angle of the arrow is not limited to the above angle and may be set as appropriate.
Further, the gradient of the arrow may have a gradient of k or may have a gradient of a, and the gradient of the arrow is displayed so as to change in accordance with a change in the measured value of the biological information. Thereby, the change of the biological information can be determined from the gradient of the arrow.
Further, the color of the arrow may be changed according to the gradient of the change of the biological information.
In this way, the gradient of the arrow displayed as a pair makes it easy to determine whether the change in the biological information is slow or fast, so that a doctor, a nurse, or the like can prompt a prompt treatment according to the change.
[0025]
In addition to the heart rate HR, the gradient of the arrow displayed beside the measured value of the biological information indicates the degree of change in the biological information by using a regression line or the like for other biological information.
Since the cycle at which the data is obtained differs depending on each measurement value, the acquisition of the data used to calculate the regression line is set as appropriate.
[0026]
Next, FIG. 3 shows an example in which the measurement value displayed in the first display area is ST, which is a characteristic parameter of the standard 12-lead electrocardiogram.
In this case, a chest electrode and a limb electrode for measuring a standard 12-lead electrocardiogram are used as the
As shown in FIG. 2, in the first display area, the ST state of each waveform of the standard 12-lead electrocardiogram calculated by the
As the lead electrocardiogram, the
The display of these ST values is an example, and other measured values of the biological information may be added, or the display may be limited to the main ST values for diagnosis.
[0027]
In the second display area, an arbitrary waveform among the standard 12-lead electrocardiogram waveforms can be set and continuously displayed in real time. FIG. 2 shows an example in which the waveform of lead II is displayed.
The biological waveform displayed in the second display area is not limited to the electrocardiogram waveform, and may be replaced or added with another biological waveform.
[0028]
In the third display area, among the STs displayed in the first display area, a trend graph of a specified raw ST is displayed.
As in the specification method, similarly to the method described with reference to FIG. 2, each measurement value displayed in the first display area or an arrow indicating its trend can be specified by a cursor, and any measurement is performed using the cursor. A value may be specified.
Alternatively, it may be specified by key input.
In FIG. 2, the ST of the lead II is designated, and the trend graph of the ST is displayed in the third display area.
By displaying the trend graph in this way, the medical staff can accurately grasp the trend so far of the ST.
[0029]
Note that the method of determining the inclination of the arrow indicating the trend displayed in the first display area is based on the ST value measured for each heartbeat by using a regression analysis or the like in the same manner as described with reference to FIG. Can be determined.
[0030]
FIG. 4 shows an example in which the arrows indicating the tendency of the change of the biological information shown in FIG. The arrow of each measured value shown in FIG. 4 has a two-step gradient.
The details of the arrow will be described separately in the first half and the second half as shown in FIG.
The first half of the arrow is a slope obtained from a regression line based on data for a relatively short period from the present, for example, the past one minute.
The second half of the arrow is a slope obtained from a regression line based on data for a relatively long period, for example, the past 1 to 15 minutes.
By doing so, past changes in biological information can be grasped in two stages. The number of stages is not limited to two, but may be three or more.
[0031]
Further, the
The two-stage arrow display method can also be applied to the arrow display shown in the first display area in FIG.
[0032]
Next, an example will be given of an advantage of being able to simultaneously observe a change tendency of a plurality of different measured values of biological information.
<Advantages of simultaneously observing trends in respiratory rate RR and SpO 2 >
The average value (resting state value) of the respiratory rate RR and SpO 2 differs depending on the patient. Some are higher and some are lower.
When a newborn or a patient with apnea syndrome suddenly stops breathing, the respiratory rate RR drops sharply and SpO 2 starts to drop gradually. In this case, if the medical staff views only the numerical value of the biological information parameter, it is difficult to notice that breathing is stopped if the value is within the range of individual differences between patients.
However, even if the value of the biological information parameter is a value within the range of individual differences between patients, if the medical staff can recognize that a rapid decrease in the respiratory rate RR and a decrease in SpO 2 occur continuously, the medical staff stops breathing. I can doubt.
The medical staff can take prompt measures such as wearing a respirator.
In this manner, as shown in FIG. 2, there is an advantage that at least the tendency of the respiratory rate RR and the SpO 2 are simultaneously displayed in the first display area.
[0033]
<Advantages of simultaneously monitoring trends in heart rate HR and ST value>
Several causes, such as an ischemic state, can be considered as an increase in ST value. When the increase in ST value is confirmed by the display, it is important to determine whether the heart rate HR is rapidly increasing at the same time as a method for monitoring whether the ischemic condition is the cause. is there.
If there is no change in the heart rate HR and the ST value is increasing, it can be suspected that the patient is in an ischemic state.
On the other hand, when the heart rate HR is rapidly increasing, another cause can be considered as a cause of the increase in the ST value.
In this manner, as shown in FIG. 2, there is an advantage that at least the tendency of the heart rate HR and the ST value is simultaneously displayed in the first display area.
[0034]
<Advantages of simultaneously observing trends in multiple ST values>
Patients suspected of having a myocardial infarction or having undergone PTCA treatment are likely to have coronary artery stenosis, so that a plurality of lead electrocardiograms are frequently measured continuously.
In this case, the ST value may or may not change depending on the part where the coronary artery is narrowed. (For example, ST (II) of lead II fluctuates, but ST (V2) of lead V2 does not fluctuate, etc.)
For this reason, if the medical staff notices which ST of the electrocardiogram waveform has changed, the stenotic coronary artery can be identified to some extent and the treatment can be smoothly shifted to.
Thus, as shown in FIG. 3, there is an advantage that at least a plurality of ST value trends (for example, ST (II) and ST (V2)) are simultaneously displayed in the first display area.
[0035]
<At the same time look after the benefits of the trend of multiple of SpO 2 values>
It is effective in diagnosing neonatal persistent pulmonary hypertension (Persistent Pulmonary Hypertension of the Newborn: PPHN). Due to the patency of the ductus arteriosus (PDA), venous blood may be mixed in the artery, and arterial blood flows in the artery duct flowing to the right arm, but in the artery toward the lower limb, Venous blood may be mixed.
For this reason, when measuring SpO 2 at two places, that is, the right hand and the lower limb (either left or right), a difference appears in the absolute value and tendency.
Therefore, a plurality of circuit systems processed by the SpO 2 measuring circuit 10 and processed by the CPU 2 from the SpO 2 probe 9 in FIG. 1 are configured, and SpO 2 is measured at different living body parts, and at least a plurality of circuit systems are displayed in the first display area. trend SpO 2 values (e.g., the right hand and SpO 2 value lower limb) is advantageous to display simultaneously.
[0036]
As described above, the change tendency of a plurality of different biological information parameters can be simultaneously monitored, which contributes to quickly grasping the condition of the patient.
[0037]
In the above embodiment, the screen display shown in FIGS. 2 to 4 has been described as an example displayed on the bedside monitor. However, the present invention is not limited to this.
FIG. 6 shows a bed monitor-central monitor-portable terminal system used in the hospital system.
Biological information detected by a biological electrode, a probe, or the like mounted on the patient is displayed on the
Further, the
The biological information sent to the
The biometric information may be transmitted to the
The same display as the screen display shown in FIGS. 2 to 4 may be performed by the
As a result, it is possible to simultaneously monitor the changing tendency of a plurality of different biometric information parameters even with the
[0038]
【The invention's effect】
As described above in detail, according to the biological information processing apparatus of the present invention, a change tendency of a plurality of different biological information parameters can be simultaneously monitored, whereby a patient's condition can be quickly grasped, and treatment of the patient can be promptly performed. Can be done.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic block configuration of a bedside monitor according to the present invention.
FIG. 2 is a diagram showing an example of a display screen on a display unit according to the present invention.
FIG. 3 is a diagram showing an example of another display screen on the display unit according to the present invention.
FIG. 4 is a diagram showing an example of another display screen on the display unit according to the present invention.
FIG. 5 is a diagram for explaining an arrow indicating a change in biological information in FIG. 3;
FIG. 6 is a diagram showing a configuration of a system that can adopt a screen display according to the present invention.
FIG. 7 is a diagram illustrating an example of a screen display in a conventional biological information processing apparatus.
FIG. 8 is a diagram for explaining a ST of a lead electrocardiogram obtained from the electrocardiogram.
[Explanation of symbols]
1
3 ROM
4 RAM
5 display control unit 6
Claims (10)
前記複数の異なる生体情報として、各々の現在の測定数値と各々の変化傾向を示す符号又は図形を対にして表示部に表示する表示制御部、
を具備することを特徴とする生体情報処理装置。A biological information processing apparatus that displays a plurality of different biological information measurement results on a display unit,
As the plurality of different biological information, a display control unit that displays on the display unit a pair of a code or a graphic indicating each current measured value and each change tendency,
A biological information processing apparatus comprising:
前記複数の異なる生体情報として、各々の変化傾向を示す符号又は図形を表示部に表示する表示制御部、
を具備することを特徴とする生体情報処理装置。A biological information processing apparatus that displays a plurality of different biological information measurement results on a display unit,
As the plurality of different biological information, a display control unit that displays a code or a graphic indicating each change tendency on a display unit,
A biological information processing apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002296449A JP2004129788A (en) | 2002-10-09 | 2002-10-09 | Device for processing biological information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002296449A JP2004129788A (en) | 2002-10-09 | 2002-10-09 | Device for processing biological information |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004129788A true JP2004129788A (en) | 2004-04-30 |
Family
ID=32286442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002296449A Pending JP2004129788A (en) | 2002-10-09 | 2002-10-09 | Device for processing biological information |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004129788A (en) |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008029793A (en) * | 2006-07-07 | 2008-02-14 | Crosswell:Kk | Living body monitoring system, and control method and program thereof |
JP2008099876A (en) * | 2006-10-19 | 2008-05-01 | Crosswell:Kk | Biological monitoring system and program |
JP2010057677A (en) * | 2008-09-03 | 2010-03-18 | Fukuda Denshi Co Ltd | Biological data processing apparatus, biological data processing method and biological data processing program |
JP2011516238A (en) * | 2008-04-15 | 2011-05-26 | タフツ メディカル センター インコーポレイテッド | Fetal ECG monitoring |
JP2013173043A (en) * | 2013-06-12 | 2013-09-05 | Fukuda Denshi Co Ltd | Biological information processing device, exercise electrocardiographic testing system and biological information processing program |
JP2013205139A (en) * | 2012-03-28 | 2013-10-07 | Hioki Ee Corp | Measuring device, portable terminal device, measuring system and program for measuring system |
JP2014179091A (en) * | 2013-03-14 | 2014-09-25 | Depuy Synthes Products Llc | Methods, systems, and devices for monitoring and displaying medical parameters for patient |
JP2015084876A (en) * | 2013-10-29 | 2015-05-07 | 日本光電工業株式会社 | Biological information monitoring device and central monitor |
JP2015119741A (en) * | 2013-12-20 | 2015-07-02 | 日本光電工業株式会社 | Biological information display device |
US9433380B1 (en) | 2013-09-25 | 2016-09-06 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
WO2016145392A1 (en) * | 2015-03-12 | 2016-09-15 | Bardy Diagnostics, Inc. | Display arrangement for diagnosis of cardiac rhythm disorders |
US9504423B1 (en) | 2015-10-05 | 2016-11-29 | Bardy Diagnostics, Inc. | Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer |
US9545204B2 (en) | 2013-09-25 | 2017-01-17 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US9545228B2 (en) | 2013-09-25 | 2017-01-17 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and respiration-monitoring patch |
WO2017010421A1 (en) * | 2015-07-10 | 2017-01-19 | パラマウントベッド株式会社 | Patient status determination device, patient status determination method, and program |
US9554715B2 (en) | 2013-09-25 | 2017-01-31 | Bardy Diagnostics, Inc. | System and method for electrocardiographic data signal gain determination with the aid of a digital computer |
US9615763B2 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation |
US9619660B1 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Computer-implemented system for secure physiological data collection and processing |
US9655537B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US9655538B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography monitoring circuit |
US9700227B2 (en) | 2013-09-25 | 2017-07-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US9717433B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US9717432B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch using interlaced wire electrodes |
US9730641B2 (en) | 2013-09-25 | 2017-08-15 | Bardy Diagnostics, Inc. | Monitor recorder-implemented method for electrocardiography value encoding and compression |
US9737224B2 (en) | 2013-09-25 | 2017-08-22 | Bardy Diagnostics, Inc. | Event alerting through actigraphy embedded within electrocardiographic data |
US9775536B2 (en) | 2013-09-25 | 2017-10-03 | Bardy Diagnostics, Inc. | Method for constructing a stress-pliant physiological electrode assembly |
JPWO2017009972A1 (en) * | 2015-07-15 | 2017-10-05 | 三菱電機株式会社 | Antenna device and antenna excitation method |
JP2017192770A (en) * | 2017-06-22 | 2017-10-26 | パラマウントベッド株式会社 | Patient state determination device and program |
US9820665B2 (en) | 2013-09-25 | 2017-11-21 | Bardy Diagnostics, Inc. | Remote interfacing of extended wear electrocardiography and physiological sensor monitor |
US10045709B2 (en) | 2013-09-25 | 2018-08-14 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10165946B2 (en) | 2013-09-25 | 2019-01-01 | Bardy Diagnostics, Inc. | Computer-implemented system and method for providing a personal mobile device-triggered medical intervention |
US10251576B2 (en) | 2013-09-25 | 2019-04-09 | Bardy Diagnostics, Inc. | System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer |
US10433748B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US10433751B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data |
US10463269B2 (en) | 2013-09-25 | 2019-11-05 | Bardy Diagnostics, Inc. | System and method for machine-learning-based atrial fibrillation detection |
US10624551B2 (en) | 2013-09-25 | 2020-04-21 | Bardy Diagnostics, Inc. | Insertable cardiac monitor for use in performing long term electrocardiographic monitoring |
US10667711B1 (en) | 2013-09-25 | 2020-06-02 | Bardy Diagnostics, Inc. | Contact-activated extended wear electrocardiography and physiological sensor monitor recorder |
US10736531B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection |
US10736529B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable electrocardiography monitor |
US10799137B2 (en) | 2013-09-25 | 2020-10-13 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10806360B2 (en) | 2013-09-25 | 2020-10-20 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US10820801B2 (en) | 2013-09-25 | 2020-11-03 | Bardy Diagnostics, Inc. | Electrocardiography monitor configured for self-optimizing ECG data compression |
US10888239B2 (en) | 2013-09-25 | 2021-01-12 | Bardy Diagnostics, Inc. | Remote interfacing electrocardiography patch |
US11096579B2 (en) | 2019-07-03 | 2021-08-24 | Bardy Diagnostics, Inc. | System and method for remote ECG data streaming in real-time |
US11116451B2 (en) | 2019-07-03 | 2021-09-14 | Bardy Diagnostics, Inc. | Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities |
JP2021180004A (en) * | 2012-04-16 | 2021-11-18 | エアストリップ アイピー ホールディングス リミテッド ライアビリティ カンパニー | Systems and methods for displaying patient data |
US11213237B2 (en) | 2013-09-25 | 2022-01-04 | Bardy Diagnostics, Inc. | System and method for secure cloud-based physiological data processing and delivery |
US11324441B2 (en) | 2013-09-25 | 2022-05-10 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US11678830B2 (en) | 2017-12-05 | 2023-06-20 | Bardy Diagnostics, Inc. | Noise-separating cardiac monitor |
US11723575B2 (en) | 2013-09-25 | 2023-08-15 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US12026811B2 (en) | 2012-04-16 | 2024-07-02 | Airstrip Ip Holdings, Llc | Systems and methods for displaying patient data |
US12033754B2 (en) | 2012-04-16 | 2024-07-09 | Airstrip Ip Holdings, Llc | Systems and methods for and displaying patient data |
-
2002
- 2002-10-09 JP JP2002296449A patent/JP2004129788A/en active Pending
Cited By (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008029793A (en) * | 2006-07-07 | 2008-02-14 | Crosswell:Kk | Living body monitoring system, and control method and program thereof |
JP2008099876A (en) * | 2006-10-19 | 2008-05-01 | Crosswell:Kk | Biological monitoring system and program |
JP2011516238A (en) * | 2008-04-15 | 2011-05-26 | タフツ メディカル センター インコーポレイテッド | Fetal ECG monitoring |
JP2010057677A (en) * | 2008-09-03 | 2010-03-18 | Fukuda Denshi Co Ltd | Biological data processing apparatus, biological data processing method and biological data processing program |
JP2013205139A (en) * | 2012-03-28 | 2013-10-07 | Hioki Ee Corp | Measuring device, portable terminal device, measuring system and program for measuring system |
US12033754B2 (en) | 2012-04-16 | 2024-07-09 | Airstrip Ip Holdings, Llc | Systems and methods for and displaying patient data |
US12026811B2 (en) | 2012-04-16 | 2024-07-02 | Airstrip Ip Holdings, Llc | Systems and methods for displaying patient data |
JP2021180004A (en) * | 2012-04-16 | 2021-11-18 | エアストリップ アイピー ホールディングス リミテッド ライアビリティ カンパニー | Systems and methods for displaying patient data |
US10271798B2 (en) | 2013-03-14 | 2019-04-30 | Integra Lifesciences Corporation | Methods, systems, and devices for monitoring and displaying medical parameters for a patient |
JP2014179091A (en) * | 2013-03-14 | 2014-09-25 | Depuy Synthes Products Llc | Methods, systems, and devices for monitoring and displaying medical parameters for patient |
JP2013173043A (en) * | 2013-06-12 | 2013-09-05 | Fukuda Denshi Co Ltd | Biological information processing device, exercise electrocardiographic testing system and biological information processing program |
US10561328B2 (en) | 2013-09-25 | 2020-02-18 | Bardy Diagnostics, Inc. | Multipart electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation |
US10433748B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US9545228B2 (en) | 2013-09-25 | 2017-01-17 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and respiration-monitoring patch |
US11918364B2 (en) | 2013-09-25 | 2024-03-05 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US11826151B2 (en) | 2013-09-25 | 2023-11-28 | Bardy Diagnostics, Inc. | System and method for physiological data classification for use in facilitating diagnosis |
US9554715B2 (en) | 2013-09-25 | 2017-01-31 | Bardy Diagnostics, Inc. | System and method for electrocardiographic data signal gain determination with the aid of a digital computer |
US9615763B2 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation |
US9619660B1 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Computer-implemented system for secure physiological data collection and processing |
US9642537B2 (en) | 2013-09-25 | 2017-05-09 | Bardy Diagnostics, Inc. | Ambulatory extended-wear electrocardiography and syncope sensor monitor |
US9655537B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US9655538B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography monitoring circuit |
US10716516B2 (en) | 2013-09-25 | 2020-07-21 | Bardy Diagnostics, Inc. | Monitor recorder-implemented method for electrocardiography data compression |
US9717433B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US9717432B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch using interlaced wire electrodes |
US9730593B2 (en) | 2013-09-25 | 2017-08-15 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US9730641B2 (en) | 2013-09-25 | 2017-08-15 | Bardy Diagnostics, Inc. | Monitor recorder-implemented method for electrocardiography value encoding and compression |
US9737211B2 (en) | 2013-09-25 | 2017-08-22 | Bardy Diagnostics, Inc. | Ambulatory rescalable encoding monitor recorder |
US9737224B2 (en) | 2013-09-25 | 2017-08-22 | Bardy Diagnostics, Inc. | Event alerting through actigraphy embedded within electrocardiographic data |
US9775536B2 (en) | 2013-09-25 | 2017-10-03 | Bardy Diagnostics, Inc. | Method for constructing a stress-pliant physiological electrode assembly |
US11793441B2 (en) | 2013-09-25 | 2023-10-24 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11786159B2 (en) | 2013-09-25 | 2023-10-17 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography and physiological sensor monitor |
US11744513B2 (en) | 2013-09-25 | 2023-09-05 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US9820665B2 (en) | 2013-09-25 | 2017-11-21 | Bardy Diagnostics, Inc. | Remote interfacing of extended wear electrocardiography and physiological sensor monitor |
US9901274B2 (en) | 2013-09-25 | 2018-02-27 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11723575B2 (en) | 2013-09-25 | 2023-08-15 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11701045B2 (en) | 2013-09-25 | 2023-07-18 | Bardy Diagnostics, Inc. | Expended wear ambulatory electrocardiography monitor |
US9955911B2 (en) | 2013-09-25 | 2018-05-01 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor recorder |
US9955888B2 (en) | 2013-09-25 | 2018-05-01 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder optimized for internal signal processing |
US9955885B2 (en) | 2013-09-25 | 2018-05-01 | Bardy Diagnostics, Inc. | System and method for physiological data processing and delivery |
US10004415B2 (en) | 2013-09-25 | 2018-06-26 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US10045709B2 (en) | 2013-09-25 | 2018-08-14 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10052022B2 (en) | 2013-09-25 | 2018-08-21 | Bardy Diagnostics, Inc. | System and method for providing dynamic gain over non-noise electrocardiographic data with the aid of a digital computer |
US10631748B2 (en) | 2013-09-25 | 2020-04-28 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch with wire interconnects |
US11701044B2 (en) | 2013-09-25 | 2023-07-18 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US10154793B2 (en) | 2013-09-25 | 2018-12-18 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch with wire contact surfaces |
US10165946B2 (en) | 2013-09-25 | 2019-01-01 | Bardy Diagnostics, Inc. | Computer-implemented system and method for providing a personal mobile device-triggered medical intervention |
US10172534B2 (en) | 2013-09-25 | 2019-01-08 | Bardy Diagnostics, Inc. | Remote interfacing electrocardiography patch |
US10251576B2 (en) | 2013-09-25 | 2019-04-09 | Bardy Diagnostics, Inc. | System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer |
US10251575B2 (en) | 2013-09-25 | 2019-04-09 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US10265015B2 (en) | 2013-09-25 | 2019-04-23 | Bardy Diagnostics, Inc. | Monitor recorder optimized for electrocardiography and respiratory data acquisition and processing |
US10264992B2 (en) | 2013-09-25 | 2019-04-23 | Bardy Diagnostics, Inc. | Extended wear sewn electrode electrocardiography monitor |
US10271755B2 (en) | 2013-09-25 | 2019-04-30 | Bardy Diagnostics, Inc. | Method for constructing physiological electrode assembly with sewn wire interconnects |
US11678832B2 (en) | 2013-09-25 | 2023-06-20 | Bardy Diagnostics, Inc. | System and method for atrial fibrillation detection in non-noise ECG data with the aid of a digital computer |
US10271756B2 (en) | 2013-09-25 | 2019-04-30 | Bardy Diagnostics, Inc. | Monitor recorder optimized for electrocardiographic signal processing |
US10278603B2 (en) | 2013-09-25 | 2019-05-07 | Bardy Diagnostics, Inc. | System and method for secure physiological data acquisition and storage |
US10278606B2 (en) | 2013-09-25 | 2019-05-07 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation |
US11678799B2 (en) | 2013-09-25 | 2023-06-20 | Bardy Diagnostics, Inc. | Subcutaneous electrocardiography monitor configured for test-based data compression |
US10398334B2 (en) | 2013-09-25 | 2019-09-03 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography monitoring circuit |
US10413205B2 (en) | 2013-09-25 | 2019-09-17 | Bardy Diagnostics, Inc. | Electrocardiography and actigraphy monitoring system |
US10433743B1 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | Method for secure physiological data acquisition and storage |
US10667711B1 (en) | 2013-09-25 | 2020-06-02 | Bardy Diagnostics, Inc. | Contact-activated extended wear electrocardiography and physiological sensor monitor recorder |
US10433751B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data |
US10463269B2 (en) | 2013-09-25 | 2019-11-05 | Bardy Diagnostics, Inc. | System and method for machine-learning-based atrial fibrillation detection |
US10478083B2 (en) | 2013-09-25 | 2019-11-19 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US10499812B2 (en) | 2013-09-25 | 2019-12-10 | Bardy Diagnostics, Inc. | System and method for applying a uniform dynamic gain over cardiac data with the aid of a digital computer |
US11660037B2 (en) | 2013-09-25 | 2023-05-30 | Bardy Diagnostics, Inc. | System for electrocardiographic signal acquisition and processing |
US10561326B2 (en) | 2013-09-25 | 2020-02-18 | Bardy Diagnostics, Inc. | Monitor recorder optimized for electrocardiographic potential processing |
US10602977B2 (en) | 2013-09-25 | 2020-03-31 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US10624551B2 (en) | 2013-09-25 | 2020-04-21 | Bardy Diagnostics, Inc. | Insertable cardiac monitor for use in performing long term electrocardiographic monitoring |
US10624552B2 (en) | 2013-09-25 | 2020-04-21 | Bardy Diagnostics, Inc. | Method for constructing physiological electrode assembly with integrated flexile wire components |
US10111601B2 (en) | 2013-09-25 | 2018-10-30 | Bardy Diagnostics, Inc. | Extended wear electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation |
US9545204B2 (en) | 2013-09-25 | 2017-01-17 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US9700227B2 (en) | 2013-09-25 | 2017-07-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US10736532B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnotics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10736531B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection |
US10736529B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable electrocardiography monitor |
US10799137B2 (en) | 2013-09-25 | 2020-10-13 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10806360B2 (en) | 2013-09-25 | 2020-10-20 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US10813567B2 (en) | 2013-09-25 | 2020-10-27 | Bardy Diagnostics, Inc. | System and method for composite display of subcutaneous cardiac monitoring data |
US10813568B2 (en) | 2013-09-25 | 2020-10-27 | Bardy Diagnostics, Inc. | System and method for classifier-based atrial fibrillation detection with the aid of a digital computer |
US10820801B2 (en) | 2013-09-25 | 2020-11-03 | Bardy Diagnostics, Inc. | Electrocardiography monitor configured for self-optimizing ECG data compression |
US10849523B2 (en) | 2013-09-25 | 2020-12-01 | Bardy Diagnostics, Inc. | System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders |
US11660035B2 (en) | 2013-09-25 | 2023-05-30 | Bardy Diagnostics, Inc. | Insertable cardiac monitor |
US10888239B2 (en) | 2013-09-25 | 2021-01-12 | Bardy Diagnostics, Inc. | Remote interfacing electrocardiography patch |
US10939841B2 (en) | 2013-09-25 | 2021-03-09 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US11006883B2 (en) | 2013-09-25 | 2021-05-18 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US11013446B2 (en) | 2013-09-25 | 2021-05-25 | Bardy Diagnostics, Inc. | System for secure physiological data acquisition and delivery |
US11051743B2 (en) | 2013-09-25 | 2021-07-06 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11051754B2 (en) | 2013-09-25 | 2021-07-06 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US11653868B2 (en) | 2013-09-25 | 2023-05-23 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for electrocardiographic (ECG) signal acquisition |
US11103173B2 (en) | 2013-09-25 | 2021-08-31 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11653870B2 (en) | 2013-09-25 | 2023-05-23 | Bardy Diagnostics, Inc. | System and method for display of subcutaneous cardiac monitoring data |
US9433380B1 (en) | 2013-09-25 | 2016-09-06 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US11179087B2 (en) | 2013-09-25 | 2021-11-23 | Bardy Diagnostics, Inc. | System for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US11213237B2 (en) | 2013-09-25 | 2022-01-04 | Bardy Diagnostics, Inc. | System and method for secure cloud-based physiological data processing and delivery |
US11272872B2 (en) | 2013-09-25 | 2022-03-15 | Bardy Diagnostics, Inc. | Expended wear ambulatory electrocardiography and physiological sensor monitor |
US11324441B2 (en) | 2013-09-25 | 2022-05-10 | Bardy Diagnostics, Inc. | Electrocardiography and respiratory monitor |
US11445964B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | System for electrocardiographic potentials processing and acquisition |
US11445908B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Subcutaneous electrocardiography monitor configured for self-optimizing ECG data compression |
US11445967B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US11445961B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography and physiological sensor monitor |
US11445966B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US11445907B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Ambulatory encoding monitor recorder optimized for rescalable encoding and method of use |
US11445969B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | System and method for event-centered display of subcutaneous cardiac monitoring data |
US11445965B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for long-term electrocardiographic monitoring |
US11445962B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor |
US11445970B2 (en) | 2013-09-25 | 2022-09-20 | Bardy Diagnostics, Inc. | System and method for neural-network-based atrial fibrillation detection with the aid of a digital computer |
US11457852B2 (en) | 2013-09-25 | 2022-10-04 | Bardy Diagnostics, Inc. | Multipart electrocardiography monitor |
US11653869B2 (en) | 2013-09-25 | 2023-05-23 | Bardy Diagnostics, Inc. | Multicomponent electrocardiography monitor |
US11647939B2 (en) | 2013-09-25 | 2023-05-16 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US11647941B2 (en) | 2013-09-25 | 2023-05-16 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
JP2015084876A (en) * | 2013-10-29 | 2015-05-07 | 日本光電工業株式会社 | Biological information monitoring device and central monitor |
JP2015119741A (en) * | 2013-12-20 | 2015-07-02 | 日本光電工業株式会社 | Biological information display device |
WO2016145392A1 (en) * | 2015-03-12 | 2016-09-15 | Bardy Diagnostics, Inc. | Display arrangement for diagnosis of cardiac rhythm disorders |
CN107847142A (en) * | 2015-07-10 | 2018-03-27 | 八乐梦床业有限公司 | Patient's states decision maker, patient's states decision method and program |
WO2017010421A1 (en) * | 2015-07-10 | 2017-01-19 | パラマウントベッド株式会社 | Patient status determination device, patient status determination method, and program |
JP2017018380A (en) * | 2015-07-10 | 2017-01-26 | パラマウントベッド株式会社 | Patient state determination device |
US11583189B2 (en) | 2015-07-10 | 2023-02-21 | Paramount Bed Co., Ltd. | Patient status determination device, patient status determination method and program |
JPWO2017009972A1 (en) * | 2015-07-15 | 2017-10-05 | 三菱電機株式会社 | Antenna device and antenna excitation method |
US9504423B1 (en) | 2015-10-05 | 2016-11-29 | Bardy Diagnostics, Inc. | Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer |
US9788722B2 (en) | 2015-10-05 | 2017-10-17 | Bardy Diagnostics, Inc. | Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer |
US10390700B2 (en) | 2015-10-05 | 2019-08-27 | Bardy Diagnostics, Inc. | Health monitoring apparatus for initiating a treatment of a patient based on physiological data with the aid of a digital computer |
US10869601B2 (en) | 2015-10-05 | 2020-12-22 | Bardy Diagnostics, Inc. | System and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer |
US10123703B2 (en) | 2015-10-05 | 2018-11-13 | Bardy Diagnostics, Inc. | Health monitoring apparatus with wireless capabilities for initiating a patient treatment with the aid of a digital computer |
US9936875B2 (en) | 2015-10-05 | 2018-04-10 | Bardy Diagnostics, Inc. | Health monitoring apparatus for initiating a treatment of a patient with the aid of a digital computer |
JP2017192770A (en) * | 2017-06-22 | 2017-10-26 | パラマウントベッド株式会社 | Patient state determination device and program |
US11678830B2 (en) | 2017-12-05 | 2023-06-20 | Bardy Diagnostics, Inc. | Noise-separating cardiac monitor |
US11116451B2 (en) | 2019-07-03 | 2021-09-14 | Bardy Diagnostics, Inc. | Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities |
US11653880B2 (en) | 2019-07-03 | 2023-05-23 | Bardy Diagnostics, Inc. | System for cardiac monitoring with energy-harvesting-enhanced data transfer capabilities |
US11096579B2 (en) | 2019-07-03 | 2021-08-24 | Bardy Diagnostics, Inc. | System and method for remote ECG data streaming in real-time |
US11678798B2 (en) | 2019-07-03 | 2023-06-20 | Bardy Diagnostics Inc. | System and method for remote ECG data streaming in real-time |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004129788A (en) | Device for processing biological information | |
US11963744B2 (en) | Bio-information output device, bio-information output method and program | |
Tomasic et al. | Continuous remote monitoring of COPD patients—justification and explanation of the requirements and a survey of the available technologies | |
US11123023B2 (en) | Method and apparatus for determining respiratory information for a subject | |
EP3429456B1 (en) | A method and apparatus for determining a baseline for one or more physiological characteristics of a subject | |
EP1776039B1 (en) | Non-invasive heart monitoring apparatus | |
CN107405088B (en) | Device and method for providing a control signal for a blood pressure measuring device | |
JP2019512370A (en) | Sleep apnea monitoring system | |
JP2010518970A (en) | System and method of orthostatic detection | |
JP2009089883A (en) | Atrial fibrillation detector, system and method | |
US9211097B2 (en) | Physiological monitoring apparatus | |
JP4883380B2 (en) | Biological physiology detection device | |
WO2017220526A1 (en) | A method and apparatus for determining respiratory information for a subject | |
JP2018512237A (en) | A tool for recommendation of ventilation treatment guided by risk score for acute respiratory distress syndrome (ARDS) | |
US20220000435A1 (en) | Method and apparatus for determining respiratory information for a subject | |
JP2001128945A (en) | Longitudinal division display system for plural patients' data | |
US20100106030A1 (en) | Method and system for automated measurement of pulsus paradoxus | |
Bawua et al. | Agreement between respiratory rate measurement using a combined electrocardiographic derived method versus impedance from pneumography | |
JP2017035473A (en) | Biological information measurement device, respiration interval display method, and program | |
WO2017038966A1 (en) | Bio-information output device, bio-information output method and program | |
JP2008029793A (en) | Living body monitoring system, and control method and program thereof | |
JP2015512290A (en) | Interactive monitoring apparatus and method based on concrete evidence | |
Rotariu et al. | Medical system based on wireleless sensors for real time remote monitoring of people with disabilities | |
Wisana et al. | Design Oxygen Saturation Monitoring in Telemedicine Smartphone System (TmSS) | |
KR102521294B1 (en) | System for Monitoring Vital Sign by Using Continuous Blood Pressure Measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070718 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080109 |