JP2004040614A - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
JP2004040614A
JP2004040614A JP2002196959A JP2002196959A JP2004040614A JP 2004040614 A JP2004040614 A JP 2004040614A JP 2002196959 A JP2002196959 A JP 2002196959A JP 2002196959 A JP2002196959 A JP 2002196959A JP 2004040614 A JP2004040614 A JP 2004040614A
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
sound absorbing
absorbing material
piezoelectric vibrator
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196959A
Other languages
Japanese (ja)
Inventor
Katsuto Tomiyama
富山 克人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002196959A priority Critical patent/JP2004040614A/en
Publication of JP2004040614A publication Critical patent/JP2004040614A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive ultrasonic sensor, which eliminates complex machinings, such as level difference at the bottom plane of a metal casing, and is easily manufactured, and has little variation in characteristics with an improved directional characteristics. <P>SOLUTION: Sound absorbing material with a recess is jointed on a vibrating plate so that the material is placed in a way non-contact to a piezoelectric vibrating element. According to this arrangement, vibration hindrance against a piezoelectric vibrator due to contact of acoustic material or inflow of elastic material can be avoided, and the resonant frequency and the impedance characteristics of the piezoelectric vibrator can be stabilized. As a result, an ultrasonic sensor with a small half-value angle and an improved directional characteristics can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、超音波信号を送波するとともに障害物からの反射波を受波して障害物の存在を検知する超音波センサに関するものであり、特に自動車のバックソナーやコーナーソナーに好適な防滴型超音波センサに関するものである。
【0002】
【従来の技術】
従来のこの種の超音波センサを図6(a)に示す。図6(b)には、図中、上から見た図6(a)のEE断面平面図を示す。該超音波センサは、アルミニウム等の金属で形成された有底筒状ケース61の底面が長円形の振動板62になっており、該振動板62の内側には圧電振動子63が接合された構造となっている。該圧電振動子63は表裏面がメタライズ処理されており、電気的接続はリード線64、65により行われる。一方のリード線64は、前記圧電振動子の表面電極に半田付けされている。他方のリード線65は、前記有底筒状のケース61に接合されており、前記振動板62を通して前記圧電振動子との接合面で表面電極と導通している。前記有底筒状ケース61の内部には、圧電振動子63に接触しないスポンジ等からなる吸音材層66が形成されており、該吸音材層66の外側に前記有底筒状ケース61内に雨滴や湿気などの進入を防止するために、シリコン樹脂等の弾性体67が充填されている。該弾性体67内部でリード線64,65と信号線68,69が半田付けで接続されている。
【0003】
前述の超音波センサは、以下の様に動作する。信号線68,69から圧電振動子63に間欠的に駆動交流電圧を印加すると、前記圧電振動子63は圧電効果により振動し、それに伴い該圧電振動子63に接合した有底筒状ケースの振動板62が振動し、該振動板62から超音波が空気中に放出される。前記圧電振動子63の駆動は間欠的に行われ、駆動が停止している時間内に、被検出物から反射してきた超音波が前記振動板62を介して前記圧電振動子63に達し、該圧電振動子63の圧電効果によって電圧信号に変換され前記信号線68,69より出力される。
【0004】
ここで、超音波を放出してから反射波が戻ってくるまでの時間と被検出物までの距離は比例関係にあるので、送波から受波までの経過時間を観測することによって被検出物までの距離を計測することができる。
【0005】
特に、自動車のバックソナーやコーナーソナーに用いられる超音波センサーには、障害物の存在を検知するため、横方向(水平方向)の検知エリアを広くし、検出する必要の無い路面や縁石等の検知をさけるために、縦方向(垂直方向)の検知エリアを狭くする事が要求されるので、使用される超音波センサには、水平方向いは広く、垂直方向に狭い指向特性が求められる。
【0006】
超音波センサの指向特性は、振動面積を大きくすると狭くなり、振動面積を小さくすると広くなることが知られている。したがって、従来の超音波センサにおいては、図6に示したように、縦方向と横方向の指向特性を変えるために振動板を長円形とし、該長円形の長軸方向を垂直方向に、短軸方向を水平方向になるよう超音波センサを設置する方法が採られている。
【0007】
ところで、一方では、外観上や取り付けスペースの理由から、超音波センサには小型化が求められており、前述のように、超音波センサの指向特性と振動面積、即ち外形は相反する関係にあるために、外形を小さく保ったまま縦方向の指向特性を狭くすることが困難であるという問題点がある。
【0008】
この問題点の解決手段の一例として、特開2000−32594号公報がある。該公報では、図7(a)に示したように、有底筒状ケース71の底面に長円形の振動板72を有し、該振動板72には薄肉部74と肉厚部73とを設け、該肉厚部73上に圧電振動子75を固着することによって、水平方向と垂直方向の指向特性を制御しようという試みがなされている。図7(b)には、図中、上から見た図7(a)のGG断面平面図を示す。
【0009】
また、他の解決手段の一例を図8に示した。図8では、有底筒状ケース81の底部を振動板82とし、該振動板82の内面に接合された圧電振動子83上に吸音材84を配し、さらに、有底筒状ケース81の内側を弾性体85で充填した構造で、振動面の拘束力を部分的に変化させ、指向特性を制御する考案がある。
【0010】
【発明が解決しようとする課題】
しかしながら、図7(a)の構造では、振動面の短軸方向(図における水平方向)と長軸方向(図における垂直方向)で厚みが異なるために振動モードが近接した2つの共振周波数を持つことになる。しかしながら、駆動回路の周波数は一定であるために、どちらか一方の共振周波数で駆動することになり、近接したもう一つの共振周波数の振動モードの影響を受け、指向特性が不安定になるという問題点がある。
【0011】
また、図7(a)に示した有底筒状ケース71は、機械加工の削り出しにより製造されるが、有底筒状ケース71の底面の振動板72に、薄肉部74と肉厚部73とを設ける機械加工は、コストが高く、かつ各部に寸法のばらつきが生じ易く、該寸法のばらつきは超音波センサの共振周波数、感度、残響特性等の各種特性に大きな影響を与えるため、特性の均一な超音波センサを作製することが難しいという問題点もある。
【0012】
また、図8のような構造の場合には、圧電振動子83上の吸音材84が圧電振動子83の振動を拘束し、吸音材84を配置したときの圧力や弾性体85の接触圧によって、この拘束力がばらつくため、超音波センサの共振周波数やインピーダンス特性がばらつき、その結果、センサ感度、指向特性、残響特性等の各種特性がばらつくという問題点がある。
【0013】
そこで、本発明は、製造が容易で、特性のばらつきが少なく、指向特性が向上した、安価な超音波センサを得ることを目的とする。
【0014】
【課題を解決するための手段】
本発明によれば、底部が長円形の振動板となる有底筒状ケースと、該有底筒状ケースの底部の内側に接合されてなる圧電振動子と、該圧電振動子に非接触に係合する凹部を有し前記有底筒状ケースの底部に接合されてなる吸音材と、前記筒状ケースの内側に充填されてなる弾性体からなることを特徴とする超音波センサが得られる。
【0015】
また、前記超音波センサにおいて、前記振動板の長軸方向で前記吸音材の凹部の内側の寸法の半分をr1、前記振動板の長軸方向の長さの半分をRとした時、r1/Rの値が0.3≦r1/R<1の範囲にあることを特徴とする超音波センサが得られる。
【0016】
また、前記超音波センサにおいて、前記振動板の長軸方向で前記吸音材の凹部の長軸方向の内側の寸法の半分をr1、外側の寸法の半分をr2とした時、r1/r2の値が0.4≦r1/r2<1の範囲にあることを特徴とする超音波センサが得られる。
【0017】
本発明では、凹部を設けた吸音材を圧電振動素子に非接触に係合するように振動面上に接合することによって、吸音材の接触や弾性材の流れ込みによる圧電振動子の振動阻害を回避し、圧電振動子の共振周波数やインピーダンス特性を安定化することができ、その結果、超音波センサの感度、指向角度、残響特性等の各種特性もばらつきが小さくなり安定化することが可能である。
【0018】
また、吸音材の外側のケース内部には、弾性材を充填することによって、振動面を拘束し、振動時の変位形態を制御することで、超音波センサの指向特性の狭角化の実現を可能としている。
【0019】
【実施例】
以下に実施例を示し、本発明を詳細に説明する。
【0020】
図1(a)は、本発明による一実施例による超音波センサの構造を示す断面図、および図1(b)には、図中、上から見た図1(a)のAA断面平面図を示す。アルミニウムを機械加工してなる外径20mm、高さ10mmの有底筒状ケース11の底面には、超音波振動を放出、受波する長円形状の厚み1mmの振動板12が、一体に設けられている。次に、表裏面に電極を形成し厚み方向に分極した外径6mm、厚さ1mmの円板状の圧電振動子13を、エポキシ系接着剤により振動板12の内面中央部に接合し、表面電極にはリード線14の一端を接続した。
【0021】
更に、図2に示すような発泡ポリウレタンの材質からなる吸音材16には、圧電振動子13の外形より大きく厚さより深い、深さ1.5mmの円筒状の凹部21を成型し、前記吸音材16を、圧電振動子13上に非接触で係合するように、耐熱性の接着剤にて振動板2に接着した。この吸音材16は、振動板12の振動により発生した超音波がケース内部で反射して感度や指向特性に影響を及ぼすのを防止するために配置される。また、図2に示すように、吸音材16には、リード線14を通すための穴22が設けられており、該穴22にリード線14を通した後に振動板12に接着した。
【0022】
しかる後に、超音波センサの指向特性の狭角化のため、振動面を拘束するシリコーン樹脂17を有底筒状ケース11の内部に充填し、超音波センサーを試作した。
【0023】
試作した超音波センサを用いて、吸音材の寸法を変化させたときの指向特性を調査した。図3(a)は、試作した超音波センサの寸法を示す断面図である。また、図3(b)には、図中、上から見た図3(a)のCC断面平面図を示す。振動面の長軸方向の長さの半分をR、吸音材の凹部の長軸側の内側の寸法の半分をr1として、r1とRとの比をパラメータとして、超音波センサから60cm離れた物体に対し、垂直方向の超音波の反射波が半減する角度(半値角)を測定した。結果を図4に示した。
【0024】
図4に示したように、r1/R=1の場合、吸音材が振動面に接着されないので、図6に示した従来例と同じ構造となり、その半値角が40°であるのに対し、r1/R=0.3になるよう吸音材を構成した場合には、半値角が30°に減少することが確認された。そして、r1/R=1からr1/R=0.3まで半値角が暫減するので、r1/Rの値が0.3≦r1/R<1の範囲にあることが超音波センサの指向性の改善に必要である。
【0025】
また、吸音材の内側の寸法の半分をr1を一定とし、吸音材の長軸方向の外側の寸法の半分をr2とした時、r1とr2との比、即ち吸音材の接着面積に対する垂直方向の半減角の測定結果を図8に示した。図8から、r1/r2=0.9の時に約30°の半減角となりr1/r2が減少、即ちr2が大きくなり吸音材の接着面積が増えると、半減角は拡がっていくことが確認できた。したがって、r1/r2の値が0.4≦r1/r2<1の範囲にあることが超音波センサの指向性の改善に必要である。
【0026】
この結果より、凹部を設けた吸音材を圧電振動子に非接触に係合するように、振動面上に接合し、吸音材内部の空間を圧電振動子の振動を拘束しない範囲で小さくし、かつ吸音材の接着面積を少なくすることで半減角が狭くなることになる。これは、内部からのシリコーン樹脂の拘束範囲が大きい方が狭い指向特性を示すことを示している。振動面の変位形状を測定結果、シリコーン樹脂の拘束の範囲が増えるに従って平坦に振動面変位形状が平坦になっている事が確認され、したがって、この吸音材の形状により指向角を狭くすることが可能である。
【0027】
【発明の効果】
上述の様に、本発明によれば、凹部を設けた吸音材を圧電振動子に非接触に係合し、振動面に接合することにより、振動特性を制御し、指向特性を向上することが可能である。また、金属ケースの底面に段差等の複雑な機械加工の必要が無く、特性のばらつきが少なく、安価な超音波センサを得ることが可能となった。
【図面の簡単な説明】
【図1】本発明による超音波センサの構造を示す図。図1(a)は断面図、図1(b)は、図1(a)のAA断面の平面図。
【図2】本発明による超音波センサの吸音材を示す図。
【図3】本発明の構造を示す図。図3(a)は断面図、図3(b)は、図3(a)のCC断面の平面図。
【図4】振動板の長軸半径に対する吸音材内半径の比と半値角の関係を示す図。
【図5】吸音材内半径と吸音材外半径の比と半値角の関係を示す図。
【図6】従来構成の超音波センサの構造を示す図。図6(a)は断面図、図6(b)は、図6(a)のEE断面の平面図。
【図7】特開報2000―32594による超音波センサの構造を示す図、図7(a)は断面図、図7(b)は、図7(a)のGG断面の平面図。
【図8】指向特性制御の一例の超音波センサの断面図。
【符号の説明】
11  有底筒状ケース
12  振動板
13  圧電振動子
14,15  リード線
16  吸音材
17  シリコーン樹脂
18,19  信号線
21  吸音材に形成した凹部
22  穴
61  有底筒状ケース
62  振動板
63  圧電振動子
64,65  リード線
66  吸音材層
67  弾性体
68,69  信号線
71  有底筒状ケース
72  振動板
73  肉厚部
74  薄肉部
75  圧電振動子
81  有底筒状ケース
82  振動板
83  圧電振動子
84  吸音材
85  弾性体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic sensor that transmits an ultrasonic signal and receives a reflected wave from an obstacle to detect the presence of the obstacle, and is particularly suitable for a back sonar or a corner sonar of an automobile. The present invention relates to a drop type ultrasonic sensor.
[0002]
[Prior art]
FIG. 6A shows a conventional ultrasonic sensor of this type. FIG. 6B is a plan view of the EE section of FIG. 6A viewed from above in the figure. In the ultrasonic sensor, a bottom surface of a bottomed cylindrical case 61 formed of a metal such as aluminum is an oblong vibration plate 62, and a piezoelectric vibrator 63 is joined to the inside of the vibration plate 62. It has a structure. The piezoelectric vibrator 63 has metallized front and rear surfaces, and electrical connection is made by lead wires 64 and 65. One lead wire 64 is soldered to a surface electrode of the piezoelectric vibrator. The other lead wire 65 is joined to the bottomed cylindrical case 61, and is electrically connected to the surface electrode at the joint surface with the piezoelectric vibrator through the vibration plate 62. A sound absorbing material layer 66 made of a sponge or the like that does not contact the piezoelectric vibrator 63 is formed inside the bottomed cylindrical case 61, and inside the bottomed cylindrical case 61 outside the sound absorbing material layer 66. An elastic body 67 such as a silicone resin is filled to prevent entry of raindrops and moisture. The lead wires 64, 65 and the signal wires 68, 69 are connected by soldering inside the elastic body 67.
[0003]
The above-described ultrasonic sensor operates as follows. When a driving AC voltage is intermittently applied to the piezoelectric vibrator 63 from the signal lines 68 and 69, the piezoelectric vibrator 63 vibrates due to the piezoelectric effect, and the vibration of the bottomed cylindrical case joined to the piezoelectric vibrator 63 accordingly. The plate 62 vibrates, and ultrasonic waves are emitted from the diaphragm 62 into the air. The driving of the piezoelectric vibrator 63 is performed intermittently, and the ultrasonic wave reflected from the detected object reaches the piezoelectric vibrator 63 via the vibration plate 62 during the time when the driving is stopped. The signal is converted into a voltage signal by the piezoelectric effect of the piezoelectric vibrator 63 and output from the signal lines 68 and 69.
[0004]
Here, since the time from the emission of the ultrasonic wave to the return of the reflected wave and the distance to the object are proportional, the observation of the elapsed time from transmission to reception of the object The distance to can be measured.
[0005]
In particular, ultrasonic sensors used in back sonars and corner sonars of automobiles have a wider detection area in the horizontal direction (horizontal direction) to detect the presence of obstacles. In order to avoid detection, it is required to narrow the detection area in the vertical direction (vertical direction). Therefore, the ultrasonic sensor used is required to have a directional characteristic that is wide in the horizontal direction and narrow in the vertical direction.
[0006]
It is known that the directional characteristics of an ultrasonic sensor decrease as the vibration area increases, and increase as the vibration area decreases. Therefore, in the conventional ultrasonic sensor, as shown in FIG. 6, the diaphragm is formed into an elliptical shape in order to change the directional characteristics in the vertical direction and the horizontal direction, and the major axis direction of the elliptical shape is shortened in the vertical direction. A method of installing an ultrasonic sensor so that the axial direction is horizontal is adopted.
[0007]
On the other hand, on the other hand, the size of the ultrasonic sensor is required to be reduced in size due to the external appearance and the mounting space, and as described above, the directional characteristics and the vibration area, that is, the external shape of the ultrasonic sensor are in a contradictory relationship. Therefore, there is a problem that it is difficult to narrow the vertical directional characteristics while keeping the outer shape small.
[0008]
JP-A-2000-32594 is an example of a solution to this problem. In this publication, as shown in FIG. 7A, an oval diaphragm 72 is provided on the bottom surface of a bottomed cylindrical case 71, and the diaphragm 72 has a thin portion 74 and a thick portion 73. Attempts have been made to control the directional characteristics in the horizontal and vertical directions by providing a piezoelectric vibrator 75 on the thick portion 73. FIG. 7B is a plan view of the GG section of FIG. 7A viewed from above in the figure.
[0009]
FIG. 8 shows an example of another solution. In FIG. 8, the bottom of the bottomed cylindrical case 81 is a diaphragm 82, and a sound absorbing material 84 is disposed on a piezoelectric vibrator 83 joined to the inner surface of the diaphragm 82. There is a device in which the directional characteristic is controlled by partially changing the restraining force of the vibration surface with a structure in which the inside is filled with the elastic body 85.
[0010]
[Problems to be solved by the invention]
However, the structure shown in FIG. 7A has two resonance frequencies whose vibration modes are close to each other because the thickness of the vibration surface is different in the short axis direction (horizontal direction in the figure) and in the long axis direction (vertical direction in the figure). Will be. However, since the frequency of the drive circuit is constant, it is driven at one of the resonance frequencies, and the directional characteristics become unstable due to the influence of the vibration mode of another adjacent resonance frequency. There are points.
[0011]
The bottomed cylindrical case 71 shown in FIG. 7A is manufactured by machining, and the diaphragm 72 on the bottom surface of the bottomed cylindrical case 71 has a thin portion 74 and a thick portion. The machining with 73 is costly and tends to cause dimensional variations in each part, and the dimensional variations have a great effect on various characteristics of the ultrasonic sensor, such as resonance frequency, sensitivity, and reverberation characteristics. There is also a problem that it is difficult to manufacture an ultrasonic sensor having a uniform uniformity.
[0012]
In the case of the structure as shown in FIG. 8, the sound absorbing material 84 on the piezoelectric vibrator 83 restrains the vibration of the piezoelectric vibrator 83, and the pressure when the sound absorbing material 84 is disposed and the contact pressure of the elastic body 85 However, since the binding force varies, the resonance frequency and impedance characteristics of the ultrasonic sensor vary, and as a result, various characteristics such as sensor sensitivity, directional characteristics, and reverberation characteristics vary.
[0013]
Therefore, an object of the present invention is to provide an inexpensive ultrasonic sensor that is easy to manufacture, has small variations in characteristics, and has improved directional characteristics.
[0014]
[Means for Solving the Problems]
According to the present invention, a bottomed cylindrical case whose bottom is an elliptical diaphragm, a piezoelectric vibrator joined inside the bottom of the bottomed cylindrical case, and a non-contact with the piezoelectric vibrator An ultrasonic sensor characterized by comprising a sound absorbing material having a concave portion to be engaged and joined to the bottom of the bottomed cylindrical case and an elastic body filled inside the cylindrical case is obtained. .
[0015]
Further, in the ultrasonic sensor, when a half of a dimension inside a concave portion of the sound absorbing material in a major axis direction of the diaphragm is r1, and a half of a length of the diaphragm in a major axis direction is R, r1 / An ultrasonic sensor characterized in that the value of R is in the range of 0.3 ≦ r1 / R <1 is obtained.
[0016]
Further, in the ultrasonic sensor, a value of r1 / r2, where half of the inner dimension of the concave portion of the sound absorbing material in the major axis direction of the diaphragm is r1 and half of the outer dimension is r2 in the major axis direction of the diaphragm. Is in the range of 0.4 ≦ r1 / r2 <1.
[0017]
According to the present invention, by preventing the vibration of the piezoelectric vibrator due to the contact of the sound absorbing material and the flow of the elastic material, it is possible to prevent the vibration of the piezoelectric vibrator by joining the sound absorbing material provided with the concave portion on the vibration surface so as to engage with the piezoelectric vibration element in a non-contact manner. However, it is possible to stabilize the resonance frequency and impedance characteristics of the piezoelectric vibrator, and as a result, various characteristics of the ultrasonic sensor, such as sensitivity, directional angle, and reverberation characteristics, are reduced and can be stabilized. .
[0018]
Also, by filling the inside of the case outside the sound absorbing material with an elastic material, the vibration surface is constrained, and the displacement form at the time of vibration is controlled, thereby realizing a narrow angle of the directional characteristic of the ultrasonic sensor. It is possible.
[0019]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples.
[0020]
FIG. 1A is a cross-sectional view showing a structure of an ultrasonic sensor according to an embodiment of the present invention, and FIG. 1B is a plan view of an AA cross section of FIG. Is shown. An elliptical 1 mm-thick diaphragm 12 that emits and receives ultrasonic vibrations is integrally provided on the bottom surface of a cylindrical case 11 having an outer diameter of 20 mm and a height of 10 mm formed by machining aluminum. Have been. Next, a disc-shaped piezoelectric vibrator 13 having an outer diameter of 6 mm and a thickness of 1 mm, having electrodes formed on the front and back surfaces and polarized in the thickness direction, is joined to the center of the inner surface of the vibration plate 12 with an epoxy-based adhesive. One end of a lead wire 14 was connected to the electrode.
[0021]
Further, a cylindrical concave portion 21 having a depth of 1.5 mm, which is larger than the outer shape of the piezoelectric vibrator 13 and deeper than the thickness, is formed in the sound absorbing material 16 made of a foamed polyurethane material as shown in FIG. 16 was bonded to the vibration plate 2 with a heat-resistant adhesive so as to engage with the piezoelectric vibrator 13 in a non-contact manner. The sound absorbing member 16 is arranged to prevent ultrasonic waves generated by the vibration of the diaphragm 12 from being reflected inside the case and affecting sensitivity and directional characteristics. As shown in FIG. 2, the sound absorbing material 16 is provided with a hole 22 through which the lead wire 14 passes, and the sound absorbing material 16 is bonded to the diaphragm 12 after passing the lead wire 14 through the hole 22.
[0022]
Thereafter, in order to narrow the directional characteristics of the ultrasonic sensor, the inside of the bottomed cylindrical case 11 was filled with a silicone resin 17 for restraining the vibration surface, and an ultrasonic sensor was prototyped.
[0023]
Using the prototyped ultrasonic sensor, the directivity characteristics when the dimensions of the sound absorbing material were changed were investigated. FIG. 3A is a cross-sectional view illustrating dimensions of a prototype ultrasonic sensor. FIG. 3B is a cross-sectional plan view of CC in FIG. 3A viewed from above. An object 60 cm away from the ultrasonic sensor, with half the length of the vibrating surface in the major axis direction as R and half the inner dimension of the concave portion of the sound absorbing material on the major axis side as r1, and the ratio of r1 to R as a parameter. The angle at which the reflected ultrasonic wave in the vertical direction was reduced by half (half-value angle) was measured. The results are shown in FIG.
[0024]
As shown in FIG. 4, when r1 / R = 1, the sound absorbing material is not adhered to the vibrating surface, so that it has the same structure as the conventional example shown in FIG. 6, and its half-value angle is 40 °, When the sound absorbing material was configured so that r1 / R = 0.3, it was confirmed that the half-value angle was reduced to 30 °. Since the half-value angle gradually decreases from r1 / R = 1 to r1 / R = 0.3, it is determined that the value of r1 / R is in the range of 0.3 ≦ r1 / R <1. It is necessary to improve sex.
[0025]
When half of the inner dimension of the sound absorbing material is r1 and half of the outer dimension in the long axis direction of the sound absorbing material is r2, the ratio of r1 to r2, that is, the direction perpendicular to the bonding area of the sound absorbing material. FIG. 8 shows the measurement results of the half angle of the sample. From FIG. 8, it can be confirmed that when r1 / r2 = 0.9, the half angle is reduced to about 30 ° and r1 / r2 is reduced, that is, when r2 increases and the bonding area of the sound absorbing material increases, the half angle decreases. Was. Therefore, it is necessary for the value of r1 / r2 to be in the range of 0.4 ≦ r1 / r2 <1 in order to improve the directivity of the ultrasonic sensor.
[0026]
From this result, the sound absorbing material provided with the concave portion is joined to the vibrating surface so as to be engaged with the piezoelectric vibrator in a non-contact manner, and the space inside the sound absorbing material is reduced as far as the vibration of the piezoelectric vibrator is not restricted, In addition, by reducing the bonding area of the sound absorbing material, the half angle is reduced. This indicates that a larger restraint range of the silicone resin from the inside shows a narrower directional characteristic. As a result of measuring the displacement shape of the vibration surface, it was confirmed that the displacement shape of the vibration surface became flat as the range of restraint of the silicone resin was increased.Therefore, it was possible to narrow the directivity angle by the shape of the sound absorbing material. It is possible.
[0027]
【The invention's effect】
As described above, according to the present invention, it is possible to control the vibration characteristics and improve the directional characteristics by engaging the sound absorbing material provided with the concave portion with the piezoelectric vibrator in a non-contact manner and joining it to the vibration surface. It is possible. In addition, there is no need to perform complicated machining such as steps on the bottom surface of the metal case, and it is possible to obtain an inexpensive ultrasonic sensor with less variation in characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of an ultrasonic sensor according to the present invention. FIG. 1A is a cross-sectional view, and FIG. 1B is a plan view of an AA cross section in FIG.
FIG. 2 is a diagram showing a sound absorbing material of the ultrasonic sensor according to the present invention.
FIG. 3 is a diagram showing a structure of the present invention. 3A is a cross-sectional view, and FIG. 3B is a plan view of a CC cross section in FIG.
FIG. 4 is a diagram illustrating a relationship between a ratio of a radius of a sound absorbing material to a major axis radius of a diaphragm and a half-value angle.
FIG. 5 is a diagram showing the relationship between the ratio of the inner radius of the sound absorbing material and the outer radius of the sound absorbing material and the half-value angle.
FIG. 6 is a diagram showing a structure of an ultrasonic sensor having a conventional configuration. FIG. 6A is a sectional view, and FIG. 6B is a plan view of the EE section in FIG.
7A and 7B are diagrams showing a structure of an ultrasonic sensor according to Japanese Patent Application Laid-Open Publication No. 2000-32594, FIG. 7A is a cross-sectional view, and FIG. 7B is a plan view of a GG cross-section in FIG.
FIG. 8 is a sectional view of an ultrasonic sensor as an example of directivity control.
[Explanation of symbols]
Reference Signs List 11 bottomed cylindrical case 12 diaphragm 13 piezoelectric vibrator 14, 15 lead wire 16 sound absorbing material 17 silicone resin 18, 19 signal line 21 concave portion 22 formed in sound absorbing material hole 61 bottomed cylindrical case 62 diaphragm 63 piezoelectric vibration Element 64, 65 Lead wire 66 Sound absorbing material layer 67 Elastic body 68, 69 Signal line 71 Bottom cylindrical case 72 Vibration plate 73 Thick part 74 Thin part 75 Piezoelectric vibrator 81 Bottom cylindrical case 82 Vibration plate 83 Piezoelectric vibration Child 84 Sound absorbing material 85 Elastic body

Claims (3)

底部がランニングトラック形の振動板となる有底筒状ケースと、該有底筒状ケースの底部の内側に接合されてなる圧電振動子と、該圧電振動子に非接触で係合する凹部を有し前記有底筒状ケースの底部に接合されてなる吸音材と、前記筒状ケースの内側に充填されてなる弾性体からなることを特徴とする超音波センサ。A bottomed cylindrical case whose bottom is a running track-shaped diaphragm, a piezoelectric vibrator joined to the inside of the bottom of the bottomed cylindrical case, and a concave portion engaged with the piezoelectric vibrator in a non-contact manner An ultrasonic sensor comprising: a sound absorbing material joined to a bottom of the bottomed cylindrical case; and an elastic body filled inside the cylindrical case. 請求項1に記載の超音波センサにおいて、前記振動板の長軸方向で前記吸音材の凹部の内側の寸法の半分をr1、前記振動板の長軸方向の長さの半分をRとした時、r1/Rの値が0.3≦r1/R<1の範囲にあることを特徴とする超音波センサ。2. The ultrasonic sensor according to claim 1, wherein a half of a dimension inside the concave portion of the sound absorbing material in a major axis direction of the diaphragm is r1 and a half of a length of the diaphragm in the major axis direction is R. 3. , R1 / R is in the range of 0.3 ≦ r1 / R <1. 請求項1及び2に記載の超音波センサにおいて、前記振動板の長軸方向で吸音材の凹部の長軸方向の内側の寸法の半分をr1、外側の寸法の半分をr2とした時、r1/r2の値が0.4≦r1/r2<1の範囲にあることを特徴とする超音波センサ。3. The ultrasonic sensor according to claim 1, wherein in the major axis direction of the diaphragm, half of the inner dimension of the concave portion of the sound absorbing material in the major axis direction is r1 and half of the outer dimension is r2. An ultrasonic sensor, wherein the value of / r2 is in the range of 0.4 ≦ r1 / r2 <1.
JP2002196959A 2002-07-05 2002-07-05 Ultrasonic sensor Pending JP2004040614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196959A JP2004040614A (en) 2002-07-05 2002-07-05 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196959A JP2004040614A (en) 2002-07-05 2002-07-05 Ultrasonic sensor

Publications (1)

Publication Number Publication Date
JP2004040614A true JP2004040614A (en) 2004-02-05

Family

ID=31704848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196959A Pending JP2004040614A (en) 2002-07-05 2002-07-05 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP2004040614A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552276B1 (en) 2013-09-23 2015-09-10 경원산업 주식회사 Ultrasonic sensor
WO2017061422A1 (en) * 2015-10-09 2017-04-13 株式会社村田製作所 Ultrasonic transducer
JP2017117998A (en) * 2015-12-25 2017-06-29 日本特殊陶業株式会社 Piezoelectric element and method of manufacturing the same, foreign matter removal unit and ultrasonic sensor
WO2020095649A1 (en) * 2018-11-09 2020-05-14 株式会社村田製作所 Ultrasonic sensor
WO2021085598A1 (en) * 2019-11-01 2021-05-06 日本セラミック株式会社 Ultrasonic transceiver
DE112022001558T5 (en) 2021-03-18 2024-01-11 Murata Manufacturing Co., Ltd. Ultrasonic sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552276B1 (en) 2013-09-23 2015-09-10 경원산업 주식회사 Ultrasonic sensor
WO2017061422A1 (en) * 2015-10-09 2017-04-13 株式会社村田製作所 Ultrasonic transducer
JP2017117998A (en) * 2015-12-25 2017-06-29 日本特殊陶業株式会社 Piezoelectric element and method of manufacturing the same, foreign matter removal unit and ultrasonic sensor
WO2020095649A1 (en) * 2018-11-09 2020-05-14 株式会社村田製作所 Ultrasonic sensor
WO2021085598A1 (en) * 2019-11-01 2021-05-06 日本セラミック株式会社 Ultrasonic transceiver
US20220413137A1 (en) * 2019-11-01 2022-12-29 Nippon Ceramic Co., Ltd. Ultrasonic transceiver
DE112022001558T5 (en) 2021-03-18 2024-01-11 Murata Manufacturing Co., Ltd. Ultrasonic sensor

Similar Documents

Publication Publication Date Title
JP4766112B2 (en) Ultrasonic sensor and manufacturing method thereof
US7548014B2 (en) Ultrasonic transducer
EP2076062B1 (en) Ultrasonic sensor
US7692367B2 (en) Ultrasonic transducer
JP2007282058A (en) Ultrasonic sensor
EP1096469A2 (en) Ultrasonic vibration apparatus
US12123987B2 (en) Ultrasonic sensor
JPWO2007091609A1 (en) Ultrasonic sensor
JP2004040614A (en) Ultrasonic sensor
JP4304556B2 (en) Ultrasonic sensor
WO2005009075A1 (en) Ultrasonic transmitter-receiver
JP5111977B2 (en) Ultrasonic transducer
JP2020511906A (en) Acoustic transducer with piezoelectric ceramic transducer incorporated in a vibrating diaphragm
JP2001238292A (en) Ultrasonic wave sensor
JP2001232294A (en) Ultrasonic vibrator
JP5423295B2 (en) Ultrasonic transducer
JP4062780B2 (en) Ultrasonic sensor
JP7439728B2 (en) ultrasonic sensor
JP2001235539A (en) Ultrasonic vibrator
JP3367446B2 (en) Drip-proof ultrasonic transducer
JP3880047B2 (en) Ultrasonic sensor
JP2020161888A (en) Ultrasonic sensor
TWI440831B (en) Ultrasonic sensor
JP4081863B2 (en) Ultrasonic sensor
JP2000253494A (en) Piezoelectric element for ultrasonic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070307