JP2003087089A - Piezoelectric device and manufacturing method therefor - Google Patents

Piezoelectric device and manufacturing method therefor

Info

Publication number
JP2003087089A
JP2003087089A JP2001277571A JP2001277571A JP2003087089A JP 2003087089 A JP2003087089 A JP 2003087089A JP 2001277571 A JP2001277571 A JP 2001277571A JP 2001277571 A JP2001277571 A JP 2001277571A JP 2003087089 A JP2003087089 A JP 2003087089A
Authority
JP
Japan
Prior art keywords
substrate
electrode
piezoelectric
main
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001277571A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2001277571A priority Critical patent/JP2003087089A/en
Publication of JP2003087089A publication Critical patent/JP2003087089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric device, capable of preventing manufacturing yield from being reduced by decreasing the dispersion of an equivalent circuit constant, such as serial inductance which is generated in response to the deviation of substrate parallelism, in the device to be manufactured. SOLUTION: The piezoelectric device comprises an overall surface electrode formed over substantially the entire surface of a recess side of a piezoelectric substrate having a thin oscillation section, a thick annular surrounding section integrally constituted with the oscillation section to hold a periphery of the oscillation section by forming the recess at a predetermined position of one main surface, and a main electrode of a predetermined size formed in a region, corresponding to the oscillation section on other main surface of the substrate. The device further comprises at least one substrate thickness measuring electrode disposed at a predetermined distance from the main electrode, to evaluate a thickness of the substrate in the region corresponding to the oscillation section of the other main surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は圧電振動子等の圧電
デバイス及びその製造方法に関し、特に超薄板振動子と
して形成された圧電デバイス及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric device such as a piezoelectric vibrator and a manufacturing method thereof, and more particularly to a piezoelectric device formed as an ultrathin plate vibrator and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来より厚みすべり振動を利用したATカ
ット水晶振動子は、高い周波数安定性を有し、通信機器
の分野において広く使用されている。一般に、厚みすべ
り振動を利用した圧電振動子の共振周波数は次式により
表される。 f=k/t (1) ただし、fは共振周波数、kは圧電体の弾性定数、tは圧
電体の厚さをそれぞれ意味する。
2. Description of the Related Art Conventionally, an AT-cut crystal resonator utilizing thickness shear vibration has high frequency stability and is widely used in the field of communication equipment. Generally, the resonance frequency of a piezoelectric vibrator that utilizes thickness shear vibration is expressed by the following equation. f = k / t (1) where f is the resonance frequency, k is the elastic constant of the piezoelectric body, and t is the thickness of the piezoelectric body.

【0003】従って、この振動子を用いて共振周波数の
高周波化を図るためには、圧電体の厚さtを薄くすれば
よいが、製造技術(製作精度)や機械的強度の観点から50
MHz程度の共振周波数(基本波振動)を得る厚さが限度で
あった。
Therefore, in order to increase the resonance frequency by using this vibrator, the thickness t of the piezoelectric body may be made thin, but from the viewpoint of manufacturing technology (manufacturing accuracy) and mechanical strength,
The limit was the thickness at which a resonance frequency (fundamental vibration) of about MHz was obtained.

【0004】近年、ATカット水晶振動子の基本波振動を
用いて数100MHz程度の共振周波数を発生できる超薄板水
晶振動子が実用化されている。図3は、従来の圧電デバ
イスとしての超薄板水晶振動子の構成例を示す図であ
り、同図(a)は平面図、同図(b)はA-A´断面図である。
In recent years, an ultra-thin plate crystal oscillator that can generate a resonance frequency of about several hundred MHz by using the fundamental wave vibration of an AT-cut crystal oscillator has been put into practical use. FIG. 3 is a diagram showing a configuration example of an ultra-thin plate crystal resonator as a conventional piezoelectric device. FIG. 3 (a) is a plan view and FIG. 3 (b) is a sectional view taken along line AA ′.

【0005】この例に示す超薄板水晶振動子は、ATカッ
ト水晶基板31の一方の主面の所定箇所を凹陥することに
より薄肉の振動部32とその周囲に前記振動部32を保持す
る厚肉の環状囲繞部33とが一体的に構成されており、こ
の凹陥側ほぼ全面には全面電極34が形成されている。前
記水晶基板31の他方の主面には前記振動部32に相当する
領域内に所定寸法の主電極35が配置されており、該主電
極35はリード電極36を介してパッド電極37に接続されて
いる。
The ultra-thin plate crystal oscillator shown in this example has a thin vibrating portion 32 and a thickness for holding the vibrating portion 32 around the thin vibrating portion 32 by recessing a predetermined portion of one main surface of the AT-cut quartz crystal substrate 31. A flesh annular surrounding portion 33 is integrally formed, and a full-surface electrode 34 is formed on almost the entire surface of the concave side. On the other main surface of the crystal substrate 31, a main electrode 35 having a predetermined size is arranged in a region corresponding to the vibrating portion 32, and the main electrode 35 is connected to a pad electrode 37 via a lead electrode 36. ing.

【0006】図4は、上記超薄板水晶振動子の製造工程
例を示す要部断面図である。この例に示す超薄板水晶振
動子の製造工程は、まず、同図(a)に示すように圧電体
基板31の両主面にフォトリソグラフィ技術により所定部
分に保護膜41を形成した後エッチングを行い、同図(b)
に示すように圧電体基板31の露出している部分を凹陥せ
しめ、薄板状の振動部32及びその周囲を支持する厚肉の
環状囲繞部33とを一体的に形成する。
FIG. 4 is a sectional view of an essential part showing an example of a manufacturing process of the above-mentioned ultra-thin plate crystal resonator. In the manufacturing process of the ultra-thin plate crystal resonator shown in this example, first, as shown in FIG. 3A, a protective film 41 is formed on a predetermined portion on both main surfaces of the piezoelectric substrate 31 by photolithography, and then etching is performed. The same figure (b)
As shown in FIG. 3, the exposed portion of the piezoelectric substrate 31 is recessed to integrally form a thin plate-shaped vibrating portion 32 and a thick annular surrounding portion 33 that supports the periphery thereof.

【0007】次に、保護膜41を剥離した後、同図(c)に
示すように凹陥側全面に導体膜を蒸着等により付着して
全面電極34を形成し、対向する主面には同様な方法によ
り主電極35とリード電極36とパッド電極37とをそれぞれ
所定位置に形成する。
Next, after the protective film 41 is peeled off, a conductor film is attached to the entire concave side by vapor deposition or the like to form a full-scale electrode 34, as shown in FIG. The main electrode 35, the lead electrode 36, and the pad electrode 37 are formed at predetermined positions by various methods.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上述した
ような従来の超薄板水晶振動子においては以下に示すよ
うな問題点があった。つまり、超薄板水晶振動子は、共
振周波数の高周波化(100MHz超)に伴い振動部の基板厚が
薄く(十数μm〜数μm)なるため、後述する理由により基
板平行度の許容偏差が厳しくなる。この基板平行度は、
エッチング加工前のポリッシュ加工に依存し、現在の技
術水準ではバッチ処理によって20mm角以上の基板を加工
した場合、基板平行度を0.5μm程度にすることが限界で
あり、薄肉の振動部の基板厚に対して数%オーダーの大
きな値となる。これは10MHz〜20MHz帯の基板厚が比較的
厚い圧電振動子に比べて約1桁大きい値となる。基板平
行度が大きい(基板傾斜が大きい)と、全面電極と主電極
との間隔、即ち水晶基板の厚みが均一でないため、所望
の共振周波数に対応する基板厚はごく一部の領域に限定
されることになる。そのため所望の共振周波数に対応す
る振動モードが当該主電極の一部に片寄って励振される
などの理由により全振動エネルギーを抽出できず、その
分のロスが増えることになる。周知のように、圧電振動
子の等価回路定数のうち等価直列インダクタンスは、振
動子全体(この場合薄肉の振動部全体)の変位エネルギー
を電極部分の変位エネルギーで除した値に相当するか
ら、振動部の厚みが均一でないことにより振動エネルギ
ーのピークが電極中央からずれると、電極部分の変位エ
ネルギーが低下し、直列インダクタンスが増えることに
なる。直列インダクタンスが増大するということは、等
価回路の直列容量分が相対的に減少することを意味する
ので、結果として振動子の容量比γが大きくなる。例え
ば、圧電振動子を用いて電圧制御型圧電発振器(VCXO)を
構成する場合、制御電圧に対する周波数可変幅は容量比
γに依存するため、これに用いる圧電振動子には容量比
γが均一になっていることが望まれる。ところが、圧電
振動子の基板平行度は製造時にばらつくため、容量比γ
が一定とならず所望の値が安定して得られないので製造
歩留まりが低下するという問題があった。図5は、振動
部における基板平行度と等価回路定数との相関を調べる
ための超薄板水晶振動子の構成例を示す図であり、同図
(a)は平面図、同図(b)は要部断面図をそれぞれ示す。こ
の例に示す超薄板水晶振動子は、図3に示した構造のAT
カット水晶振動子における平坦側主面にそれぞれ主電極
55a、55bとリード電極56a、56bとパッド電極57a、57bと
からなる2つの導体膜50a、50bを対向して配置したもの
である。共振周波数100MHzを得るため、振動部32の基板
厚を16.7μm、各電極の膜厚を50nm、主電極55a、55bの
面積0.18mm2 、主電極間隔を0.1mmとしている。図6は、
図5の構成における基板平行度に対する直列インダクタ
ンスを示す実験データである。まず、各主電極55a、55b
に対する共振周波数を測定し、これより上記(1)式に基
づき各主電極部の基板厚さを逆算して基板平行度を算定
するとともにそのときの直列インダクタンスも測定す
る。測定サンプルとして50個の水晶振動子を製作し上記
測定を実施した結果、図6に示すように基板平行度が大
きくなる(劣化する)に従い直列インダクタンスが大きく
なる傾向を呈し、平均値0.68mH、標準偏差0.11mHとな
り、定数値ばらつき(標準偏差/平均値)は約16.4%と大き
くなった。本発明は、上述した従来の超薄板圧電振動子
などの圧電デバイスに関する問題を解決するためになさ
れたもので、製造される圧電デバイスにおける基板平行
度の偏差に応じて生じる直列インダクタンスなど等価回
路定数の所定値からのばらつきを少なくし、以て製造歩
留まりの低下を防止することができる圧電デバイスを提
供することを目的とする。
However, the conventional ultra-thin plate crystal resonator as described above has the following problems. In other words, in the ultra-thin plate crystal resonator, the substrate thickness of the vibrating part becomes thinner (tens of μm to several μm) as the resonance frequency becomes higher (more than 100 MHz). Get tougher. This substrate parallelism is
Depends on the polishing process before etching, and at the current state of the art, when processing a substrate of 20 mm square or more by batch processing, the parallelism of the substrate is limited to about 0.5 μm, and the substrate thickness of the thin vibrating part is limited. It is a large value on the order of several percent. This is about an order of magnitude larger than that of a piezoelectric vibrator with a relatively thick substrate in the 10MHz to 20MHz band. If the substrate parallelism is large (the substrate inclination is large), the distance between the entire surface electrode and the main electrode, that is, the thickness of the quartz substrate is not uniform, so the substrate thickness corresponding to the desired resonance frequency is limited to a very small area. Will be. Therefore, the total vibration energy cannot be extracted due to the reason that the vibration mode corresponding to the desired resonance frequency is biased to a part of the main electrode and excited, and the loss increases accordingly. As is well known, the equivalent series inductance of the equivalent circuit constants of a piezoelectric vibrator is equivalent to the value obtained by dividing the displacement energy of the entire vibrator (in this case, the entire thin vibration part) by the displacement energy of the electrode part. When the peak of the vibration energy deviates from the center of the electrode due to the non-uniform thickness of the portion, the displacement energy of the electrode portion decreases and the series inductance increases. The increase of the series inductance means that the series capacitance of the equivalent circuit is relatively decreased, and as a result, the capacitance ratio γ of the vibrator is increased. For example, when a voltage controlled piezoelectric oscillator (VCXO) is configured using a piezoelectric vibrator, the frequency variable width for the control voltage depends on the capacitance ratio γ, so the piezoelectric vibrator used for this has a uniform capacitance ratio γ. It is hoped that However, since the substrate parallelism of the piezoelectric vibrator varies during manufacturing, the capacitance ratio γ
Is not constant and a desired value cannot be stably obtained, so that there is a problem that the manufacturing yield is reduced. FIG. 5 is a diagram showing a configuration example of an ultra-thin crystal resonator for investigating the correlation between the substrate parallelism in the vibrating section and the equivalent circuit constant.
(a) is a plan view and (b) is a cross-sectional view of a main part. The ultra-thin plate crystal unit shown in this example is an AT with the structure shown in Fig. 3.
Main electrodes on the flat main surface of the cut crystal unit
Two conductor films 50a and 50b composed of 55a and 55b, lead electrodes 56a and 56b, and pad electrodes 57a and 57b are arranged to face each other. In order to obtain the resonance frequency of 100 MHz, the substrate thickness of the vibrating section 32 is 16.7 μm, the film thickness of each electrode is 50 nm, the area of the main electrodes 55a and 55b is 0.18 mm 2 , and the main electrode interval is 0.1 mm. Figure 6
6 is experimental data showing series inductance with respect to substrate parallelism in the configuration of FIG. First, each main electrode 55a, 55b
The resonance frequency is measured, and from this, the board thickness of each main electrode portion is calculated back based on the above equation (1) to calculate the board parallelism and the series inductance at that time. As a result of performing the above measurement by manufacturing 50 crystal units as measurement samples, the series inductance tends to increase as the substrate parallelism increases (deteriorates) as shown in FIG. 6, with an average value of 0.68 mH, The standard deviation was 0.11 mH, and the variation in constant values (standard deviation / average value) was as large as about 16.4%. The present invention has been made to solve the problems relating to the piezoelectric device such as the conventional ultra-thin plate piezoelectric vibrator described above, and an equivalent circuit such as a series inductance generated according to the deviation of the parallelism of the substrates in the manufactured piezoelectric device. It is an object of the present invention to provide a piezoelectric device that can reduce the variation of the constant from a predetermined value and thus prevent the production yield from decreasing.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係わる圧電デバイスの請求項1記載の発明
は、一方の主面の所定箇所に凹陥を形成することにより
薄肉の振動部とその周囲を保持する厚肉の環状囲繞部と
を一体的に構成した圧電体基板の凹陥側ほぼ全面に全面
電極が形成されており、前記圧電体基板の他方の主面に
は前記振動部に相当する領域内に所定寸法の主電極が形
成されている圧電デバイスであって、前記他方の主面の
振動部に相当する領域内に前記圧電体基板の厚さを評価
するために少なくとも1つの基板厚測定用電極を前記主
電極と所定の距離を隔てて配置するようにした。本発明
に係わる圧電デバイスの請求項2記載の発明は、請求項1
記載の圧電デバイスにおいて、前記基板厚測定用電極2
個を一組として前記主電極をこれらの間に挟むように配
置した。本発明に係わる圧電デバイスの製造方法の請求
項3記載の発明は、圧電体基板の一方の主面を所定の範
囲だけ凹陥して薄肉の振動部及びその周囲を一体的に保
持する厚肉の環状囲繞部を形成するとともに、この凹陥
側の全面に全面電極を形成する手順と、他方の主面の前
記振動部に相当する領域内に所定寸法の主電極を形成す
る手順と、前記他方の主面の振動部に相当する領域内に
前記圧電体基板の厚さを評価するための基板厚測定用電
極を少なくとも1つ形成する手順と、前記各基板厚測定
用電極の共振周波数を測定する手順と、前記測定した各
共振周波数が略等しくなるように調整する手順とからな
る。
In order to achieve the above object, the invention according to claim 1 of the piezoelectric device according to the present invention is such that a thin vibrating portion is formed by forming a recess at a predetermined location on one main surface. A full-scale electrode is formed on almost the entire concave side of the piezoelectric substrate integrally formed with a thick annular surrounding portion that holds the periphery thereof, and the vibrating portion is formed on the other main surface of the piezoelectric substrate. A piezoelectric device in which a main electrode having a predetermined size is formed in a region corresponding to, at least 1 in order to evaluate the thickness of the piezoelectric substrate in a region corresponding to the vibrating portion of the other main surface. One substrate thickness measuring electrode is arranged at a predetermined distance from the main electrode. The invention according to claim 2 of the piezoelectric device according to the present invention,
In the piezoelectric device described, the substrate thickness measuring electrode 2
The main electrodes were arranged as one set so as to be sandwiched between them. The invention according to claim 3 of the method for manufacturing a piezoelectric device according to the present invention is a thick-walled structure in which one principal surface of a piezoelectric substrate is depressed by a predetermined range to integrally hold a thin vibrating portion and its periphery. While forming the annular surrounding portion, the procedure of forming a full-scale electrode on the entire surface of the concave side, the procedure of forming a main electrode of a predetermined size in a region corresponding to the vibrating portion of the other main surface, and the other of the other. A procedure of forming at least one substrate thickness measuring electrode for evaluating the thickness of the piezoelectric substrate in a region corresponding to the vibrating portion of the main surface, and measuring the resonance frequency of each substrate thickness measuring electrode. The procedure includes a procedure and a procedure for adjusting the measured resonance frequencies to be substantially equal to each other.

【0010】[0010]

【発明の実施の形態】以下、図示した実施の形態例に基
づいて本発明を詳細に説明する。図1は本発明に係わる
超薄板ATカット水晶振動子の第1の実施形態例を示す図
であり、同図(a)は平面図、同図(b)はA-A´断面図であ
る。この例に示す水晶振動子は、ATカット水晶基板11の
一方の主面の所定箇所を凹陥することにより薄肉の振動
部12とその周囲を保持する厚肉の環状囲繞部13とを一体
的に構成したものであり、水晶基板11の凹陥側ほぼ全面
には全面電極14が形成されている。前記水晶基板11の他
方の主面には前記振動部12に相当する領域内に所定寸法
の主電極15が配置されており、該主電極15は主リード電
極16を介してパッド電極17に接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on the illustrated embodiments. 1A and 1B are diagrams showing a first embodiment of an ultrathin plate AT-cut quartz crystal resonator according to the present invention. FIG. 1A is a plan view and FIG. 1B is a sectional view taken along line AA '. The crystal resonator shown in this example integrally includes a thin-walled vibrating portion 12 and a thick-walled annular surrounding portion 13 that holds the periphery of the vibrating portion 12 by recessing a predetermined portion of one main surface of the AT-cut quartz crystal substrate 11. The structure is such that a full surface electrode 14 is formed on almost the entire concave side of the crystal substrate 11. On the other main surface of the crystal substrate 11, a main electrode 15 having a predetermined size is arranged in a region corresponding to the vibrating portion 12, and the main electrode 15 is connected to a pad electrode 17 via a main lead electrode 16. Has been done.

【0011】さらに、前記他方の主面の振動部12に相当
する領域内に水晶基板11の振動部12の厚さを評価するた
め第1、第2の基板厚測定用電極18a、18bを主電極15を挟
んで配置し、これをそれぞれ第1、第2のリード電極19
a、19bを介して第1、第2のプロービング用電極20a、20b
に接続する。このとき、基板厚測定用電極18a、18bは主
電極15により励振される振動に影響をあたえないよう所
定の距離を隔てて配置することが望ましい。
Further, in order to evaluate the thickness of the vibrating portion 12 of the crystal substrate 11 within the area corresponding to the vibrating portion 12 on the other main surface, the first and second substrate thickness measuring electrodes 18a and 18b are mainly provided. The electrodes 15 are arranged with the electrodes 15 sandwiched therebetween, and the electrodes 15 are arranged respectively on the first and second lead electrodes 19
First and second probing electrodes 20a, 20b via a, 19b
Connect to. At this time, it is desirable that the substrate thickness measuring electrodes 18a and 18b are arranged at a predetermined distance so as not to affect the vibration excited by the main electrode 15.

【0012】本発明に係わる圧電デバイスの基本的な製
造工程は、従来のものと同様であるので説明を省略する
が、本発明では第1、第2の基板厚測定用電極18a、18bを
用いて振動部12の基板厚を評価し、これに基づき基板平
行度を算出するとともにこの平行度を調整するところに
特徴がある。以下、これについて詳細に説明する。
Since the basic manufacturing process of the piezoelectric device according to the present invention is the same as the conventional one, the description thereof will be omitted. However, in the present invention, the first and second substrate thickness measuring electrodes 18a and 18b are used. The feature is that the substrate thickness of the vibrating section 12 is evaluated, the substrate parallelism is calculated based on the evaluation, and the parallelism is adjusted. Hereinafter, this will be described in detail.

【0013】まず、第1(第2)の基板厚測定用電極18a(18
b)に係わる共振周波数f1(f2)を第1(第2)のリード電極19
a(19b)を介して第1(第2)のプロービング用電極20a(20b)
により測定する。振動部12が傾斜している場合は、f1≠
f2となる。
First, the first (second) substrate thickness measuring electrode 18a (18
The resonance frequency f1 (f2) related to b) is set to the first (second) lead electrode 19
First (second) probing electrode 20a (20b) via a (19b)
To measure. If the vibrating part 12 is tilted, f1 ≠
It becomes f2.

【0014】そこで、高い共振周波数を呈する(基板厚
の薄い)基板厚測定用電極(ここでは18aとする)側の振動
部12の板厚を厚くすればよい。実際には水晶基板を厚く
することは困難であるから、凹陥側電極の板厚に相当す
る導体膜を蒸着等により付加する。周知のように水晶振
動子の共振周波数は電極膜を含めた基板厚によって決定
されるので、図1(c)に示すようにf1=f2となるように導
体膜14aを付着することにより水晶基板の振動部は所定
の平行度が実現されたことと等価になり、その結果、基
板平行度の偏差に係わる等価回路定数のばらつきを少な
くすることができる。実際には、成膜時に水晶基板を斜
めに傾ける斜め蒸着やマスクパターンの工夫によって、
膜厚の重み付を実現することができる。
Therefore, the plate thickness of the vibrating portion 12 on the substrate thickness measuring electrode (here, 18a) side exhibiting a high resonance frequency (thin substrate thickness) may be increased. In practice, it is difficult to make the crystal substrate thick, so a conductor film corresponding to the plate thickness of the recess side electrode is added by vapor deposition or the like. As is well known, the resonance frequency of the crystal unit is determined by the thickness of the substrate including the electrode film.Therefore, by attaching the conductor film 14a so that f1 = f2 as shown in FIG. The vibrating section is equivalent to the achievement of a predetermined parallelism, and as a result, it is possible to reduce the variation in the equivalent circuit constant related to the deviation in the parallelism of the substrate. In fact, by oblique vapor deposition that tilts the quartz substrate at the time of film formation and devising a mask pattern,
Weighting of film thickness can be realized.

【0015】次に、共振周波数を設計値f0に調整するた
めにf1=f2=f0となるように凹陥側電極の全面に導体膜を
一様に蒸着する。このような周波数調整を行うので、予
め振動部の厚さを設計値よりも薄くエッチングしておく
のが一般的である。
Next, in order to adjust the resonance frequency to the design value f0, a conductor film is uniformly vapor-deposited on the entire surface of the recess side electrode so that f1 = f2 = f0. Since such frequency adjustment is performed, it is general that the thickness of the vibrating portion is previously etched to be thinner than the designed value.

【0016】以上のような基板厚測定用電極の構成と製
造工程とにより、基板平行度に係わる等価回路定数のば
らつきを少なくすることができ、以て製造歩留まりの低
下を防止することができる。実際に、本発明に係わる圧
電デバイスを50個製造し、直列インダクタンスを測定し
たところ、図示は省略するが平均値0.51mH、標準偏差0.
005mHとなり定数値ばらつき(標準偏差/平均値)は約1.1%
となり、従来よりも一桁改善できることを確認した。
With the above-described structure of the substrate thickness measuring electrode and the manufacturing process, it is possible to reduce the variation in the equivalent circuit constant related to the parallelism of the substrate, and thus to prevent the manufacturing yield from decreasing. Actually, when 50 piezoelectric devices according to the present invention were manufactured and the series inductance was measured, an average value of 0.51 mH and a standard deviation of 0.
It becomes 005 mH and the constant value variation (standard deviation / average value) is about 1.1%
Therefore, it was confirmed that it could be improved by an order of magnitude compared to the past.

【0017】なお、上述した実施形態例においては2つ
の基板厚測定用電極18a、18bを用いる構成としたが、主
電極15をこの基板厚測定に兼用すれば当該基板厚測定用
電極としては1つで良いこと、特に説明を要さないであ
ろう。
In the above-described embodiment, the two substrate thickness measuring electrodes 18a and 18b are used, but if the main electrode 15 is also used for this substrate thickness measurement, the substrate thickness measuring electrode is 1 One good thing is that it doesn't require any explanation.

【0018】上述した実施形態例においては、ATカット
水晶基板のx方向の平行度を評価し、これを調整する例
について説明したが、実際にはz方向にも基板傾斜が生
じる可能性がある。図2は、本発明に係わる圧電デバイ
スの第2の実施形態例を示す図であり、同図(a)は平面
図、同図(b)はA-A´断面図である。この例に示すATカッ
ト水晶振動子は、2次元的に基板平行度を評価するた
め、図1に示した第1の実施形態例の構成において、さら
に第3の基板厚測定用電極18cを主電極15の右隣に所定の
間隔にて配置し、これを第3のリード電極19cを介して第
2のプロービング用電極20bの下方に配置された第3のプ
ロービング用電極20cに接続したものである。
In the above-described embodiment, an example in which the parallelism in the x direction of the AT-cut quartz crystal substrate is evaluated and adjusted is explained. However, in actuality, the substrate inclination may occur also in the z direction. . 2A and 2B are diagrams showing a second embodiment of the piezoelectric device according to the present invention. FIG. 2A is a plan view and FIG. 2B is a sectional view taken along the line AA '. Since the AT-cut crystal unit shown in this example evaluates the substrate parallelism two-dimensionally, in the configuration of the first embodiment example shown in FIG. 1, the third substrate thickness measuring electrode 18c is further used as a main component. The electrode 15 is arranged on the right side of the electrode 15 at a predetermined interval, and this is placed via the third lead electrode 19c.
It is connected to a third probing electrode 20c arranged below the second probing electrode 20b.

【0019】この例に示す水晶振動子の製造工程及び基
板平行度の評価方法は、上述した第1の実施形態例と同
様に行うが、第1、第2の基板厚測定用電極18a、18bによ
るx方向の基板平行度の評価に加えて、第3の基板厚測定
用電極18cと主電極15とを用いてz方向の基板平行度も評
価し、これらの基板厚さを調整するようにした。
The manufacturing process of the crystal unit and the method for evaluating the substrate parallelism shown in this example are performed in the same manner as in the above-described first embodiment, but the first and second substrate thickness measuring electrodes 18a and 18b are used. In addition to the evaluation of the substrate parallelism in the x direction by using, the substrate parallelism in the z direction is also evaluated using the third substrate thickness measuring electrode 18c and the main electrode 15, so that these substrate thicknesses can be adjusted. did.

【0020】要するに本発明に係わる水晶振動子は、振
動部の基板平行度を評価するために、主電極も含めて少
なくとも2つの電極を所定位置に配置し、それぞれの共
振周波数を測定することにより(1)式から基板厚を逆算
して基板平行度を評価し、必要な箇所を導体膜蒸着等に
より厚み調整して所要の基板平行度を実現するようにし
たものである。
In short, in order to evaluate the substrate parallelism of the vibrating portion, at least two electrodes including the main electrode are arranged at predetermined positions in the crystal unit according to the present invention, and the resonance frequency of each is measured. The substrate thickness is back-calculated from the equation (1) to evaluate the substrate parallelism, and the required portions are adjusted in thickness by conductor film deposition or the like to achieve the required substrate parallelism.

【0021】なお、本発明に係わる圧電デバイスとして
は、ATカット水晶基板を用いた振動子のみならずエッチ
ング可能な圧電基板としてのランガサイト(La3Ga5SiO1
4)や4ホウ酸リチウム(Li2B4O7)等の圧電体基板を用い
ても良く、モノリシックフィルタなどのあらゆる圧電デ
バイスに適用可能である。また、基板の薄肉側に導電膜
を付着する代わりに、厚肉側の電極を薄くするべく、イ
オンビームや電子ビームによるドライエッチングを行っ
ても良く、これらを組み合わせても良い。
As the piezoelectric device according to the present invention, not only a vibrator using an AT-cut quartz substrate but also Langasite (La3Ga5SiO1) as a piezoelectric substrate that can be etched is used.
A piezoelectric substrate such as 4) or lithium tetraborate (Li2B4O7) may be used, and it can be applied to any piezoelectric device such as a monolithic filter. Instead of attaching the conductive film to the thin side of the substrate, dry etching using an ion beam or an electron beam may be performed in order to reduce the thickness of the electrode on the thick side, or a combination thereof may be used.

【0022】[0022]

【発明の効果】本発明は以上説明したように所定数の基
板厚測定用電極を平坦側主面に設け、共振周波数を測定
して基板厚を逆算し、これに基づき基板平行度を評価す
るとともに所要の箇所に導体膜蒸着等による厚み調整を
施して、所定の基板平行度を実現するようにしたので、
基板平行度の偏差に係わる等価回路定数のばらつきを少
なくでき、以て製造歩留まりの低下を防止した圧電デバ
イスを実現する上で著効を奏す。
As described above, according to the present invention, a predetermined number of electrodes for measuring substrate thickness are provided on the flat main surface, the resonance frequency is measured, the substrate thickness is calculated backward, and the substrate parallelism is evaluated based on this. At the same time, by adjusting the thickness of the required film by vapor deposition of a conductor film, etc., it was possible to achieve a predetermined substrate parallelism.
The variation of the equivalent circuit constants due to the deviation of the parallelism of the substrate can be reduced, and thus it is remarkably effective in realizing the piezoelectric device in which the reduction of the manufacturing yield is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる圧電デバイスの第1の実施形態例
を示す図
FIG. 1 is a diagram showing a first embodiment example of a piezoelectric device according to the present invention.

【図2】本発明に係わる圧電デバイスの第2の実施形態例
を示す図
FIG. 2 is a diagram showing a second embodiment of a piezoelectric device according to the present invention.

【図3】従来の圧電デバイスとしての超薄板水晶振動子
の構成例を示す図
FIG. 3 is a diagram showing a configuration example of a conventional ultrathin plate crystal resonator as a piezoelectric device.

【図4】従来の圧電デバイスとしての超薄板水晶振動子
の製造工程例を示す要部断面図
FIG. 4 is a sectional view of an essential part showing an example of a manufacturing process of an ultra-thin plate crystal resonator as a conventional piezoelectric device.

【図5】振動部における基板平行度と等価回路定数との
相関を調べるための超薄板圧電振動子の構成例を示す図
FIG. 5 is a diagram showing a configuration example of an ultrathin plate piezoelectric vibrator for investigating a correlation between substrate parallelism and an equivalent circuit constant in a vibrating section.

【図6】振動部平行度と等価回路定数(直列インダクタン
ス)との関係を示す実験データ
[Fig. 6] Experimental data showing the relationship between the parallelism of the vibrating part and the equivalent circuit constant (series inductance)

【符号の説明】[Explanation of symbols]

11・・水晶基板 12・・振動部 13・・環状囲繞部 14・・全面電極 15・・主電極 16・・主リード電極 17・・パッド電極 18a、18b、18c・・第1、第2、第3の基板厚測定用電極 19a、19b、19c・・第1、第2、第3のリード電極 20a、20b、20c・・第1、第2、第3のプロービング用電極 11 ... Crystal substrate 12 ... Vibrating section 13 ··· Circular enclosure 14 ... Full surface electrode 15 ... Main electrode 16 ... Main lead electrode ..Pad electrodes 18a, 18b, 18c ... First, second and third substrate thickness measuring electrodes 19a, 19b, 19c ... First, second and third lead electrodes 20a, 20b, 20c ... First, second and third probing electrodes

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一方の主面の所定箇所に凹陥を形成する
ことにより薄肉の振動部とその周囲を保持する厚肉の環
状囲繞部とを一体的に構成した圧電体基板の凹陥側ほぼ
全面に全面電極が形成されており、前記圧電体基板の他
方の主面には前記振動部に相当する領域内に所定寸法の
主電極が形成されている圧電デバイスであって、 前記他方の主面の振動部に相当する領域内に前記圧電体
基板の厚さを評価するために少なくとも1つの基板厚測
定用電極を前記主電極と所定の距離を隔てて配置したこ
とを特徴とする圧電デバイス。
1. A piezoelectric substrate which is integrally formed with a thin vibrating portion and a thick annular surrounding portion for holding the vibrating portion by forming a concave portion at a predetermined position on one main surface. In the piezoelectric device, a full-scale electrode is formed on the main surface of the piezoelectric substrate, and a main electrode having a predetermined size is formed in a region corresponding to the vibrating portion on the other main surface of the piezoelectric substrate. In order to evaluate the thickness of the piezoelectric substrate, at least one substrate thickness measuring electrode is arranged at a predetermined distance from the main electrode in a region corresponding to the vibrating part of the piezoelectric device.
【請求項2】 前記基板厚測定用電極2個を一組として
前記主電極をこれらの間に挟むように配置したことを特
徴とする請求項1記載の圧電デバイス。
2. The piezoelectric device according to claim 1, wherein two electrodes for measuring the substrate thickness are set as one set and the main electrode is arranged so as to be sandwiched therebetween.
【請求項3】 圧電体基板の一方の主面を所定の範囲だ
け凹陥して薄肉の振動部及びその周囲を一体的に保持す
る厚肉の環状囲繞部を形成するとともに、この凹陥側の
全面に全面電極を形成する手順と、 他方の主面の前記振動部に相当する領域内に所定寸法の
主電極を形成する手順と、 前記他方の主面の振動部に相当する領域内に前記圧電体
基板の厚さを評価するための基板厚測定用電極を少なく
とも1つ形成する手順と、 前記各基板厚測定用電極の共振周波数を測定する手順
と、 前記測定した各共振周波数が略等しくなるように調整す
る手順とからなる圧電デバイスの製造方法。
3. A piezoelectric body substrate is formed by recessing one main surface in a predetermined range to form a thin vibrating portion and a thick annular surrounding portion integrally holding the vibrating portion, and the entire surface on the concave side. A step of forming a full surface electrode on the other main surface, a step of forming a main electrode of a predetermined size in a region corresponding to the vibrating portion of the other main surface, and a step of forming the piezoelectric electrode in a region corresponding to the vibrating portion of the other main surface. A procedure for forming at least one substrate thickness measurement electrode for evaluating the thickness of the body substrate, a procedure for measuring the resonance frequency of each of the substrate thickness measurement electrodes, and the measured resonance frequencies are substantially equal to each other. A method for manufacturing a piezoelectric device, which comprises the steps of:
JP2001277571A 2001-09-13 2001-09-13 Piezoelectric device and manufacturing method therefor Pending JP2003087089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277571A JP2003087089A (en) 2001-09-13 2001-09-13 Piezoelectric device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277571A JP2003087089A (en) 2001-09-13 2001-09-13 Piezoelectric device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003087089A true JP2003087089A (en) 2003-03-20

Family

ID=19102080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277571A Pending JP2003087089A (en) 2001-09-13 2001-09-13 Piezoelectric device and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003087089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255051A (en) * 2012-06-06 2013-12-19 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus and manufacturing method of vibration element
JP2017220945A (en) * 2017-08-21 2017-12-14 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, electronic apparatus, and method of manufacturing vibration element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255051A (en) * 2012-06-06 2013-12-19 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus and manufacturing method of vibration element
US9136793B2 (en) 2012-06-06 2015-09-15 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and method of manufacturing resonator element
JP2017220945A (en) * 2017-08-21 2017-12-14 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, electronic apparatus, and method of manufacturing vibration element

Similar Documents

Publication Publication Date Title
US6750593B2 (en) High frequency piezoelectric resonator having reduced spurious modes
CN100440730C (en) Electronic component and method for manufacturing the same
TW201251157A (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
US4418299A (en) Face-shear mode quartz crystal vibrators and method of manufacture
US9800225B2 (en) Elastic wave device
US20160028369A1 (en) Resonator element, resonator, oscillator, electronic apparatus, and mobile object
US20130328637A1 (en) Resonator element, resonator, electronic device, electronic apparatus, and method of manufacturing resonator element
US7012353B2 (en) Piezoelectric resonator and the method for making the same
US5307034A (en) Ultrathin multimode quartz crystal filter element
EP2426818A2 (en) Method of fabricating a resonator, resonator, and oscillator
JP2008005333A (en) Piezoelectric vibration device
US5376221A (en) Process for mass producing high frequency crystal resonators
JP2003087089A (en) Piezoelectric device and manufacturing method therefor
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
US10763821B2 (en) Crystal resonator
US20220294392A1 (en) Vibrator and oscillator
JP2533633Y2 (en) AT-cut crystal unit
JP3543786B2 (en) Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator
JP4513150B2 (en) High frequency piezoelectric vibrator
JP2001257558A (en) Piezoelectric vibrator
JP2001257560A (en) Electrode structure for ultra-thin board piezoelectric vibration element
JPH0131728B2 (en)
JP2002368573A (en) Superthin sheet piezoelectric vibrator and production method therefor
Iwata Measured resonance characteristics of a 2-GHz-fundamental quartz resonator
JP2001326554A (en) Piezoelectric vibrator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402