JP2002372667A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2002372667A
JP2002372667A JP2001179896A JP2001179896A JP2002372667A JP 2002372667 A JP2002372667 A JP 2002372667A JP 2001179896 A JP2001179896 A JP 2001179896A JP 2001179896 A JP2001179896 A JP 2001179896A JP 2002372667 A JP2002372667 A JP 2002372667A
Authority
JP
Japan
Prior art keywords
lens
positive
zoom
lens group
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001179896A
Other languages
Japanese (ja)
Other versions
JP4534389B2 (en
Inventor
Atsushi Yamashita
敦司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2001179896A priority Critical patent/JP4534389B2/en
Publication of JP2002372667A publication Critical patent/JP2002372667A/en
Application granted granted Critical
Publication of JP4534389B2 publication Critical patent/JP4534389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a zoom lens which has both a wide viewing angle for a digital camera, a high variable power ratio and compactification performance, by which the various kinds of aberration are excellently corrected and that is suitable specially for a CCD. SOLUTION: In the zoom lens constituted of three lens groups having negative refracting power, positive refracting power and the positive refracting power in order from an object side, a second lens group incorporates a positive lens, the positive lens and a negative lens in order from the object side, and it is desirable that a lens positioned on a most image side is a plastic lens that is formed in a meniscus shape by making a convex surface faced to an image side and has an aspherical surface at least on one surface. Also, a first lens group is constituted of three or less lenses and it is desirable that a negative lens positioned at a most object side has at least one aspherical surface. A third lens group has one positive lens constituted of desirably the plastic lens, and it is desirable to have at least one aspherical surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ズームレンズ、特にデ
ジタルカメラやビデオカメラ等に用いられ、変倍比が
2.5倍以上で広角端の画角が60°以上のコンパクト
なCCD(電荷結合素子)用ズームレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact CCD (charged electric charge) having a zoom ratio of 2.5 times or more and an angle of view at the wide-angle end of 60 degrees or more, which is used for a zoom lens, especially a digital camera or a video camera. Coupling element).

【0002】[0002]

【従来の技術】近年、CCDを用いたデジタルスチルカ
メラやビデオカメラ等が多数利用されているが、特に携
帯に便利なコンパクトタイプのものの需要が増えてい
る。このような需要に応えるための負正正のパワー配置
を持つCCD用ズームレンズとしては、特開2001−
42218号公報、特開平11−211984号公報等
にその例が見られる。
2. Description of the Related Art In recent years, a large number of digital still cameras and video cameras using a CCD have been used. Japanese Patent Laid-Open No. 2001-2001 discloses a CCD zoom lens having a negative, positive, and positive power arrangement to meet such demands.
Examples thereof can be found in JP-A-42218, JP-A-11-211984 and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの先行
例においては、Fナンバーが明るいものの、レンズ枚数
が10枚と多く、コンパクト性に欠けていたり、レンズ
枚数が6枚と少ないが変倍比が2倍程度で画角が狭かっ
たりと、画角、変倍比、コンパクト性の総てにおいて十
分な仕様を満たしているとは言い難いものであった。本
発明は、広画角、高変倍比、コンパクト性を併せ持ち、
さらに諸収差が良好に補正されたズームレンズを得よう
とするものである。
However, in these prior arts, although the F-number is bright, the number of lenses is as large as 10 and the compactness is lacking. However, the angle of view was narrow at about twice, and it was difficult to say that all of the angle of view, the zoom ratio, and the compactness satisfied the sufficient specifications. The present invention has a wide angle of view, a high zoom ratio, and compactness,
Another object is to obtain a zoom lens in which various aberrations are corrected well.

【0004】[0004]

【課題を解決するための手段】本発明のズームレンズ
は、以下の構成を取ることによってその目的を達するこ
とが出来た。すなわち、本発明のズームレンズは、物体
側から順に、負の屈折力を有する第1レンズ群、正の屈
折力を有する第2レンズ群、正の屈折力を有する第3レ
ンズ群から構成され、短焦点端から長焦点端への変倍に
際し、各群の間隔を変えることにより変倍を行うズーム
レンズにおいて、前記第2レンズ群は物体側から順に、
少なくとも正の2aレンズ、正の2bレンズ、負の2c
レンズを含み、さらにその最も像側に位置するレンズが
像側に凸面を向けたメニスカス形状で、少なくとも1面
に非球面を有するレンズであることを特徴とする。ま
た、前記第1レンズ群は3枚以下のレンズからなり、前
記第2レンズ群が物体側から順に、少なくとも正の2a
レンズ、正の2bレンズ、負の2cレンズを含み、さら
にその最も像側に位置するレンズが少なくとも1面に非
球面を有するレンズであることを特徴とする。さらに、
物体側から順に、少なくとも正の2aレンズ、正の2b
レンズ、負の2cレンズを含み、その最も像側に位置す
るレンズが少なくとも1面に非球面を有するプラスチッ
クレンズであることを特徴とする。そして、前記2a、
2b、2cレンズは研磨加工によるガラス球面レンズで
ある。
The zoom lens of the present invention has achieved its object by adopting the following constitution. That is, the zoom lens of the present invention includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. Upon zooming from the short focal end to the long focal end, in a zoom lens that performs zooming by changing the distance between the groups, the second lens group includes, in order from the object side,
At least positive 2a lens, positive 2b lens, negative 2c
A lens having a meniscus shape with a convex surface facing the image side and an aspherical surface on at least one surface thereof. The first lens group includes three or less lenses, and the second lens group includes at least a positive 2a in order from the object side.
A lens including a lens, a positive 2b lens, and a negative 2c lens, and the lens located closest to the image side is a lens having at least one aspheric surface. further,
In order from the object side, at least the positive 2a lens and the positive 2b
Including a lens and a negative 2c lens, the lens located closest to the image side is a plastic lens having at least one aspheric surface. And the 2a,
The 2b and 2c lenses are glass spherical lenses formed by polishing.

【0005】前記の特徴を有するズームレンズにおい
て、前記第2レンズ群は、以下の条件式を満足すること
が望ましい。 1.0<f2/fw<3.0 ・・・(1) だたし f2:前記第2レンズ群の焦点距離 fw:広角端における全レンズ系の焦点距離 また、前記第2レンズ群中の非球面レンズはプラスチッ
クレンズであり、該プラスチックレンズは以下の条件式
を満足することが望ましい。 −0.1<fw/fp<0.1 ・・・(2) だたし fw:広角端における全レンズ系の焦点距離 fp:第2群レンズ中の非球面プラスチックレンズの焦
点距離 さらに前記2aレンズは以下の条件式を満足することが
望ましい。 n2a>1.80 ・・・(3) ただし n2a:2aレンズのd線に対する屈折率
In the zoom lens having the above characteristics, it is preferable that the second lens group satisfies the following conditional expression. 1.0 <f 2 / f w <3.0 (1) where f 2 is the focal length of the second lens group f w is the focal length of the entire lens system at the wide-angle end. The aspheric lens in the lens group is a plastic lens, and the plastic lens preferably satisfies the following conditional expression. -0.1 <f w / f p < 0.1 It was but ··· (2) f w: the focal length of the whole lens system at the wide-angle end f p: The focus of the aspherical plastic lens in the second lens group Distance The 2a lens desirably satisfies the following conditional expression. n 2a > 1.80 (3) where n 2a is the refractive index for the d-line of the 2a lens.

【0006】前記第1レンズ群は、最も物体側に位置す
る少なくとも1枚の負の1aレンズを有し、該負レンズ
は少なくとも1面の非球面を有することが望ましい。そ
して該1aレンズは、以下の条件式を満足することが望
ましい。 n1a>1.80 ・・・(4) ただし n1a:前記1aレンズのd線に対する屈折率 また、前記1aレンズの非球面は、ガラス球面上に非球
面樹脂を形成させた複合非球面であることが望ましい。
It is preferable that the first lens group has at least one negative 1a lens located closest to the object side, and the negative lens has at least one aspheric surface. It is desirable that the 1a lens satisfies the following conditional expression. n 1a > 1.80 (4) where n 1a is the refractive index for the d-line of the 1a lens. The aspheric surface of the 1a lens is a composite aspherical surface in which an aspherical resin is formed on a glass spherical surface. Desirably.

【0007】前記第3レンズ群は、最も像側に位置する
少なくとも1枚の正の3aレンズを有し、該3aレンズ
は少なくとも1面の非球面を有することが望ましい。該
3aレンズは、プラスチックレンズあるいはガラス球面
上に非球面樹脂を形成させた複合非球面レンズであって
よい。
The third lens group has at least one positive 3a lens positioned closest to the image, and the 3a lens preferably has at least one aspheric surface. The 3a lens may be a plastic lens or a compound aspherical lens in which an aspherical resin is formed on a glass spherical surface.

【0008】さらに、前記ズームレンズは、以下の条件
式を満足することが望ましい。 1.0<SD/Ymax<3.0 ・・・(5) ただし SD:各レンズ群の最も物体側の面から最も像
側の面までの距離の和 Ymax:撮像素子の対角長 そして、前記第3レンズ群は、短焦点端から長焦点端へ
の変倍に際し、像側に移動すると共に、無限遠から有限
距離への合焦は、少なくとも前記第3レンズ群を移動さ
せてを行う。
Further, it is desirable that the zoom lens satisfies the following conditional expression. 1.0 <SD / Ymax <3.0 (5) where SD is the sum of the distances from the most object-side surface to the most image-side surface of each lens group Ymax : the diagonal length of the image sensor The third lens group moves to the image side when zooming from the short focal end to the long focal end, and focusing from infinity to a finite distance requires moving at least the third lens group. Do.

【0009】[0009]

【作用】本発明のズームレンズのタイプは、第1レンズ
群が負の屈折力、第2レンズ群が正の屈折力を持ってい
るため、撮影レンズとCCD面の間にローパスフィル
タ、赤外線カットフィルタやカバーガラス等を配置する
のに十分なバックフォーカスを得られ、また、開口絞り
が負の第1レンズ群より後にある場合、この負レンズ群
の発散効果により周辺光量比が多く取れるという利点が
ある。また、第3レンズ群に正の屈折力を持たせること
により、テレセントリック性を十分に確保することが出
来、撮像素子がCCDの場合には特に有利である。コン
パクト性とテレセントリック性を両立させるためには、
開口絞りを第2レンズ群の物体側に設けるとよい。
According to the zoom lens type of the present invention, the first lens group has a negative refractive power and the second lens group has a positive refractive power. Back focus sufficient to dispose a filter, cover glass, etc. can be obtained, and when the aperture stop is located after the first negative lens group, the diverging effect of this negative lens group can increase the peripheral light amount ratio. There is. In addition, by making the third lens group have a positive refractive power, sufficient telecentricity can be ensured, which is particularly advantageous when the imaging device is a CCD. To achieve both compactness and telecentricity,
It is preferable to provide an aperture stop on the object side of the second lens group.

【0010】第2レンズ群中に物体側から順に、少なく
とも正正負の配置を含むことにより、球面収差やコマ収
差を良好に補正出来、ペッツバール和を小さくして像面
湾曲を抑えることが出来る。さらに、第2レンズ群の最
も像側のレンズを非球面化することで、非点収差を良好
に補正することが出来る。このように第2レンズ群で発
生する収差を小さく抑えることが出来るので、ズーミン
グ時の収差変動も小さくすることが出来る。また、正正
負とすることにより、正負だけの構成に比べ、正のパワ
ーを分割して小さくできるので、この正レンズで発生す
る球面収差やコマ収差を小さくすることが出来る。さら
に、組立ての際のレンズ偏心が生じても、それによる収
差変動を小さく抑えることが出来、良好な生産性を維持
できる。
By including at least the positive, negative, and positive arrangements in order from the object side in the second lens group, spherical aberration and coma can be corrected well, Petzval sum can be reduced, and field curvature can be suppressed. Furthermore, by making the lens closest to the image in the second lens group aspherical, astigmatism can be corrected well. As described above, the aberration generated in the second lens group can be suppressed to a small value, so that the aberration variation during zooming can be reduced. In addition, since the positive power can be divided and reduced by using positive / negative as compared with a configuration including only positive / negative, spherical aberration and coma generated by the positive lens can be reduced. Furthermore, even if lens eccentricity occurs during assembly, fluctuations in aberrations caused by the eccentricity can be suppressed to a small level, and good productivity can be maintained.

【0011】第2レンズ群の最も像側に配置された非球
面レンズを像側に凸面を向けたメニスカス形状とする
と、このレンズが偏心したときの性能劣化を小さくでき
る。またこのレンズをプラスチック化することにより、
射出成形による非球面付加の容易化やレンズ全系の軽量
化が達成できる。第2レンズ群中の上記非球面レンズ以
外のレンズを研磨加工によるガラス球面レンズとするこ
とにより、モールド成形によるガラスモールドレンズ、
射出成形によるプラスチックレンズよりも製造時の曲率
半径誤差や面のうねり誤差を小さく抑えることが出来、
良好な光学性能を確保することが可能となる。
If the aspherical lens closest to the image side of the second lens group has a meniscus shape with the convex surface facing the image side, it is possible to reduce the performance deterioration when this lens is decentered. Also, by making this lens plastic,
It is possible to easily add an aspheric surface by injection molding and to reduce the weight of the entire lens system. By forming the lenses other than the aspherical lens in the second lens group into glass spherical lenses by polishing, a glass molded lens by molding,
Curvature radius error and surface undulation error during manufacturing can be kept smaller than plastic lenses produced by injection molding.
Good optical performance can be ensured.

【0012】本発明のズームレンズは、条件式(1)を
満たすことにより、コンパクト性と良好な光学性能を両
立することが出来る。この条件式の下限を超えると第2
レンズ群のパワーが強くなり過ぎ、この群で発生する諸
収差が大きくなってしまう。逆に上限を超えると第2レ
ンズ群のパワーが小さくなり過ぎ、変倍に必要な第2レ
ンズ群の移動量が大きくなってしまうため、コンパクト
性が損なわれてしまう。この条件式の上限下限は、望ま
しくは 1.5<f2/fw<2.5 ・・・(1’) とすることが好ましい。
By satisfying conditional expression (1), the zoom lens of the present invention can achieve both compactness and good optical performance. If the lower limit of this conditional expression is exceeded, the second
The power of the lens group becomes too strong, and various aberrations generated in this group become large. Conversely, if the upper limit is exceeded, the power of the second lens group becomes too small, and the amount of movement of the second lens group necessary for zooming becomes large, so that the compactness is impaired. Upper and lower limits of the conditional expression is desirably preferable to be 1.5 <f 2 / f w < 2.5 ··· (1 ').

【0013】条件式(2)を満たすことにより、プラス
チックレンズのパワーが小さくなるので、プラスチック
レンズの温度変化時におけるピント移動量を小さく抑え
ることが出来る。この上限下限は、望ましくは −0.05<fw/fp<0.05 ・・・(2’) とすることが好ましい。
By satisfying conditional expression (2), the power of the plastic lens is reduced, so that the amount of focus movement when the temperature of the plastic lens changes can be reduced. The upper and lower limits is desirably preferably set to -0.05 <f w / f p < 0.05 ··· (2 ').

【0014】条件式(3)を満たし、第2レンズ群中の
最も物体側にある正レンズの屈折率を大きくすることに
より、レンズ全系をコンパクト化した際にこのレンズの
パワーが強くなっても、屈折率の低い硝材に比べて曲率
を小さくできるので、このレンズで発生する球面収差や
コマ収差の発生を小さくするこことが可能である。この
下限は、望ましくは n2a>1.85 ・・・(3’) とすることが好ましい。
By satisfying conditional expression (3) and increasing the refractive index of the positive lens closest to the object side in the second lens unit, the power of this lens increases when the entire lens system is made compact. Also, since the curvature can be reduced as compared with a glass material having a low refractive index, it is possible to reduce the occurrence of spherical aberration and coma generated by this lens. This lower limit is preferably n 2a > 1.85 (3 ′).

【0015】第1レンズ群を物体側から順に、負レン
ズ、正レンズの2枚構成とすることにより、レンズ厚や
前玉径の小さいコンパクトな光学系とすることが出来
る。負レンズ、負レンズ、正レンズの3枚構成とする
と、負のパワーを分割して小さくできるので、この群で
発生する負の歪曲収差等を良好に補正することが出来
る。
By forming the first lens group of a negative lens and a positive lens in order from the object side, a compact optical system having a small lens thickness and a small front lens diameter can be obtained. In the case of a three-lens configuration including a negative lens, a negative lens, and a positive lens, negative power can be divided and reduced, so that negative distortion and the like generated in this group can be corrected well.

【0016】第1レンズ群にある負レンズの曲率の大き
い面や、第3レンズ群に非球面を使用することにより、
歪曲収差や非点収差等を効果的に補正することが出来
る。さらにガラス球面レンズと非球面樹脂とを複合化す
ることで、プラスチックレンズに比べ、硝種の選択幅が
広がり、諸収差の補正効果が大きくなる。ただし、第3
レンズ群ではプラスチックレンズ相当の屈折率でも良好
に収差が補正される場合もあるため、この群にガラスよ
り軽いプラスチックレンズを使用することにより、ズー
ミングやフォーカシングで第3レンズ群を移動させる際
の駆動機構に与える負荷が少なくて済む。第3レンズ群
にプラスチックレンズを使用した際、ここを通過する軸
上光線の高さが低いので、温度変化による屈折率変化や
レンズ形状変化が生じても、結像位置の変動は比較的小
さくて済む。なお、第1、第3レンズ群に使用する非球
面にガラスモールド非球面を使用しても良好な光学性能
を保つことが出来る。
By using a surface having a large curvature of the negative lens in the first lens unit and using an aspherical surface in the third lens unit,
Distortion and astigmatism can be effectively corrected. Further, by combining the glass spherical lens and the aspherical resin, the selection range of glass types is widened and the effect of correcting various aberrations is increased as compared with the plastic lens. However, the third
In the lens group, aberrations may be well corrected even with a refractive index equivalent to that of a plastic lens. Therefore, by using a plastic lens lighter than glass for this group, driving when moving the third lens group by zooming or focusing is performed. The load on the mechanism is small. When a plastic lens is used for the third lens group, the height of the axial ray passing therethrough is low, so that even if a change in the refractive index or a change in the lens shape due to a temperature change occurs, the change in the imaging position is relatively small. I can do it. Note that good optical performance can be maintained even if a glass mold aspheric surface is used for the aspheric surface used for the first and third lens groups.

【0017】条件式(4)を満たすことにより、第1レ
ンズ群中の最も物体側にある負レンズの屈折率を大きく
できるので、レンズ全系をコンパクト化したときにこの
レンズのパワーが強くなっても、屈折率が低い硝材に比
べてレンズの曲率を小さくすることが出来、このレンズ
で発生する歪曲収差や非点収差等を小さくすることが出
来る。この下限は n1a>1.85 ・・・(4’) とすることが望ましい。
By satisfying conditional expression (4), the refractive index of the negative lens closest to the object side in the first lens group can be increased, so that the power of this lens increases when the entire lens system is made compact. However, it is possible to reduce the curvature of the lens as compared with a glass material having a low refractive index, and it is possible to reduce distortion, astigmatism, and the like generated in the lens. The lower limit is desirably n 1a > 1.85 (4 ′).

【0018】条件式(5)を満たすことにより、レンズ
のコンパクト化と良好な光学性能を両立することが出来
る。この条件式の上限を超えるとレンズが厚くなり過
ぎ、コンパクト性が失われる。逆に下限を超えると収差
補正不足になったり、各レンズの偏心誤差感度が大きく
なり、製造上好ましくない。この上限下限は、 1.5<SD/Ymax<2.5 ・・・(5’) とすることが望ましい。
By satisfying conditional expression (5), it is possible to achieve both compactness of the lens and good optical performance. If the upper limit of the conditional expression is exceeded, the lens becomes too thick and the compactness is lost. Conversely, if the lower limit is exceeded, the aberration correction will be insufficient, and the sensitivity of the eccentric error of each lens will increase, which is not preferable in manufacturing. The upper and lower limits are desirably 1.5 <SD / Ymax <2.5 (5 ').

【0019】第3レンズ群で合焦させるいわゆるリアフ
ォーカス式の場合、短焦点端から長焦点端へのズーミン
グに際して第3レンズ群を像側へ移動させることによ
り、第3レンズ群にも変倍作用を持たせることが出来、
第2レンズ群のパワーもしくは移動量を小さく抑えるこ
とが出来る。また、短焦点端での無限遠から至近距離へ
合焦するのに必要な移動経路を、長焦点端での合焦に必
要な移動経路に含ませることが出来るので、レンズ駆動
機構をコンパクトにすることが出来る。特に、第3レン
ズ群が正レンズ1枚から構成される場合には、他の群よ
り軽量となるので、フォーカシングレンズとして駆動機
構に与える負荷を最も小さくして使用することが可能で
ある。また、第1レンズ群でフォーカシングしようとす
ると至近距離での周辺光量比を確保するために前玉径が
大きくなってしまうが、第3群によるフォーカシングで
はそのようなことがないので、コンパクト性を保つこと
が出来る。
In the case of a so-called rear focus type in which focusing is performed by the third lens unit, zooming is performed on the third lens unit by moving the third lens unit toward the image side during zooming from the short focus end to the long focus end. Can have an effect,
The power or the movement amount of the second lens group can be reduced. In addition, since the movement path required for focusing from infinity to the close distance at the short focal length end can be included in the movement path required for focusing at the long focal length end, the lens driving mechanism is made compact. I can do it. In particular, when the third lens group is composed of one positive lens, the third lens group is lighter than the other groups, so that it is possible to use the focusing lens with the least load applied to the drive mechanism. In addition, when focusing is performed by the first lens unit, the front lens diameter becomes large in order to secure a peripheral light amount ratio at a close distance. However, focusing is not performed by the third lens unit. Can be kept.

【0020】赤外カットフィルターを、ローパスフィル
ター表面にコート処理を施した反射型とすることによ
り、吸収型の赤外カットフィルターガラスを別途にレン
ズ系に挿入する必要がなくなり、光軸方向の厚みを薄く
することが出来、各レンズ群、フィルターを近接させて
カメラボディに格納する際、よりコンパクトな格納が可
能となる。
Since the infrared cut filter is of a reflection type in which the surface of the low-pass filter is coated, it is not necessary to separately insert an absorption type infrared cut filter glass into the lens system, and the thickness in the optical axis direction is reduced. Can be made thinner, and when the lens groups and filters are stored in the camera body in close proximity to each other, more compact storage becomes possible.

【0021】以下、本発明の実施例を示す。表中、fは
全系の焦点距離、FはFナンバー、ωは半画角、rは近
軸曲率半径、dは軸上面間隔、ndはd線に対する屈折
率、νdはアツベ数である。また非球面形状は面の頂点
を原点として、光軸方向をX軸とした直交座標系におい
て、近軸曲率半径をr、円錐係数をκ、非球面係数をA
2iとして、
Hereinafter, embodiments of the present invention will be described. In the table, f is the focal length of the entire system, F is F number, omega denotes a half angle, r is the paraxial radius of curvature, d is the axial distance, n d is the refractive index at the d-line, [nu d is Abbe's number is there. The aspherical shape has a paraxial curvature radius of r, a conic coefficient of κ, and an aspherical coefficient of A in an orthogonal coordinate system having the vertex of the surface as the origin and the optical axis direction as the X axis.
As 2i ,

【数1】 で表される。(Equation 1) It is represented by

【0022】第1実施例のレンズデータを以下の表に示
す。また、この実施例のレンズ断面を図1に、収差図を
図7に示す。1aレンズは複合非球面レンズ(面No.1
〜3)、第2レンズ群中の非球面レンズはプラスチック
非球面レンズ(面No.11〜12)、3aレンズは複合
非球面レンズ(面No.13〜15)である。 f=8.25〜23.35 絞り位置:第6面前方0.30mm 面No. r d nd νd 1 149.804 0.95 1.88300 40.8 2 8.946 0.05 1.50706 53.6 3 7.469 2.44 4 12.503 1.83 1.84666 23.8 5 33.629 d5(可変) 6 19.191 1.83 1.88300 40.8 7 −57.513 0.20 8 7.684 1.99 1.72916 54.7 9 −160.000 2.68 1.84666 23.8 10 6.023 1.68 11 −8.232 1.05 1.52500 56.0 12 −7.980 d12(可変) 13 41.287 2.35 1.58913 61.2 14 −17.932 0.05 1.50706 53.6 15 −21.599 d15(可変) 16 ∞ 1.35 1.54880 67.0 17 ∞ 0.39 18 ∞ 0.50 1.51633 64.1 19 ∞ 可変面間隔 f d51215 8.25 17.84 4.20 3.16 14.22 7.64 10.31 2.95 23.35 1.96 19.13 2.95 非球面係数 第3面 κ =−1.12460 A4 = 8.84430/1056 = 9.77360/1078 =−3.67080/10810= 4.34110/1010 第11面 κ = 0.0 A4 =−2.64380/1046 = 1.35280/1048 =−1.10100/10510= 7.50280/107 第12面 κ = 0.0 A4 = 3.46620/1046 = 1.02210/1048 =−4.01190/10610= 2.77920/107 第15面 κ =−5.59300/1034 = 3.70120/1056 =−3.35500/1068 = 1.00550/10710=−9.98320/1010
The following table shows the lens data of the first embodiment. FIG. 1 shows a lens section of this embodiment, and FIG. 7 shows aberration diagrams. The 1a lens is a compound aspheric lens (surface No. 1)
3), the aspheric lenses in the second lens group are plastic aspheric lenses (surface Nos. 11 to 12), and the 3a lens is a compound aspheric lens (surface Nos. 13 to 15). f = from 8.25 to 23.35 diaphragm position: sixth surface front 0.30mm surface No. r d n d ν d 1 149.804 0.95 1.88300 40.8 2 8.946 0.05 1. 50706 53.6 3 7.469 2.44 4 12.503 1.83 1.866666 23.8 5 33.629 d 5 (variable) 6 19.191 1.83 1.88300 40.87-57. 513 0.20 8 7.684 1.99 1.72916 54.7 9-160.000 2.68 1.84666 23.8 10 6.023 1.68 11-8.232 1.05 1.52500 56 .0 12 -7.980 d 12 (variable) 13 41.287 2.35 1.58913 61.2 14 -17.932 0.05 1.50706 53.6 15 -21.599 d 15 Variable) 16 ∞ 1.35 1.54880 67.0 17 ∞ 0.39 18 ∞ 0.50 1.51633 64.1 19 ∞ Variable spacing f d 5 d 12 d 15 8.25 17.84 4.20 3.16 14.22 7.64 10.31 2.95 23.35 1.96 19.13 2.95 Aspherical surface third surface κ = −1.12460 A 4 = 8.884430 / 10 5 A 6 = 9.77360 / 10 7 A 8 = -3.67080 / 10 8 A 10 = 4.3341 10/10 The eleventh surface κ = 0.0 A 4 = -2.664380 / 10 4 A 6 = 1.35280 / 10 4 A 8 = −1.10100 / 10 5 A 10 = 7.5020 / 10 7 twelfth surface κ = 0.0 A 4 = 3.464620 10 4 A 6 = 1.022110 4 A 8 = −4.001190 / 10 6 A 10 = 2.779 20/10 7 fifteenth surface κ = -5.59300 / 10 3 A 4 = 3.70120 / 10 5 A 6 = -3.35500 / 10 6 A 8 = 1.00550 / 10 7 A 10 = -9. 98320/10 10

【0023】第2実施例のレンズデータを以下の表に示
す。また、この実施例のレンズ断面を図2に、収差図を
図8に示す。1aレンズは複合非球面レンズ(面No.1
〜3)、第2レンズ群中の非球面レンズはプラスチック
非球面レンズ(面No.11〜12)、3aレンズは複合
非球面レンズ(面No.13〜15)である。 f=8.25〜23.35 絞り位置:第6面前方0.30mm 面No. r d nd νd 1 149.804 0.95 1.88300 40.8 2 8.946 0.05 1.50706 53.6 3 7.469 2.44 4 12.503 1.83 1.84666 23.8 5 33.629 d5(可変) 6 19.191 1.83 1.88300 40.8 7 −57.513 0.20 8 7.684 1.99 1.72916 54.7 9 −160.000 2.68 1.84666 23.8 10 6.023 1.68 11 −8.232 1.05 1.52500 56.0 12 −7.980 d12(可変) 13 41.287 2.35 1.58913 61.2 14 −17.932 0.05 1.50706 53.6 15 −21.599 d15(可変) 16 ∞ 1.35 1.54880 67.0 17 ∞ 0.39 18 ∞ 0.50 1.51633 64.1 19 ∞ 可変面間隔 f d51215 8.25 17.84 4.20 3.16 13.88 7.57 9.42 3.46 23.35 1.70 18.85 3.46 非球面係数 第3面 κ =−1.12460 A4 = 8.84430/1056 = 9.77360/1078 =−3.67080/10810= 4.34110/1010 第11面 κ = 0.0 A4 =−2.64380/1046 = 1.35280/1048 =−1.10100/10510= 7.50280/107 第12面 κ = 0.0 A4 = 3.46620/1046 = 1.02210/1048 =−4.01190/10610= 2.77920/107 第15面 κ =−5.59300/1034 = 3.70120/1056 =−3.35500/1068 = 1.00550/10710=−9.98320/1010
The following table shows the lens data of the second embodiment. FIG. 2 shows a lens section of this embodiment, and FIG. 8 shows aberration diagrams. The 1a lens is a compound aspheric lens (surface No. 1)
3), the aspheric lenses in the second lens group are plastic aspheric lenses (surface Nos. 11 to 12), and the 3a lens is a compound aspheric lens (surface Nos. 13 to 15). f = from 8.25 to 23.35 diaphragm position: sixth surface front 0.30mm surface No. r d n d ν d 1 149.804 0.95 1.88300 40.8 2 8.946 0.05 1. 50706 53.6 3 7.469 2.44 4 12.503 1.83 1.866666 23.8 5 33.629 d 5 (variable) 6 19.191 1.83 1.88300 40.87-57. 513 0.20 8 7.684 1.99 1.72916 54.7 9-160.000 2.68 1.84666 23.8 10 6.023 1.68 11-8.232 1.05 1.52500 56 .0 12 -7.980 d 12 (variable) 13 41.287 2.35 1.58913 61.2 14 -17.932 0.05 1.50706 53.6 15 -21.599 d 15 Variable) 16 ∞ 1.35 1.54880 67.0 17 ∞ 0.39 18 ∞ 0.50 1.51633 64.1 19 ∞ Variable spacing f d 5 d 12 d 15 8.25 17.84 4.20 3.16 13.88 7.57 9.42 3.46 23.35 1.70 18.85 3.46 Aspherical surface third surface κ = −1.12460 A 4 = 8.884430 / 10 5 A 6 = 9.77360 / 10 7 A 8 = -3.67080 / 10 8 A 10 = 4.3341 10/10 The eleventh surface κ = 0.0 A 4 = -2.664380 / 10 4 A 6 = 1.35280 / 10 4 A 8 = −1.10100 / 10 5 A 10 = 7.5020 / 10 7 twelfth surface κ = 0.0 A 4 = 3.464620 10 4 A 6 = 1.022110 4 A 8 = −4.001190 / 10 6 A 10 = 2.7792 0/10 7 15th surface κ = -5.59 300/10 3 A 4 = 3.70 120/10 5 A 6 = -3.35 500/10 6 A 8 = 1.00550 / 10 7 A 10 = -9. 98320/10 10

【0024】第3実施例のレンズデータを以下の表に示
す。また、この実施例のレンズ断面を図3に、収差図を
図9に示す。1aレンズは複合非球面レンズ(面No.1
〜3)、第2レンズ群中の非球面レンズはプラスチック
非球面レンズ(面No.11〜12)である。 f=8.25〜23.35 絞り位置:第6面前方0.30mm 面No. r d nd νd 1 149.804 0.95 1.88300 40.8 2 8.946 0.05 1.50706 53.6 3 7.469 2.44 4 12.503 1.83 1.84666 23.8 5 33.629 d5(可変) 6 19.191 1.83 1.88300 40.8 7 −57.513 0.20 8 7.684 1.99 1.72916 54.7 9 −160.000 2.68 1.84666 23.8 10 6.023 1.68 11 −8.232 1.05 1.52500 56.0 12 −7.980 d12(可変) 13 40.414 2.40 1.58313 59.4 14 −20.904 d14(可変) 15 ∞ 1.35 1.54880 67.0 16 ∞ 0.39 17 ∞ 0.50 1.51633 64.1 18 ∞ 可変面間隔 f d51214 8.25 17.84 4.20 3.16 13.88 7.57 9.42 3.46 23.35 1.70 18.85 3.46 非球面係数 第3面 κ =−1.12460 A4 = 8.84430/1056 = 9.77360/1078 =−3.67080/10810= 4.34110/1010 第11面 κ = 0.0 A4 =−2.64380/1046 = 1.35280/1048 =−1.10100/10510= 7.50280/107 第12面 κ = 0.0 A4 = 3.46620/1046 = 1.02210/1048 =−4.01190/10610= 2.77920/107 第14面 κ = 5.19770/1034 = 3.37080/1056 =−3.00060/1068 = 9.00860/10810=−8.96180/1010
The following table shows the lens data of the third embodiment. FIG. 3 shows a lens section of this embodiment, and FIG. 9 shows aberration diagrams. The 1a lens is a compound aspheric lens (surface No. 1)
3), the aspheric lenses in the second lens group are plastic aspheric lenses (surface Nos. 11 to 12). f = from 8.25 to 23.35 diaphragm position: sixth surface front 0.30mm surface No. r d n d ν d 1 149.804 0.95 1.88300 40.8 2 8.946 0.05 1. 50706 53.6 3 7.469 2.44 4 12.503 1.83 1.866666 23.8 5 33.629 d 5 (variable) 6 19.191 1.83 1.88300 40.87-57. 513 0.20 8 7.684 1.99 1.72916 54.7 9-160.000 2.68 1.84666 23.8 10 6.023 1.68 11-8.232 1.05 1.52500 56 .0 12 -7.980 d 12 (variable) 13 40.414 2.40 1.58313 59.4 14 -20.904 d 14 ( variable) 15 ∞ 1.35 1.54880 67.0 16 9 0.39 17 ∞ 0.50 1.51633 64.1 18 面 Variable surface spacing f d 5 d 12 d 14 8.25 17.84 4.20 3.16 13.88 7.57 9.42 3. 46 23.35 1.70 18.85 3.46 Aspherical surface coefficient Third surface κ = −1.12460 A 4 = 8.844430 / 10 5 A 6 = 9.7773 / 10 7 A 8 = −3.67080 / 10 8 A 10 = 4.334110 / 10 10th eleventh surface κ = 0.0 A 4 = −2.64380 / 10 4 A 6 = 1.35280 / 10 4 A 8 = −1.10 100/10 5 A 10 = 7.5280 / 10 7 twelfth surface κ = 0.0 A 4 = 3.46620 / 10 4 A 6 = 1.210210 / 10 4 A 8 = −4.001190 / 10 6 A 10 = 2.777920 / 10 7 14th surface κ = 5.19770 / 10 3 A 4 = 3.37080 / 10 5 A 6 = −3.0060 / 10 6 A 8 = 9.0860 / 10 8 A 10 = −8.96180 / 10 10

【0025】第4実施例のレンズデータを以下の表に示
す。また、この実施例のレンズ断面を図4に、収差図を
図10に示す。第2レンズ群中の非球面レンズはプラス
チック非球面レンズ(面No.10〜11)である。 f=8.25〜23.35 絞り位置:第5面前方0.30mm 面No. r d nd νd 1 108.308 1.00 1.88300 40.8 2 7.837 2.42 3 12.813 1.84 1.84666 23.8 4 36.670 d4(可変) 5 16.408 1.43 1.88300 40.8 6 −77.585 0.20 7 7.349 1.81 1.72916 54.7 8 307.449 2.27 1.84666 23.8 9 5.713 1.64 10 −8.540 1.10 1.52500 56.0 11 −8.247 d11(可変) 12 25.595 2.40 1.48749 70.2 13 −22.550 d13(可変) 14 ∞ 1.50 1.54880 67.0 15 ∞ 0.20 16 ∞ 0.50 1.51633 64.1 17 ∞ 可変面間隔 f d41113 8.25 17.66 4.68 3.03 13.88 7.32 9.79 3.33 23.35 1.40 19.02 3.33 非球面係数 第2面 κ =−1.24457 A4 = 1.72190/1046 = 9.69190/1078 =−8.97580/10910=−2.17180/1011 第10面 κ = 0.0 A4 =−2.64380/1046 = 1.35280/1048 =−1.10100/10510= 7.50280/107 第11面 κ = 0.0 A4 = 3.46620/1046 = 1.02210/1048 =−4.01190/10610= 2.77920/107 第13面 κ = 0.0 A4 = 5.27620/1056 =−4.18230/1068 = 1.22850/10710=−1.36850/109
The following table shows the lens data of the fourth embodiment. FIG. 4 shows a lens section of this embodiment, and FIG. 10 shows aberration diagrams. The aspheric lens in the second lens group is a plastic aspheric lens (surface Nos. 10 to 11). f = from 8.25 to 23.35 diaphragm position: fifth surface front 0.30mm surface No. r d n d ν d 1 108.308 1.00 1.88300 40.8 2 7.837 2.42 3 12 0.813 1.84 1.86666 23.8 4 36.670 d 4 (variable) 5 16.408 1.43 1.88300 40.8 6 -77.585 0.20 7 7.349 1.81 1.81. 72916 54.7 8 307.449 2.27 1.84666 23.8 9 5.713 1.64 10 -8.540 1.10 1.52500 56.0 11 -8.247 d 11 ( variable) 12 25 .595 2.40 1.48749 70.2 13 -22.550 d 13 ( variable) 14 ∞ 1.50 1.54880 67.0 15 ∞ 0.20 16 ∞ 0.50 1.51633 64. 17 ∞ Variable spacing f d 4 d 11 d 13 8.25 17.66 4.68 3.03 13.88 7.32 9.79 3.33 23.35 1.40 19.02 3.33 aspherical Coefficient Second surface κ = −1.244457 A 4 = 1.72190 / 10 4 A 6 = 9.69190 / 10 7 A 8 = −8.9975 / 10 9 A 10 = −2.117180 / 10 11 Tenth Surface κ = 0.0 A 4 = −2.64380 / 10 4 A 6 = 1.35280 / 10 4 A 8 = −1.10100 / 10 5 A 10 = 7.5280 / 10 7 Eleventh surface κ = 0 .0 A 4 = 3.46620 / 10 4 A 6 = 1.02210 / 10 4 A 8 = -4.01190 / 10 6 A 10 = 2.77920 / 10 7 thirteenth surface κ = 0.0 A 4 = 5.27620 / 10 5 A 6 = -4.18230 / 10 6 A 8 = 1. 2850/10 7 A 10 = -1.36850 / 10 9

【0026】第5実施例のレンズデータを以下の表に示
す。また、この実施例のレンズ断面を図5に、収差図を
図11に示す。第2レンズ群中の非球面レンズはプラス
チック非球面レンズ(面No.10〜11)である。 f=8.25〜23.35 絞り位置:第5面前方0.30mm 面No. r d nd νd 1 95.117 1.00 1.88300 40.8 2 7.690 2.33 3 12.461 1.86 1.84666 23.8 4 35.212 d4(可変) 5 14.541 1.45 1.88300 40.8 6 −110.621 0.20 7 7.432 1.93 1.72916 54.7 8 −738.378 2.09 1.84666 23.8 9 5.635 1.58 10 −9.893 1.10 1.58300 30.0 11 −9.493 d11(可変) 12 23.589 2.55 1.48749 70.2 13 −24.321 d13(可変) 14 ∞ 1.50 1.54880 67.0 15 ∞ 0.20 16 ∞ 0.50 1.51633 64.1 17 ∞ 可変面間隔 f d41113 8.25 17.58 4.80 2.59 13.88 7.30 9.73 2.89 23.35 1.40 18.64 2.89 非球面係数 第2面 κ =−1.27958 A4 = 1.97640/1046 = 9.88270/1078 =−9.67440/10910=−1.58110/1011 第10面 κ = 0.0 A4 =−3.63360/1046 = 1.26620/1048 =−1.15670/10510= 7.60940/107 第11面 κ = 0.0 A4 = 2.46390/1046 = 9.52900/1058 =−4.19910/10610= 2.66440/107 第13面 κ = 0.0 A4 = 4.98030/1056 =−4.90470/1068 = 1.51280/10710=−1.79280/109
The following table shows the lens data of the fifth embodiment. FIG. 5 shows a lens section of this embodiment, and FIG. 11 shows aberration diagrams. The aspheric lens in the second lens group is a plastic aspheric lens (surface Nos. 10 to 11). f = from 8.25 to 23.35 diaphragm position: fifth surface front 0.30mm surface No. r d n d ν d 1 95.117 1.00 1.88300 40.8 2 7.690 2.33 3 12 .461 1.86 1.84666 23.8 4 35.212 d 4 (variable) 5 14.541 1.45 1.88300 40.8 6-110.621 0.207 7.432 1.93 1.93. 72916 54.7 8 -738.378 2.09 1.86666 23.8 9 5.635 1.58 10 -9.893 1.10 1.58300 30.0 11 -9.493 d 11 (variable) 12 23.589 2.55 1.48749 70.2 13 -24.321 d 13 ( variable) 14 ∞ 1.50 1.54880 67.0 15 ∞ 0.20 16 ∞ 0.50 1.51633 64 1 17 ∞ variable spacing f d 4 d 11 d 13 8.25 17.58 4.80 2.59 13.88 7.30 9.73 2.89 23.35 1.40 18.64 2.89 Non Spherical coefficient Second surface κ = -1.27958 A 4 = 1.97640 / 10 4 A 6 = 9.88270 / 10 7 A 8 = -9.667440 / 10 9 A 10 = -1.58110 / 10 11 Tenth surface κ = 0.0 A 4 = −3.6363 / 10 4 A 6 = 1.266620 / 10 4 A 8 = −1.15670 / 10 5 A 10 = 7.60940 / 10 7 Eleventh surface κ = 0.0 A 4 = 2.46390 / 10 4 A 6 = 9.52900 / 10 5 A 8 = -4.19910 / 10 6 A 10 = 2.66440 / 10 7 thirteenth surface κ = 0.0 A 4 = 4.98030 / 10 5 A 6 = -4.90470 / 10 6 A 8 = 1 51280/10 7 A 10 = -1.79280 / 10 9

【0027】第6実施例のレンズデータを以下の表に示
す。また、この実施例のレンズ断面を図6に、収差図を
図12に示す。第2レンズ群中の非球面レンズはプラス
チック非球面レンズ(面No.10〜11)、3aレンズ
はプラスチック非球面レンズ(面No.12〜13)であ
る。 f=4.53〜12.82 絞り位置:第5面前方0.30mm 面No. r d nd νd 1 40.542 0.60 1.74400 44.8 2 4.529 2.15 3 7.840 1.78 1.84666 23.8 4 14.648 d4(可変) 5 7.817 1.27 1.83400 37.2 6 −108.628 0.20 7 5.368 1.47 1.72916 54.7 8 −13.808 0.60 1.80518 25.4 9 3.992 1.47 10 −4.024 0.80 1.52500 56.0 11 −4.140 d11(可変) 12 12.422 1.97 1.52500 56.0 13 −16.028 d13(可変) 14 ∞ 1.35 1.54880 67.0 15 ∞ 0.39 16 ∞ 0.50 1.51633 64.1 17 ∞ 可変面間隔 f d41113 4.53 14.42 3.24 0.60 7.62 6.22 6.32 0.90 12.82 1.70 12.22 0.90 非球面係数 第2面 κ =−1.03378 A4 = 6.23580/1046 = 1.19260/1058 =−2.14210/10710= 4.38640/109 第10面 κ =−1.74180/1024 =−3.35830/1036 = 2.09220/1038 =−7.31650/10410= 1.27740/104 第11面 κ = 4.77490/1024 =−4.96770/1046 = 1.28310/1038 =−3.18620/10410= 4.88170/105 第13面 κ = 1.63703 A4 = 3.75000/1046 =−4.24020/1058 = 3.18540/10610=−9.00310/108
The following table shows the lens data of the sixth embodiment. FIG. 6 shows a lens cross section of this embodiment, and FIG. 12 shows aberration diagrams. The aspheric lens in the second lens group is a plastic aspheric lens (surface Nos. 10 to 11), and the 3a lens is a plastic aspheric lens (surface Nos. 12 to 13). f = 4.53-12.82 diaphragm position: fifth surface front 0.30mm surface No. r d n d ν d 1 40.542 0.60 1.74400 44.8 2 4.529 2.15 3 7 .840 1.78 1.84666 23.8 4 14.648 d 4 (variable) 5 7.817 1.27 1.83400 37.2 6 -108.628 0.20 7 5.368 1.47 1.47 72916 54.7 8 -13.808 0.60 1.80518 25.4 9 3.992 1.47 10 -4.024 0.80 1.52500 56.0 11 -4.140 d 11 (variable) 12 12.422 1.97 1.52500 56.0 13 -16.028 d 13 ( variable) 14 ∞ 1.35 1.54880 67.0 15 ∞ 0.39 16 ∞ 0.50 1.51633 64.1 1 ∞ Variable spacing f d 4 d 11 d 13 4.53 14.42 3.24 0.60 7.62 6.22 6.32 0.90 12.82 1.70 12.22 0.90 aspheric coefficients Second surface κ = −1.03378 A 4 = 6.2358 / 10 4 A 6 = 1.190260 / 10 5 A 8 = −2.14210 / 10 7 A 10 = 4.338610 9 Tenth surface κ = -1.74180 / 10 2 A 4 = -3.35830 / 10 3 A 6 = 2.09220 / 10 3 A 8 = -7.3650 / 10 4 A 10 = 1.277010 4 11th surface κ = 4.77490 / 10 2 A 4 = -4.96770 / 10 4 A 6 = 1.28310 / 10 3 A 8 = -3.18620 / 10 4 A 10 = 4.88170 / 10 5 thirteenth surface kappa = 1.63703 A 4 = 3.75000 / 10 4 A 6 = - 4.2020 / 10 5 A 8 = 3.184510 6 A 10 = −9.0310 / 10 8

【0028】各実施例に対する条件式の値は以下のよう
である。 条件式1 条件式2 条件式3 条件式4 条件式5 実施例1 1.71 0.04 1.88300 1.88300 1.91 実施例2 1.71 0.04 1.88300 1.88300 1.91 実施例3 1.71 0.04 1.88300 1.88300 1.91 実施例4 1.70 0.04 1.88300 1.88300 1.83 実施例5 1.67 0.04 1.88300 1.88300 1.83 実施例6 2.17 0.02 1.72916 1.74400 2.20
The values of the conditional expressions for each embodiment are as follows. Conditional expression 1 Conditional expression 2 Conditional expression 3 Conditional expression 4 Conditional expression 5 Example 1 1.71 0.04 1.88300 1.88300 1.91 Example 2 1.71 0.04 1.88300 1.88300 1. 91 Example 3 1.71 0.04 1.88300 1.88300 1.91 Example 4 1.70 0.04 1.88300 1.88300 1.83 Example 5 1.67 0.04 1.88300 1 0.888300 1.83 Example 6 2.17 0.02 1.72916 1.74400 2.20

【0029】[0029]

【発明の効果】上記のように本発明のズームレンズは、
実施例および収差曲線図で見るように、レンズ構成は7
枚程度と、コンパクトでありながら、約3倍の高変倍比
と、広角端では60°以上の広い画角を持ち、Fナンバ
ーも約2.8と明るいものが得られた、しかも、各収差
図で見るように、諸収差がバランスよく良好に補正する
ことが出来たものである。
As described above, the zoom lens according to the present invention has the following advantages.
As seen from the examples and the aberration curve diagrams, the lens configuration is 7
Despite its compact size, it has a high zoom ratio of about 3 times, a wide angle of view of 60 ° or more at the wide-angle end, and a bright F-number of about 2.8 was obtained. As can be seen from the aberration diagrams, various aberrations were successfully corrected in a well-balanced manner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のズームレンズの第1実施例の断面図で
ある。
FIG. 1 is a sectional view of a first embodiment of a zoom lens according to the present invention.

【図2】本発明のズームレンズの第2実施例の断面図で
ある。
FIG. 2 is a sectional view of a second embodiment of the zoom lens according to the present invention.

【図3】本発明のズームレンズの第3実施例の断面図で
ある。
FIG. 3 is a sectional view of a third embodiment of the zoom lens according to the present invention.

【図4】本発明のズームレンズの第4実施例の断面図で
ある。
FIG. 4 is a sectional view of a fourth embodiment of the zoom lens according to the present invention;

【図5】本発明のズームレンズの第5実施例の断面図で
ある。
FIG. 5 is a sectional view of a fifth embodiment of the zoom lens according to the present invention;

【図6】本発明のズームレンズの第6実施例の断面図で
ある。
FIG. 6 is a sectional view of a sixth embodiment of the zoom lens according to the present invention;

【図7】本発明のズームレンズの第1実施例の収差図で
ある。
FIG. 7 is an aberration diagram of the first embodiment of the zoom lens according to the present invention.

【図8】本発明のズームレンズの第2実施例の収差図で
ある。
FIG. 8 is an aberration diagram of a second embodiment of the zoom lens according to the present invention.

【図9】本発明のズームレンズの第3実施例の収差図で
ある。
FIG. 9 is an aberration diagram of a third embodiment of the zoom lens according to the present invention.

【図10】本発明のズームレンズの第4実施例の収差図
である。
FIG. 10 is an aberration diagram of a fourth embodiment of the zoom lens according to the present invention.

【図11】本発明のズームレンズの第5実施例の収差図
である。
FIG. 11 is an aberration diagram of a fifth embodiment of the zoom lens according to the present invention.

【図12】本発明のズームレンズの第6実施例の収差図
である。
FIG. 12 is an aberration diagram of a sixth embodiment of the zoom lens according to the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H087 KA03 MA14 NA08 PA06 PA18 PA19 PA20 PB07 PB08 PB09 QA02 QA07 QA17 QA21 QA22 QA25 QA34 QA37 QA41 QA45 QA46 RA05 RA12 RA13 RA36 RA42 RA43 SA14 SA16 SA19 SA62 SA63 SA64 SB03 SB04 SB15 SB22 SB23 UA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H087 KA03 MA14 NA08 PA06 PA18 PA19 PA20 PB07 PB08 PB09 QA02 QA07 QA17 QA21 QA22 QA25 QA34 QA37 QA41 QA45 QA46 RA05 RA12 RA13 RA36 RA42 RA43 SA14 SA16 SB19 SB03 SA64 SB23 UA01

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、負の屈折力を有する第
1レンズ群、正の屈折力を有する第2レンズ群、正の屈
折力を有する第3レンズ群から構成され短焦点端から長
焦点端への変倍に際し、各群の間隔を変えることにより
変倍を行うズームレンズにおいて、 前記第2レンズ群が物体側から順に、少なくとも正の2
aレンズ、正の2bレンズ、負の2cレンズを含み、さ
らにその最も像側に位置するレンズが像側に凸面を向け
たメニスカス形状で、少なくとも1面に非球面を有する
レンズであることを特徴とするズームレンズ
1. A lens system comprising: a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. In a zoom lens that performs zooming by changing the distance between the respective groups when zooming to the focal end, the second lens group includes at least a positive 2 in order from the object side.
a lens, a positive 2b lens, and a negative 2c lens, and the lens closest to the image side is a lens having a meniscus shape having a convex surface facing the image side and having at least one aspheric surface. Zoom lens
【請求項2】 物体側から順に、負の屈折力を有する第
1レンズ群、正の屈折力を有する第2レンズ群、正の屈
折力を有する第3レンズ群から構成され短焦点端から長
焦点端への変倍に際し、各群の間隔を変えることにより
変倍を行うズームレンズにおいて、 前記第1レンズ群は3枚以下のレンズからなり、前記第
2レンズ群が物体側から順に、少なくとも正の2aレン
ズ、正の2bレンズ、負の2cレンズを含み、さらにそ
の最も像側に位置するレンズが少なくとも1面に非球面
を有するレンズであることを特徴とするズームレンズ
2. A lens system comprising a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a positive refractive power. In a zoom lens that performs zooming by changing the distance between the respective groups when zooming to the focal end, the first lens group includes three or less lenses, and the second lens group includes at least A zoom lens including a positive 2a lens, a positive 2b lens, and a negative 2c lens, and a lens located closest to the image side having at least one aspheric surface.
【請求項3】 物体側から順に、負の屈折力を有する第
1レンズ群、正の屈折力を有する第2レンズ群、正の屈
折力を有する第3レンズ群から構成され短焦点端から長
焦点端への変倍に際し、各群の間隔を変えることにより
変倍を行うズームレンズにおいて、 前記第2レンズ群が物体側から順に、少なくとも正の2
aレンズ、正の2bレンズ、負の2cレンズを含み、さ
らにその最も像側に位置するレンズが少なくとも1面に
非球面を有するプラスチックレンズであることを特徴と
するズームレンズ
3. In order from the object side, the first lens unit has a negative refractive power, the second lens unit has a positive refractive power, and the third lens unit has a positive refractive power. In a zoom lens that performs zooming by changing the distance between the respective groups when zooming to the focal end, the second lens group includes at least a positive 2 in order from the object side.
a zoom lens comprising: a lens, a positive 2b lens, and a negative 2c lens, and a lens located closest to the image is a plastic lens having at least one aspheric surface.
【請求項4】 前記2a、2b、2cレンズは研磨加工
によるガラス球面レンズであることを特徴とする請求項
1ないし請求項3のいずれかに記載のズームレンズ
4. The zoom lens according to claim 1, wherein the 2a, 2b, and 2c lenses are glass spherical lenses formed by polishing.
【請求項5】 前記第2レンズ群は、以下の条件式を満
足することを特徴とする請求項1ないし請求項4のいず
れかに記載のズームレンズ 1.0<f2/fw<3.0 だたし f2:前記第2レンズ群の焦点距離 fw:広角端における全レンズ系の焦点距離
5. The zoom lens according to claim 1, wherein the second lens group satisfies the following conditional expression: 1.0 <f 2 / fw <3. 2.0 f 2 : focal length of the second lens group f w : focal length of all lens systems at the wide-angle end
【請求項6】 前記第2レンズ群中の非球面レンズはプ
ラスチックレンズであり、以下の条件式を満足すること
を特徴とする請求項1ないし請求項4のいずれかに記載
のズームレンズ −0.1<fw/fp<0.1 だたし fw:広角端における全レンズ系の焦点距離 fp:第2群レンズ中の非球面プラスチックレンズの焦
点距離
6. The zoom lens according to claim 1, wherein the aspherical lens in the second lens group is a plastic lens and satisfies the following conditional expression. .1 <f w / f p <it was but 0.1 f w: the focal length f p of the entire lens system at the wide angle end focal length of the aspherical plastic lens in the second lens group
【請求項7】 前記2aレンズは以下の条件式を満足す
ることを特徴とする請求項1ないし請求項6のいずれか
に記載のズームレンズ n2a>1.80 ただし n2a:2aレンズのd線に対する屈折率
7. The zoom lens according to claim 1, wherein the 2a lens satisfies the following conditional expression: n 2a > 1.80, where n 2a is d of the 2a lens. Refractive index for line
【請求項8】 前記第1レンズ群は、最も物体側に位置
する少なくとも1枚の負の1aレンズを有し、該負レン
ズは少なくとも1面の非球面を有することを特徴とする
請求項1ないし請求項7のいずれかに記載のズームレン
8. The system according to claim 1, wherein the first lens group includes at least one negative 1a lens located closest to the object side, and the negative lens has at least one aspheric surface. A zoom lens according to any one of claims 1 to 7.
【請求項9】 前記1aレンズは、以下の条件式を満足
することを特徴とする請求項8に記載のズームレンズ n1a>1.80 ただし n1a:前記1aレンズのd線に対する屈折率
9. The zoom lens according to claim 8, wherein the 1a lens satisfies the following conditional expression: n 1a > 1.80, where n 1a is the refractive index of the 1a lens with respect to d-line.
【請求項10】 前記1aレンズの非球面は、ガラス球
面上に非球面樹脂を形成させた複合非球面であることを
特徴とする請求項8または請求項9に記載のズームレン
10. The zoom lens according to claim 8, wherein the aspherical surface of the 1a lens is a composite aspherical surface in which an aspherical resin is formed on a glass spherical surface.
【請求項11】 前記第3レンズ群は、最も像側に位置
する少なくとも1枚の正の3aレンズを有し、該3aレ
ンズは少なくとも1面の非球面を有することを特徴とす
る請求項1ないし請求項10のいずれかに記載のズーム
レンズ
11. The third lens group includes at least one positive 3a lens located closest to the image, and the 3a lens has at least one aspheric surface. The zoom lens according to claim 1.
【請求項12】 前記3aレンズは、プラスチックレン
ズあるいはガラス球面上に非球面樹脂を形成させた複合
非球面レンズであることを特徴とする請求項11に記載
のズームレンズ
12. The zoom lens according to claim 11, wherein the 3a lens is a plastic lens or a compound aspherical lens having an aspherical resin formed on a glass spherical surface.
【請求項13】 前記ズームレンズは、以下の条件式を
満足することを特徴とする請求項1ないし請求項12の
いずれかに記載のズームレンズ 1.0<SD/Ymax<3.0 ただし SD:各レンズ群の最も物体側の面から最も像
側の面までの距離の和 Ymax:撮像素子の対角長
13. The zoom lens according to claim 1, wherein the zoom lens satisfies the following conditional expression: 1.0 <SD / Y max <3.0. SD: Sum of distances from the most object side surface to the most image side surface of each lens group Y max : Diagonal length of image sensor
【請求項14】 前記第3レンズ群は、短焦点端から長
焦点端への変倍に際し、像側に移動することを特徴とす
る請求項1ないし請求項13のいずれかに記載のズーム
レンズ
14. The zoom lens according to claim 1, wherein the third lens group moves to the image side when zooming from the short focal length end to the long focal length end.
【請求項15】 前記ズームレンズは、少なくとも前記
第3レンズ群を移動させて無限遠から有限距離への合焦
を行うことを特徴とする請求項1ないし請求項14のい
ずれかに記載のズームレンズ
15. The zoom lens according to claim 1, wherein the zoom lens moves at least the third lens group to perform focusing from infinity to a finite distance.
JP2001179896A 2001-06-14 2001-06-14 Zoom lens Expired - Fee Related JP4534389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179896A JP4534389B2 (en) 2001-06-14 2001-06-14 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179896A JP4534389B2 (en) 2001-06-14 2001-06-14 Zoom lens

Publications (2)

Publication Number Publication Date
JP2002372667A true JP2002372667A (en) 2002-12-26
JP4534389B2 JP4534389B2 (en) 2010-09-01

Family

ID=19020389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179896A Expired - Fee Related JP4534389B2 (en) 2001-06-14 2001-06-14 Zoom lens

Country Status (1)

Country Link
JP (1) JP4534389B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085440A1 (en) * 2002-04-11 2003-10-16 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP2005316334A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
JP2005316333A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
JP2005316335A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
JP2006171421A (en) * 2004-12-16 2006-06-29 Canon Inc Zoom lens and imaging apparatus having same
US7092170B2 (en) 2004-04-30 2006-08-15 Olympus Corporation Zoom lens and image pickup apparatus
US7110187B2 (en) 2005-02-16 2006-09-19 Olympus Corporation Zoom lens and electronic imaging apparatus using the same
KR100657377B1 (en) 2005-06-28 2006-12-14 정수용 Inner forcus type optical system for super wide angle zoom camera of compact
CN1295537C (en) * 2003-04-28 2007-01-17 索尼株式会社 Zoom lens and an imaging apparatus
JP2007017638A (en) * 2005-07-06 2007-01-25 Tamron Co Ltd Zoom lens
JP2007148116A (en) * 2005-11-29 2007-06-14 Canon Inc Zoom lens and imaging apparatus having same
US7292380B2 (en) 2005-12-15 2007-11-06 Samsung Techwin Co., Ltd. Compact zoom lens
CN100383590C (en) * 2005-06-20 2008-04-23 亚洲光学股份有限公司 Lens assembly
US7477456B2 (en) 2005-09-26 2009-01-13 Konica Minolta Opto, Inc. Zoom lens
JP2009294666A (en) * 2009-08-06 2009-12-17 Canon Inc Zoom lens and imaging apparatus having the same
JP2010039014A (en) * 2008-08-01 2010-02-18 Nikon Corp Zoom lens, imaging apparatus and variable-magnification method
JP2010117676A (en) * 2008-11-14 2010-05-27 Nikon Corp Zoom lens, optical apparatus, and method for manufacturing the zoom lens
JP2010170084A (en) * 2008-12-24 2010-08-05 Olympus Corp Zoom optical system and electronic imaging apparatus using the same
US7817350B2 (en) 2007-01-30 2010-10-19 Panasonic Corporation Zoom lens system, imaging device and camera
US7880976B2 (en) 2008-06-03 2011-02-01 Canon Kabushiki Kaisha Zoom lens system and camera including the same
JP2011085909A (en) * 2009-09-11 2011-04-28 Panasonic Corp Zoom lens system, imaging apparatus and camera
JP2011186071A (en) * 2010-03-05 2011-09-22 Tamron Co Ltd Infrared zoom lens
JP2012088735A (en) * 2011-12-28 2012-05-10 Canon Inc Zoom lens and imaging apparatus including the same
JP2013033274A (en) * 2006-12-11 2013-02-14 Olympus Corp Microscope objective and fluorescent observation apparatus using the same
JP2013167840A (en) * 2012-02-17 2013-08-29 Sumitomo Electric Hardmetal Corp Achromatic lens
JP2014219534A (en) * 2013-05-08 2014-11-20 株式会社リコー Zoom lens for projection and image display device
JP2017187785A (en) * 2017-05-31 2017-10-12 リコーイメージング株式会社 Zoom lens system and electronic image capturing device having the same
JP2018022127A (en) * 2016-05-02 2018-02-08 株式会社ミツトヨ Variable focal length imaging system
JP2020086304A (en) * 2018-11-29 2020-06-04 キヤノン株式会社 Zoom lens and imaging apparatus
CN113167987A (en) * 2020-06-18 2021-07-23 深圳市大疆创新科技有限公司 Optical system, imaging device, and movable platform
JPWO2021153221A1 (en) * 2020-01-29 2021-08-05
JPWO2020157801A1 (en) * 2019-01-28 2021-10-14 株式会社ニコン Magnification optical system, optical equipment, and manufacturing method of variable magnification optics
JP2021535417A (en) * 2018-08-08 2021-12-16 バレンシア大学 Plenoptic eyepiece
JP2022133414A (en) * 2016-02-29 2022-09-13 リコーイメージング株式会社 zoom lens system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133858A (en) * 1995-11-10 1997-05-20 Sony Corp Image pickup lens system
JPH1152246A (en) * 1997-08-05 1999-02-26 Nikon Corp Zoom lens
JPH11194274A (en) * 1998-01-05 1999-07-21 Ricoh Co Ltd Zoom lens
JPH11211985A (en) * 1998-01-28 1999-08-06 Canon Inc Zoom lens
JP2001033695A (en) * 1999-07-15 2001-02-09 Konica Corp Zoom lens
JP2001033702A (en) * 1999-07-26 2001-02-09 Canon Inc Zoom lens
JP2002023053A (en) * 2000-07-07 2002-01-23 Olympus Optical Co Ltd Zoom lens and image pickup device equipped with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133858A (en) * 1995-11-10 1997-05-20 Sony Corp Image pickup lens system
JPH1152246A (en) * 1997-08-05 1999-02-26 Nikon Corp Zoom lens
JPH11194274A (en) * 1998-01-05 1999-07-21 Ricoh Co Ltd Zoom lens
JPH11211985A (en) * 1998-01-28 1999-08-06 Canon Inc Zoom lens
JP2001033695A (en) * 1999-07-15 2001-02-09 Konica Corp Zoom lens
JP2001033702A (en) * 1999-07-26 2001-02-09 Canon Inc Zoom lens
JP2002023053A (en) * 2000-07-07 2002-01-23 Olympus Optical Co Ltd Zoom lens and image pickup device equipped with the same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7023623B2 (en) 2002-04-11 2006-04-04 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using the same
CN1306305C (en) * 2002-04-11 2007-03-21 松下电器产业株式会社 Zoom lens and electronic still camera using it
WO2003085440A1 (en) * 2002-04-11 2003-10-16 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
CN1295537C (en) * 2003-04-28 2007-01-17 索尼株式会社 Zoom lens and an imaging apparatus
JP2005316335A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
US7092170B2 (en) 2004-04-30 2006-08-15 Olympus Corporation Zoom lens and image pickup apparatus
JP2005316333A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
JP4540388B2 (en) * 2004-04-30 2010-09-08 オリンパス株式会社 Zoom lens and imaging device
JP2005316334A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
JP4540387B2 (en) * 2004-04-30 2010-09-08 オリンパス株式会社 Zoom lens and imaging device
JP4540389B2 (en) * 2004-04-30 2010-09-08 オリンパス株式会社 Zoom lens and imaging device
JP2006171421A (en) * 2004-12-16 2006-06-29 Canon Inc Zoom lens and imaging apparatus having same
US7110187B2 (en) 2005-02-16 2006-09-19 Olympus Corporation Zoom lens and electronic imaging apparatus using the same
CN100383590C (en) * 2005-06-20 2008-04-23 亚洲光学股份有限公司 Lens assembly
KR100657377B1 (en) 2005-06-28 2006-12-14 정수용 Inner forcus type optical system for super wide angle zoom camera of compact
JP2007017638A (en) * 2005-07-06 2007-01-25 Tamron Co Ltd Zoom lens
US7477456B2 (en) 2005-09-26 2009-01-13 Konica Minolta Opto, Inc. Zoom lens
JP2007148116A (en) * 2005-11-29 2007-06-14 Canon Inc Zoom lens and imaging apparatus having same
US7292380B2 (en) 2005-12-15 2007-11-06 Samsung Techwin Co., Ltd. Compact zoom lens
JP2013033274A (en) * 2006-12-11 2013-02-14 Olympus Corp Microscope objective and fluorescent observation apparatus using the same
US8179611B2 (en) 2007-01-30 2012-05-15 Panasonic Corporation Zoom lens system, imaging device and camera
US8098442B2 (en) 2007-01-30 2012-01-17 Panasonic Corporation Zoom lens system, imaging device and camera
US7817350B2 (en) 2007-01-30 2010-10-19 Panasonic Corporation Zoom lens system, imaging device and camera
US7880976B2 (en) 2008-06-03 2011-02-01 Canon Kabushiki Kaisha Zoom lens system and camera including the same
JP2010039014A (en) * 2008-08-01 2010-02-18 Nikon Corp Zoom lens, imaging apparatus and variable-magnification method
JP2010117676A (en) * 2008-11-14 2010-05-27 Nikon Corp Zoom lens, optical apparatus, and method for manufacturing the zoom lens
JP2010170084A (en) * 2008-12-24 2010-08-05 Olympus Corp Zoom optical system and electronic imaging apparatus using the same
JP2009294666A (en) * 2009-08-06 2009-12-17 Canon Inc Zoom lens and imaging apparatus having the same
JP2011085909A (en) * 2009-09-11 2011-04-28 Panasonic Corp Zoom lens system, imaging apparatus and camera
JP2011186071A (en) * 2010-03-05 2011-09-22 Tamron Co Ltd Infrared zoom lens
US8643944B2 (en) 2010-03-05 2014-02-04 Tamron Co., Ltd Infrared zooming lens
JP2012088735A (en) * 2011-12-28 2012-05-10 Canon Inc Zoom lens and imaging apparatus including the same
JP2013167840A (en) * 2012-02-17 2013-08-29 Sumitomo Electric Hardmetal Corp Achromatic lens
JP2014219534A (en) * 2013-05-08 2014-11-20 株式会社リコー Zoom lens for projection and image display device
JP2022133414A (en) * 2016-02-29 2022-09-13 リコーイメージング株式会社 zoom lens system
JP2018022127A (en) * 2016-05-02 2018-02-08 株式会社ミツトヨ Variable focal length imaging system
JP2017187785A (en) * 2017-05-31 2017-10-12 リコーイメージング株式会社 Zoom lens system and electronic image capturing device having the same
JP2021535417A (en) * 2018-08-08 2021-12-16 バレンシア大学 Plenoptic eyepiece
JP7323139B2 (en) 2018-08-08 2023-08-08 バレンシア大学 plenoptic eyepiece
JP2020086304A (en) * 2018-11-29 2020-06-04 キヤノン株式会社 Zoom lens and imaging apparatus
JP7210245B2 (en) 2018-11-29 2023-01-23 キヤノン株式会社 Zoom lens and imaging device
JPWO2020157801A1 (en) * 2019-01-28 2021-10-14 株式会社ニコン Magnification optical system, optical equipment, and manufacturing method of variable magnification optics
JP7254271B2 (en) 2019-01-28 2023-04-10 株式会社ニコン Variable magnification optical system, optical equipment
WO2021153221A1 (en) * 2020-01-29 2021-08-05 株式会社ニコン Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
CN115023639A (en) * 2020-01-29 2022-09-06 株式会社尼康 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JPWO2021153221A1 (en) * 2020-01-29 2021-08-05
JP7338709B2 (en) 2020-01-29 2023-09-05 株式会社ニコン Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system
CN115023639B (en) * 2020-01-29 2024-02-13 株式会社尼康 Variable magnification optical system and optical device
CN113167987A (en) * 2020-06-18 2021-07-23 深圳市大疆创新科技有限公司 Optical system, imaging device, and movable platform

Also Published As

Publication number Publication date
JP4534389B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP2002372667A (en) Zoom lens
JP5115102B2 (en) Lens system and optical device
JP5402015B2 (en) Rear focus optical system, imaging apparatus, and focusing method of rear focus optical system
JP5544731B2 (en) Photographic lens and optical apparatus provided with the photographic lens
JP5380811B2 (en) Wide-angle lens and imaging device
JP5714925B2 (en) Inner focus lens
JP5104084B2 (en) Wide-angle lens, optical device, and wide-angle lens focusing method
JP5359025B2 (en) Zoom lens
JP4929903B2 (en) Zoom lens, imaging device, zoom lens zooming method
JP5742100B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2005181499A (en) Zoom lens
JP4666977B2 (en) Zoom lens and imaging apparatus having the same
JP2003050352A (en) Zoom lens and optical equipment using the same
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
US8625203B2 (en) Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
US8902510B2 (en) Zoom lens system and optical instrument using the same
US8259400B2 (en) Zoom lens system, imaging apparatus, and method for manufacturing zoom lens system
JP5403315B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
JP5245433B2 (en) Method for expanding focal length of teleconverter lens, optical device and master lens
JP5724189B2 (en) Variable magnification optical system, optical device
JP5316614B2 (en) Zoom lens, imaging device
US6459536B2 (en) Zoom lens system, and image pickup system using the same
JP5273172B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP4624744B2 (en) Wide angle zoom lens
JP5084900B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees