JP2002280020A - Membrane electrode joint body for fuel cell and its manufacturing method - Google Patents

Membrane electrode joint body for fuel cell and its manufacturing method

Info

Publication number
JP2002280020A
JP2002280020A JP2001079919A JP2001079919A JP2002280020A JP 2002280020 A JP2002280020 A JP 2002280020A JP 2001079919 A JP2001079919 A JP 2001079919A JP 2001079919 A JP2001079919 A JP 2001079919A JP 2002280020 A JP2002280020 A JP 2002280020A
Authority
JP
Japan
Prior art keywords
catalyst layer
polymer electrolyte
electrolyte membrane
membrane electrode
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001079919A
Other languages
Japanese (ja)
Inventor
Junji Morita
純司 森田
Makoto Uchida
誠 内田
Eiichi Yasumoto
栄一 安本
Akihiko Yoshida
昭彦 吉田
Yasushi Sugawara
靖 菅原
Yoshiteru Nagao
善輝 長尾
Teruhisa Kanbara
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001079919A priority Critical patent/JP2002280020A/en
Publication of JP2002280020A publication Critical patent/JP2002280020A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane electrode joint body for a fuel cell controllably, uniformly attaching a catalyst layer to a polymer electrolyte membrane to provide high performance, and provide the method of manufacturing for the membrane electrode joint body and the fuel cell using the membrane electrode joint body. SOLUTION: In the method of manufacturing for the membrane electrode joint body for the fuel cell in which the catalyst layer is attached to a hydrogen ion conductive polymer electrolyte membrane by heat-bonding, the surface of a jig pressing the catalyst layer has a flatness of 0.010 mm or less, and the flatness of a base film forming the catalyst layer is 0.005 mm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポータブル電源、
電気自動車、家庭用コージェネシステムに使用される固
体高分子電解質を用いた燃料電池、特に構成要素である
膜・電極接合体の製造方法とそれを用いた燃料電池に関
する。
The present invention relates to a portable power supply,
The present invention relates to a fuel cell using a solid polymer electrolyte used for electric vehicles and home cogeneration systems, and more particularly to a method for producing a membrane / electrode assembly as a constituent element and a fuel cell using the same.

【0002】[0002]

【従来の技術】固体高分子電解質を用いた燃料電池は、
水素を含有する燃料ガスと空気など酸素を含有する燃料
ガスとを電気化学的に反応させることで電力と熱とを同
時に発生させる発電装置である。その構造は、水素イオ
ンを選択的に輸送する高分子電解質膜の両面に、白金系
の金属触媒を担持したカーボン粉末を主成分とする触媒
反応層を形成する。現在、高分子電解質としては、パー
フルオロスルホン酸が一般的に用いられている。次に、
触媒反応層の外面に、燃料ガスの通気性と電子伝導性を
併せ持つ、ガス拡散層を形成する。一般的にガス拡散層
には、カーボンペーパーまたはカーボンクロスが用いら
れている。前述した触媒反応層単独、もしくは触媒反応
層とガス拡散層とを併せて電極と呼ぶ。
2. Description of the Related Art A fuel cell using a solid polymer electrolyte is
This is a power generation device that generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen with a fuel gas containing oxygen such as air. The structure is such that a catalyst reaction layer mainly composed of carbon powder carrying a platinum-based metal catalyst is formed on both sides of a polymer electrolyte membrane that selectively transports hydrogen ions. At present, perfluorosulfonic acid is generally used as a polymer electrolyte. next,
On the outer surface of the catalytic reaction layer, a gas diffusion layer having both fuel gas permeability and electron conductivity is formed. Generally, carbon paper or carbon cloth is used for the gas diffusion layer. The above-described catalyst reaction layer alone, or a combination of the catalyst reaction layer and the gas diffusion layer is referred to as an electrode.

【0003】次に、供給する燃料ガスのリーク、及び二
種類の燃料ガスの混合防止に、ガスシール材やガスケッ
トを電極周囲に高分子電解質膜を挟む形で配置する。こ
のガスシール材やガスケットと、電極及び高分子電解質
膜と一体化してあらかじめ組み立て、膜電極接合体(Me
mbrane−Electrode−Assembly:MEA)と呼ぶ。
[0003] Next, in order to prevent leakage of supplied fuel gas and to prevent mixing of two types of fuel gas, a gas seal material or a gasket is disposed so as to sandwich the polymer electrolyte membrane around the electrode. This gas seal material or gasket is integrated with the electrode and polymer electrolyte membrane in advance and assembled to form a membrane electrode assembly (Me
mbrane-Electrode-Assembly (MEA).

【0004】MEAの外側には、これを機械的に固定する
とともに、隣接したMEAを互いに電気的に直列で接続す
るための導電性と気密性を有するセパレータを配置す
る。セパレータのMEAと接触する部分には、電極面に反
応ガスを供給し、生成ガスや余剰ガスを運び去るための
ガス流路を形成する。ガス流路はセパレータと別に設け
ることもできるが、セパレータの表面に溝を設けてガス
流路とする方法が一般的である。この一対のセパレータ
でMEAを固定した構造を基本単位である単電池とする。
Outside the MEA, a separator having conductivity and airtightness for mechanically fixing the MEA and electrically connecting adjacent MEAs in series with each other is arranged. In the part of the separator that comes into contact with the MEA, a gas flow path for supplying a reaction gas to the electrode surface and carrying away generated gas and surplus gas is formed. Although the gas flow path can be provided separately from the separator, a method of providing a groove on the surface of the separator to form a gas flow path is general. A structure in which the MEA is fixed by the pair of separators is referred to as a unit cell as a basic unit.

【0005】この単電池を直列に複数連結し、燃料ガス
を供給する配管治具であるマニホールドを配置し、燃料
電池が構成される。
[0005] A plurality of the unit cells are connected in series, and a manifold, which is a piping jig for supplying fuel gas, is arranged to constitute a fuel cell.

【0006】固体高分子電解質型燃料電池において、反
応ガスの供給路となる細孔と、水素イオン導電性の固体
高分子電解質と、電子導電体である電極材料とが形成す
る、いわゆる三相界面の面積の大小が、電池の放電性能
を左右する重要な因子の1つである。
In a solid polymer electrolyte fuel cell, a so-called three-phase interface formed by pores serving as reaction gas supply channels, hydrogen ion conductive solid polymer electrolyte, and an electrode material that is an electronic conductor. Is one of the important factors influencing the discharge performance of the battery.

【0007】従来、この三相界面を増大させるために、
電極材料と固体高分子電解質とを混合分散させた触媒層
を形成し、高分子電解質膜と多孔質電極の界面に付与す
る試みがなされてきた。
Conventionally, in order to increase the three-phase interface,
Attempts have been made to form a catalyst layer in which an electrode material and a solid polymer electrolyte are mixed and dispersed, and to apply the catalyst layer to the interface between the polymer electrolyte membrane and the porous electrode.

【0008】前記触媒層の高分子電解質膜と多孔性電極
界面への付与方法は、触媒塗料を印刷法やスプレー法に
より、多孔質電極上あるいは高分子電解質膜上に形成
し、ホットプレスで高分子電解質膜と電極を一体化する
方法。
[0008] The method of applying the catalyst layer to the interface between the polymer electrolyte membrane and the porous electrode is as follows. A catalyst paint is formed on the porous electrode or the polymer electrolyte membrane by a printing method or a spray method, and is then hot-pressed. A method of integrating a molecular electrolyte membrane and an electrode.

【0009】または触媒塗料をポリテトラフルオロエチ
レン(以下PTFE)製やポリエチレンテレフタレート
(以下PET)製、ポリプロピレン(以下PP)製など
の基材フィルム上に触媒層を形成し、高分子電解質膜に
触媒層を加熱圧着により付与し、触媒層を具備した高分
子電解質膜と多孔質電極をホットプレスにより一体化す
る方法がある。
Alternatively, a catalyst layer is formed on a base film made of polytetrafluoroethylene (hereinafter, PTFE), polyethylene terephthalate (hereinafter, PET), polypropylene (hereinafter, PP), or the like, and the catalyst is applied to the polymer electrolyte membrane. There is a method in which a layer is applied by heating and pressing, and a polymer electrolyte membrane provided with a catalyst layer and a porous electrode are integrated by hot pressing.

【0010】触媒層を基材フィルム上に形成し、高分子
電解質膜に熱圧着により付与する方法は一般的に転写法
と呼ばれている。
A method of forming a catalyst layer on a base film and applying it to a polymer electrolyte membrane by thermocompression bonding is generally called a transfer method.

【0011】転写法により形成した触媒層は、印刷法や
スプレー法が有する塗料の多孔質電極への染み込みや塗
料中の溶媒による高分子電解質膜の破壊や形状変形が発
生しにくいことから触媒層の膜圧制御や均一化が可能な
方法。また、触媒層の基材フィルム上への形成にマルチ
コーターなどの塗工機の使用により、触媒層の連続塗工
および触媒塗料の有効利用による歩留まり低減の可能性
から量産に効果的な方法として注目されている。
The catalyst layer formed by the transfer method is difficult to cause the penetration of the paint into the porous electrode by the printing method or the spray method, and the destruction or deformation of the polymer electrolyte membrane due to the solvent in the paint. A method that can control and uniform the film pressure. In addition, by using a coater such as a multi-coater to form the catalyst layer on the base film, it is an effective method for mass production from the possibility of reducing the yield by continuous coating of the catalyst layer and effective use of the catalyst paint. Attention has been paid.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、転写法
による膜電極接合体の作製方法において、あらかじめ基
材フィルム上に形成した触媒層をあらためて高分子電解
質膜へ付与するといった物質移動が必要となる。転写に
よる触媒層の高分子電解質膜への付与が、必要な電極面
積以下の不十分な状態や上下の触媒層の位置がずれは、
電気的可負荷による高分子電解質膜の損傷、ピンホール
発生の可能性となる。また、転写により高分子電解質膜
へ付与した触媒層の多孔質電極と接する面が凹凸を有す
ると触媒層と多孔質電極の間に空隙が生じ、接触抵抗の
低下や電池稼働時のフラッディングといった電池性能低
下の原因となる可能性がある。
However, in the method for producing a membrane electrode assembly by a transfer method, it is necessary to perform mass transfer such that a catalyst layer previously formed on a base film is newly applied to the polymer electrolyte membrane. When the transfer of the catalyst layer to the polymer electrolyte membrane by transfer is in an insufficient state below the required electrode area or the position of the upper and lower catalyst layers is shifted,
Damage to the polymer electrolyte membrane due to electrical load and pinholes may occur. In addition, if the surface of the catalyst layer applied to the polymer electrolyte membrane that contacts the porous electrode by transfer has irregularities, voids are generated between the catalyst layer and the porous electrode, resulting in a decrease in contact resistance and flooding during battery operation. It may cause performance degradation.

【0013】本発明は、高分子電解質膜への触媒層の付
与を制御性または均一性よく形成し、より高い性能を発
揮する燃料電池用膜電極接合体とその製造方法とそれを
用いた燃料電池を提供することを目的とする。
[0013] The present invention provides a membrane electrode assembly for a fuel cell, in which the application of a catalyst layer to a polymer electrolyte membrane is formed with good controllability or uniformity and exhibits higher performance, a method for producing the same, and a fuel using the same. It is intended to provide a battery.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、高分子電解質へ基材フィルム上に形成し
た触媒層を加熱圧着により付与する製造方法において、
触媒層を加圧する治具の基材フィルムとの接面平面度が
0から0.010mm以下であることを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides a method for producing a polymer electrolyte, wherein a catalyst layer formed on a base film is applied to a polymer electrolyte by thermocompression bonding.
The jig for pressing the catalyst layer has a flatness in contact with the base film of 0 to 0.010 mm or less.

【0015】高分子電解質膜へ触媒層を加熱圧着する機
器にホットプレス機を用いることを特徴とする。
It is characterized in that a hot press is used as an apparatus for heating and pressing the catalyst layer to the polymer electrolyte membrane.

【0016】また、前記加圧治具の一方の寸法が他方の
治具の寸法に対し縦横10%以上であることを特徴とす
る。
Further, one dimension of the pressing jig is 10% or more in length and width with respect to the dimension of the other jig.

【0017】加熱圧着用機器にホットローラー機を用い
る場合、例えば加圧ローラーの触媒層との接面平面度が
0.010mm以下であることが有効である。
When a hot roller machine is used as the heating and pressing device, for example, it is effective that the flatness of the contact surface of the pressure roller with the catalyst layer is 0.010 mm or less.

【0018】触媒層を形成する基材フィルムの平面度が
0.005mm以下であることが有効である。
It is effective that the substrate film on which the catalyst layer is formed has a flatness of 0.005 mm or less.

【0019】上記、加熱圧着により触媒層を高分子電解
質膜へ付与するための加圧治具の平面度および寸法、触
媒層を形成する基材フィルムの平面度を最適化すること
で制御性、均一性に優れた触媒層の高分子電解質への付
与が可能となり、より高い性能を発揮する膜電極接合体
とその製造方法とそれを用いた燃料電池を提供すること
を可能とした。
The controllability, by optimizing the flatness and dimensions of the pressing jig for applying the catalyst layer to the polymer electrolyte membrane by thermocompression bonding and the flatness of the base film forming the catalyst layer, A catalyst layer with excellent uniformity can be applied to a polymer electrolyte, and a membrane electrode assembly exhibiting higher performance, a method for producing the same, and a fuel cell using the same can be provided.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】[0021]

【実施例】(実施例1)比表面積が800m2/g、D
BP吸油量が360mL/100gケッチェンブラック
EC(ケッチェンブラック・インターナショナル社製フ
ァーネスブラック)に、白金を50%の重量比で担持さ
せた。この触媒粉末10gを、水35gと水素イオン伝
導性高分子電解質のアルコール分散液(旭硝子社製、商
品名:9%FFS)59gを量りとり、超音波攪拌機を用
いて分散させ、触媒層インクを作成した。この触媒層イ
ンクを、塗工機器にコンマコーターM200L(ヒラノ
テクシード社製)を使用し、膜厚50μmのポリプロピ
レンフィルム(東レ社製、商品名:トレファン50−2
500)上に塗工し、乾燥して触媒層を作成した。得ら
れた触媒層中の白金触媒量は0.3mg/cm2となる
ように調整した。
EXAMPLES Example 1 Specific surface area was 800 m 2 / g, D
Platinum was supported on Ketjen Black EC (furnace black manufactured by Ketjen Black International) with a BP oil absorption of 360 mL / 100 g at a weight ratio of 50%. 35 g of water and 59 g of an alcohol dispersion of a hydrogen ion conductive polymer electrolyte (trade name: 9% FFS, manufactured by Asahi Glass Co., Ltd.) were weighed and dispersed using an ultrasonic stirrer, and 10 g of the catalyst powder was dispersed. Created. The catalyst layer ink was applied to a coating machine using a comma coater M200L (manufactured by Hirano Tecseed Co., Ltd.) and a 50 μm-thick polypropylene film (manufactured by Toray Industries, trade name: Torayfan 50-2)
500) and dried to form a catalyst layer. The amount of platinum catalyst in the obtained catalyst layer was adjusted to 0.3 mg / cm 2 .

【0022】高分子電解質膜は、Nafion112
(Du−Pont社製、膜厚50μm)を使用した。
The polymer electrolyte membrane is Nafion 112
(Manufactured by Du-Pont, film thickness 50 μm) was used.

【0023】図1は、ホットプレス機を用いた、基材フ
ィルム上の触媒層を高分子電解質膜へ加熱圧着により付
与する模式図である。図2は、AA‘間の断面図であ
る。
FIG. 1 is a schematic diagram of applying a catalyst layer on a substrate film to a polymer electrolyte membrane by hot pressing using a hot press machine. FIG. 2 is a cross-sectional view between AA ′.

【0024】図1に示すように、触媒層1を形成した基
材フィルム2で高分子電解質膜3をはさみ、加圧治具4
Aと、加圧治具4Aより寸法が縦横2mm大きい加圧治
具4Bを具備したホットプレス5A、5Bにより、温度
130℃において、加圧力50kgf/cm2を加え、
基材フィルム2より触媒層1を高分子電解質膜3へ付与
した。加圧治具の一方の寸法を電極面積に他方をそれよ
り縦横2mm大きくすることで、高分子電解質膜の両側
へ付与した触媒層の位置は、圧力がかかる部分、すなわ
ち寸法が電極面積の加圧治具4Aに規定され、両触媒層
の正確な位置決めの制御性の向上が可能となった。
As shown in FIG. 1, a polymer electrolyte membrane 3 is sandwiched between base films 2 on which a catalyst layer 1 is formed, and a pressing jig 4
A, and a pressing force of 50 kgf / cm 2 at a temperature of 130 ° C. is applied by hot presses 5A and 5B equipped with a pressing jig 4B having a dimension 2 mm larger in length and width than the pressing jig 4A.
The catalyst layer 1 was applied to the polymer electrolyte membrane 3 from the base film 2. By making one dimension of the pressing jig larger than the electrode area and the other 2 mm longer and shorter than the other, the position of the catalyst layer applied to both sides of the polymer electrolyte membrane can be adjusted in the area where pressure is applied, that is, the dimension is increased by the electrode area. It is specified by the pressure jig 4A, and the controllability of accurate positioning of both catalyst layers can be improved.

【0025】図3に加圧治具の平面度についての模式図
を示した。平面度は、水平な定盤上に治具を設置し、ダ
イヤルゲージにより治具面の凹凸を測定し、得られた値
の最高値と最低値の差を示す(JIS−B0021)。
FIG. 3 is a schematic diagram showing the flatness of the pressing jig. The flatness is obtained by placing a jig on a horizontal platen, measuring the unevenness of the jig surface with a dial gauge, and indicating the difference between the highest value and the lowest value of the obtained values (JIS-B0021).

【0026】ホットプレス機に神藤金属工業所製、加圧
成形機を用い、加圧治具に寸法を電極面積90mm×2
00mm、他方を95mm×205mm、触媒層との接
面平面度0.010mmを用い、基材フィルム上に形成
した触媒層を高分子電解質膜へ加熱厚着により付与し
た。これを膜電極接合体とした。
Using a pressing machine made by Shinto Metal Industry Co., Ltd. as the hot press machine, the size of the pressing jig was set to 90 mm × 2 electrode area.
The catalyst layer formed on the base film was applied to the polymer electrolyte membrane by heating and thickening, using 00 mm, the other having a size of 95 mm × 205 mm, and a flatness of contact surface with the catalyst layer of 0.010 mm. This was used as a membrane electrode assembly.

【0027】(実施例2)図4は、ホットローラー機を
用いた、基材フィルム上の触媒層を高分子電解質膜へ加
熱圧着により付与する模式図である。基材フィルム上に
形成した触媒層の寸法を電極面積90mm×200mm
に他方を95mm×205mmに切り取り、間に高分子
電解質膜13をはさみ、触媒層との接面平面度が0.0
10mmであるローラー6Aと6Bで、温度130℃、
圧力5MPaを加え、基材フィルム上に形成した触媒層
を高分子電解質膜へ加熱厚着により付与した。これを膜
電極接合体とした。
Example 2 FIG. 4 is a schematic diagram of applying a catalyst layer on a substrate film to a polymer electrolyte membrane by heating and pressing using a hot roller machine. The dimensions of the catalyst layer formed on the base film were adjusted to an electrode area of 90 mm x 200 mm.
The other is cut to 95 mm × 205 mm, and the polymer electrolyte membrane 13 is interposed therebetween, so that the contact flatness with the catalyst layer is 0.0
With the rollers 6A and 6B which are 10 mm, the temperature is 130 ° C.,
A pressure of 5 MPa was applied, and the catalyst layer formed on the substrate film was applied to the polymer electrolyte membrane by heating and adhesion. This was used as a membrane electrode assembly.

【0028】(実施例3)触媒層を形成する基材フィル
ムに平面度0.005mmであるポリプロピレンを用
い、実施例1と同様の方法で膜電極接合体を作製した。
Example 3 A membrane electrode assembly was produced in the same manner as in Example 1, except that polypropylene having a flatness of 0.005 mm was used as a base film for forming a catalyst layer.

【0029】(実施例4)触媒層を形成する基材フィル
ムに平面度0.005mmであるポリプロピレンを用
い、実施例2と同様の方法で膜電極接合体を作製した。
Example 4 A membrane electrode assembly was produced in the same manner as in Example 2, except that polypropylene having a flatness of 0.005 mm was used as the base film for forming the catalyst layer.

【0030】(比較例1)ホットプレス機を用い、平面
度0.015mmである加圧治具を用い実施例1と同様
の方法で、基材フィルム上に形成した触媒層を高分子電
解質膜へ加熱厚着により付与した。
(Comparative Example 1) A catalyst layer formed on a base film by a hot press using a pressing jig having a flatness of 0.015 mm in the same manner as in Example 1 was used to form a polymer electrolyte membrane. The film was applied by heat thick deposition.

【0031】(比較例2)ホットローラー機を用い、平
面度0.020mmである加圧治具を用い実施例1と同
様の方法で、基材フィルム上に形成した触媒層を高分子
電解質膜へ加熱厚着により付与した。
(Comparative Example 2) A catalyst layer formed on a substrate film by a hot roller machine in the same manner as in Example 1 using a pressing jig having a flatness of 0.020 mm and a polymer electrolyte membrane The film was applied by heat thick deposition.

【0032】(電池の作製)炭素粒子(電気化学工業
製、商品名:デンカブラック)150gと、ポリテトラ
フルオロエチレンの分散液(ダイキン製、商品名:ルブ
ロンLDW−40)36gとを混合して得た撥水層イン
クを、カーボンペーパー(東レ製、商品名:TGP−H
−060)に塗布し、350℃で焼成し撥水層を有した
ガス拡散層を作製した。上記実施例1、2、3,4及び
比較例1、2で作製した膜電極接合体にガス拡散層とガ
スケットを付与し、導電性セパレータ、集電板、ヒータ
ー、端板の順に挟み、締結ロッドで圧力15kgf/c
2で締結し、単電池を作製した。
(Preparation of Battery) A mixture of 150 g of carbon particles (trade name: Denka Black, manufactured by Denki Kagaku Kogyo) and 36 g of a dispersion of polytetrafluoroethylene (trade name: Lubron LDW-40, manufactured by Daikin) was mixed. The obtained water-repellent layer ink was applied to carbon paper (manufactured by Toray, trade name: TGP-H).
-060) and baked at 350 ° C to produce a gas diffusion layer having a water-repellent layer. A gas diffusion layer and a gasket are provided to the membrane electrode assemblies manufactured in Examples 1, 2, 3, and 4 and Comparative Examples 1 and 2, and a conductive separator, a current collector, a heater, and an end plate are sandwiched in this order and fastened. 15kgf / c pressure with rod
m 2 and a cell was produced.

【0033】(評価試験)以上の電池の燃料極に純水素
ガスを、空気極に空気をそれぞれ供給し、電池温度を7
5℃、燃料ガス利用率(Uf)を75%、空気利用率を
(Uo)を40%とし、ガス加湿は、露点が燃料ガスで
は70℃、空気では65℃になるようにバブラーを介し
て供給した。以上の条件で電池の放電試験を行った。
(Evaluation Test) Pure hydrogen gas was supplied to the fuel electrode and air was supplied to the air electrode of each of the above cells.
5 ° C., fuel gas utilization rate (Uf) is 75%, air utilization rate (Uo) is 40%, and gas humidification is performed through a bubbler so that the dew point is 70 ° C. for fuel gas and 65 ° C. for air. Supplied. A battery discharge test was performed under the above conditions.

【0034】図5に実施例1と実施例3と比較例1の膜
電極接合体を用いた単電池の放電試験の結果を示した。
本発明である実施例1と比較例1を比較すると、実施例
1の単電池は、0.7A/cm2以上の高電流密度領域で
高い電池性能を示した。比較例1の単電池は、この領域
でフラッディングによると考えられる電池性能の低下が
生じた。図6に比較例1と実施例1の違いを模式的に示
した。比較例1に用いた膜電極接合体は、ガス拡散層7
との界面に空隙8があるため、高電流密度領域における
活発な電池反応により生成する水がその空隙にたまりフ
ラッディングを発生すると考えられる。一方、実施例1
に用いた膜電極接合体は、加圧治具の平面度を0.01
0mm以下にすることで触媒層のガス拡散層と接触する
面が均一に制御できているため、界面での空隙が生じに
くい。これによりフラッディングによる電池性能の低下
を回避することが可能となった。また、放電曲線のIR
損による傾きが、実施例1は比較例1と比較し小さいこ
とから触媒層とガス拡散層の界面での空隙が生じにく
く、接触抵抗が低減されたことがわかる。
FIG. 5 shows the results of a discharge test of a unit cell using the membrane electrode assemblies of Examples 1, 3 and Comparative Example 1.
Comparing Example 1 of the present invention with Comparative Example 1, the unit cell of Example 1 showed high battery performance in a high current density region of 0.7 A / cm 2 or more. In the unit cell of Comparative Example 1, the battery performance was considered to be reduced due to flooding in this region. FIG. 6 schematically shows the difference between Comparative Example 1 and Example 1. The membrane electrode assembly used in Comparative Example 1 was a gas diffusion layer 7
It is considered that since the gap 8 exists at the interface with the water, water generated by an active battery reaction in the high current density region accumulates in the gap and causes flooding. On the other hand, Example 1
The flatness of the pressure jig was 0.01
By setting the thickness to 0 mm or less, the surface of the catalyst layer in contact with the gas diffusion layer can be controlled uniformly, so that voids at the interface hardly occur. This has made it possible to avoid a decrease in battery performance due to flooding. In addition, IR of the discharge curve
Since the slope due to the loss is smaller in Example 1 than in Comparative Example 1, it can be seen that voids are hardly generated at the interface between the catalyst layer and the gas diffusion layer, and the contact resistance is reduced.

【0035】実施例1と実施例3を比較すると、実施例
3は触媒層とガス拡散層との界面での空隙が実施例1よ
り改善され、さらなる高性能化が可能となった。
Comparing Example 1 with Example 3, Example 3 showed that the void at the interface between the catalyst layer and the gas diffusion layer was improved as compared with Example 1, and higher performance could be achieved.

【0036】図7に実施例2と実施例4と比較例2の膜
電極接合体を用いた単電池の放電試験の結果を示した。
図5と同様、実施例2および実施例4の膜電極接合体を
用いた単電池は、0.7A/cm2以上の高電流密度領
域でも電池性能の低下は生じなかった。実施例2及び実
施例4に用いた膜電極接合体は、ホットローラーによる
線加圧で触媒層を高分子電解質膜へ付与するので、実施
例1及び実施例3のホットプレスを用いた膜電極接合体
と比較し、面内の空隙の発生がさらに軽減された。実施
例1と実施例2および実施例3と実施例4の電池性能を
比較すると実施例2と実施例4は約10mV高い性能を
示した。
FIG. 7 shows the results of a discharge test of a unit cell using the membrane electrode assemblies of Examples 2, 4 and Comparative Example 2.
As in FIG. 5, the cell performance using the membrane electrode assemblies of Examples 2 and 4 did not decrease in the high current density region of 0.7 A / cm 2 or more. In the membrane electrode assemblies used in Examples 2 and 4, the catalyst layer is applied to the polymer electrolyte membrane by linear pressure using a hot roller, and thus the membrane electrodes using the hot press in Examples 1 and 3 are used. The generation of in-plane voids was further reduced as compared with the joined body. Comparing the battery performances of the first and second embodiments and the third and fourth embodiments, the second and fourth embodiments showed about 10 mV higher performance.

【0037】以上の実施例のおいて、高分子電解質膜へ
触媒層を付与するために用いる治具の寸法を縦横5mm
大きくしたが、本発明はこれに限定しない。一方の寸法
を1mm以上にした治具をもちいた場合でも同様の効果
が得られることを確認した。
In the above embodiment, the dimension of the jig used to apply the catalyst layer to the polymer electrolyte membrane was 5 mm in length and width.
Although enlarged, the invention is not so limited. It was confirmed that the same effect was obtained even when a jig having one dimension of 1 mm or more was used.

【0038】[0038]

【発明の効果】以上に示したように、本発明は加熱圧着
により触媒層を高分子電解質膜へ付与するための加圧治
具の平面度および寸法、触媒層を形成する基材フィルム
の平面度を最適化することで制御性、均一性に優れた触
媒層の高分子電解質への付与が可能となり、より高い性
能を発揮する膜電極接合体を提供することができた。
As described above, according to the present invention, the flatness and dimensions of the pressing jig for applying the catalyst layer to the polymer electrolyte membrane by thermocompression bonding, and the flatness of the base film on which the catalyst layer is formed. By optimizing the degree, a catalyst layer having excellent controllability and uniformity can be provided to the polymer electrolyte, and a membrane electrode assembly exhibiting higher performance could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ホットプレスを用いた膜電極接合体の作製方法
を示す概略図
FIG. 1 is a schematic view showing a method for manufacturing a membrane electrode assembly using a hot press.

【図2】ホットプレスを用いた膜電極接合体の作製方法
を示す概略の断面図
FIG. 2 is a schematic cross-sectional view illustrating a method for manufacturing a membrane / electrode assembly using a hot press.

【図3】加圧治具の平面度を示す概略図FIG. 3 is a schematic diagram showing flatness of a pressing jig.

【図4】ホットローラーを用いた膜電極接合体の作製方
法を示す概略図
FIG. 4 is a schematic view showing a method for producing a membrane electrode assembly using a hot roller.

【図5】本発明の実施例1、実施例3、比較例1の膜電
極接合体を用いた単電池の放電曲線を示す図
FIG. 5 is a diagram showing a discharge curve of a unit cell using the membrane / electrode assembly of Example 1, Example 3, and Comparative Example 1 of the present invention.

【図6】本発明の実施例と比較例の触媒層とガス拡散層
の接合面の構造を示す概略図
FIG. 6 is a schematic diagram showing a structure of a bonding surface between a catalyst layer and a gas diffusion layer according to an example of the present invention and a comparative example.

【図7】本発明の実施例2、実施例4、比較例2の膜電
極接合体を用いた単電池の放電曲線を示す図
FIG. 7 is a diagram showing a discharge curve of a unit cell using the membrane electrode assemblies of Example 2, Example 4, and Comparative Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 触媒層 2 基材フィルム 3 高分子電解質膜 4 加圧治具 5 ホットプレス 6 ホットローラー 7 ガス拡散層 8 空隙 DESCRIPTION OF SYMBOLS 1 Catalyst layer 2 Base film 3 Polymer electrolyte membrane 4 Pressure jig 5 Hot press 6 Hot roller 7 Gas diffusion layer 8 Void

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 長尾 善輝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H026 AA06 BB01 BB02 BB04 CX04 HH00  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Eiichi Yasumoto 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yasushi Sugawara 1006 Kadoma, Kazuma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. 1006 Kadoma, Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. F-term (reference) 5H026 AA06 BB01 BB02 BB04 CX04 HH00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材フィルム上に形成した触媒層を水素
イオン伝導性高分子電解質膜の裏表両面に設置した後、
加熱と同時に加圧により前記水素イオン伝導性高分子電
解質膜と前記触媒層とを接合する燃料電池用膜電極接合
体の製造方法において、前記加圧は前記基材フィルムと
の接面の平面度が0以上で0.010mm以下である平
面加圧治具を介して行うことを特徴とする燃料電池用膜
電極接合体の製造方法。
Claims 1. After placing a catalyst layer formed on a base film on both sides of a hydrogen ion conductive polymer electrolyte membrane,
In the method for producing a membrane electrode assembly for a fuel cell in which the hydrogen ion conductive polymer electrolyte membrane and the catalyst layer are joined together by heating and pressurization by pressurization, the pressurization is a flatness of a contact surface with the base film. A production method of a membrane electrode assembly for a fuel cell, wherein the method is carried out through a flat pressing jig having a value of 0 to 0.010 mm.
JP2001079919A 2001-03-21 2001-03-21 Membrane electrode joint body for fuel cell and its manufacturing method Pending JP2002280020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079919A JP2002280020A (en) 2001-03-21 2001-03-21 Membrane electrode joint body for fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079919A JP2002280020A (en) 2001-03-21 2001-03-21 Membrane electrode joint body for fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002280020A true JP2002280020A (en) 2002-09-27

Family

ID=18936288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079919A Pending JP2002280020A (en) 2001-03-21 2001-03-21 Membrane electrode joint body for fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002280020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220979A (en) * 2003-01-16 2004-08-05 Toyota Motor Corp Catalyst material-containing ink, electrode using the same, and fuel cell
JP2010205676A (en) * 2009-03-05 2010-09-16 Toppan Printing Co Ltd Membrane-electrode assembly and method for manufacturing the same, and polymer electrolyte fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220979A (en) * 2003-01-16 2004-08-05 Toyota Motor Corp Catalyst material-containing ink, electrode using the same, and fuel cell
JP2010205676A (en) * 2009-03-05 2010-09-16 Toppan Printing Co Ltd Membrane-electrode assembly and method for manufacturing the same, and polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
JP6219035B2 (en) Fuel cell and fuel cell composite with asymmetric structure and method thereof
US8431284B2 (en) Low electrical resistance bipolar plate-diffusion media assembly
JP2002025560A (en) Fuel cell
US8192895B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5153130B2 (en) Membrane electrode assembly
JP3970704B2 (en) Manufacturing method of membrane / electrode assembly
JP5457973B2 (en) FUEL CELL AND METHOD FOR MANUFACTURING FUEL CELL
US20100298119A1 (en) Fuel cell electrode and method for producing the same
JP2002063912A (en) Manufacturing method of polymer electrolyte fuel cell
JP4346860B2 (en) Method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP5230174B2 (en) Fuel cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP2002280003A (en) Method for manufacturing electrode of polymer electrolyte fuel cell and electrolyte membrane electrode joining body
JP3398013B2 (en) Method for manufacturing cell for polymer electrolyte fuel cell
JP2002170581A (en) Polymer electrolyte type fuel battery
JP4163029B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP2000021419A (en) Solid high polymer electrolyte fuel cell
JP5245440B2 (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP2002280020A (en) Membrane electrode joint body for fuel cell and its manufacturing method
JP2001176519A (en) Conductive separator, high molecular electrolyte-type fuel cell and method of manufacturing high molecular electrolyte-type fuel cell
CN103311557A (en) Fuel cell durability by orthogonally oriented anisotropic external reinforce layers
JP4240285B2 (en) Method for producing gas diffusion layer of polymer electrolyte fuel cell
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane