JP2002164520A - Method for manufacturing semiconductor wafer - Google Patents

Method for manufacturing semiconductor wafer

Info

Publication number
JP2002164520A
JP2002164520A JP2000358783A JP2000358783A JP2002164520A JP 2002164520 A JP2002164520 A JP 2002164520A JP 2000358783 A JP2000358783 A JP 2000358783A JP 2000358783 A JP2000358783 A JP 2000358783A JP 2002164520 A JP2002164520 A JP 2002164520A
Authority
JP
Japan
Prior art keywords
wafer
layer
single crystal
silicon single
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000358783A
Other languages
Japanese (ja)
Inventor
Takemine Magari
偉峰 曲
Masaki Kimura
雅規 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2000358783A priority Critical patent/JP2002164520A/en
Priority to PCT/JP2001/010216 priority patent/WO2002043153A1/en
Priority to TW90129214A priority patent/TWI237412B/en
Publication of JP2002164520A publication Critical patent/JP2002164520A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76256Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor wafer which can manufacture a semiconductor wafer by a simple manufacturing process which wafer has lattice strain sufficient to improve mobility of electrons in spite of comparatively simple lamination structure and is provided with an Si layer having little crystal defect. SOLUTION: This method for manufacturing a semiconductor wafer is provided with a process for growing epitaxially an SiGe layer on a surface of a first silicon single crystal wafer, a process for coupling a surface of the SiGe layer with a surface of a second wafer via an oxide film, and a process for thinning the first silicon single crystal wafer coupled with the second wafer and exposing the Si layer including lattice strain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、格子歪みを内在す
るシリコン層を有する半導体ウェーハの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor wafer having a silicon layer having lattice distortion.

【0002】[0002]

【関連技術】シリコン単結晶を用いた半導体デバイスの
性能を向上させるための一手法として、シリコン単結晶
中の電子の移動度を高めることが有効である。そこで、
通常の格子定数(約5.43オングストローム)を有す
るシリコン単結晶に引張り歪みを内在させた歪みシリコ
ン層(以下、歪みSi層と称する。)を、例えばnチャ
ネルMOSトランジスタの活性層に用いることによりキ
ャリアの移動度を向上させ、高速動作を可能にするデバ
イスなどが検討されている。
2. Related Art As one method for improving the performance of a semiconductor device using a silicon single crystal, it is effective to increase the mobility of electrons in the silicon single crystal. Therefore,
By using a strained silicon layer (hereinafter, referred to as a strained Si layer) in which tensile strain is embedded in a silicon single crystal having a normal lattice constant (about 5.43 angstroms), for example, as an active layer of an n-channel MOS transistor Devices that improve carrier mobility and enable high-speed operation are being studied.

【0003】このような歪みSi層を有する半導体ウェ
ーハの製造方法は、例えば、特開平9−180999号
公報や特開平11−233440号公報に記載されてい
る。これらの技術はいずれもSiよりも格子定数の大き
なSiGe層上にSi層をエピタキシャル成長させるこ
とにより歪みSi層を形成するものであり、十分に格子
緩和されたSiGe層を用いてSi層に歪みを発生させ
ること、および、SiGe層中に転位を発生させないよ
うにして歪みSi層の成長時に転位を伝播させないこ
と、という2つの課題を解決するものであった。
A method for manufacturing a semiconductor wafer having such a strained Si layer is described in, for example, JP-A-9-180999 and JP-A-11-233440. In each of these techniques, a strained Si layer is formed by epitaxially growing a Si layer on a SiGe layer having a larger lattice constant than Si, and strain is applied to the Si layer using a sufficiently lattice-relaxed SiGe layer. The purpose of the present invention is to solve the two problems of generating the dislocation and preventing the dislocation from being propagated during the growth of the strained Si layer by preventing the generation of the dislocation in the SiGe layer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記2
つの方法は、少なくとも2回の薄膜成長プロセス(エピ
タキシャル成長やスパッタ法など)を伴うものであり、
必ずしも簡便な方法とは言えなかった。これについて下
記に詳述する。
However, the above-mentioned 2
One method involves at least two thin film growth processes (such as epitaxial growth and sputtering),
It was not always a simple method. This will be described in detail below.

【0005】まず、特開平9−180999号公報に記
載された半導体ウェーハは、ウェーハ表面から順に、歪
みSi層/SiGe層/Ge層/Si層/SiO2層/
Si基板という構造を有するものであり、その製造プロ
セスは、図3に示す様に、SOIウェーハの作製(ステ
ップ100)→Si層エピタキシャル層(ステップ10
2)→Ge層成長(ステップ104)→SiGe層成長
(ステップ106)→格子緩和熱処理(ステップ10
8)→歪みSi層成長(ステップ110)であり、4回
ものエピタキシャル成長を伴うものであった。
First, a semiconductor wafer described in Japanese Patent Application Laid-Open No. 9-180999 has a strained Si layer / SiGe layer / Ge layer / Si layer / SiO 2 layer /
As shown in FIG. 3, the manufacturing process of the Si substrate is to fabricate an SOI wafer (Step 100) → Si layer epitaxial layer (Step 10).
2) → Ge layer growth (Step 104) → SiGe layer growth (Step 106) → Lattice relaxation heat treatment (Step 10)
8) → Strained Si layer growth (step 110), involving as many as four epitaxial growths.

【0006】また、特開平11−233440号公報に
記載された半導体ウェーハは、ウェーハ表面から順に、
歪みSi層/CaF2層/(SiGe層)/Si基板と
いう構造を有するものであり、その製造プロセスは、図
4に示す様に、Siウェーハ用意(ステップ200)→
CaF2層のスパッタ法による堆積(ステップ202)
→(SiGe層成長)(ステップ204)→歪みSi層
成長(ステップ206)であり、こちらの場合も、少な
くとも2回の薄膜成長を伴うものであり、また、CaF
2といった特殊な層を形成するものであった。
Further, the semiconductor wafer described in Japanese Patent Application Laid-Open No. 11-233440 has a structure in which
It has a structure of strained Si layer / CaF 2 layer / (SiGe layer) / Si substrate, and its manufacturing process is as shown in FIG. 4 by preparing a Si wafer (step 200) →
Deposition of CaF 2 layer by sputtering (Step 202)
→ (SiGe layer growth) (step 204) → strained Si layer growth (step 206). In this case also, at least two thin film growths are involved.
A special layer such as 2 was formed.

【0007】このように、従来の方法では多くのプロセ
スを伴った複雑な積層構造から構成されるものであった
ため、その製造コストが高く汎用性に欠けていた。
As described above, since the conventional method has a complicated laminated structure involving many processes, its manufacturing cost is high and its versatility is lacking.

【0008】本発明は、このような問題点を解決するた
めになされたものであり、比較的単純な積層構造にもか
かわらず、電子の移動度を高めるのに十分な格子歪みを
有し、かつ、結晶欠陥の少ないSi層を有する半導体ウ
ェーハを簡便な製造プロセスにより製造することのでき
る半導体ウェーハの製造方法を提供することを目的とす
る。
The present invention has been made to solve such a problem, and has a lattice distortion sufficient to increase the mobility of electrons, despite a relatively simple laminated structure. Further, it is an object of the present invention to provide a method for manufacturing a semiconductor wafer capable of manufacturing a semiconductor wafer having a Si layer with few crystal defects by a simple manufacturing process.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体ウェーハの製造方法の第1の態様
は、第1のシリコン単結晶ウェーハの表面にSiGe層
をエピタキシャル成長する工程と、該SiGe層の表面
と第2のウェーハの表面とを酸化膜を介して結合する工
程と、該第2のウェーハと結合された該第1のシリコン
単結晶ウェーハを薄膜化して格子歪みを内在するSi層
を露出させる工程と、を有することを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor wafer, comprising the steps of: epitaxially growing a SiGe layer on a surface of a first silicon single crystal wafer; Bonding the surface of the SiGe layer and the surface of the second wafer via an oxide film; and reducing the thickness of the first silicon single crystal wafer bonded to the second wafer to cause the Si having a lattice strain therein. Exposing the layer.

【0010】本発明の半導体ウェーハの製造方法の第2
の態様は、第1のシリコン単結晶ウェーハの表面にSi
Ge層をエピタキシャル成長する工程と、該SiGe層
の表面または第2のウェーハの表面の少なくとも一方に
酸化膜を形成する工程と、該SiGe層を通して第1の
シリコン単結晶ウェーハに水素イオンまたは希ガスイオ
ンの少なくとも一方を注入して微小気泡層を形成する工
程と、該前記酸化膜を介して該第1のシリコン単結晶ウ
ェーハと第2のウェーハとを結合した後、該微小気泡層
で該第1のシリコン単結晶ウェーハを剥離する工程と、
を有することを特徴とする。
The second aspect of the method for manufacturing a semiconductor wafer of the present invention is as follows.
Is that the surface of the first silicon single crystal wafer is Si
Epitaxially growing a Ge layer, forming an oxide film on at least one of the surface of the SiGe layer and the surface of the second wafer, and supplying hydrogen ions or rare gas ions to the first silicon single crystal wafer through the SiGe layer. Forming a microbubble layer by injecting at least one of the first silicon single crystal wafer and the second wafer through the oxide film. Peeling off the silicon single crystal wafer,
It is characterized by having.

【0011】上記第2の態様において、上記剥離する工
程により剥離され上記第2のウェーハに移動した上記第
1シリコン単結晶ウェーハ薄膜の剥離面を、研磨または
熱処理、あるいはこれらを組み合わせて平坦化する工程
をさらに設けるのが好ましい。上記微小気泡層は、第1
のシリコン単結晶ウェーハの格子歪みを有する領域に形
成することができる。
[0011] In the second aspect, the peeled surface of the first silicon single crystal wafer thin film peeled in the peeling step and moved to the second wafer is planarized by polishing or heat treatment, or a combination thereof. It is preferable to further provide a step. The microbubble layer has a first
Can be formed in a region of the silicon single crystal wafer having lattice distortion.

【0012】上記第1及び第2の態様において、上記酸
化膜は上記SiGe層の表面に熱酸化により形成される
のが好ましい。上記第2のウェーハとしては、シリコン
単結晶ウェーハを用いることが好ましい。
In the first and second aspects, the oxide film is preferably formed on the surface of the SiGe layer by thermal oxidation. It is preferable to use a silicon single crystal wafer as the second wafer.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面を用いて説明するが、本発明の技術思想から逸脱し
ない限り図示例以外にも種々の変形が可能なことはいう
までもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings. Needless to say, various modifications other than the illustrated examples are possible without departing from the technical idea of the present invention. Absent.

【0014】(第1の実施の形態)図1に本発明の第1
の実施の形態である半導体ウェーハの製造フローを示し
た。図1に示された製造フローは、基本的には2枚のシ
リコンウェーハを用いて貼り合わせ法によりSOIウェ
ーハを製造する際の通常の製造フローに、SiGe層を
成長する工程(b)を加えただけのものである。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
The manufacturing flow of the semiconductor wafer according to the embodiment is shown. The manufacturing flow shown in FIG. 1 basically adds a step (b) for growing a SiGe layer to a normal manufacturing flow when manufacturing an SOI wafer by a bonding method using two silicon wafers. It is just a thing.

【0015】まず、最終的に歪みSi層の材料となる第
1及び第2のSiウェーハW1,W2を用意する〔図1
(a)〕。このSiウェーハW1は、単結晶シリコンで
あれば特に限定はされず、CZ法やFZ法で作製された
Siウェーハを用いることができる。ただし、デバイス
を形成する歪みSi層の品質を高めるため、少なくとも
用いるウェーハの表面近傍には結晶欠陥が少ないものを
用いることが好ましい。具体的には、熱処理によりウェ
ーハ表面近傍にDZ層を形成したウェーハや、CZ法の
引き上げ条件を調整することにより、単結晶中のいわゆ
るGrown-in欠陥を低減(あるいは消滅)させたウェーハ
や、FZウェーハなどが好適である。
First, first and second Si wafers W1 and W2 to be finally used as materials of a strained Si layer are prepared [FIG.
(A)]. The Si wafer W1 is not particularly limited as long as it is single crystal silicon, and a Si wafer manufactured by the CZ method or the FZ method can be used. However, in order to improve the quality of the strained Si layer that forms the device, it is preferable to use one having few crystal defects at least near the surface of the wafer to be used. Specifically, a wafer in which a DZ layer is formed near the wafer surface by heat treatment, or a wafer in which so-called Grown-in defects in a single crystal are reduced (or eliminated) by adjusting pulling conditions of a CZ method, An FZ wafer or the like is suitable.

【0016】次に、前記第1のSiウェーハW1の表面
にSiGe層10をエピタキシャル成長により形成する
〔図1(b)〕。SiGe層10の形成には、例えば分
子線エピタキシャル成長装置や超高真空化学気相成長
(UHV−CVD)装置などを用いることができる。
Next, a SiGe layer 10 is formed on the surface of the first Si wafer W1 by epitaxial growth [FIG. 1 (b)]. For the formation of the SiGe layer 10, for example, a molecular beam epitaxial growth apparatus, an ultra-high vacuum chemical vapor deposition (UHV-CVD) apparatus, or the like can be used.

【0017】形成するSiGe層10のGe組成は10
〜40%程度が好ましい。10%未満では十分な引張り
歪みを有する歪みSi層が形成されず、40%を超える
とSiウェーハW1とSiGe層10の格子定数の差異
によりSiGe層10にミスフィット転位が発生しやす
くなるため、最終的に形成される歪みSi層の結晶性に
悪影響を及ぼす。また、SiGe層10の厚さは10n
m〜1μm程度が好ましい。10nm未満では十分な引
張り歪みを有する歪みSi層が形成されず、1μmを超
えると寄生容量の増加等により歪みSi層に形成される
デバイス特性が悪化する。尚、上記の工程により第1の
SiウェーハW1上に格子定数の異なるSiGe層10
が形成されても、第1のSiウェーハW1の厚み効果に
より、第1のSiウェーハW1側に転位が発生すること
はない。
The Ge composition of the SiGe layer 10 to be formed is 10
About 40% is preferable. If it is less than 10%, a strained Si layer having a sufficient tensile strain is not formed. It adversely affects the crystallinity of the finally formed strained Si layer. The thickness of the SiGe layer 10 is 10 n
It is preferably about m to 1 μm. If the thickness is less than 10 nm, a strained Si layer having a sufficient tensile strain is not formed. If the thickness exceeds 1 μm, device characteristics formed on the strained Si layer deteriorate due to an increase in parasitic capacitance and the like. Note that the SiGe layers 10 having different lattice constants are formed on the first Si wafer W1 by the above-described steps.
Is formed, no dislocation occurs on the first Si wafer W1 side due to the thickness effect of the first Si wafer W1.

【0018】次に、SiGe層10の表面に酸化膜12
を形成する〔図1(c)〕。酸化膜の形成は通常の熱酸
化法を用いてもよいし、CVD法により堆積してもよ
い。熱酸化法を用いると、SiGe層10表面には化学
的に安定なSiO2層12が形成され、余分なGe原子
がSiGe層10にはじき出されSiGe層10中のG
e濃度が高くなる。従って、ミスフィット転位の発生を
抑制する目的でエピタキシャル成長する際のGe組成を
比較的低くした場合であっても、SiGe層10表面を
熱酸化することにより最終的に形成される歪みSi層の
引張り歪みを高めることができる。また、十分な引張り
歪みを得るために、熱酸化と酸化膜除去を繰り返し行っ
てもよい。
Next, an oxide film 12 is formed on the surface of the SiGe layer 10.
Is formed [FIG. 1 (c)]. The formation of the oxide film may be performed by a normal thermal oxidation method or may be performed by a CVD method. When the thermal oxidation method is used, a chemically stable SiO 2 layer 12 is formed on the surface of the SiGe layer 10, and extra Ge atoms are repelled to the SiGe layer 10, and G atoms in the SiGe layer 10 are removed.
e The concentration increases. Therefore, even when the Ge composition during epitaxial growth is relatively low for the purpose of suppressing the generation of misfit dislocations, the tensile stress of the strained Si layer finally formed by thermally oxidizing the surface of the SiGe layer 10 is obtained. Distortion can be increased. Further, in order to obtain sufficient tensile strain, thermal oxidation and removal of the oxide film may be repeatedly performed.

【0019】次に、SiGe層10表面に形成した酸化
膜12と第2のSiウェーハW2の表面を密着させ、後
の薄膜化工程に耐え得る結合強度になるように熱処理を
行う〔結合熱処理、図1(d)〕。熱処理条件は、後の
薄膜化工程に耐え得る条件であれば特に限定されない
が、薄膜化を研削、研磨により行う場合には、800〜
1200℃で0.5〜5時間程度行うことが好ましい。
Next, the oxide film 12 formed on the surface of the SiGe layer 10 is brought into close contact with the surface of the second Si wafer W2, and a heat treatment is performed so as to have a bond strength that can withstand a subsequent thinning step [bonding heat treatment, FIG. 1 (d)]. The heat treatment condition is not particularly limited as long as it can withstand the subsequent thinning step.
It is preferable to carry out at 1200 ° C. for about 0.5 to 5 hours.

【0020】最後に第1のSiウェーハW1を薄膜化し
て歪みSi層14を露出させる〔図1(e)〕。歪みS
i層14の厚さは、1〜100nm程度が好ましい。1
00nmを超えるとSiGe層10による引っ張り歪み
が内在しなくなる恐れがあり、1nm未満では良好なデ
バイス特性が得られない上、加工も困難である。
Finally, the first Si wafer W1 is thinned to expose the strained Si layer 14 (FIG. 1E). Distortion S
The thickness of the i-layer 14 is preferably about 1 to 100 nm. 1
If it exceeds 00 nm, there is a possibility that tensile strain due to the SiGe layer 10 may not be intrinsic, and if it is less than 1 nm, good device characteristics cannot be obtained and processing is difficult.

【0021】Si層14の薄膜化手法としては、研削、
研磨のほか、酸やアルカリ水溶液を用いたウェットエッ
チング、プラズマを利用した気相エッチング、ラッピン
グ、あるいは、スライスにより2分割にした後、研磨す
る手法などを挙げることができる。これらの薄膜化手法
によっては、薄膜化の前に行う結合熱処理を省略した
り、接着剤等を使用して結合することもできる。
As a method of thinning the Si layer 14, grinding,
In addition to polishing, wet etching using an acid or alkali aqueous solution, vapor phase etching using plasma, lapping, or a method of dividing into two by slicing and then polishing can be given. Depending on these thinning techniques, bonding heat treatment performed before thinning can be omitted, or bonding can be performed using an adhesive or the like.

【0022】(第2の実施の形態)図2に本発明の第2
の実施形態である半導体ウェーハの製造フローを示し
た。図2に示された製造フローは、基本的には2枚のシ
リコンウェーハを用いて、イオン注入剥離法(水素イオ
ン剥離法、スマートカット法(登録商標)とも呼ばれ
る。)によりSOIウェーハを製造する際の製造フロー
に、SiGe層を成長する工程(b)を加えただけのも
のである。尚、図2におけるSiGe層の表面を酸化す
る工程まで〔図2(a)〜図2(c)〕は、図1(a)
〜図1(c)と同一工程であるので再度の説明は省略す
る。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
The manufacturing flow of the semiconductor wafer according to the embodiment is shown. The manufacturing flow shown in FIG. 2 basically manufactures an SOI wafer by ion implantation and peeling (also called hydrogen ion peeling and Smart Cut (registered trademark)) using two silicon wafers. Only the step (b) of growing a SiGe layer is added to the production flow at that time. 2A to 2C until the step of oxidizing the surface of the SiGe layer in FIG.
Since this is the same process as that shown in FIG.

【0023】SiGe層10の表面に形成された酸化膜
12の表面側から、酸化膜12およびSiGe層10を
通して水素イオンまたは希ガスイオンの少なくとも一方
(図2(d)では水素イオン16)を注入することによ
り、第1のSiウェーハW1中に微小気泡層18を形成
する〔図2(d)〕。
At least one of hydrogen ions or rare gas ions (hydrogen ions 16 in FIG. 2D) is implanted from the surface of the oxide film 12 formed on the surface of the SiGe layer 10 through the oxide film 12 and the SiGe layer 10. Thereby, the microbubble layer 18 is formed in the first Si wafer W1 (FIG. 2D).

【0024】微小気泡層18が形成される位置(深さ)
は水素イオン16の注入エネルギーにより決まり、その
微小気泡層18を境界として後の剥離熱処理により剥離
を発生させるためには、1×1016/cm2を超える注
入線量(例えば5×1016/cm2)が必要とされる。
剥離して形成される多層構造のウェーハの最表面のSi
層表面が確実に格子歪み(引っ張り歪み)を有する様に
するためには、前記微小気泡層18を第1のSiウェー
ハW1の格子歪みを有する領域(第1のSiウェーハW
1の表面から100nm以下の領域)に形成することが
好ましい。
Position (depth) where the microbubble layer 18 is formed
Is determined by the implantation energy of the hydrogen ions 16, and in order to cause separation by the subsequent separation heat treatment with the microbubble layer 18 as a boundary, an implantation dose exceeding 1 × 10 16 / cm 2 (for example, 5 × 10 16 / cm 2) 2 ) is required.
Si on the outermost surface of a multi-layered wafer formed by peeling
In order to ensure that the surface of the layer has lattice distortion (tensile distortion), the microbubble layer 18 is placed in a region of the first Si wafer W1 having lattice distortion (the first Si wafer W1).
(A region of 100 nm or less from the surface of No. 1).

【0025】次に、SiGe層10表面に形成した酸化
膜12と第2のSiウェーハW2の表面を密着させ〔図
2(e)〕、500℃以上の熱処理(剥離熱処理)を加
えることにより、前記微小気泡層18で剥離を生じさせ
る〔図2(f)〕。その後、必要に応じてさらに高温で
の結合熱処理を行うことにより結合強度を高めてもよ
い。また、最近では、イオン注入剥離法の一種ではある
が、注入される水素イオンを励起してプラズマ状態で注
入することにより剥離熱処理を行うことなく、室温で剥
離を行う方法も開発されているので、この方法を用いる
場合には剥離熱処理を省略することができる。
Next, the oxide film 12 formed on the surface of the SiGe layer 10 is brought into close contact with the surface of the second Si wafer W2 [FIG. 2 (e)], and a heat treatment (peeling heat treatment) of 500 ° C. or more is applied. Peeling occurs in the microbubble layer 18 (FIG. 2 (f)). Thereafter, if necessary, the bonding strength may be increased by performing a bonding heat treatment at a higher temperature. Recently, a method of exfoliating at room temperature without exfoliating heat treatment by exciting implanted hydrogen ions and implanting them in a plasma state, which is a kind of ion implantation exfoliation method, has been developed recently. If this method is used, the peeling heat treatment can be omitted.

【0026】剥離後の歪みSi層14の表面は鏡面では
あるが若干の面粗さを有しているので、タッチポリッシ
ュと呼ばれる研磨代の極めて少ない研磨を行い平坦化す
る〔図2(g)〕。タッチポリッシュの代わりに、アル
ゴンガスや水素ガス雰囲気中で熱処理することにより平
坦化する手法や、これらを組み合わせて平坦化すること
も可能である。
Since the surface of the strained Si layer 14 after the peeling is a mirror surface but has a slight surface roughness, it is flattened by polishing with a very small polishing allowance called touch polishing (FIG. 2 (g)). ]. Instead of the touch polish, it is also possible to planarize by performing a heat treatment in an atmosphere of argon gas or hydrogen gas, or to planarize by combining these methods.

【0027】熱処理条件としては、通常の抵抗加熱式熱
処理炉を用いる場合には、1100〜1300℃、0.
5〜5時間程度の熱処理が好適であり、RTA(Rapid T
hermal Annealing)装置を用いる場合には、1100〜
1350℃、1〜120秒程度の熱処理が好適である。
また、これらを組み合わせて熱処理を行うこともでき
る。
As the heat treatment conditions, when a normal resistance heating type heat treatment furnace is used, 1100 to 1300 ° C., 0.
Heat treatment for about 5 to 5 hours is preferable, and RTA (Rapid T
hermal Annealing) 1100
Heat treatment at 1350 ° C. for about 1 to 120 seconds is preferable.
In addition, heat treatment can be performed by combining these.

【0028】尚、図1および図2に示した実施の形態で
は第1のSiウェーハW1のSiGe層10の表面に酸
化膜12を形成する場合を例示したが、第2のSiウェ
ーハW2に酸化膜を形成してもよいし、第1及び第2の
Siウェーハ双方に酸化膜を形成してもよい。また、第
2のSiウェーハW2として、抵抗率が1000Ωcm
以上の高抵抗率ウェーハを用いることにより、高周波特
性に優れ、移動体通信用の半導体ウェーハとして用いる
ことができる。さらに第2のウェーハW2としては、石
英基板、サファイア基板、SiC、窒化アルミニウム基
板等の絶縁性基板を用いることもできる。
In the embodiment shown in FIGS. 1 and 2, the case where the oxide film 12 is formed on the surface of the SiGe layer 10 of the first Si wafer W1 has been exemplified. A film may be formed, or an oxide film may be formed on both the first and second Si wafers. The second Si wafer W2 has a resistivity of 1000 Ωcm
By using the above high resistivity wafer, it is excellent in high frequency characteristics and can be used as a semiconductor wafer for mobile communication. Further, as the second wafer W2, an insulating substrate such as a quartz substrate, a sapphire substrate, SiC, or an aluminum nitride substrate can be used.

【0029】[0029]

【実施例】以下に実施例をあげて本発明をさらに具体的
に説明するが、これらの実施例は限定的に解釈すべきで
ないことは勿論である。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should be understood that these Examples should not be construed as limiting.

【0030】(実施例1:第1の実施の形態に対応)図
1に示した第1の実施の形態の手順に従って下記条件で
十分な格子歪みを有する半導体ウェーハを製造した。
(Example 1: Corresponding to the first embodiment) A semiconductor wafer having a sufficient lattice distortion was manufactured under the following conditions according to the procedure of the first embodiment shown in FIG.

【0031】1.使用ウェーハ(第1および第2ウェー
ハの用意)〔図1(a)〕 直径200mm、p型、結晶方位<100>、10Ωc
1. Wafers used (preparation of first and second wafers) [FIG. 1 (a)] 200 mm in diameter, p-type, crystal orientation <100>, 10Ωc
m

【0032】2.第1ウェーハの表面にSiGe層成長
(UHV−CVD装置)〔図1(b)〕 原料ガス:GeH4、Si26 成長温度:700℃ SiGe組成:Si0.7Ge0.3 成長層厚:150nm
2. Growth of SiGe layer on the surface of first wafer (UHV-CVD apparatus) [FIG. 1 (b)] Source gas: GeH 4 , Si 2 H 6 Growth temperature: 700 ° C. SiGe composition: Si 0.7 Ge 0.3 Growth layer thickness: 150 nm

【0033】3.SiGe表面酸化〔図1(c)〕 酸化条件:800℃、パイロジェニック酸化 酸化膜厚:100nm3. SiGe surface oxidation [FIG. 1 (c)] Oxidation conditions: 800 ° C., pyrogenic oxidation Oxidation film thickness: 100 nm

【0034】4.結合工程〔図1(d)〕 両ウェーハを室温で密着させ1000℃、2時間の熱処
理(酸化性雰囲気)
4. Bonding process [Fig. 1 (d)] Both wafers are brought into close contact at room temperature and heat treated at 1000 ° C for 2 hours (oxidizing atmosphere).

【0035】5.薄膜化〔図1(e)〕 平面研削:第1Siウェーハ厚が約20μmになるまで
研削。 鏡面研磨:第1Siウェーハ厚が約4μmになるまで研
磨。 PACE(Plasma Assisted Chemical Etching)法によ
る気相エッチングにより第1Siウェーハ厚が約100
nmになるまで薄膜化(PACE法は第2565617
号特許に記載された技術)。
5. Thinning [Fig. 1 (e)] Surface grinding: Grinding until the thickness of the first Si wafer becomes about 20 µm. Mirror polishing: polishing until the thickness of the first Si wafer becomes about 4 μm. The first Si wafer thickness is about 100 by vapor phase etching by PACE (Plasma Assisted Chemical Etching) method.
nm (PACE method is 25656517).
No. patent).

【0036】(実施例2:第2の実施の形態に対応)図
2に示した第2の実施の形態の手順に従って下記条件で
十分な格子歪みを有する半導体ウェーハを製造した。
Example 2 Corresponding to the Second Embodiment A semiconductor wafer having a sufficient lattice distortion was manufactured under the following conditions according to the procedure of the second embodiment shown in FIG.

【0037】1.使用ウェーハ(第1および第2ウェー
ハの用意)〔図2(a)〕 直径200mm、p型、結晶方位<100>、10Ωc
1. Used wafers (preparation of first and second wafers) [FIG. 2 (a)] 200 mm in diameter, p-type, crystal orientation <100>, 10Ωc
m

【0038】2.第1ウェーハの表面にSiGe層成長
(UHV−CVD装置)〔図2(b)〕 原料ガス:GeH4、Si26 成長温度:700℃ SiGe組成:Si0.85Ge0.15 成長層厚:120nm
2. Growth of SiGe layer on surface of first wafer (UHV-CVD apparatus) [FIG. 2 (b)] Source gas: GeH 4 , Si 2 H 6 Growth temperature: 700 ° C. SiGe composition: Si 0.85 Ge 0.15 Growth layer thickness: 120 nm

【0039】3.SiGe表面酸化〔図2(c)〕 酸化条件:800℃、パイロジェニック酸化 酸化膜厚:100nm3. SiGe surface oxidation [FIG. 2 (c)] Oxidation conditions: 800 ° C., pyrogenic oxidation Oxidation film thickness: 100 nm

【0040】4.水素イオン注入〔図2(d)〕 H+イオン注入条件:35keV、8×1016/cm2 4. Hydrogen ion implantation [FIG. 2 (d)] H + ion implantation conditions: 35 keV, 8 × 10 16 / cm 2

【0041】5.剥離工程〔図2(e)及び(f)〕 両ウェーハを室温で密着させ、500℃、30分の熱処
理(窒素雰囲気)により剥離。剥離後の多層ウェーハの
最表面Si層の厚さ約130nm。
5. Peeling Step [FIGS. 2 (e) and (f)] Both wafers are brought into close contact at room temperature, and peeled by heat treatment (nitrogen atmosphere) at 500 ° C. for 30 minutes. The thickness of the outermost Si layer of the multilayer wafer after peeling is about 130 nm.

【0042】6.結合熱処理 800℃、2時間、窒素雰囲気6. Bonding heat treatment 800 ° C, 2 hours, nitrogen atmosphere

【0043】7.タッチポリッシュ〔図2(g)〕 研磨代約30nm7. Touch polish [Fig. 2 (g)] Polishing allowance about 30nm

【0044】[0044]

【発明の効果】以上述べたごとく、本発明によれば、比
較的単純な積層構造にもかかわらず、電子の移動度を高
めるのに十分な格子歪みを有し、かつ、結晶欠陥の少な
いSi層を有する半導体ウェーハを簡便な製造プロセス
により製造することができるという効果が達成される。
As described above, according to the present invention, despite having a relatively simple laminated structure, a Si layer having a lattice distortion sufficient to increase the mobility of electrons and having few crystal defects is provided. The effect that a semiconductor wafer having a layer can be manufactured by a simple manufacturing process is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の第1の実施形態を示すフローチャ
ートである。
FIG. 1 is a flowchart showing a first embodiment of the method of the present invention.

【図2】本発明方法の第2の実施形態を示すフローチャ
ートである。
FIG. 2 is a flowchart showing a second embodiment of the method of the present invention.

【図3】従来の半導体ウェーハの製造方法の一例を示す
フローチャートである。
FIG. 3 is a flowchart illustrating an example of a conventional method for manufacturing a semiconductor wafer.

【図4】従来の半導体ウェーハの製造方法の他の例を示
すフローチャートである。
FIG. 4 is a flowchart showing another example of a conventional method for manufacturing a semiconductor wafer.

【符号の説明】[Explanation of symbols]

10:SiGe層、12:酸化膜、14:歪みSi層、
16:水素イオン、18:微小気泡層、W1,W2:S
iウェーハ。
10: SiGe layer, 12: oxide film, 14: strained Si layer,
16: hydrogen ion, 18: microbubble layer, W1, W2: S
i-wafer.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1のシリコン単結晶ウェーハの表面に
SiGe層をエピタキシャル成長する工程と、該SiG
e層の表面と第2のウェーハの表面とを酸化膜を介して
結合する工程と、該第2のウェーハと結合された該第1
のシリコン単結晶ウェーハを薄膜化して格子歪みを内在
するSi層を露出させる工程と、を有することを特徴と
する半導体ウェーハの製造方法。
A step of epitaxially growing a SiGe layer on a surface of a first silicon single crystal wafer;
bonding the surface of the e-layer and the surface of the second wafer via an oxide film, and the first wafer bonded to the second wafer.
Forming a silicon single crystal wafer into a thin film to expose an Si layer having lattice distortion therein.
【請求項2】 第1のシリコン単結晶ウェーハの表面に
SiGe層をエピタキシャル成長する工程と、該SiG
e層の表面、または第2のウェーハの表面の少なくとも
一方に酸化膜を形成する工程と、該SiGe層を通して
第1のシリコン単結晶ウェーハに水素イオンまたは希ガ
スイオンの少なくとも一方を注入して微小気泡層を形成
する工程と、該酸化膜を介して該第1のシリコン単結晶
ウェーハと第2のウェーハとを結合した後、該微小気泡
層で該第1のシリコン単結晶ウェーハを剥離する工程
と、を有することを特徴とする半導体ウェーハの製造方
法。
2. A step of epitaxially growing a SiGe layer on a surface of a first silicon single crystal wafer;
forming an oxide film on at least one of the surface of the e-layer and the surface of the second wafer; and implanting at least one of hydrogen ions or rare gas ions into the first silicon single crystal wafer through the SiGe layer to form a fine film. Forming a bubble layer, and bonding the first silicon single crystal wafer and the second wafer through the oxide film, and peeling off the first silicon single crystal wafer with the microbubble layer And a method for manufacturing a semiconductor wafer.
【請求項3】 前記剥離する工程により剥離され前記第
2のウェーハに移動した前記第1シリコン単結晶ウェー
ハ薄膜の剥離面を、研磨または熱処理あるいはこれらを
組み合わせて平坦化する工程を有することを特徴とする
請求項2に記載された半導体ウェーハの製造方法。
3. The method according to claim 1, further comprising the step of polishing or heat-treating the peeled surface of the first silicon single crystal wafer thin film which has been peeled off in the peeling-off step and moved to the second wafer, or a combination thereof. 3. The method of manufacturing a semiconductor wafer according to claim 2, wherein:
【請求項4】 前記微小気泡層を、前記第1のシリコン
単結晶ウェーハの格子歪みを有する領域に形成すること
を特徴する請求項2または請求項3に記載された半導体
ウェーハの製造方法。
4. The method according to claim 2, wherein the microbubble layer is formed in a region of the first silicon single crystal wafer having lattice distortion.
【請求項5】 前記酸化膜を前記SiGe層の表面に熱
酸化により形成することを特徴とする請求項1から請求
項4のいずれか1項に記載された半導体ウェーハの製造
方法。
5. The method according to claim 1, wherein the oxide film is formed on the surface of the SiGe layer by thermal oxidation.
【請求項6】 前記第2のウェーハとして、シリコン単
結晶ウェーハを用いることを特徴とする請求項1から請
求項5のいずれか1項に記載された半導体ウェーハの製
造方法。
6. The method of manufacturing a semiconductor wafer according to claim 1, wherein a silicon single crystal wafer is used as the second wafer.
JP2000358783A 2000-11-27 2000-11-27 Method for manufacturing semiconductor wafer Pending JP2002164520A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000358783A JP2002164520A (en) 2000-11-27 2000-11-27 Method for manufacturing semiconductor wafer
PCT/JP2001/010216 WO2002043153A1 (en) 2000-11-27 2001-11-22 Method for manufacturing semiconductor wafer
TW90129214A TWI237412B (en) 2000-11-27 2001-11-26 Method for manufacturing semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000358783A JP2002164520A (en) 2000-11-27 2000-11-27 Method for manufacturing semiconductor wafer

Publications (1)

Publication Number Publication Date
JP2002164520A true JP2002164520A (en) 2002-06-07

Family

ID=18830626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000358783A Pending JP2002164520A (en) 2000-11-27 2000-11-27 Method for manufacturing semiconductor wafer

Country Status (3)

Country Link
JP (1) JP2002164520A (en)
TW (1) TWI237412B (en)
WO (1) WO2002043153A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573126B2 (en) 2000-08-16 2003-06-03 Massachusetts Institute Of Technology Process for producing semiconductor article using graded epitaxial growth
US6649480B2 (en) 2000-12-04 2003-11-18 Amberwave Systems Corporation Method of fabricating CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6703688B1 (en) 2001-03-02 2004-03-09 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6703144B2 (en) 2000-01-20 2004-03-09 Amberwave Systems Corporation Heterointegration of materials using deposition and bonding
US6723661B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6724008B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
JP2004538627A (en) * 2001-07-04 2004-12-24 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ How to reduce surface wrinkles
JP2005086066A (en) * 2003-09-10 2005-03-31 Shin Etsu Handotai Co Ltd Laminated wafer manufacturing method
JP2005539392A (en) * 2002-09-18 2005-12-22 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ Formation of relaxed useful layers from wafers without a buffer layer
JP2006503442A (en) * 2002-10-18 2006-01-26 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device with extensible strain silicon introduced into the compressed material of the buried oxide layer
JP2006216661A (en) * 2005-02-02 2006-08-17 Sumco Corp Method of manufacturing semiconductor wafer
KR100744805B1 (en) * 2005-12-19 2007-08-01 매그나칩 반도체 유한회사 Semiconductor wafer and manufacturing method thereof
KR100837280B1 (en) 2007-03-12 2008-06-11 삼성전자주식회사 Semiconductor devices including a getting region and methods of forming the same
WO2008105101A1 (en) * 2007-02-28 2008-09-04 Shin-Etsu Chemical Co., Ltd. Process for producing laminated substrate and laminated substrate
US7521265B2 (en) 2004-01-16 2009-04-21 Shin-Etsu Handotai Co., Ltd. Method for measuring an amount of strain of a bonded strained wafer
US7531878B2 (en) 2002-10-17 2009-05-12 Renesas Technology Corp. Semiconductor MIS transistor formed on SOI semiconductor substrate
JP2009164643A (en) * 2002-08-10 2009-07-23 Industry-Univ Cooperation Foundation Hanyang Univ Method for fabricating nano soi wafer
US7608548B2 (en) 2003-09-10 2009-10-27 Shin-Etsu Handotai Co., Ltd. Method for cleaning a multilayer substrate and method for bonding substrates and method for producing a bonded wafer
JP2010189234A (en) * 2009-02-19 2010-09-02 Shin-Etsu Chemical Co Ltd Heat conduction member with low-stress and diffusion-barrier film
US7829442B2 (en) 2002-08-23 2010-11-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor heterostructures having reduced dislocation pile-ups and related methods
US7838392B2 (en) 2002-06-07 2010-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming III-V semiconductor device structures
US7906776B2 (en) 2001-09-24 2011-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. RF circuits including transistors having strained material layers
JP2011524641A (en) * 2008-06-20 2011-09-01 天錫 李 Thin film manufacturing method
US8129821B2 (en) 2002-06-25 2012-03-06 Taiwan Semiconductor Manufacturing Co., Ltd. Reacted conductive gate electrodes
US8183627B2 (en) 2004-12-01 2012-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid fin field-effect transistor structures and related methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018909B2 (en) 2003-02-28 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
FR2851847B1 (en) * 2003-02-28 2005-10-14 Soitec Silicon On Insulator RELAXATION OF A THIN LAYER AFTER TRANSFER
JP4617820B2 (en) * 2004-10-20 2011-01-26 信越半導体株式会社 Manufacturing method of semiconductor wafer
JP2006140187A (en) * 2004-11-10 2006-06-01 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer
FR2880988B1 (en) 2005-01-19 2007-03-30 Soitec Silicon On Insulator TREATMENT OF A LAYER IN SI1-yGEy TAKEN
JP4958797B2 (en) * 2005-02-24 2012-06-20 ソイテック Method for oxidizing the surface region of a SiGe layer, method for stabilizing at least one junction interface in an SGOI structure, and method for joining a SiGe layer to a substrate layer made of a semiconductor material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461243A (en) * 1993-10-29 1995-10-24 International Business Machines Corporation Substrate for tensilely strained semiconductor
JP3441277B2 (en) * 1995-12-26 2003-08-25 株式会社東芝 Semiconductor device and manufacturing method thereof
US5882987A (en) * 1997-08-26 1999-03-16 International Business Machines Corporation Smart-cut process for the production of thin semiconductor material films
JP3607194B2 (en) * 1999-11-26 2005-01-05 株式会社東芝 Semiconductor device, semiconductor device manufacturing method, and semiconductor substrate

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703144B2 (en) 2000-01-20 2004-03-09 Amberwave Systems Corporation Heterointegration of materials using deposition and bonding
US6737670B2 (en) 2000-08-16 2004-05-18 Massachusetts Institute Of Technology Semiconductor substrate structure
US6573126B2 (en) 2000-08-16 2003-06-03 Massachusetts Institute Of Technology Process for producing semiconductor article using graded epitaxial growth
US6713326B2 (en) 2000-08-16 2004-03-30 Masachusetts Institute Of Technology Process for producing semiconductor article using graded epitaxial growth
US6649480B2 (en) 2000-12-04 2003-11-18 Amberwave Systems Corporation Method of fabricating CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6724008B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6723661B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6703688B1 (en) 2001-03-02 2004-03-09 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
JP2004538627A (en) * 2001-07-04 2004-12-24 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ How to reduce surface wrinkles
US7906776B2 (en) 2001-09-24 2011-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. RF circuits including transistors having strained material layers
US7838392B2 (en) 2002-06-07 2010-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming III-V semiconductor device structures
US8129821B2 (en) 2002-06-25 2012-03-06 Taiwan Semiconductor Manufacturing Co., Ltd. Reacted conductive gate electrodes
JP2009164643A (en) * 2002-08-10 2009-07-23 Industry-Univ Cooperation Foundation Hanyang Univ Method for fabricating nano soi wafer
US7829442B2 (en) 2002-08-23 2010-11-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor heterostructures having reduced dislocation pile-ups and related methods
JP2005539392A (en) * 2002-09-18 2005-12-22 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ Formation of relaxed useful layers from wafers without a buffer layer
US7531878B2 (en) 2002-10-17 2009-05-12 Renesas Technology Corp. Semiconductor MIS transistor formed on SOI semiconductor substrate
JP2006503442A (en) * 2002-10-18 2006-01-26 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device with extensible strain silicon introduced into the compressed material of the buried oxide layer
JP2005086066A (en) * 2003-09-10 2005-03-31 Shin Etsu Handotai Co Ltd Laminated wafer manufacturing method
US7608548B2 (en) 2003-09-10 2009-10-27 Shin-Etsu Handotai Co., Ltd. Method for cleaning a multilayer substrate and method for bonding substrates and method for producing a bonded wafer
JP4626133B2 (en) * 2003-09-10 2011-02-02 信越半導体株式会社 Method for manufacturing bonded wafer
US7521265B2 (en) 2004-01-16 2009-04-21 Shin-Etsu Handotai Co., Ltd. Method for measuring an amount of strain of a bonded strained wafer
US8183627B2 (en) 2004-12-01 2012-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid fin field-effect transistor structures and related methods
JP2006216661A (en) * 2005-02-02 2006-08-17 Sumco Corp Method of manufacturing semiconductor wafer
KR100744805B1 (en) * 2005-12-19 2007-08-01 매그나칩 반도체 유한회사 Semiconductor wafer and manufacturing method thereof
WO2008105101A1 (en) * 2007-02-28 2008-09-04 Shin-Etsu Chemical Co., Ltd. Process for producing laminated substrate and laminated substrate
US8765576B2 (en) 2007-02-28 2014-07-01 Shin-Etsu Chemical Co., Ltd. Process for producing laminated substrate and laminated substrate
KR100837280B1 (en) 2007-03-12 2008-06-11 삼성전자주식회사 Semiconductor devices including a getting region and methods of forming the same
US8293613B2 (en) 2007-03-12 2012-10-23 Samsung Electronics Co., Ltd. Gettering structures and methods and their application
JP2011524641A (en) * 2008-06-20 2011-09-01 天錫 李 Thin film manufacturing method
JP2010189234A (en) * 2009-02-19 2010-09-02 Shin-Etsu Chemical Co Ltd Heat conduction member with low-stress and diffusion-barrier film

Also Published As

Publication number Publication date
WO2002043153A1 (en) 2002-05-30
TWI237412B (en) 2005-08-01

Similar Documents

Publication Publication Date Title
JP2002164520A (en) Method for manufacturing semiconductor wafer
US6054363A (en) Method of manufacturing semiconductor article
JP3293736B2 (en) Semiconductor substrate manufacturing method and bonded substrate
US6992025B2 (en) Strained silicon on insulator from film transfer and relaxation by hydrogen implantation
JP3352340B2 (en) Semiconductor substrate and method of manufacturing the same
JP4919316B2 (en) Method for producing silicon-on-glass via layer transfer
JP3257624B2 (en) Semiconductor member manufacturing method
EP3573094B1 (en) High resistivity semiconductor-on-insulator wafer and a method of manufacturing
JP4617820B2 (en) Manufacturing method of semiconductor wafer
JP2010016390A (en) Process for producing semiconductor product using graded epitaxial growth
EP0843346B1 (en) Method of manufacturing a semiconductor article
US20070117350A1 (en) Strained silicon on insulator (ssoi) with layer transfer from oxidized donor
JP2008512868A (en) Method for producing defect-free high Ge content SiGe-on-insulator (SGOI) substrates using wafer bonding technology
WO2007012290A1 (en) Method for manufacturing silicon on insulator
KR19980080687A (en) Substrate and manufacturing method thereof
TW200411820A (en) Transfer of a thin layer from a wafer comprising a buffer layer
WO2006051730A1 (en) Method for producing semiconductor wafer
JPH10326883A (en) Substrate and manufacture thereof
JP3293767B2 (en) Semiconductor member manufacturing method
JP5031190B2 (en) Manufacturing method of semiconductor wafer having strained Si layer
JP2002118242A (en) Method for manufacturing semiconductor member
JP2004342858A (en) Soi wafer and manufacturing method therefor
JP4649918B2 (en) Method for manufacturing bonded wafer
JP4626133B2 (en) Method for manufacturing bonded wafer
JP2004320000A (en) Method for manufacturing strained si-soi substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071203