JP2001272319A - Fatigue damage prognosis device and method therefor - Google Patents
Fatigue damage prognosis device and method thereforInfo
- Publication number
- JP2001272319A JP2001272319A JP2000086935A JP2000086935A JP2001272319A JP 2001272319 A JP2001272319 A JP 2001272319A JP 2000086935 A JP2000086935 A JP 2000086935A JP 2000086935 A JP2000086935 A JP 2000086935A JP 2001272319 A JP2001272319 A JP 2001272319A
- Authority
- JP
- Japan
- Prior art keywords
- fatigue
- crack
- fatigue damage
- sensor
- test piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、広くは構造物の疲
労累積被害度を人工亀裂の進展量によって検知する疲労
センサーに係り、特に疲労センサーによって電気的に計
測した人工亀裂の進展量をモニタリングして前記構造物
の疲労損傷を予知する疲労損傷予知装置及びその方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to a fatigue sensor for detecting the cumulative fatigue damage of a structure based on the amount of growth of an artificial crack, and more particularly to monitoring the amount of growth of an artificial crack electrically measured by the fatigue sensor. And a method for predicting fatigue damage of the structure.
【0002】[0002]
【従来の技術】人工亀裂を設けたセンサー(犠牲試験
片、疲労センサー等と呼称されている)を構造物に貼付
し、人工亀裂の進展量を計測することによって、構造物
の疲労累積被害度を測定する方法が開発されている〔例
えば、特開平9−304240号公報(文献1)…図
3〕。この方法では、亀裂の進展量をいかにして計測す
るかが問題であり、文献1では、マイクロスコープまた
は高倍率の簡易顕微鏡によって直接読みとることを想定
している。図3の101は犠牲試験片の本体、102は
人工亀裂、103は樹脂製薄板、104はフィルムであ
る。2. Description of the Related Art A sensor provided with an artificial crack (referred to as a sacrificial specimen, a fatigue sensor, etc.) is attached to a structure, and the amount of the cumulative cracking damage of the structure is measured by measuring the amount of propagation of the artificial crack. Has been developed [for example, Japanese Unexamined Patent Publication No. 9-304240 (Document 1)... FIG. 3). In this method, how to measure the amount of crack propagation is a problem, and Literature 1 assumes that the crack is directly read by a microscope or a high-magnification simple microscope. In FIG. 3, 101 is a main body of a sacrificial test piece, 102 is an artificial crack, 103 is a thin resin plate, and 104 is a film.
【0003】また、図4と図5に、文献2〔「船舶の高
度モニタリングの基礎研究」(平成8年度報告書)の3
57頁と342頁…社団法人 日本造船研究協会発行〕
に掲載された疲労センサー201と犠牲試験片301が
掲載されている。図4の疲労センサー201では特に記
載されていないが、人工亀裂部202のレプリカを接着
剤や樹脂等で作製することにより、レプリカに残った亀
裂痕を顕微鏡によって計測することが報告されている。
また、図5の犠牲試験片301では、人工亀裂302が
進展するのに伴い、犠牲試験片301自身の電気伝導特
性が変化することを利用して、電流電位差法によって亀
裂痕を計測するようになっている。FIG. 4 and FIG. 5 show Reference 2 [Basic research on altitude monitoring of ships] (1996 report).
Pages 57 and 342: Published by the Japan Shipbuilding Research Association]
, A fatigue sensor 201 and a sacrificial test piece 301 are described. Although not particularly described in the fatigue sensor 201 of FIG. 4, it is reported that a replica of the artificial crack portion 202 is made of an adhesive, a resin, or the like, and a crack mark remaining on the replica is measured by a microscope.
In addition, in the sacrificial test piece 301 of FIG. 5, a crack mark is measured by a current-potential difference method, utilizing the fact that the electric conduction characteristic of the sacrificial test piece 301 itself changes as the artificial crack 302 propagates. Has become.
【0004】[0004]
【発明が解決しようとする課題】図3の犠牲試験片10
1と図4の疲労センサー201では、亀裂の計測を行う
たびに犠牲試験片101等の貼付場所まで行く必要があ
り、亀裂長さを定量化するためには写真撮影を行って画
像から計測する必要がある。こうした2つの方法では、
次のような実用上の大きな問題点がある。第一に、この
種の犠牲試験片101等は狭隘箇所やアクセスのしにく
い箇所に貼付されることが多く、犠牲試験片101等を
直接観察すること自体に大きな困難を伴う。第二にこの
種の犠牲試験片101等は、構造部材どうしの溶接箇所
の近くに貼付されることが多く、適切な姿勢がとれない
ことに加え、マイクロスコープで観察する作業やレプリ
カをとる作業が、作業者の頭部や手が邪魔することによ
って極めて実施しにくいという欠点がある。The sacrificial test piece 10 shown in FIG.
In the fatigue sensor 201 of FIG. 1 and FIG. 4, every time a crack is measured, it is necessary to go to the place where the sacrificial test piece 101 or the like is stuck. To quantify the crack length, a photograph is taken and measured from the image. There is a need. In these two ways,
There are major practical problems as follows. First, such a sacrificial test piece 101 or the like is often attached to a narrow place or a place where it is difficult to access, and it is very difficult to directly observe the sacrificial test piece 101 and the like. Secondly, this kind of sacrificial test piece 101 etc. is often stuck near the welded point between structural members, which makes it impossible to take a proper posture, and also works to observe with a microscope or take a replica. However, there is a drawback that the operation is extremely difficult due to the obstruction of the operator's head and hands.
【0005】また、第三に、亀裂長さを定量化するため
に画像処理を行う必要があり、手間と時間がかかるとい
う難点がある。したがって、こうした問題点を改善しな
い限り、実用的なセンサーとは言い得ない。一方、図5
の犠牲試験片では亀裂の計測を電気的に行うため、前記
の欠点は一応解決されているが、測定する電位の変化は
ミリボルトのオーダーであり、精密な電圧を供給する電
源と高精度の計測器を必要とするために実用的ではな
い。[0005] Third, it is necessary to perform image processing in order to quantify the crack length, and there is a drawback that it takes time and effort. Therefore, it cannot be said to be a practical sensor unless these problems are solved. On the other hand, FIG.
In the sacrificial test specimen, cracks are measured electrically, so the above-mentioned disadvantages have been solved for the time being. However, the change in potential to be measured is on the order of millivolts, and a power supply that supplies a precise voltage and a highly accurate measurement It is not practical because it requires a vessel.
【0006】本発明は、図3乃至図5に示した従来技術
の上述のような問題点を解消するためになされたもの
で、亀裂長さを簡単かつ定量的に測定できる疲労損傷予
知装置及びその方法を実現することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art shown in FIGS. 3 to 5, and is intended to provide a fatigue damage prediction apparatus and a fatigue damage prediction apparatus capable of simply and quantitatively measuring a crack length. The purpose is to realize the method.
【0007】[0007]
【課題を解決するための手段】本発明は、疲労損傷を予
知しようとする構造物に貼付されて、長さ方向中央の応
力集中部に左右対称の人工亀裂を設けた薄板状の犠牲試
験片と、犠牲試験片の人工亀裂の亀裂進展状態を電氣抵
抗線の断線による電気抵抗値の変化により検出する亀裂
ゲージとを有する疲労センサーを備えた疲労損傷予知装
置を構成したものである。また、上記において、疲労セ
ンサーと、疲労センサーの検出値を計測する計測器と、
計測器の計測データを電送するデータ電送装置と、デー
タ電送装置等に所定の電圧を供給する電源とを備えた疲
労損傷予知装置を構成したものである。さらに、本発明
は、長さ方向中央の応力集中部に左右対称の人工亀裂を
設けた薄板状の犠牲試験片を疲労損傷を予知しようとす
る構造物に貼付し、犠牲試験片の人工亀裂の亀裂進展状
態を電気的な変化から検出する亀裂ゲージを用いた疲労
センサーを構成し、疲労センサーの計測値をモニタリン
グして構造物の疲労損傷を予知する疲労損傷予知方法を
採用したものである。SUMMARY OF THE INVENTION The present invention provides a thin plate-shaped sacrificial test piece which is attached to a structure whose fatigue damage is to be predicted and which has a symmetrical artificial crack at a stress concentration portion in the center in the longitudinal direction. And a fatigue damage prediction device comprising a fatigue sensor having a crack gauge for detecting a crack propagation state of an artificial crack in a sacrificial test piece by a change in electric resistance value due to a break in an electric resistance wire. Further, in the above, a fatigue sensor, a measuring device for measuring the detection value of the fatigue sensor,
A fatigue damage prediction device includes a data transmission device for transmitting measurement data of a measuring instrument and a power supply for supplying a predetermined voltage to the data transmission device and the like. Further, the present invention is to apply a thin plate-shaped sacrificial test piece provided with a symmetrical artificial crack at the stress concentration portion at the center in the longitudinal direction to a structure where fatigue damage is to be predicted, and to reduce the artificial crack of the sacrificial test piece. A fatigue sensor using a crack gauge that detects a crack propagation state from an electrical change is configured, and a fatigue damage prediction method of predicting fatigue damage of a structure by monitoring a measurement value of the fatigue sensor is adopted.
【0008】[0008]
【発明の実施の形態】実施の形態1.図1は本発明の実
施の形態1の疲労センサーの構成図、図2は疲労損傷予
知装置の構成を示すブロック図である。図1において、
1は疲労センサーである。2と3は疲労センサー1を構
成する犠牲試験片と亀裂ゲージである。20は試験片の
本体、21は本体20に設けられた孔、22は人工亀
裂、23は本体20を挟む2枚の樹脂製薄板である(図
3参照)。本体1の素材には疲労損傷を予知しようとす
る構造物Mと同一材料が用いられて、薄板状に形成され
ている。本体1は疲労損傷を構造物Mより早期に発生さ
せるために、中央部に応力を集中させる左右対称の細い
溝状の人工亀裂22を形成した円形の孔21が設けられ
ている。孔21を設けた中央領域は自由に変形できるよ
うにして、構造物Mの所定位置に接着剤で接着される。
なお、本体1の素材は構造物Mと同一材料が望ましい
が、亀裂伝播特性が安定している材質であれば他の材料
を使用することができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram of a fatigue sensor according to Embodiment 1 of the present invention, and FIG. 2 is a block diagram illustrating a configuration of a fatigue damage prediction device. In FIG.
1 is a fatigue sensor. Reference numerals 2 and 3 denote a sacrificial test piece and a crack gauge constituting the fatigue sensor 1. Reference numeral 20 denotes a test piece main body, 21 denotes a hole provided in the main body 20, 22 denotes an artificial crack, and 23 denotes two resin thin plates sandwiching the main body 20 (see FIG. 3). The main body 1 is formed in a thin plate shape using the same material as the structure M whose fatigue damage is to be predicted. The main body 1 is provided with a circular hole 21 formed with a symmetrical narrow groove-shaped artificial crack 22 for concentrating stress at the center in order to cause fatigue damage earlier than the structure M. The central area where the holes 21 are provided can be freely deformed, and is adhered to a predetermined position of the structure M with an adhesive.
The material of the main body 1 is desirably the same as the material of the structure M, but other materials can be used as long as the material has stable crack propagation characteristics.
【0009】一方、亀裂ゲージ3において、31は絶縁
材のベース、32は三角形状の対向電極、33はグリッ
ドである。グリッド33は順次長さの異なる細い多数の
抵抗線を、0.5mm程度のピッチで電極32,32間
に平行に形成されている。亀裂ゲージ3は図示のよう
に、犠牲試験片2の両側にグリッド33を人工亀裂22
に対して直角方向に対向させて、同一延長線上に絶縁し
て犠牲試験片2と機械的に連結されて一体に接着されて
いる。34は接続端子、35,36はリード線、37は
アダプタである。また、図2の4は疲労損傷予知装置で
ある。41は電源、42は疲労センサー1の検出値を計
測する計測器、43はPHS等のデータ電送装置であ
る。電源41には内蔵バッテリ,電池,太陽電池,風力
発電装置等が用いられ、疲労センサー1等に所定の電源
を供給する。なお、電極32の形状は例えば四角形状に
することも可能であり、グリッド33の破断本数と抵抗
変化の関係、つまり亀裂の進展長さと抵抗値の変化の関
係を予め求めておけば、どのような形状でもよい。さら
に、グリッド33のピッチも目的とする計測精度に応じ
て増減することができる。On the other hand, in the crack gauge 3, reference numeral 31 denotes a base of an insulating material, reference numeral 32 denotes a triangular counter electrode, and reference numeral 33 denotes a grid. The grid 33 is formed with a large number of thin resistive wires having different lengths in parallel between the electrodes 32 at a pitch of about 0.5 mm. As shown, the crack gauge 3 is provided with a grid 33 on both sides of the sacrificial test piece 2 and an artificial crack 22.
And is mechanically connected to and integrally bonded to the sacrificial test piece 2 while being insulated on the same extension line in a direction perpendicular to the vertical direction. 34 is a connection terminal, 35 and 36 are lead wires, and 37 is an adapter. Reference numeral 4 in FIG. 2 denotes a fatigue damage prediction device. 41 is a power supply, 42 is a measuring device for measuring the detection value of the fatigue sensor 1, and 43 is a data transmission device such as a PHS. A built-in battery, a battery, a solar cell, a wind power generator, or the like is used as the power supply 41, and supplies a predetermined power to the fatigue sensor 1 and the like. Note that the shape of the electrode 32 can be, for example, a square shape. What is necessary is to obtain the relationship between the number of fractures of the grid 33 and the resistance change, that is, the relationship between the crack propagation length and the change in resistance value in advance. Shape may be used. Further, the pitch of the grid 33 can be increased or decreased according to the target measurement accuracy.
【0010】上述のような構成の犠牲試験片2と亀裂ゲ
ージ3からなる疲労センサー1は、図1に示すように疲
労損傷を予知しようとする構造物M上の例えばホットス
ポット(応力勾配箇所)の近傍にエポキシ樹脂系の接着
剤を用いて接着される。構造物M上にセットされた疲労
センサー1には、電源41からの電源電圧が供給され
る。そして、図1の矢印に示すように構造物を介して本
体20内に繰り返し応力が発生すると、犠牲試験片2の
応力を集中させた人工亀裂22の進展亀裂25が形成さ
れる。さらに、犠牲試験片2の亀裂が進行して進展亀裂
25が同一延長線上の亀裂ゲージ3に到達すると、電極
32,32間で直角方向に形成されたグリッド33が断
線する。As shown in FIG. 1, the fatigue sensor 1 including the sacrificial test piece 2 and the crack gauge 3 having the above-described structure is, for example, a hot spot (stress gradient portion) on the structure M where fatigue damage is to be predicted. Is bonded using an epoxy resin adhesive in the vicinity of. The power supply voltage from the power supply 41 is supplied to the fatigue sensor 1 set on the structure M. Then, when stress is repeatedly generated in the main body 20 through the structure as shown by the arrow in FIG. 1, a growth crack 25 of the artificial crack 22 in which the stress of the sacrificial test piece 2 is concentrated is formed. Further, when the crack of the sacrificial test piece 2 progresses and the propagation crack 25 reaches the crack gauge 3 on the same extension line, the grid 33 formed in the perpendicular direction between the electrodes 32, 32 breaks.
【0011】そして、対向電極32間の抵抗値が、人工
亀裂22からの亀裂の進展長さや伝播速度に対応して変
化することになる。この対向電極32間の抵抗値の変化
はアダプタ37を経て計測器42によって計測され、引
き続いてデータ電送装置43で電送されてモニタリング
される。こうして疲労損傷予知装置4における疲労セン
サー1のモニタリングを利用した犠牲試験片2の疲労状
況から、例えば予め求められたS−N線図(S…応力,
N…荷重繰り返し数)等を利用して構造物Mの疲労度や
寿命を予知することが可能になる。The resistance value between the opposing electrodes 32 changes in accordance with the length of propagation and the propagation speed of the crack from the artificial crack 22. The change in the resistance value between the opposing electrodes 32 is measured by the measuring device 42 via the adapter 37, and subsequently transmitted and monitored by the data transmission device 43. In this way, for example, an SN diagram (S... Stress, S..., S) determined in advance from the fatigue state of the sacrificial test piece 2 using the monitoring of the fatigue sensor 1 in the fatigue damage prediction device 4.
N: the number of load repetitions) and the like, it is possible to predict the fatigue level and the life of the structure M.
【0012】なお、上述の実施の形態では人工亀裂から
の亀裂の進展長さ等を抵抗値の変化によって測定する亀
裂ゲージの場合を例示して説明したが、必ずしも抵抗値
の変化に拘るものではない。つまり、抵抗線の断線(O
N/OFF)を計測することによって亀裂の進展を測定
することも可能である。また、人工亀裂を左右対称に設
けるのは、疲労亀裂の進展はかなりのバラツキのある
現象であること、犠牲試験片に出来る限り偏心荷重が
加わらないようにすること、人工亀裂の製作精度には
バラツキがあること、等の理由によって、1個のセンサ
ーで同等の2つのデータをとることによって信頼性を高
めるための必要な措置である。In the above-described embodiment, the case of a crack gauge for measuring the length of propagation of a crack from an artificial crack by a change in resistance value has been described as an example. However, the present invention is not necessarily limited to a change in resistance value. Absent. In other words, the disconnection of the resistance wire (O
By measuring (N / OFF), it is also possible to measure the crack growth. Also, the artificial cracks are provided symmetrically because the growth of fatigue cracks is a phenomenon with considerable variation, the eccentric load should not be applied to the sacrificial specimen as much as possible, and the manufacturing accuracy of artificial cracks This is a necessary measure to increase the reliability by taking the same two data with one sensor due to variations and the like.
【0013】[0013]
【発明の効果】本発明は、疲労損傷を予知しようとする
構造物に貼付されて、長さ方向中央の応力集中部に左右
対称の人工亀裂を設けた薄板状の犠牲試験片と、犠牲試
験片の人工亀裂の亀裂進展状態を電氣抵抗線の断線によ
る電気抵抗値の変化により検出する亀裂ゲージとを有す
る疲労センサーを備えた疲労損傷予知装置を構成した。
また、上記において、疲労センサーと、疲労センサーの
検出値を計測する計測器と、計測器の計測データを電送
するデータ電送装置と、データ電送装置等に所定の電圧
を供給する電源とを備えた疲労損傷予知装置を構成し
た。さらに、本発明は、長さ方向中央の応力集中部に左
右対称の人工亀裂を設けた薄板状の犠牲試験片を疲労損
傷を予知しようとする構造物に貼付し、犠牲試験片の人
工亀裂の亀裂進展状態を電気抵抗線の断線による電気抵
抗値の変化から検出する亀裂ゲージを用いた疲労センサ
ーを構成して、疲労センサーの計測値をモニタリングし
て構造物の疲労損傷を予知する疲労損傷予知方法を採用
した。The present invention relates to a thin plate-shaped sacrificial test piece which is attached to a structure whose fatigue damage is to be predicted, and has a symmetrical artificial crack at a stress concentration portion at the center in the longitudinal direction. A fatigue damage prediction device equipped with a fatigue sensor having a crack gauge that detects the crack growth state of an artificial crack on a piece by a change in electric resistance value due to breakage of an electric resistance wire was constructed.
Further, in the above, a fatigue sensor, a measuring device for measuring the detection value of the fatigue sensor, a data transmission device for transmitting the measurement data of the measurement device, and a power supply for supplying a predetermined voltage to the data transmission device and the like A fatigue damage prediction device was constructed. Further, the present invention is to apply a thin plate-shaped sacrificial test piece provided with a symmetrical artificial crack at the stress concentration portion at the center in the longitudinal direction to a structure where fatigue damage is to be predicted, and to reduce the artificial crack of the sacrificial test piece. Fatigue damage prediction that configures a fatigue sensor using a crack gauge that detects the crack growth state from the change in electric resistance value due to breakage of the electric resistance wire and monitors the measured value of the fatigue sensor to predict fatigue damage of the structure The method was adopted.
【0014】以上のように、この発明によれば、疲労セ
ンサーの亀裂検出に亀裂ゲージで行うように構成したの
で、亀裂長さの定量化が容易かつ正確に行うことができ
るようになり、また、データ電送装置を付加したので、
センサーにアクセスする必要がなくなり、極めて実用的
なセンサーを得ることができる。As described above, according to the present invention, the crack is detected by the fatigue gauge using the crack gauge, so that the crack length can be easily and accurately quantified. , A data transmission device was added,
There is no need to access the sensor, and a very practical sensor can be obtained.
【0015】よって、本発明によれば、亀裂長さを簡単
かつ定量的に測定できる疲労損傷予知装置及びその方法
を提供することができる。Therefore, according to the present invention, it is possible to provide a fatigue damage prediction device and a method thereof capable of simply and quantitatively measuring a crack length.
【図1】本発明の実施の形態1の疲労センサーの構成図
である。FIG. 1 is a configuration diagram of a fatigue sensor according to a first embodiment of the present invention.
【図2】実施の形態1の損傷予知装置のブロック図であ
る。FIG. 2 is a block diagram of a damage prediction device according to the first embodiment.
【図3】従来の犠牲試験片の構成を示す説明図である。FIG. 3 is an explanatory view showing a configuration of a conventional sacrificial test piece.
【図4】従来の疲労センサーの構成を示す説明図であ
る。FIG. 4 is an explanatory diagram showing a configuration of a conventional fatigue sensor.
【図5】従来の別の犠牲試験片の構成を示す説明図であ
る。FIG. 5 is an explanatory view showing the configuration of another conventional sacrificial test piece.
1 疲労センサー 2 犠牲試験片 3 亀裂ゲージ 4 疲労損傷予知装置 20 試験片の本体 21 孔 22 人工亀裂 23 樹脂製薄板 25 進展亀裂 31 ベース 32 電極 33 グリッド 34 接続端子 35,36 リード線 37 アダプタ 41 電源 42 計測器 43 データ電送装置 M 構造物 DESCRIPTION OF SYMBOLS 1 Fatigue sensor 2 Sacrificial test piece 3 Crack gauge 4 Fatigue damage prediction device 20 Main body of test piece 21 Hole 22 Artificial crack 23 Resin thin plate 25 Progressive crack 31 Base 32 Electrode 33 Grid 34 Connection terminal 35, 36 Lead wire 37 Adapter 41 Power supply 42 Measuring instrument 43 Data transmission device M Structure
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新宅 英司 広島県東広島市鏡山北317−3 (72)発明者 伊藤 久 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 2G061 BA15 CB01 EB03 EC01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Eiji Shintaku, Inventor 317-3 Kagamiyamakita, Higashihiroshima City, Hiroshima Prefecture (72) Hisashi Ito, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-term (Reference) 2G061 BA15 CB01 EB03 EC01
Claims (3)
付されて、長さ方向中央の応力集中部に左右対称の人工
亀裂を設けた薄板状の犠牲試験片と、該犠牲試験片の人
工亀裂の亀裂進展状態を電氣抵抗線の断線による電気抵
抗値の変化により検出する亀裂ゲージとを有する疲労セ
ンサーを備えたことを特徴とする疲労損傷予知装置。1. A thin plate-shaped sacrificial test piece which is affixed to a structure where fatigue damage is to be predicted and which has a symmetrical artificial crack at a stress concentration portion at the center in the longitudinal direction, and an artificial A fatigue damage prediction device, comprising: a fatigue sensor having a crack gauge for detecting a crack propagation state of a crack by a change in an electric resistance value due to a break in an electric resistance wire.
検出値を計測する計測器と、該計測器の計測データを電
送するデータ電送装置と、該データ電送装置等に所定の
電圧を供給する電源とを備えたことを特徴とする請求項
1記載の疲労損傷予知装置。2. The fatigue sensor, a measuring device for measuring a detection value of the fatigue sensor, a data transmitting device for transmitting measurement data of the measuring device, and a power supply for supplying a predetermined voltage to the data transmitting device and the like. The fatigue damage prediction device according to claim 1, comprising:
人工亀裂を設けた薄板状の犠牲試験片を疲労損傷を予知
しようとする構造物に貼付し、該犠牲試験片の人工亀裂
の亀裂進展状態を電氣抵抗線の断線による電気抵抗値の
変化から検出する亀裂ゲージを用いた疲労センサーを構
成し、該疲労センサーの計測値をモニタリングして前記
構造物の疲労損傷を予知することを特徴とする疲労損傷
予知方法。3. A thin plate-shaped sacrificial test piece having a symmetrical artificial crack provided at a stress concentration portion at the center in the length direction is attached to a structure in which fatigue damage is to be predicted. A fatigue sensor using a crack gauge that detects a crack propagation state from a change in electric resistance value due to disconnection of an electric resistance wire, and monitors a measured value of the fatigue sensor to predict fatigue damage of the structure. Characteristic fatigue damage prediction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000086935A JP2001272319A (en) | 2000-03-27 | 2000-03-27 | Fatigue damage prognosis device and method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000086935A JP2001272319A (en) | 2000-03-27 | 2000-03-27 | Fatigue damage prognosis device and method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001272319A true JP2001272319A (en) | 2001-10-05 |
Family
ID=18603028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000086935A Pending JP2001272319A (en) | 2000-03-27 | 2000-03-27 | Fatigue damage prognosis device and method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001272319A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007309801A (en) * | 2006-05-18 | 2007-11-29 | Kawasaki Heavy Ind Ltd | Fatigue sensor and fatigue damage estimation method |
WO2011086427A1 (en) * | 2010-01-16 | 2011-07-21 | Tarik Ozkul | Wireless enabled fatigue sensor for structural health monitoring |
CN102636403A (en) * | 2012-05-12 | 2012-08-15 | 北京神州腾耀通信技术有限公司 | Lead flexing testing machine |
JP2013079910A (en) * | 2011-10-05 | 2013-05-02 | Minebea Co Ltd | Fatigue degree detection strain gauge |
JP2013096821A (en) * | 2011-10-31 | 2013-05-20 | Minebea Co Ltd | Fatigue degree detecting strain gauge |
KR101308626B1 (en) | 2006-12-22 | 2013-10-04 | 재단법인 포항산업과학연구원 | Priscipal stress direction detectiong gage |
CN106442637A (en) * | 2016-08-19 | 2017-02-22 | 北京必创科技股份有限公司 | Flange crack monitoring device and method |
CN110017981A (en) * | 2019-05-24 | 2019-07-16 | 南京林业大学 | Based on the crankshaft fatigue ultimate load prediction technique for improving non-proportional loading model |
US20210325284A1 (en) * | 2020-04-20 | 2021-10-21 | Vishay Measurements Group, Inc. | Fatigue life sensor |
-
2000
- 2000-03-27 JP JP2000086935A patent/JP2001272319A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007309801A (en) * | 2006-05-18 | 2007-11-29 | Kawasaki Heavy Ind Ltd | Fatigue sensor and fatigue damage estimation method |
KR101308626B1 (en) | 2006-12-22 | 2013-10-04 | 재단법인 포항산업과학연구원 | Priscipal stress direction detectiong gage |
WO2011086427A1 (en) * | 2010-01-16 | 2011-07-21 | Tarik Ozkul | Wireless enabled fatigue sensor for structural health monitoring |
JP2013517468A (en) * | 2010-01-16 | 2013-05-16 | オズクル タリック | Wireless fatigue sensor for monitoring the health of structures |
JP2013079910A (en) * | 2011-10-05 | 2013-05-02 | Minebea Co Ltd | Fatigue degree detection strain gauge |
JP2013096821A (en) * | 2011-10-31 | 2013-05-20 | Minebea Co Ltd | Fatigue degree detecting strain gauge |
CN102636403A (en) * | 2012-05-12 | 2012-08-15 | 北京神州腾耀通信技术有限公司 | Lead flexing testing machine |
CN106442637A (en) * | 2016-08-19 | 2017-02-22 | 北京必创科技股份有限公司 | Flange crack monitoring device and method |
CN110017981A (en) * | 2019-05-24 | 2019-07-16 | 南京林业大学 | Based on the crankshaft fatigue ultimate load prediction technique for improving non-proportional loading model |
US20210325284A1 (en) * | 2020-04-20 | 2021-10-21 | Vishay Measurements Group, Inc. | Fatigue life sensor |
WO2021216042A1 (en) * | 2020-04-20 | 2021-10-28 | Vishay Measurements Group, Inc. | Fatigue life sensor |
US11592377B2 (en) | 2020-04-20 | 2023-02-28 | Vishay Measurements Group, Inc. | Fatigue life sensor for measuring repetitive loads applied to a structure based upon cracks propagating from crack initiation features of the sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4799267B2 (en) | Fatigue sensor and fatigue damage degree estimation method | |
WO2004010104A3 (en) | Embeddable corrosion rate meters for remotely monitoring structures | |
CN201897542U (en) | Fatigue performance testing device for small-dimensional materials | |
JP2001272319A (en) | Fatigue damage prognosis device and method therefor | |
CN105865696A (en) | Inhaul cable force change testing device | |
JPS5812525B2 (en) | Vibrating wire strain gauge | |
US2986928A (en) | Apparatus for the measurement of crack propagation in test panels and the like | |
JPH095175A (en) | Stress measuring sensor | |
US6172511B1 (en) | Measuring device | |
JP5192095B2 (en) | Strain sensor | |
JP6108523B2 (en) | Measuring tool with sensor | |
JP4852041B2 (en) | Shear test equipment | |
CN103983179A (en) | Battery thickness change detecting device and battery safety detecting and judging method | |
CN100487415C (en) | Method for measuring elastic modulus of polymer-based foam material by using displacement sensor | |
JP2007078364A (en) | Strain sensitive sensor | |
CN216115850U (en) | High-precision measuring device for dynamic displacement of structural microcracks | |
JP2006053095A (en) | Method of measuring opening variation amount of surface crack in structure, method of measuring surface crack depth, and database used therefor | |
JP2003307480A (en) | Apparatus and system for measuring smallmass and method of taking out electrodes | |
US20110050259A1 (en) | Degradation sensor | |
CN114216583A (en) | SH guided wave-based temperature stress online monitoring system and monitoring method thereof | |
CN113720508A (en) | Pillar porcelain insulator stress monitoring device and method based on double laser scanning | |
JP5364611B2 (en) | Monitoring device | |
JP3784073B2 (en) | Apparatus for measuring shear in the core of a sandwich structure | |
JP2013174493A (en) | Qcm sensor | |
JP2853045B2 (en) | PCB prober |