JP2001122665A - Method for manufacturing boron carbide atmospheric sintered compact - Google Patents

Method for manufacturing boron carbide atmospheric sintered compact

Info

Publication number
JP2001122665A
JP2001122665A JP30487199A JP30487199A JP2001122665A JP 2001122665 A JP2001122665 A JP 2001122665A JP 30487199 A JP30487199 A JP 30487199A JP 30487199 A JP30487199 A JP 30487199A JP 2001122665 A JP2001122665 A JP 2001122665A
Authority
JP
Japan
Prior art keywords
boron carbide
temperature
sintering
sintered compact
atmospheric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30487199A
Other languages
Japanese (ja)
Inventor
Mikitoshi Sato
幹敏 佐藤
Masaaki Umiga
正晃 海賀
Taku Kawasaki
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP30487199A priority Critical patent/JP2001122665A/en
Publication of JP2001122665A publication Critical patent/JP2001122665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a boron carbide atmospheric sintered compact which is highly dense, has high bending strength and dies not allow sintering assistant components to remain. SOLUTION: This method for manufacturing the boron carbide atmospheric sintered compact consists in heating up the preform of boron carbide powder at a heating up temperature of 5 to l00 deg.C/hr from 2,150 to 2,200 deg.C in atmospheric sintering of the preform in a nonoxidizing atmosphere, and then raising the temperature up to the final sintering temperature exceeding 2,200 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高緻密かつ高曲げ
強度の炭化ほう素常圧焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-density and high-flexural strength boron carbide atmospheric pressure sintered body.

【0002】[0002]

【従来の技術】炭化ほう素焼結体は高硬度かつ軽量であ
り、またその優れた耐摩耗性の特長を活かして、ブラス
トノズル、ブラッシング材(砥石ならし)、耐摩耗機工
部品等に使用されている。
2. Description of the Related Art Boron carbide sintered bodies are high hardness and light weight, and are used for blast nozzles, brushing materials (grinding stones), wear-resistant machine parts, etc. by taking advantage of their excellent wear resistance. ing.

【0003】従来、炭化ほう素焼結体を製造するには、
ホットプレス法でが広く用いられているが、大型形状品
ないしは複雑形状品の製造や、連続製造には不向きであ
るので、今日では常圧焼結法が検討されている。その一
例を示せば、特開平8−12434号公報、特開平11
−157935号公報である。しかしながら、これらの
常圧焼結法では、アルミニウム等の焼結助剤を用いてい
るので、その混合作業の煩雑さや、得られた常圧焼結体
には焼結助剤成分が残留し、また曲げ強度の均質性にも
劣るという問題があった。
Conventionally, to produce a boron carbide sintered body,
Although the hot press method is widely used, it is not suitable for production of large-sized or complicated-shaped products or continuous production. One example is described in JP-A-8-12434 and JP-A-11-11.
157935. However, in these normal pressure sintering methods, since a sintering aid such as aluminum is used, the sintering aid component remains in the troublesome mixing operation and the obtained normal pressure sintered body, In addition, there is a problem that the homogeneity of bending strength is poor.

【0004】更には、上記先行技術の実施例に従って炭
化ほう素常圧焼結体を製造してみると、比較的良好な緻
密化品が製造されたが、外皮(外周部)が先行して緻密
化するので内部気孔が抜けきれず、十分に高い緻密化品
は得られなかった。
Further, when a boron carbide atmospheric pressure sintered body is manufactured in accordance with the above-mentioned prior art embodiment, a relatively good densified product is manufactured, but the outer skin (outer peripheral portion) is first made dense. Therefore, the internal pores could not be completely removed, and a sufficiently high densified product could not be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は、焼結助剤を用いな
くても、高緻密かつ高曲げ強度の炭化ほう素焼結体を常
圧焼結によって製造することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to provide a high-density and high-flexural strength boron carbide sintered body without using a sintering aid. It is manufactured by normal pressure sintering.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、炭
化ほう素粉末の予備成形体を非酸化性雰囲気中で常圧焼
結するにあたり、温度2150℃から2200℃の間の
昇温速度を5〜100℃/hrとして昇温した後、更に
2200℃をこえる最終焼結温度までに温度を高めるこ
とを特徴とする炭化ほう素常圧焼結体の製造方法であ
る。
That is, the present invention provides a method for sintering a preformed body of boron carbide powder at normal pressure in a non-oxidizing atmosphere at a temperature rising rate between 2150 ° C and 2200 ° C. A method for producing a normal-pressure boron carbide sintered body, characterized in that after raising the temperature at 5 to 100 ° C./hr, the temperature is further raised to a final sintering temperature exceeding 2200 ° C.

【0007】[0007]

【発明の実施の形態】以下、更に詳しく本発明について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0008】本発明で使用される炭化ほう素粉末は、市
販品で十分であるが、中でも平均粒径0.5〜2μm、
特に1.0μm以下であり、しかも比表面積5m2/g
以上、特に15m2/g以上の微粉末であることが好ま
しい。その市販品としては、シュタルク社(H.C.S
tarck社)製「HSグレード」がある。
As the boron carbide powder used in the present invention, commercially available products are sufficient, but among others, the average particle size is 0.5 to 2 μm,
In particular, it is 1.0 μm or less, and the specific surface area is 5 m 2 / g.
As described above, it is particularly preferable that the powder is a fine powder of 15 m 2 / g or more. As a commercial product, Stark Co., Ltd. (HCS
“HS grade” manufactured by Starck Corporation.

【0009】炭化ほう素粉末の予備成形体は、炭化ほう
素粉末を金型にて一次成形した後、CIP(冷間静水プ
レス)成形されたものが好適である。一次成形は保形で
きる程度の圧力で行われ、通常は4〜10MPaであ
る。また、CIP成形は高圧であることが好ましく、一
例は150〜300MPaである。あれば十分である。
The preformed body of the boron carbide powder is preferably formed by first forming the boron carbide powder in a mold and then performing CIP (cold isostatic pressing). The primary molding is performed at a pressure sufficient to maintain the shape, and is usually 4 to 10 MPa. Further, the CIP molding is preferably performed under a high pressure, and an example is 150 to 300 MPa. It is enough.

【0010】焼結は、アルゴン、ヘリウム等の希ガス、
一酸化炭素、水素等の非酸化性雰囲気中で行われる。こ
れらの中でも、アルゴン雰囲気は、取扱性、安全性の点
から好適である。
The sintering is performed by using a rare gas such as argon or helium,
This is performed in a non-oxidizing atmosphere such as carbon monoxide and hydrogen. Among them, an argon atmosphere is preferable from the viewpoint of handling properties and safety.

【0011】本発明においては、非酸化性雰囲気中、2
200℃をこえる最終焼結温度で焼結されるが、重要な
ことは、雰囲気温度が2150℃から2200℃の間に
おいては、昇温速度を5〜100℃/hr、好ましくは
10〜75℃/hrとすることである。昇温速度が5℃
/hr未満では、十分に高い緻密化品を製造するのに時
間がかかりすぎ、また100℃/hr超では、上記の外
皮先行焼結が顕著となって、十分に高い緻密化品を製造
することができなくなる。温度2150℃から2200
℃の間における昇温は、等速で行うことが特に好まし
い。
In the present invention, in a non-oxidizing atmosphere,
Sintering is performed at a final sintering temperature exceeding 200 ° C., but it is important that when the ambient temperature is between 2150 ° C. and 2200 ° C., the heating rate is 5 to 100 ° C./hr, preferably 10 to 75 ° C. / Hr. Heating rate is 5 ℃
If it is less than / hr, it takes too much time to produce a sufficiently high densified product, and if it exceeds 100 ° C / hr, the above-mentioned sintering preceding sintering becomes remarkable, and a sufficiently high densified product is produced. You will not be able to do it. Temperature 2150 ° C to 2200
It is particularly preferred that the temperature rise between ℃ is carried out at a constant speed.

【0012】本発明においては、温度2150℃に達す
るまでの昇温速度と、温度2200℃をこえる最終焼結
温度にするまでの昇温速度については、特に制約はな
い。例えば、前者については400〜1200℃/h
r、後者については5〜100℃/hrの速度で昇温す
ることができる。
In the present invention, there are no particular restrictions on the rate of temperature rise until the temperature reaches 2150 ° C. and the rate of temperature rise until the final sintering temperature exceeds 2200 ° C. For example, for the former, 400 to 1200 ° C./h
r, the latter can be heated at a rate of 5 to 100 ° C./hr.

【0013】本発明における最終焼結温度としては、2
200℃をこえ2300℃までの任意の温度であること
が好ましく、特に2220〜2250℃が好適である。
最終焼結温度が2300℃をこえると異常な粒成長が起
こりやすく、強度低下を招く恐れがある。
The final sintering temperature in the present invention is 2
It is preferable that the temperature be any temperature from 200 ° C. to 2300 ° C., and particularly preferably 2220 to 2250 ° C.
If the final sintering temperature exceeds 2300 ° C., abnormal grain growth is likely to occur, which may cause a decrease in strength.

【0014】[0014]

【実施例】以下、実施例、比較例をあげて更に具体的に
本発明を説明する。
The present invention will be described more specifically with reference to examples and comparative examples.

【0015】実施例1〜3 比較例1〜3 炭化ほう素粉末(H.C.Starck社「HSグレー
ド」)60gを、直径52mm円筒に入れ、シリンダー
にて4.9MPaでプレス加圧して一次成形体を製造し
た。次いで、これをCIP(冷間静水圧プレス)により
面圧265MPaをかけ、円柱状の予備成形体を成形し
た。これを黒鉛るつぼ内に入れ、常圧のアルゴン雰囲気
下、焼結炉(富士電波社製:FVS−R−80/80
FRET−20)にて表1に示す条件で焼結を行った。
なお、最終焼結温度に達した後は、温度調節電源を切
り、アルゴン雰囲気下で自然冷却をした。
Examples 1 to 3 Comparative Examples 1 to 3 60 g of boron carbide powder ("HS grade" manufactured by H. C. Starck) was placed in a cylinder having a diameter of 52 mm, and pressurized with a cylinder at 4.9 MPa to perform primary press. A molded body was manufactured. Next, the resultant was subjected to a surface pressure of 265 MPa by CIP (cold isostatic press) to form a cylindrical preform. This was put in a graphite crucible, and a sintering furnace (FVS-R-80 / 80, manufactured by Fuji Electric Co., Ltd.) was placed in an argon atmosphere at normal pressure.
Sintering was performed under the conditions shown in Table 1 by FRET-20).
After the temperature reached the final sintering temperature, the temperature control power was turned off and the product was naturally cooled in an argon atmosphere.

【0016】得られた常圧焼結体について、アルキメデ
ス法による密度、及び焼結体内部から3×4×36mm
の試片を切り出し、JISR1601に準拠して3点曲
げ強度を測定した。それらの結果を表1に示す。
The density of the obtained sintered body under normal pressure was measured by Archimedes method, and 3 × 4 × 36 mm
Was cut out, and the three-point bending strength was measured in accordance with JISR1601. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明によれば、高緻密かつ高曲げ強度
であり、しかも焼結助剤成分の残留のない炭化ほう素常
圧焼結体を得ることができる。
According to the present invention, a normal-pressure sintered body of boron carbide having high density and high bending strength and having no sintering aid component remaining can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化ほう素粉末の予備成形体を非酸化性
雰囲気中で常圧焼結するにあたり、温度2150℃から
2200℃の間の昇温速度を5〜100℃/hrとして
昇温した後、更に2200℃をこえる最終焼結温度まで
に温度を高めることを特徴とする炭化ほう素常圧焼結体
の製造方法。
When sintering a preformed body of boron carbide powder at normal pressure in a non-oxidizing atmosphere, the temperature was raised between 2150 ° C. and 2200 ° C. at a rate of 5-100 ° C./hr. Thereafter, the temperature is further increased to a final sintering temperature exceeding 2200 ° C., thereby producing a boron carbide normal pressure sintered body.
JP30487199A 1999-10-27 1999-10-27 Method for manufacturing boron carbide atmospheric sintered compact Pending JP2001122665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30487199A JP2001122665A (en) 1999-10-27 1999-10-27 Method for manufacturing boron carbide atmospheric sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30487199A JP2001122665A (en) 1999-10-27 1999-10-27 Method for manufacturing boron carbide atmospheric sintered compact

Publications (1)

Publication Number Publication Date
JP2001122665A true JP2001122665A (en) 2001-05-08

Family

ID=17938290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30487199A Pending JP2001122665A (en) 1999-10-27 1999-10-27 Method for manufacturing boron carbide atmospheric sintered compact

Country Status (1)

Country Link
JP (1) JP2001122665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524108A (en) * 2004-12-20 2008-07-10 ジョージア・テック・リサーチ・コーポレーション B4C with improved density and hardness after pressureless sintering and post-HIP
JP2008535769A (en) * 2005-04-11 2008-09-04 ジョージア・テック・リサーチ・コーポレーション Boron carbide component and method for producing the same
US7517491B2 (en) 2003-06-12 2009-04-14 Georgia Tech Research Corporation Processes and methods of making boron carbide
KR101166723B1 (en) * 2010-03-26 2012-07-19 한국세라믹기술원 Manufacturing method of high density boroncarbide sintered body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517491B2 (en) 2003-06-12 2009-04-14 Georgia Tech Research Corporation Processes and methods of making boron carbide
US7592279B1 (en) 2003-06-12 2009-09-22 Georgia Tech Research Corporation Boron carbide and boron carbide components
JP2008524108A (en) * 2004-12-20 2008-07-10 ジョージア・テック・リサーチ・コーポレーション B4C with improved density and hardness after pressureless sintering and post-HIP
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
JP2008535769A (en) * 2005-04-11 2008-09-04 ジョージア・テック・リサーチ・コーポレーション Boron carbide component and method for producing the same
KR101166723B1 (en) * 2010-03-26 2012-07-19 한국세라믹기술원 Manufacturing method of high density boroncarbide sintered body

Similar Documents

Publication Publication Date Title
KR101505372B1 (en) Cermet and method of manufacturing the same
JP5930317B2 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
JP4729253B2 (en) Silicon monoxide sintered body and silicon monoxide sintered target
JPH0260633B2 (en)
US4719078A (en) Method of sintering compacts
JP2001122665A (en) Method for manufacturing boron carbide atmospheric sintered compact
KR101123391B1 (en) Method for manufacturing high density boroncarbide sintered body
US4983340A (en) Method for forming a high density metal boride composite
JPH0254733A (en) Manufacture of ti sintered material
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
CN112174644A (en) Method for pressureless rapid sintering of compact nanocrystalline ceramic
RU2540674C2 (en) Method of making articles from silicon nitride
JPH0585507B2 (en)
KR101017928B1 (en) Titanium diboride sintered body with metal as asintering aid and method for manufacture thereof
KR100904202B1 (en) Method for fabricating tungsten-yttria rod
JP6942434B2 (en) Manufacturing method of high-density iron-based sintered material
RU2821178C1 (en) Method of producing volumetric articles from high-entropy alloy alloyed with nitrogen by selective laser melting
CN116217240B (en) Textured gradient ceramic composite material and preparation method and application thereof
JPH05148511A (en) Manufacture of ferrous metal powder sintering metal mold
JPH07100629A (en) Production of high-density material
JPH06157142A (en) Production of silicon nitride-silicon carbide composite sintered compact
RU2314276C2 (en) Molding method of powder articles
RU2651861C1 (en) Method of obtaining products based on silicon nitride
JPH075387B2 (en) Method for manufacturing silicon nitride sintered body
JPH06172024A (en) Production of light-transmitting sintered spinel