JP2001077496A - Substrate for printed circuit and its manufacture - Google Patents
Substrate for printed circuit and its manufactureInfo
- Publication number
- JP2001077496A JP2001077496A JP25217699A JP25217699A JP2001077496A JP 2001077496 A JP2001077496 A JP 2001077496A JP 25217699 A JP25217699 A JP 25217699A JP 25217699 A JP25217699 A JP 25217699A JP 2001077496 A JP2001077496 A JP 2001077496A
- Authority
- JP
- Japan
- Prior art keywords
- printed circuit
- pitch
- circuit board
- substrate
- metal wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、プリント回路基
板を構成する中間材料たるプリント回路用の基板材及び
その製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed circuit board material, which is an intermediate material constituting a printed circuit board, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】 プリント回路基板は、一面側に集積回
路のためのスロットや各種電子部品のための接続端子群
が形成されており、他面側には部品をつなぐ導電路が印
刷されたもので、従来から電子機器の要素部材として大
量に利用されている。図2はプリント回路基板の一例を
示す斜視図で、エポキシ樹脂、ガラスなどの絶縁材料か
らなる板状体に、その表面間を導通するように導電性金
属2がメッキなどで設置されてなる基板材1の両面に、
所定の回路が形成されたフォトプロセス層3が積層さ
れ、さらに該フォトプロセス層3の外側に、接続端子群
や導電路4が印刷などで形成されて、プリント回路基板
が構成されている。2. Description of the Related Art A printed circuit board has a slot for an integrated circuit and a group of connection terminals for various electronic components formed on one side, and a conductive path connecting the components printed on the other side. Conventionally, it has been used in large quantities as an element member of electronic equipment. FIG. 2 is a perspective view showing an example of a printed circuit board, which is formed by plating a conductive metal 2 on a plate made of an insulating material such as epoxy resin or glass so as to conduct between the surfaces. On both sides of the plate material 1,
A photo process layer 3 on which a predetermined circuit is formed is laminated, and further, a connection terminal group and a conductive path 4 are formed outside the photo process layer 3 by printing or the like, thereby forming a printed circuit board.
【0003】 このようなプリント回路基板に用いる基
板材1は、例えば、エポキシ樹脂、ガラスなどの絶縁材
料からなる板状体を作製した後、ドリル加工によって所
定位置に導通用スルーホールを穿設し、次いでそのスル
ーホールに銅などの導電性金属をメッキ等の手段で被覆
し、さらに封止材によって当該スルーホールを密封して
作製されていた。A board material 1 used for such a printed circuit board is prepared by, for example, forming a plate-shaped body made of an insulating material such as epoxy resin or glass, and then drilling a through hole for conduction at a predetermined position. Then, the through hole is covered with a conductive metal such as copper by plating or the like, and the through hole is sealed with a sealing material.
【0004】 しかしながら、板状体にドリル加工する
と、加工に伴って加工屑が発生し、製品不良が生じるお
それがあるほか、メッキは基板材の縁端部でクラックが
生じるおそれが高く、電気的導通不良を引き起こすとい
う問題があった。また、ドリル加工では、加工できるス
ルーホールの長さ(基板の厚さ)/孔径の比は5程度が
限度であり、例えば、厚さ1mmの基板の場合、直径
0.2mm程度が下限となる。しかし、プリント回路基
板の高密度化のためには、より小さい孔径とすることが
好ましく、ドリル加工ではそれが困難であった。[0004] However, when drilling a plate-like body, there is a risk that machining chips will be generated along with the processing and a product defect will occur. In addition, in plating, there is a high possibility that cracks will occur at the edge of the substrate material. There is a problem of causing poor conduction. Further, in drilling, the ratio of the length (thickness of the substrate) / hole diameter of the through hole that can be processed is limited to about 5, for example, in the case of a 1 mm thick substrate, the lower limit is about 0.2 mm in diameter. . However, in order to increase the density of the printed circuit board, it is preferable to use a smaller hole diameter, which is difficult with drilling.
【0005】 また、枠体内に、Ni、Coなどの電気
線を挿入し、エポキシ樹脂などの絶縁材料を溶融して流
し込み、硬化後金属線に垂直な面で切断して、両面間を
電気的に接続した回路板が提案されている(特開昭49
−8759号公報参照)。しかしながら、この回路板で
はエポキシ樹脂などを用いているため、樹脂が硬化する
ときに体積収縮が2〜3%程度起こり、スルーホールの
ピッチなどの寸法精度を損なうという問題があった。高
密度化されたプリント回路基板においては、寸法精度が
極めて重要であり、このことは大きな欠点であった。さ
らに、この回路板では、両面に積層されるフォトプロセ
ス層との熱膨張差を何ら考慮していないため、使用に際
しての衝撃や温度差などにより、基板材とフォトプロセ
ス層とが剥離するおそれがある。さらに、絶縁材料と金
属線との間においても剥離するおそれがあった。In addition, an electric wire such as Ni or Co is inserted into the frame body, an insulating material such as an epoxy resin is melted and poured, and after being cured, the cut is made at a plane perpendicular to the metal wire. (Japanese Patent Laid-Open No. 49-49)
-8759). However, since this circuit board uses an epoxy resin or the like, there is a problem that when the resin is cured, the volume shrinks by about 2 to 3%, and the dimensional accuracy such as the pitch of the through holes is impaired. In high-density printed circuit boards, dimensional accuracy is extremely important, which has been a major drawback. Furthermore, since this circuit board does not consider any difference in thermal expansion between the photo process layers laminated on both sides, there is a possibility that the substrate material and the photo process layer may be separated due to impact or temperature difference during use. is there. In addition, there is a possibility that the insulating material and the metal wire may peel off.
【0006】 そこで、本発明者らは、上記した従来の
回路板の欠点を解消した熱膨張性を制御することができ
るプリント回路用の基板材を提案した(特願平10−1
23289号)。この基板材によれば、熱膨張性が低
く、硬化時の体積収縮が小さくなることから、プリント
回路用の基板材として極めて好適であるものの、製造時
におけるばらつき(体積収縮率によるばらつき)により
金属線の配設に多少の寸法誤差が発生したり、また、近
年になってより狭ピッチの(高密度化された)プリント
回路板の要請が強くなってくるのに伴って、寸法精度に
対する規格が高くなり、寸法ばらつきに対する要求精度
がの発生が頻発するおそれが多くなってきた。Accordingly, the present inventors have proposed a printed circuit board material capable of controlling the thermal expansion property that has solved the above-mentioned drawbacks of the conventional circuit board (Japanese Patent Application No. 10-1).
23289). According to this substrate material, it has a low thermal expansion property and a small volume shrinkage upon curing. Therefore, it is extremely suitable as a substrate material for a printed circuit. Due to some dimensional errors in the layout of the wires and the demand for narrower pitch (higher density) printed circuit boards in recent years, And the accuracy required for dimensional variations frequently occurs.
【0007】[0007]
【発明が解決しようとする課題】 従って、本発明は、
上記した問題に鑑みてなされたものであり、その主な目
的は、基板材の製造時に金属線の配設に寸法誤差が発生
しても、ビアピッチを微調整することができるプリント
回路用の基板材とその製造方法を提供することにある。
また、本発明の他の目的は、良好な電気的導通を確保
し、使用に際して基板材とフォトプロセス層、および絶
縁材料と金属線とが剥離しないように縦・横両方向の熱
膨張性を制御することができるプリント回路用基板材を
提供することにある。Accordingly, the present invention provides
The present invention has been made in view of the above-described problems, and a main object thereof is to provide a base for a printed circuit capable of finely adjusting a via pitch even when a dimensional error occurs in the arrangement of metal wires at the time of manufacturing a substrate material. An object of the present invention is to provide a plate material and a method for manufacturing the same.
Another object of the present invention is to secure good electrical continuity and to control thermal expansion in both the vertical and horizontal directions so that a substrate material and a photoprocess layer, and an insulating material and a metal wire are not separated during use. It is an object of the present invention to provide a printed circuit board material that can be used.
【0008】[0008]
【課題を解決するための手段】 すなわち、本発明によ
れば、プラスチックとセラミックから構成され、板状に
形成された複合材料に、導電性を有する金属線が所定ピ
ッチで配設されてなるプリント回路用の基板材であっ
て、該基板材の一表面と他表面との間で該金属線が傾斜
して配設されて電気的に導通されているとともに、該金
属線の傾斜角度により該基板材の表面におけるビア間の
ピッチが微調整されていることを特徴とするプリント回
路用基板材が提供される。Means for Solving the Problems According to the present invention, there is provided a print in which conductive metal wires are arranged at a predetermined pitch on a composite material formed of a plastic and ceramic and formed in a plate shape. A substrate material for a circuit, wherein the metal wire is disposed at an angle between one surface of the substrate material and the other surface and is electrically connected to the metal wire, and the metal wire is inclined by an inclination angle of the metal wire. A printed circuit board material is provided, wherein the pitch between vias on the surface of the board material is finely adjusted.
【0009】 また、本発明によれば、金型内に、所定
ピッチで導電性を有する金属線を張設した後、この金型
内に、プラスチックとセラミックからなる複合材料を流
し込み、該複合材料を硬化させた後、張設した金属線に
傾斜してスライスすることにより、得られる基板材の表
面におけるビア間のピッチを微調整することを特徴とす
るプリント回路用基板材の製造方法が提供される。Further, according to the present invention, after a conductive metal wire is stretched at a predetermined pitch in a mold, a composite material made of plastic and ceramic is poured into the mold, and the composite material is formed. And then finely adjusting the pitch between vias on the surface of the obtained substrate material by inclining and slicing the stretched metal wire to provide a method for manufacturing a printed circuit board material. Is done.
【0010】 本発明においては、複合材料におけるセ
ラミックの含有量が40体積%以上、90体積%以下で
あることが、硬化時の体積収縮をより少なくすることが
できるため、好ましい。又、金属線と複合材料とがカッ
プリング剤により接合していることが、金属線と複合材
料との剥離防止の観点から好ましい。また、複合材料
は、低熱膨張材料であるシリカとエポキシ樹脂とから構
成されていると、基板材の熱膨張係数が約20−10p
pm/℃と低く、かつ異方性がなく、しかも所定の強度
を付与できることから望ましい。In the present invention, the content of the ceramic in the composite material is preferably 40% by volume or more and 90% by volume or less, because volume shrinkage during curing can be further reduced. Further, it is preferable that the metal wire and the composite material are joined by a coupling agent from the viewpoint of preventing the metal wire and the composite material from peeling. Further, when the composite material is composed of silica and epoxy resin, which are low thermal expansion materials, the thermal expansion coefficient of the substrate material is about 20-10p.
This is desirable because it is as low as pm / ° C., has no anisotropy, and can provide a predetermined strength.
【0011】[0011]
【発明の実施の形態】 本発明に係るプリント回路用基
板材は、プラスチックとセラミックから構成され、板状
に形成された複合材料に、導電性を有する金属線が所定
ピッチで配設されてなるプリント回路用の基板材であ
り、この基板材の一表面と他表面との間で、金属線が傾
斜して配設されて電気的に導通されている。そして、本
発明に係る基板材の特徴は、金属線を傾斜して配設する
ことにより、基板材の表面におけるビア間のピッチが微
調整されていることである。このようなプリント回路用
基板材は、所定ピッチで導電性を有する金属線が張設さ
れた金型内に、プラスチックとセラミックからなる複合
材料を流し込み、この複合材料を硬化させた後、張設し
た金属線に傾斜してスライスすることで、得られる基板
材の表面におけるビア間のピッチを微調整することによ
り製造される。BEST MODE FOR CARRYING OUT THE INVENTION A printed circuit board material according to the present invention is made of plastic and ceramic, and is formed by arranging conductive metal wires at a predetermined pitch on a composite material formed in a plate shape. It is a substrate material for a printed circuit, and a metal wire is disposed at an angle between one surface of the substrate material and the other surface, and is electrically connected. The feature of the substrate material according to the present invention is that the pitch between vias on the surface of the substrate material is finely adjusted by arranging the metal wires at an angle. Such a printed circuit board material is prepared by pouring a composite material composed of plastic and ceramic into a mold in which conductive metal wires are stretched at a predetermined pitch, and after curing the composite material, stretches the composite material. It is manufactured by finely adjusting the pitch between vias on the surface of the obtained substrate material by slicing the metal wire at an angle.
【0012】 本発明によれば、製造時に金属線のピッ
チに寸法誤差が発生しても、所定のピッチとなるように
金属線に傾斜してスライスすることにより、ビア間のピ
ッチが微調整された基板材を得ることができる。また、
これによって得られる基板材は、プリント回路の標準基
板として使用できるため、多様な回路、用途に適用する
ことができ、極めて好ましい。また、プラスチックとセ
ラミックから構成される複合材料を用いたので、成形性
が良好な上、絶縁性、低熱膨張性、耐磨耗性に優れると
いう特性を有し、しかも、プラスチックとセラミックの
種類、配合比を変えることで、熱膨張性を制御でき、両
面に配置するフォトプロセス層との熱膨張をマッチング
させることができ、剥離などの恐れが極めて少ない。さ
らに、より高密度化されたプリント回路基板において
は、寸法誤差のほとんどない基板材を作製することは困
難であること、また、少しピッチの異なる種々の基板材
が要求される場合があることから、金属線が所定ピッチ
に配設された基本となる基板材を作製しておき、これを
金属線に対する傾斜角度を微調整してスライスすること
によって、ピッチの異なる種々の基板材を精度良く作製
することができる。またX、Y方向をそれぞれ傾斜させ
ることにより、それぞれのピッチを独立に調整すること
もできる。According to the present invention, even if a dimensional error occurs in the pitch of a metal line during manufacturing, the pitch between vias is finely adjusted by slicing the metal line so as to have a predetermined pitch. Substrate material can be obtained. Also,
The substrate material thus obtained can be used as a standard substrate of a printed circuit, so that it can be applied to various circuits and uses, and is extremely preferable. In addition, since a composite material composed of plastic and ceramic is used, the moldability is good, and it has characteristics such as excellent insulation, low thermal expansion, and abrasion resistance. By changing the compounding ratio, the thermal expansion property can be controlled, the thermal expansion with the photoprocess layers disposed on both sides can be matched, and the possibility of peeling or the like is extremely small. Furthermore, in printed circuit boards with higher densities, it is difficult to produce a board material with almost no dimensional error, and various board materials with slightly different pitches may be required. By preparing a basic substrate material in which metal wires are arranged at a predetermined pitch, and by finely adjusting the inclination angle with respect to the metal wire and slicing the same, various substrate materials having different pitches can be accurately manufactured. can do. Further, by inclining the X and Y directions, the respective pitches can be adjusted independently.
【0013】 図1は、本発明に係るプリント回路用基
板材の一例を示す断面図で、基板材10は、プラスチッ
クとセラミックから構成され、平板状に形成された複合
材料11に、金属線12が所定ピッチで配設されてい
る。ここで、基板材10の一表面と他表面との間で、金
属線12が傾斜して配設されて電気的に導通されてい
る。このように構成される基板材10は、例えば、図2
に示すように、その両面を、所定の回路が形成されたフ
ォトプロセス層3、接続端子群4が配設されて、プリン
ト回路基板を構成する。FIG. 1 is a cross-sectional view showing an example of a printed circuit board material according to the present invention. A board material 10 is made of plastic and ceramic, and a composite material 11 formed in a plate shape is provided with a metal wire 12. Are arranged at a predetermined pitch. Here, between one surface of the substrate material 10 and the other surface, the metal wire 12 is disposed at an angle and is electrically connected. The substrate material 10 configured as described above is, for example, as shown in FIG.
As shown in FIG. 2, a photo-process layer 3 on which a predetermined circuit is formed and a connection terminal group 4 are disposed on both sides to form a printed circuit board.
【0014】 本発明の基板材を構成する複合材料は、
プラスチックとセラミックからなるもので、プラスチッ
クからなるマトリックスにセラミック粒子等を分散させ
て構成される。両者の配合量は、絶縁性、低熱膨張性、
耐磨耗性などの特性や目的に応じて適宜選定されるが、
セラミック粒子等を40体積%以上、90体積%以下含
有することが、低熱膨張性及び硬化時の体積収縮が小さ
くなることに鑑みて、好ましい。本発明の複合材料にお
いては、硬化時の体積収縮は1%以下、さらに0.5%
以下とすることができ、基板材における金属線の寸法精
度向上に極めて有利である。The composite material constituting the substrate material of the present invention is:
It is made of plastic and ceramic, and is formed by dispersing ceramic particles and the like in a matrix made of plastic. The blending amount of both is insulating, low thermal expansion,
It is appropriately selected according to the characteristics and purpose such as abrasion resistance.
It is preferable to contain 40% by volume or more and 90% by volume or less of ceramic particles in view of low thermal expansion property and small volume shrinkage during curing. In the composite material of the present invention, the volume shrinkage upon curing is 1% or less, and further 0.5%
This is extremely advantageous for improving the dimensional accuracy of the metal wire in the substrate material.
【0015】 このような配合量とすることにより、複
合材料に、低熱膨張性、耐磨耗性などを効果的に付与す
ることができる。なお、セラミック粒子やセラミックフ
ァイバー等の含有量が90体積%を超えると、プラスチ
ックの含有量が少なくなり過ぎ、成形時の流動性が失な
われる可能性がある。セラミックとしては、アルミナ、
ジルコニア、窒化珪素などのほか、シリカガラス等のガ
ラスを含む。セラミックは、粒子やファイバー状として
配合される。特に、低熱膨張特性を得るためにはセラミ
ックスとしてシリカを用いることが望ましい。また、プ
ラスチックとしては、熱可塑性樹脂、熱硬化性樹脂のい
ずれも用いることができる。熱可塑性樹脂としては、例
えば、塩化ビニル、ポリエチレン、ポリプロピレン等、
各種の樹脂を用いることができ、これらの樹脂を2種以
上組み合わせて用いても良い。一方、熱硬化性樹脂とし
ては、フェノール樹脂、エポキシ樹脂、尿素樹脂等を用
いることができ、又、これらの樹脂を2種以上組み合わ
せて用いても良い。By using such a compounding amount, it is possible to effectively impart low thermal expansion property, abrasion resistance and the like to the composite material. If the content of ceramic particles, ceramic fibers, and the like exceeds 90% by volume, the content of plastic becomes too small, and the fluidity during molding may be lost. As ceramics, alumina,
In addition to zirconia and silicon nitride, glass such as silica glass is included. Ceramic is compounded as particles or fibers. In particular, it is desirable to use silica as ceramics in order to obtain low thermal expansion characteristics. Further, as the plastic, any of a thermoplastic resin and a thermosetting resin can be used. As the thermoplastic resin, for example, vinyl chloride, polyethylene, polypropylene and the like,
Various resins can be used, and these resins may be used in combination of two or more. On the other hand, as the thermosetting resin, a phenol resin, an epoxy resin, a urea resin, or the like can be used, or two or more of these resins may be used in combination.
【0016】 本発明の複合材料においては、セラミッ
クとしてガラスファイバーを所定長さに切断したチッ
プ、あるいはガラスビーズをエポキシ樹脂などのプラス
チックに混合したものが、熱膨張について異方性がな
く、絶縁性、低熱膨張性、耐磨耗性、強度などの特性に
優れるため、好ましい。In the composite material of the present invention, a chip obtained by cutting glass fiber into a predetermined length as a ceramic or a material obtained by mixing glass beads with a plastic such as an epoxy resin has no anisotropy in thermal expansion and has an insulating property. It is preferable because it has excellent properties such as low thermal expansion, abrasion resistance and strength.
【0017】 複合材料中に所定パターンで配設される
金属線としては、導電性を有する金属であれば、特にそ
の種類を問わないが、通常、銅、銅合金、アルミニウ
ム、及びアルミニウム合金のいずれか1種の金属からな
ることが好ましい。The metal wire arranged in a predetermined pattern in the composite material is not particularly limited as long as it is a metal having conductivity, and is usually any one of copper, copper alloy, aluminum, and aluminum alloy. Preferably, it is made of at least one metal.
【0018】 次に、本発明に係るプリント回路用基板
材の製造方法の一例について説明する。図3に示すよう
に、所定の容積を有する金型20に、多数の金属線21
を所定間隔で張設する。次いで、この金型20内に、プ
ラスチックとセラミックからなる複合材料22を流し込
む。この場合、金型20内を真空としてガスが残存しな
いような、真空注型とすることが好ましい。次に、複合
材料22を硬化させて、図4に示すような、金属線が所
定ピッチで配設された複合ブロック体30を作製する。
図4において、複合ブロック体30は、プラスチックと
セラミックからなる複合材料22に、導電性を有する金
属線21が所定ピッチで配設されて構成されている。金
属線21は、複合ブロック体30の一表面31から当該
一表面に対向する他表面32まで直線的に延びた状態で
配設されており、一表面31及び他表面32において金
属線21が突出している状態で形成されている。Next, an example of a method for manufacturing a printed circuit board material according to the present invention will be described. As shown in FIG. 3, a large number of metal wires 21 are placed in a mold 20 having a predetermined volume.
At predetermined intervals. Next, a composite material 22 made of plastic and ceramic is poured into the mold 20. In this case, it is preferable to perform vacuum casting in which the interior of the mold 20 is vacuumed so that no gas remains. Next, the composite material 22 is cured to produce a composite block 30 in which metal wires are arranged at a predetermined pitch as shown in FIG.
In FIG. 4, the composite block body 30 is configured by arranging conductive metal wires 21 at a predetermined pitch on a composite material 22 made of plastic and ceramic. The metal wire 21 is disposed so as to extend linearly from one surface 31 of the composite block body 30 to another surface 32 facing the one surface, and the metal wire 21 protrudes from the one surface 31 and the other surface 32. It is formed in the state where it is.
【0019】 以上のような複合ブロック体30を作製
した後、この複合ブロック体30の表面における金属線
21のピッチ、即ち、ビア間のピッチの精度を測定し、
所望のものが得られているかを確認する。次いで、目的
とするビア間のピッチとするための金属線21に対する
傾斜角度を決定した後、当該傾斜角度となるように複合
ブロック体30を所定の面A1、A2、A2、・・で、
バンドソー、ワイヤーソー等により所定の厚さに切断す
ることにより、本発明における基板材を製造することが
できる。ここで、図5に示すように、複合ブロック体3
0における金属線のピッチをP、所望のピッチをP0、
傾斜角度をθとすると、θ=cos-1(P/P0)とな
る。After manufacturing the composite block body 30 as described above, the precision of the pitch of the metal wires 21 on the surface of the composite block body 30, that is, the pitch between the vias is measured.
Check that the desired product is obtained. Next, after determining an inclination angle with respect to the metal wire 21 to be a pitch between the target vias, the composite block body 30 is set on predetermined surfaces A1, A2, A2,.
By cutting to a predetermined thickness with a band saw, a wire saw, or the like, the substrate material of the present invention can be manufactured. Here, as shown in FIG.
The pitch of the metal wire at 0 is P, the desired pitch is P 0 ,
Assuming that the inclination angle is θ, θ = cos −1 (P / P 0 ).
【0020】 上記の方法によれば、製造時に金属線の
配設ピッチに寸法誤差が発生しても、ビア間のピッチが
微調整された基板材を得ることができる。また、基本と
なる基板材を作製後、金属線に対する傾斜角度を適当に
変えることにより、ピッチの異なる種々の基板材を精度
良く、しかも作業効率良く作製することができる。According to the above method, even if a dimensional error occurs in the arrangement pitch of the metal wires at the time of manufacturing, a substrate material in which the pitch between vias is finely adjusted can be obtained. In addition, by appropriately changing the inclination angle with respect to the metal wire after preparing the basic substrate material, it is possible to produce various substrate materials having different pitches with high accuracy and high work efficiency.
【0021】[0021]
【実施例】 以下、本発明を具体的な実施例により説明
する。(実施例1)ピッチの設計値が1.270mmの
プリント回路基板を製造するため、図3に示す金型に、
0.1mmφの黄銅ワイヤを1.272mmのピッチで
整列させた。整列させたワイヤの本数は300行200
列で、計6万本である。ここに、シリカ55vol%を
含むエポキシ樹脂との複合材料を90℃で流し込み(注
型)、硬化させた後、得られた複合ブロック体の上端を
研磨し、ワイヤのピッチを測定したところ、X方向が
1.269mmとなっていた。そこで、X方向を2.3
°傾けてワイヤーソーで切断したところ、1.270m
mピッチとなった。なお、プリント回路基板の厚みは
1.0mmとした。EXAMPLES Hereinafter, the present invention will be described with reference to specific examples. (Example 1) In order to manufacture a printed circuit board having a pitch design value of 1.270 mm, a mold shown in FIG.
0.1 mmφ brass wires were aligned at a pitch of 1.272 mm. The number of aligned wires is 300 rows and 200
The total number is 60,000. Here, a composite material with an epoxy resin containing 55 vol% of silica was poured at 90 ° C. (casting), and after curing, the upper end of the obtained composite block was polished, and the wire pitch was measured. The direction was 1.269 mm. Therefore, the X direction is set to 2.3.
When tilted and cut with a wire saw, 1.270m
m pitch. The thickness of the printed circuit board was 1.0 mm.
【0022】(実施例2)設計ピッチが0.500mm
のプリント回路基板を製造するため、上記と同様の金型
に、0.1mmφの銅ワイヤを0.501mmピッチで
300行300列、計9万本を整列させた。次いで、実
施例1と同様の複合材料を注型し、硬化後、得られた複
合ブロック体の上端を研磨し、ワイヤのピッチを測定し
たところ、Y方向が0.499mmであった。そこで、
複合ブロック体をY方向を3.6°傾斜させて切断した
ところ、ピッチは0.500mmとなった。(Embodiment 2) The design pitch is 0.500 mm
In order to manufacture a printed circuit board, a total of 90,000 copper wires having a diameter of 0.1 mm were arranged in 300 rows and 300 columns at a pitch of 0.501 mm in the same mold as above. Next, the same composite material as in Example 1 was cast, and after curing, the upper end of the obtained composite block was polished and the pitch of the wires was measured. As a result, the Y direction was 0.499 mm. Therefore,
When the composite block was cut at a tilt of 3.6 ° in the Y direction, the pitch was 0.500 mm.
【0023】[0023]
【発明の効果】 以上説明したように、本発明によれ
ば、製造時に金属線の配設ピッチに寸法誤差が発生して
も、ビア間のピッチが微調整された基板材を得ることが
できる。As described above, according to the present invention, it is possible to obtain a substrate material in which the pitch between vias is finely adjusted even if a dimensional error occurs in the arrangement pitch of metal wires during manufacturing. .
【図1】 本発明に係るプリント回路用基板材の一例を
示す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a printed circuit board material according to the present invention.
【図2】 プリント回路基板の一例を示す斜視図であ
る。FIG. 2 is a perspective view illustrating an example of a printed circuit board.
【図3】 本発明に係るプリント回路用基板材の製造方
法の一例を示す斜視図である。FIG. 3 is a perspective view illustrating an example of a method for manufacturing a printed circuit board material according to the present invention.
【図4】 本発明で製造されされさ複合ブロック体の一
例を示す一部斜視図である。FIG. 4 is a partial perspective view showing an example of a composite block manufactured according to the present invention.
【図5】 傾斜角度と金属線ピッチの関係を示す説明図
である。FIG. 5 is an explanatory diagram showing a relationship between an inclination angle and a metal wire pitch.
1…基板材、2…導電性金属、3…フォトプロセス層、
4…接続端子群、10…基板材、11…複合材料、12
…金属線、20…金型、21…金属線、22…複合材
料、30…複合ブロック体、31…複合ブロック体の一
表面、32…一表面に対向する他表面。1 ... substrate material, 2 ... conductive metal, 3 ... photoprocess layer,
4 ... connection terminal group, 10 ... substrate material, 11 ... composite material, 12
... Metal wire, 20 ... Mold, 21 ... Metal wire, 22 ... Composite material, 30 ... Composite block, 31 ... One surface of the composite block, 32 ... Other surface facing one surface.
Claims (4)
れ、板状に形成された複合材料に、導電性を有する金属
線が所定ピッチで配設されてなるプリント回路用の基板
材であって、 該基板材の一表面と他表面との間で該金属線が傾斜して
配設されて電気的に導通されているとともに、該金属線
の傾斜角度により該基板材の表面におけるビア間のピッ
チが微調整されていることを特徴とするプリント回路用
基板材。1. A printed circuit board material comprising a composite material made of plastic and ceramic and formed in a plate shape, having conductive metal wires arranged at a predetermined pitch. The metal wire is disposed at an angle between one surface and the other surface to be electrically connected, and the pitch between vias on the surface of the substrate material is finely adjusted by the angle of inclination of the metal wire. A printed circuit board material characterized by being made.
量が40体積%以上、90体積%以下である請求項1記
載のプリント回路用基板材。2. The printed circuit board material according to claim 1, wherein the content of the ceramic in the plate-like composite material is 40% by volume or more and 90% by volume or less.
とから構成されている請求項1又は2記載のプリント回
路用基板材。3. The printed circuit board material according to claim 1, wherein the plate-like composite material is composed of silica and epoxy resin.
金属線を張設した後、この金型内に、プラスチックとセ
ラミックからなる複合材料を流し込み、該複合材料を硬
化させた後、張設した金属線に傾斜してスライスするこ
とにより、得られる基板材の表面におけるビア間のピッ
チを微調整することを特徴とするプリント回路用基板材
の製造方法。4. After a conductive metal wire is stretched at a predetermined pitch in a mold, a composite material made of plastic and ceramic is poured into the mold, and the composite material is cured. A method for manufacturing a printed circuit board material, wherein a pitch between vias on a surface of the obtained board material is finely adjusted by slicing the stretched metal wire at an angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25217699A JP2001077496A (en) | 1999-09-06 | 1999-09-06 | Substrate for printed circuit and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25217699A JP2001077496A (en) | 1999-09-06 | 1999-09-06 | Substrate for printed circuit and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001077496A true JP2001077496A (en) | 2001-03-23 |
Family
ID=17233561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25217699A Withdrawn JP2001077496A (en) | 1999-09-06 | 1999-09-06 | Substrate for printed circuit and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001077496A (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG120200A1 (en) * | 2004-08-27 | 2006-03-28 | Micron Technology Inc | Slanted vias for electrical circuits on circuit boards and other substrates |
US7115961B2 (en) | 2004-08-24 | 2006-10-03 | Micron Technology, Inc. | Packaged microelectronic imaging devices and methods of packaging microelectronic imaging devices |
US7189954B2 (en) | 2004-07-19 | 2007-03-13 | Micron Technology, Inc. | Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers |
US7199439B2 (en) | 2004-06-14 | 2007-04-03 | Micron Technology, Inc. | Microelectronic imagers and methods of packaging microelectronic imagers |
US7223626B2 (en) | 2004-08-19 | 2007-05-29 | Micron Technology, Inc. | Spacers for packaged microelectronic imagers and methods of making and using spacers for wafer-level packaging of imagers |
US7253957B2 (en) | 2004-05-13 | 2007-08-07 | Micron Technology, Inc. | Integrated optics units and methods of manufacturing integrated optics units for use with microelectronic imagers |
US7253390B2 (en) | 2004-06-14 | 2007-08-07 | Micron Technology, Inc. | Methods for packaging microelectronic imagers |
US7253397B2 (en) | 2004-02-23 | 2007-08-07 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7271482B2 (en) | 2004-12-30 | 2007-09-18 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US7276393B2 (en) | 2004-08-26 | 2007-10-02 | Micron Technology, Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
US7294897B2 (en) | 2004-06-29 | 2007-11-13 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7300857B2 (en) | 2004-09-02 | 2007-11-27 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
US7303931B2 (en) | 2005-02-10 | 2007-12-04 | Micron Technology, Inc. | Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces |
US7321455B2 (en) | 2003-09-18 | 2008-01-22 | Micron Technology, Inc. | Microelectronic devices and methods for packaging microelectronic devices |
US7397066B2 (en) | 2004-08-19 | 2008-07-08 | Micron Technology, Inc. | Microelectronic imagers with curved image sensors and methods for manufacturing microelectronic imagers |
US7402453B2 (en) | 2004-07-28 | 2008-07-22 | Micron Technology, Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
US7416913B2 (en) | 2004-07-16 | 2008-08-26 | Micron Technology, Inc. | Methods of manufacturing microelectronic imaging units with discrete standoffs |
US7429494B2 (en) | 2004-08-24 | 2008-09-30 | Micron Technology, Inc. | Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers |
US7498647B2 (en) | 2004-06-10 | 2009-03-03 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7511262B2 (en) | 2004-08-30 | 2009-03-31 | Micron Technology, Inc. | Optical device and assembly for use with imaging dies, and wafer-label imager assembly |
US7547877B2 (en) | 2004-08-30 | 2009-06-16 | Micron Technology, Inc. | Microelectronic imagers with integrated optical devices and methods for manufacturing such microelectronic imagers |
US7583862B2 (en) | 2003-11-26 | 2009-09-01 | Aptina Imaging Corporation | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7646075B2 (en) | 2004-08-31 | 2010-01-12 | Micron Technology, Inc. | Microelectronic imagers having front side contacts |
US7663096B2 (en) | 2005-09-01 | 2010-02-16 | Aptina Imaging Corporation | Microelectronic imaging devices and associated methods for attaching transmissive elements |
US7696588B2 (en) | 2005-02-18 | 2010-04-13 | Aptina Imaging Corporation | Microelectronic imagers with shaped image sensors and methods for manufacturing microelectronic imagers |
US7749899B2 (en) | 2006-06-01 | 2010-07-06 | Micron Technology, Inc. | Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces |
US7759800B2 (en) | 2003-11-13 | 2010-07-20 | Micron Technology, Inc. | Microelectronics devices, having vias, and packaged microelectronic devices having vias |
US7795134B2 (en) | 2005-06-28 | 2010-09-14 | Micron Technology, Inc. | Conductive interconnect structures and formation methods using supercritical fluids |
US7829976B2 (en) | 2004-06-29 | 2010-11-09 | Micron Technology, Inc. | Microelectronic devices and methods for forming interconnects in microelectronic devices |
US7830018B2 (en) | 2007-08-31 | 2010-11-09 | Micron Technology, Inc. | Partitioned through-layer via and associated systems and methods |
US7863187B2 (en) | 2005-09-01 | 2011-01-04 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7884015B2 (en) | 2007-12-06 | 2011-02-08 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US7902643B2 (en) | 2006-08-31 | 2011-03-08 | Micron Technology, Inc. | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
US7915736B2 (en) | 2005-09-01 | 2011-03-29 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7973411B2 (en) | 2006-08-28 | 2011-07-05 | Micron Technology, Inc. | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
US8084866B2 (en) | 2003-12-10 | 2011-12-27 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
US8092734B2 (en) | 2004-05-13 | 2012-01-10 | Aptina Imaging Corporation | Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers |
US8536485B2 (en) | 2004-05-05 | 2013-09-17 | Micron Technology, Inc. | Systems and methods for forming apertures in microfeature workpieces |
US8816463B2 (en) | 2004-06-09 | 2014-08-26 | Round Rock Research, Llc | Wafer-level packaged microelectronic imagers having interconnects formed through terminals |
-
1999
- 1999-09-06 JP JP25217699A patent/JP2001077496A/en not_active Withdrawn
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7321455B2 (en) | 2003-09-18 | 2008-01-22 | Micron Technology, Inc. | Microelectronic devices and methods for packaging microelectronic devices |
US9653420B2 (en) | 2003-11-13 | 2017-05-16 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
US7759800B2 (en) | 2003-11-13 | 2010-07-20 | Micron Technology, Inc. | Microelectronics devices, having vias, and packaged microelectronic devices having vias |
US7583862B2 (en) | 2003-11-26 | 2009-09-01 | Aptina Imaging Corporation | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US8084866B2 (en) | 2003-12-10 | 2011-12-27 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
US8748311B2 (en) | 2003-12-10 | 2014-06-10 | Micron Technology, Inc. | Microelectronic devices and methods for filing vias in microelectronic devices |
US11177175B2 (en) | 2003-12-10 | 2021-11-16 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
US7253397B2 (en) | 2004-02-23 | 2007-08-07 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US8536485B2 (en) | 2004-05-05 | 2013-09-17 | Micron Technology, Inc. | Systems and methods for forming apertures in microfeature workpieces |
US10010977B2 (en) | 2004-05-05 | 2018-07-03 | Micron Technology, Inc. | Systems and methods for forming apertures in microfeature workpieces |
US8664562B2 (en) | 2004-05-05 | 2014-03-04 | Micron Technology, Inc. | Systems and methods for forming apertures in microfeature workpieces |
US9452492B2 (en) | 2004-05-05 | 2016-09-27 | Micron Technology, Inc. | Systems and methods for forming apertures in microfeature workpieces |
US8686313B2 (en) | 2004-05-05 | 2014-04-01 | Micron Technology, Inc. | System and methods for forming apertures in microfeature workpieces |
US8092734B2 (en) | 2004-05-13 | 2012-01-10 | Aptina Imaging Corporation | Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers |
US7253957B2 (en) | 2004-05-13 | 2007-08-07 | Micron Technology, Inc. | Integrated optics units and methods of manufacturing integrated optics units for use with microelectronic imagers |
US8816463B2 (en) | 2004-06-09 | 2014-08-26 | Round Rock Research, Llc | Wafer-level packaged microelectronic imagers having interconnects formed through terminals |
US7498647B2 (en) | 2004-06-10 | 2009-03-03 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US8703518B2 (en) | 2004-06-10 | 2014-04-22 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US8035179B2 (en) | 2004-06-10 | 2011-10-11 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7199439B2 (en) | 2004-06-14 | 2007-04-03 | Micron Technology, Inc. | Microelectronic imagers and methods of packaging microelectronic imagers |
US7262405B2 (en) | 2004-06-14 | 2007-08-28 | Micron Technology, Inc. | Prefabricated housings for microelectronic imagers |
US7253390B2 (en) | 2004-06-14 | 2007-08-07 | Micron Technology, Inc. | Methods for packaging microelectronic imagers |
US7419841B2 (en) | 2004-06-14 | 2008-09-02 | Micron Technology, Inc. | Microelectronic imagers and methods of packaging microelectronic imagers |
US7294897B2 (en) | 2004-06-29 | 2007-11-13 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US8053857B2 (en) | 2004-06-29 | 2011-11-08 | Round Rock Research, Llc | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7858429B2 (en) | 2004-06-29 | 2010-12-28 | Round Rock Research, Llc | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7829976B2 (en) | 2004-06-29 | 2010-11-09 | Micron Technology, Inc. | Microelectronic devices and methods for forming interconnects in microelectronic devices |
US7416913B2 (en) | 2004-07-16 | 2008-08-26 | Micron Technology, Inc. | Methods of manufacturing microelectronic imaging units with discrete standoffs |
US7189954B2 (en) | 2004-07-19 | 2007-03-13 | Micron Technology, Inc. | Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers |
US7265330B2 (en) | 2004-07-19 | 2007-09-04 | Micron Technology, Inc. | Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers |
US7709776B2 (en) | 2004-07-19 | 2010-05-04 | Aptina Imaging Corporation | Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers |
US7858420B2 (en) | 2004-07-28 | 2010-12-28 | Micron Technology, Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
US7402453B2 (en) | 2004-07-28 | 2008-07-22 | Micron Technology, Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
US7439598B2 (en) | 2004-07-28 | 2008-10-21 | Micron Technology, Inc. | Microelectronic imaging units |
US7655507B2 (en) | 2004-07-28 | 2010-02-02 | Micron Technology Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
US7397066B2 (en) | 2004-08-19 | 2008-07-08 | Micron Technology, Inc. | Microelectronic imagers with curved image sensors and methods for manufacturing microelectronic imagers |
US7723741B2 (en) | 2004-08-19 | 2010-05-25 | Aptina Imaging Corporation | Spacers for packaged microelectronic imagers and methods of making and using spacers for wafer-level packaging of imagers |
US7223626B2 (en) | 2004-08-19 | 2007-05-29 | Micron Technology, Inc. | Spacers for packaged microelectronic imagers and methods of making and using spacers for wafer-level packaging of imagers |
US7429494B2 (en) | 2004-08-24 | 2008-09-30 | Micron Technology, Inc. | Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers |
US7993944B2 (en) | 2004-08-24 | 2011-08-09 | Micron Technology, Inc. | Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers |
US7115961B2 (en) | 2004-08-24 | 2006-10-03 | Micron Technology, Inc. | Packaged microelectronic imaging devices and methods of packaging microelectronic imaging devices |
US7341881B2 (en) | 2004-08-24 | 2008-03-11 | Micron Technology, Inc. | Methods of packaging and testing microelectronic imaging devices |
US7691660B2 (en) | 2004-08-26 | 2010-04-06 | Aptina Imaging Corporation | Methods of manufacturing microelectronic imaging units on a microfeature workpiece |
US7786574B2 (en) | 2004-08-26 | 2010-08-31 | Aptina Imaging Corp. | Microelectronic imaging units |
US7511374B2 (en) | 2004-08-26 | 2009-03-31 | Aptina Imaging Corporation | Microelectronic imaging units having covered image sensors |
US7276393B2 (en) | 2004-08-26 | 2007-10-02 | Micron Technology, Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
SG120200A1 (en) * | 2004-08-27 | 2006-03-28 | Micron Technology Inc | Slanted vias for electrical circuits on circuit boards and other substrates |
US8322031B2 (en) | 2004-08-27 | 2012-12-04 | Micron Technology, Inc. | Method of manufacturing an interposer |
US7083425B2 (en) | 2004-08-27 | 2006-08-01 | Micron Technology, Inc. | Slanted vias for electrical circuits on circuit boards and other substrates |
US7547877B2 (en) | 2004-08-30 | 2009-06-16 | Micron Technology, Inc. | Microelectronic imagers with integrated optical devices and methods for manufacturing such microelectronic imagers |
US7511262B2 (en) | 2004-08-30 | 2009-03-31 | Micron Technology, Inc. | Optical device and assembly for use with imaging dies, and wafer-label imager assembly |
US7646075B2 (en) | 2004-08-31 | 2010-01-12 | Micron Technology, Inc. | Microelectronic imagers having front side contacts |
US8502353B2 (en) | 2004-09-02 | 2013-08-06 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
US8669179B2 (en) | 2004-09-02 | 2014-03-11 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
US7956443B2 (en) * | 2004-09-02 | 2011-06-07 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
US7300857B2 (en) | 2004-09-02 | 2007-11-27 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
US7683458B2 (en) | 2004-09-02 | 2010-03-23 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
US7271482B2 (en) | 2004-12-30 | 2007-09-18 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US9214391B2 (en) | 2004-12-30 | 2015-12-15 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US7303931B2 (en) | 2005-02-10 | 2007-12-04 | Micron Technology, Inc. | Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces |
US7795649B2 (en) | 2005-02-10 | 2010-09-14 | Aptina Imaging Corporation | Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces |
US7696588B2 (en) | 2005-02-18 | 2010-04-13 | Aptina Imaging Corporation | Microelectronic imagers with shaped image sensors and methods for manufacturing microelectronic imagers |
US9293367B2 (en) | 2005-06-28 | 2016-03-22 | Micron Technology, Inc. | Conductive interconnect structures and formation methods using supercritical fluids |
US7795134B2 (en) | 2005-06-28 | 2010-09-14 | Micron Technology, Inc. | Conductive interconnect structures and formation methods using supercritical fluids |
US8008192B2 (en) | 2005-06-28 | 2011-08-30 | Micron Technology, Inc. | Conductive interconnect structures and formation methods using supercritical fluids |
US7663096B2 (en) | 2005-09-01 | 2010-02-16 | Aptina Imaging Corporation | Microelectronic imaging devices and associated methods for attaching transmissive elements |
US7915736B2 (en) | 2005-09-01 | 2011-03-29 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7863187B2 (en) | 2005-09-01 | 2011-01-04 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US12014958B2 (en) | 2005-09-01 | 2024-06-18 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US11476160B2 (en) | 2005-09-01 | 2022-10-18 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7749899B2 (en) | 2006-06-01 | 2010-07-06 | Micron Technology, Inc. | Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces |
US8610279B2 (en) | 2006-08-28 | 2013-12-17 | Micron Technologies, Inc. | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
US7973411B2 (en) | 2006-08-28 | 2011-07-05 | Micron Technology, Inc. | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
US9570350B2 (en) | 2006-08-31 | 2017-02-14 | Micron Technology, Inc. | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
US7902643B2 (en) | 2006-08-31 | 2011-03-08 | Micron Technology, Inc. | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
US9099539B2 (en) | 2006-08-31 | 2015-08-04 | Micron Technology, Inc. | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
US8536046B2 (en) | 2007-08-31 | 2013-09-17 | Micron Technology | Partitioned through-layer via and associated systems and methods |
US7830018B2 (en) | 2007-08-31 | 2010-11-09 | Micron Technology, Inc. | Partitioned through-layer via and associated systems and methods |
US8367538B2 (en) | 2007-08-31 | 2013-02-05 | Micron Technology, Inc. | Partitioned through-layer via and associated systems and methods |
US8247907B2 (en) | 2007-12-06 | 2012-08-21 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US9281241B2 (en) | 2007-12-06 | 2016-03-08 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US7884015B2 (en) | 2007-12-06 | 2011-02-08 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001077496A (en) | Substrate for printed circuit and its manufacture | |
KR100327766B1 (en) | Semiconductor Element-Mounting Board, Manufacturing Method For the Board, Semiconductor Device and Manufacturing Method For the Device | |
JPH0568874B2 (en) | ||
JP2712091B2 (en) | Printed wiring board connection device | |
US6403201B1 (en) | Substrate material for wiring and substrate material for printed circuit using the same | |
US6379781B1 (en) | Printed circuit board material and method of manufacturing board material and intermediate block body for board material | |
JP2001102749A (en) | Circuit board | |
JP2001177207A (en) | Substrate material for printed circuit | |
JP2001053407A (en) | Board member for printed circuit and manufacturing method thereof | |
JPS62130544A (en) | Substrate for placing semiconductor | |
JP2001230523A (en) | Method of manufacturing printed circuit board material | |
JP2000114689A (en) | Manufacture of substrate material for printed circuit | |
JP2001230545A (en) | Method for manufacturing printed circuit board material and manufacturing apparatus of wire structure | |
JPH0613723A (en) | Hybrid integrated circuit | |
JP2001230546A (en) | Method for manufacturing printed circuit board material | |
JPS63226036A (en) | Electrical connection member and electric circuit member using same | |
JP2002158440A (en) | Method for manufacturing board material of printed circuit | |
JP2000068623A (en) | Manufacture of board material for printed circuit | |
EP4443490A1 (en) | Wiring board | |
JP2000114690A (en) | Manufacture of substrate material for printed circuit | |
JP2000077821A (en) | Manufacture of board material for printed circuit, framework using method thereof and wire aligning and mounting equipment | |
JP2000101215A (en) | Producing method for board material for printed circuit | |
JP2001210929A (en) | Method of manufacturing block body, method of manufacturing conductive material, and device for manufacturing wire-embedded block body | |
JP2000149679A (en) | Manufacture of conductive material | |
JPS63246835A (en) | Electric connecting member and electric circuit member using said member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061107 |