JP2001060676A - Computing method of interface state density - Google Patents
Computing method of interface state densityInfo
- Publication number
- JP2001060676A JP2001060676A JP23339599A JP23339599A JP2001060676A JP 2001060676 A JP2001060676 A JP 2001060676A JP 23339599 A JP23339599 A JP 23339599A JP 23339599 A JP23339599 A JP 23339599A JP 2001060676 A JP2001060676 A JP 2001060676A
- Authority
- JP
- Japan
- Prior art keywords
- soi
- thin film
- interface state
- state density
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、疑似(Pseudo)MO
SFETによりSOI基板のSOI薄膜と絶縁層との界
面における界面準位密度を算出する方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pseudo MO
The present invention relates to a method for calculating an interface state density at an interface between an SOI thin film of an SOI substrate and an insulating layer by using an SFET.
【0002】[0002]
【従来の技術】SOI(Silicon-On-Insulator)を用いた
デバイス、特に完全空乏化と呼ばれるデバイスでは、S
OI薄膜の薄膜化が進んでいる。このため、SOI基板
におけるこの種の界面準位密度は、絶縁層中の固定電荷
とともに、SOI−MOSFET素子のチャネル制御に
影響する重要なパラメータとなっている。即ち、この界
面準位密度は上記素子のしきい値電圧の設計に大きな影
響を与える上、素子の電流駆動能力の劣化、サブスレシ
ョルド領域特性の劣化、ソース−ドレイン間の耐圧不
良、リーク電流の増大、スイッチング速度の劣化、寄生
バイポーラ動作誘起による消費電力の増大などに関連す
るパラメータとして重要である。2. Description of the Related Art In a device using SOI (Silicon-On-Insulator), particularly in a device called full depletion,
OI thin films are becoming thinner. Therefore, this kind of interface state density in the SOI substrate is an important parameter that affects the channel control of the SOI-MOSFET device together with the fixed charge in the insulating layer. That is, the interface state density has a great influence on the design of the threshold voltage of the device, and furthermore, the current drive capability of the device is deteriorated, the sub-threshold region characteristics are deteriorated, the breakdown voltage between the source and the drain is poor, and the leakage current is reduced. It is important as a parameter related to an increase, a decrease in switching speed, an increase in power consumption due to induction of a parasitic bipolar operation, and the like.
【0003】従来、この種の界面準位密度を疑似MOS
FETを用いて算出する方法が提案されている(K.Manh
eusden et.al., Proceedings IEEE International SOI
Conference (1997) pp.64)。図1に示すように、この
疑似MOSFETは、通常のMOSFETと異なり、S
OI基板10のシリコン基板11の底面にゲート電極1
2を設け、絶縁層13をゲート酸化膜とし、この絶縁層
上のSOI薄膜14の表面にドレインプローブ15とソ
ースプローブ16をそれぞれ接触させて構成される。そ
してゲート電極にはゲート電圧Vgが、ドレインプロー
ブ16にはドレイン電圧Vdが印加され、ソースプロー
ブ16は接地される。符号14aは空乏層である。従来
のこの疑似MOSFETを用いて算出する方法では、S
OI薄膜14がp型である場合、図2に示すドレイン電
流(Id)とゲート電圧(Vg)をそれぞれ線形(linea
r)にしてプロットしたId−Vg特性図に基づき、ゲー
ト電圧の蓄積側及び反転側のそれぞれ線形領域の外挿値
として、VFB(基板中のポテンシャルが深さ方向で平坦
になるゲート電圧)及びVth(強反転開始時のゲート電
圧)をそれぞれ求める。図2ではVdを0.4Vにして
いる。そしてこれらを次の式(2)に代入することによ
り界面準位密度Ditを算出している。Conventionally, this type of interface state density has been
A calculation method using an FET has been proposed (K. Manh
eusden et.al., Proceedings IEEE International SOI
Conference (1997) pp.64). As shown in FIG. 1, this pseudo MOSFET differs from a normal MOSFET in that
The gate electrode 1 is provided on the bottom surface of the silicon substrate 11 of the OI substrate 10.
2 and the insulating layer 13 is used as a gate oxide film, and the drain probe 15 and the source probe 16 are respectively brought into contact with the surface of the SOI thin film 14 on the insulating layer. Then, a gate voltage Vg is applied to the gate electrode, a drain voltage Vd is applied to the drain probe 16, and the source probe 16 is grounded. Reference numeral 14a is a depletion layer. In the conventional method of calculating using this pseudo MOSFET, S
When the OI thin film 14 is p-type, the drain current (Id) and the gate voltage (Vg) shown in FIG.
Based on the Id-Vg characteristic diagram plotted as r), V FB (gate voltage at which the potential in the substrate becomes flat in the depth direction) is used as an extrapolation value of the linear region on the accumulation side and the inversion side of the gate voltage. And V th (gate voltage at the start of strong inversion). In FIG. 2, Vd is set to 0.4V. Then, the interface state density D it is calculated by substituting these into the following equation (2).
【0004】[0004]
【数2】 (Equation 2)
【0005】但し、Vthは強反転開始時のゲート電圧、
VFBは基板中のポテンシャルが深さ方向で平坦になるゲ
ート電圧、qは素電荷、NAはアクセプタ不純物である
ボロン濃度、tsoiはSOI薄膜の膜厚[nm]、Coxは
絶縁層の単位面積当りの容量、ΦFはバンドギャップと
温度の関数(ΦF=(kT/q)ln(NA/ni)、ni:真
性キャリア密度)である。またDit(ΦS=2ΦF)は、表
面ポテンシャルΦSが2ΦFであるところの界面準位密度
を意味する。なお、SOI薄膜14がn型である場合に
は、上記式(2)は次の式(3)で表される。式(3)
において、NDはドナー不純物濃度である。またΦFはΦ
F=−(kT/q)ln(ND/ni)で表される。Where V th is the gate voltage at the start of strong inversion,
V FB is the gate voltage at which the potential in the substrate becomes flat in the depth direction, q is the elementary charge, N A is the concentration of boron as an acceptor impurity, t soi is the thickness [nm] of the SOI thin film, and C ox is the insulating layer. Φ F is a function of band gap and temperature (Φ F = (kT / q) ln (N A / n i ), n i : intrinsic carrier density). D it (Φ S = 2Φ F ) means the interface state density where the surface potential Φ S is 2Φ F. When the SOI thin film 14 is an n-type, the above equation (2) is expressed by the following equation (3). Equation (3)
In, N D is the donor impurity concentration. Φ F is Φ
F = − (kT / q) ln (N D / n i )
【0006】[0006]
【数3】 (Equation 3)
【0007】[0007]
【発明が解決しようとする課題】しかしながら、式
(2)の右辺の第1項と第2項を加えた値は、図6に示
すようにアクセプタの不純物であるボロン濃度NAの関
数であり、NAが変化すると、この値は大きく変化す
る。このNAを別の方法で求めようとしても、NAはシリ
コン基板の製造過程の環境の影響を受け易い。即ち、シ
リコン基板の製造プロセスにおいて通常のクリーンルー
ムではHEPAフィルタ(high efficiency particulat
e air filter)の部品中のボロンに起因して基板が微量
のボロンで汚染され易い。基板が通常のバルクウェーハ
であれば、ウェーハ内にゲッタリング中心が存在するこ
とから、微量のボロン汚染は問題にならない。しかしS
OIウェーハ(基板)ではSOI薄膜の下に酸化膜があ
ることから、基板に対してゲッタリング効果を期待する
ことが難しく、酸化膜においてボロンが偏析する傾向が
あるとしても、バルクウェーハと比べてSOI基板では
SOI薄膜中にボロンが残存し易く、上記NAは変動し
易い。このため、従来の方法ではSOI薄膜中のボロン
濃度NAを正確に求めない限り、界面準位密度Ditを算
出することができなかった。このことは式(3)のn型
の場合においてもp型の場合と同様の議論が成立ち、S
OI薄膜中のドナー不純物濃度NDを正確に求めない限
り、界面準位密度Ditを算出することができなかった。
本発明の目的は、SOI薄膜中の不純物濃度が正確に求
められない場合にも、SOI基板のSOI薄膜と絶縁層
との界面における界面準位密度を簡便にかつ近似的に算
出することができる方法を提供することにある。However, the value obtained by adding the first and second terms on the right side of the equation (2) is a function of the boron concentration N A which is an impurity of the acceptor as shown in FIG. , N A changes, this value changes greatly. Even if the N A is obtained by another method, N A is easily affected by the environment in the process of manufacturing the silicon substrate. That is, in a normal clean room in a silicon substrate manufacturing process, a HEPA filter (high efficiency particulat) is used.
Substrates are easily contaminated with traces of boron due to boron in the components of the e air filter). If the substrate is a normal bulk wafer, a small amount of boron contamination does not pose a problem since the gettering center exists in the wafer. But S
OI wafers (substrates) have an oxide film under the SOI thin film, so it is difficult to expect a gettering effect on the substrate, and even if there is a tendency for boron to segregate in the oxide film, compared to a bulk wafer. easily boron remains in the SOI thin film in SOI substrates, the N a is likely to vary. For this reason, the conventional method cannot calculate the interface state density D it unless the boron concentration N A in the SOI thin film is accurately obtained. This holds true for the n-type equation (3) in the same way as for the p-type one.
Unless accurately determine the donor impurity concentration N D of OI in the thin film, it was not possible to calculate the interface state density D it.
An object of the present invention is to easily and approximately calculate an interface state density at an interface between an SOI thin film and an insulating layer of an SOI substrate even when an impurity concentration in the SOI thin film cannot be accurately obtained. It is to provide a method.
【0008】[0008]
【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、疑似MOSFETによりSOI基板
10のSOI薄膜14と絶縁層13との界面における界
面準位密度を算出する方法の改良である。その特徴ある
構成は、次の式(1)に基づいて界面準位密度(Dit)を
算出することにある。The invention according to claim 1 is
As shown in FIG. 1, this is an improvement in a method of calculating an interface state density at an interface between an SOI thin film 14 of an SOI substrate 10 and an insulating layer 13 by using a pseudo MOSFET. The characteristic configuration is to calculate the interface state density (D it ) based on the following equation (1).
【0009】[0009]
【数4】 (Equation 4)
【0010】但し、Ditは界面準位密度、Vthは強反転
開始時のゲート電圧、V0は空乏層がSOI薄膜表面到
達した時のゲート電圧、Coxは絶縁層の単位面積当りの
容量、qは素電荷、AはSOI薄膜中の不純物濃度の上
限値とSOI薄膜の膜厚により算出される一定補正値で
ある。上記式(1)の一定補正値AはSOI薄膜中の不
純物濃度による影響が比較的小さいため、SOI薄膜中
の不純物濃度が正確に求められない場合にも、SOI基
板のSOI薄膜と絶縁層との界面における界面準位密度
Ditを簡便にかつ近似的に算出することができる。Where D it is the interface state density, V th is the gate voltage at the start of strong inversion, V 0 is the gate voltage when the depletion layer reaches the surface of the SOI thin film, and Cox is the unit area per unit area of the insulating layer. The capacitance, q is the elementary charge, and A is a constant correction value calculated from the upper limit of the impurity concentration in the SOI thin film and the thickness of the SOI thin film. Since the constant correction value A in the above equation (1) is relatively little affected by the impurity concentration in the SOI thin film, even when the impurity concentration in the SOI thin film cannot be accurately obtained, the constant correction value A can be obtained by using the SOI thin film and the insulating layer of the SOI substrate. Can easily and approximately calculate the interface state density D it at the interface.
【0011】[0011]
【発明の実施の形態】本発明のSOI基板は、シリコ
ン基板同士を絶縁膜を介して貼り合わせる方法により作
られたSOI基板、絶縁性基板又は絶縁性薄膜を表面
に有する基板の上にシリコン薄膜を堆積させる方法によ
り作られたSOI基板、又はシリコン基板内部に高濃
度の酸素イオンを注入した後、高温でアニール処理して
このシリコン基板表面から所定の深さの領域に埋込み酸
化層を形成し、その表面側のSOI薄膜を活性領域とす
るSIMOX法により作られたSOI基板である。BEST MODE FOR CARRYING OUT THE INVENTION An SOI substrate of the present invention is a SOI substrate, an insulating substrate, or a silicon thin film formed on a substrate having an insulating thin film on the surface by a method of bonding silicon substrates together via an insulating film. After implanting high-concentration oxygen ions into an SOI substrate or a silicon substrate formed by a method of depositing silicon, annealing is performed at a high temperature to form a buried oxide layer in a region at a predetermined depth from the surface of the silicon substrate. And an SOI substrate formed by a SIMOX method using the SOI thin film on the surface side as an active region.
【0012】次に上述した式(1)が導出された根拠に
ついて次に説明する。本発明者は、図1に示した疑似(P
seudo)MOSFETのId−Vg特性に対するモデルを検
討することにより、上記VFB(基板の表面ポテンシャル
が平坦になるゲート電圧)及びVth(強反転開始時のゲ
ート電圧)の他に、重要なゲート電圧値V0をId−Vg
特性中に見い出した。図3に示すようにSOI基板10
のSOI薄膜14の表面にドレインプローブ15とソー
スプローブ16をそれぞれ接触させて、ゲート電圧Vg
を上昇させていくと、空乏層14aがSOI薄膜14と
絶縁層13との界面より広がり始め、やがてSOI薄膜
14の表面に到達する。V0はこの到達時のゲート電圧
であって、次の式(4)で与えられる。Next, the basis for deriving the above equation (1) will be described. The inventor has assumed that the pseudo (P) shown in FIG.
By examining the model for the Id-Vg characteristic of the (seudo) MOSFET, in addition to the above V FB (gate voltage at which the surface potential of the substrate becomes flat) and V th (gate voltage at the start of strong inversion), an important gate The voltage value V 0 is calculated as Id−Vg
Found in the properties. As shown in FIG.
The drain probe 15 and the source probe 16 are respectively brought into contact with the surface of the SOI thin film 14 of FIG.
, The depletion layer 14a starts to spread from the interface between the SOI thin film 14 and the insulating layer 13, and eventually reaches the surface of the SOI thin film 14. V 0 is the gate voltage at this time, and is given by the following equation (4).
【0013】[0013]
【数5】 (Equation 5)
【0014】但し、V0は空乏層がSOI薄膜表面到達
した時のゲート電圧、VFBは基板の表面ポテンシャルが
平坦になるゲート電圧、qは素電荷、NAはアクセプタ
不純物であるボロン濃度、tsoiはSOI薄膜の膜厚[n
m]、Coxは絶縁層の単位面積当りの容量(Cox=(ε0
εox)/tBOX)、ε0は真空の誘電率、εSiはシリコン
の比誘電率、εoxは絶縁層(シリコン酸化膜)の比誘電
率、tBOXは絶縁層の厚さ[nm]である。この式(4)
と上述した式(1)からVFBを消去すると、式(5)が
得られる。Here, V 0 is the gate voltage when the depletion layer reaches the surface of the SOI thin film, V FB is the gate voltage at which the surface potential of the substrate becomes flat, q is the elementary charge, N A is the boron concentration as an acceptor impurity, t soi is the thickness of the SOI thin film [n
m], Cox is the capacitance per unit area of the insulating layer ( Cox = (ε 0
ε ox ) / t BOX ), ε 0 is the dielectric constant of vacuum, ε Si is the relative dielectric constant of silicon, ε ox is the relative dielectric constant of the insulating layer (silicon oxide film), and t BOX is the thickness of the insulating layer [nm]. ]. This equation (4)
Then, when V FB is erased from Expression (1) described above, Expression (5) is obtained.
【0015】[0015]
【数6】 (Equation 6)
【0016】図4に示すように、SOI薄膜中のボロン
濃度が1×1017atoms/cm3以下の低濃度であ
る場合には、V0はId−Vg特性のドレイン電流の一番
低くなるゲート電圧値(図4中の矢印)に対応すると見
なされる。ここでSOI基板はSIMOXウェーハであ
り、原料ウェーハとしては抵抗率8.5〜11.5Ωc
mを使用し、このSOI薄膜の膜厚は200nm、絶縁
層の厚さは400nmである。ここで式(5)の右辺の
第1項から第2項を差引いた値は、図5に示すようにボ
ロン濃度NAの関数として表される。しかしながら、こ
の値はボロン濃度NAが変化しても、図6に比べると変
動範囲が狭い。例えば図6では、SOI薄膜の膜厚t
soiが200nmの場合(図6の△印)に、ボロン濃度
NAが1×1014atoms/cm3から1×1016at
oms/cm3まで変化するときに、この値は1〜5の
範囲で変動する。これに対して図5では、SOI薄膜の
膜厚tsoiが200nmの場合(図5の△印)に、ボロ
ン濃度NAが2×1014atoms/cm3から3×10
16atoms/cm3まで変化するときに、この値は僅
かに−0.2〜0.5の範囲でしか変動しない。従っ
て、上記式(5)の右辺の第1項から第2項を差引いた
値を一定の補正値Aとして、次の式(6)のように表
し、これを式(5)に代入すれば、上述した式(1)が
得られる。As shown in FIG. 4, when the boron concentration in the SOI thin film is as low as 1 × 10 17 atoms / cm 3 or less, V 0 is the lowest in the drain current of the Id-Vg characteristic. It is considered to correspond to the gate voltage value (arrow in FIG. 4). Here, the SOI substrate is a SIMOX wafer, and the raw material wafer has a resistivity of 8.5 to 11.5 Ωc.
m, the thickness of this SOI thin film is 200 nm, and the thickness of the insulating layer is 400 nm. Here, the value obtained by subtracting the second term from the first term on the right side of the equation (5) is expressed as a function of the boron concentration N A as shown in FIG. However, even if the boron concentration N A changes, this value has a narrower fluctuation range than that of FIG. For example, in FIG.
If soi is 200 nm (△ mark in FIG. 6), boron concentration N A is 1 × 10 16 at from 1 × 10 14 atoms / cm 3
When varying to oms / cm 3 , this value varies from 1 to 5. On the other hand, in FIG. 5, when the thickness t soi of the SOI thin film is 200 nm (indicated by Δ in FIG. 5), the boron concentration N A is 2 × 10 14 atoms / cm 3 to 3 × 10
When varying to 16 atoms / cm 3 , this value varies only slightly in the range -0.2 to 0.5. Therefore, a value obtained by subtracting the second term from the first term on the right side of the above equation (5) is expressed as the following equation (6) as a constant correction value A, and this is substituted into the equation (5). Equation (1) described above is obtained.
【0017】[0017]
【数7】 (Equation 7)
【0018】図5に示される、SOI薄膜の膜厚tsoi
毎のボロン濃度NAが変化したときの補正値Aの範囲を
表1に示す。The thickness t soi of the SOI thin film shown in FIG.
Table 1 shows the range of the correction value A when the boron concentration N A changes for each.
【0019】[0019]
【表1】 [Table 1]
【0020】なお、上記実施の形態ではSOI薄膜の不
純物として導電型がp型のアクセプタのボロンを示した
が、本発明のSOI薄膜の不純物はp型不純物に限ら
ず、n型不純物であるドナーのリン、アンチモン、砒素
にも適用することができる。またSOI薄膜14がn型
である場合には、上記式(4)〜(6)は次の式(7)
〜(9)で表される。これらの式中、NDはドナー不純
物濃度である。In the above embodiment, boron of the p-type acceptor is shown as an impurity of the SOI thin film as an impurity of the SOI thin film. However, the impurity of the SOI thin film of the present invention is not limited to the p-type impurity, but may be an n-type impurity. Of phosphorus, antimony and arsenic. When the SOI thin film 14 is of an n-type, the above equations (4) to (6) are obtained by the following equation (7).
To (9). In these formulas, N D is the donor impurity concentration.
【0021】[0021]
【数8】 (Equation 8)
【0022】以上を考慮すると、SOI薄膜中のp型又
はn型不純物濃度の上限値が1×1017atoms/c
m3であって、SOI薄膜の膜厚tsoiが30nm以上3
00nm以下であるときには、補正値Aは−1.0〜
0.8の範囲にある一定値である。より具体的にはSO
I薄膜の膜厚tsoiが30nm以上50nm未満である
ときには、補正値Aは0.4〜0.8の範囲にある一定
値である。またSOI薄膜の膜厚tsoiが50nm以上
80nm未満であるときには、補正値Aは0.3〜0.
7の範囲にある一定値である。またSOI薄膜の膜厚t
soiが80nm以上100nm未満であるときには、補
正値Aは0〜0.7の範囲にある一定値である。更にS
OI薄膜の膜厚tsoiが100nm以上150nm未満
であるときには、補正値Aが−1.0〜0.7の範囲に
ある一定値である。In consideration of the above, the upper limit of the p-type or n-type impurity concentration in the SOI thin film is 1 × 10 17 atoms / c.
m 3 and the thickness t soi of the SOI thin film is 30 nm or more and 3
When it is equal to or less than 00 nm, the correction value A is -1.0 to
It is a constant value in the range of 0.8. More specifically, SO
When the thickness t soi of the I thin film is 30 nm or more and less than 50 nm, the correction value A is a constant value in the range of 0.4 to 0.8. When the thickness t soi of the SOI thin film is not less than 50 nm and less than 80 nm, the correction value A is 0.3 to 0.5.
It is a constant value in the range of 7. The thickness t of the SOI thin film
When soi is 80 nm or more and less than 100 nm, the correction value A is a constant value in the range of 0 to 0.7. Further S
When the thickness t soi of the OI thin film is not less than 100 nm and less than 150 nm, the correction value A is a constant value in the range of −1.0 to 0.7.
【0023】またSOI薄膜中のp型又はn型不純物濃
度の上限値が1×1016atoms/cm3であって、
SOI薄膜の膜厚tsoiが30nm以上300nm以下
であるときには、補正値Aは−1.0〜0.75の範囲
にある一定値である。より具体的にはSOI薄膜の膜厚
tsoiが30nm以上50nm未満であるときには、補
正値Aは0.4〜0.75の範囲にある一定値である。
またSOI薄膜の膜厚tsoiが50nm以上80nm未
満であるときには、補正値Aは0.4〜0.7の範囲に
ある一定値である。またSOI薄膜の膜厚tsoiが80
nm以上100nm未満であるときには、補正値Aは
0.4〜0.7の範囲にある一定値である。SOI薄膜
の膜厚tsoiが100nm以上150nm未満であると
きには、補正値Aは0.4〜0.7の範囲にある一定値
である。またSOI薄膜の膜厚tsoiが150nm以上
200nm未満であるときには、補正値Aは0.3〜
0.7の範囲にある一定値である。またSOI薄膜の膜
厚tsoiが200nm以上250nm未満であるときに
は、補正値Aは0.2〜0.6の範囲にある一定値であ
る。更にSOI薄膜の膜厚tsoが250nm以上300
nm未満であるときには、補正値Aは−0.1〜0.6
の範囲にある一定値である。The upper limit of the p-type or n-type impurity concentration in the SOI thin film is 1 × 10 16 atoms / cm 3 ,
When the thickness t soi of the SOI thin film is not less than 30 nm and not more than 300 nm, the correction value A is a constant value in the range of -1.0 to 0.75. More specifically, when the thickness t soi of the SOI thin film is 30 nm or more and less than 50 nm, the correction value A is a constant value in the range of 0.4 to 0.75.
When the thickness t soi of the SOI thin film is 50 nm or more and less than 80 nm, the correction value A is a constant value in the range of 0.4 to 0.7. Further, the thickness t soi of the SOI thin film is 80
When it is not less than 100 nm and less than 100 nm, the correction value A is a constant value in the range of 0.4 to 0.7. When the thickness t soi of the SOI thin film is 100 nm or more and less than 150 nm, the correction value A is a constant value in the range of 0.4 to 0.7. When the thickness t soi of the SOI thin film is 150 nm or more and less than 200 nm, the correction value A is 0.3 to
It is a constant value in the range of 0.7. When the thickness t soi of the SOI thin film is not less than 200 nm and less than 250 nm, the correction value A is a constant value in the range of 0.2 to 0.6. Further, the thickness t so of the SOI thin film is 250 nm or more and 300
When it is less than nm, the correction value A is −0.1 to 0.6.
Is a constant value in the range of.
【0024】[0024]
【発明の効果】以上述べたように、従来の界面準位密度
の算出方法では、SOI薄膜中の不純物濃度が正確に既
知でない限り、界面準位密度を算出することができなか
ったが、本発明によれば、おおよその不純物濃度の値と
SOI薄膜の膜厚と絶縁層の単位面積当りの容量Coxに
対応する絶縁層の厚さtBOXが分れば、式(1)に基づ
いて簡便にかつ近似的に界面準位密度を求めることがで
きる。As described above, in the conventional method for calculating the interface state density, the interface state density could not be calculated unless the impurity concentration in the SOI thin film was accurately known. According to the invention, if the approximate value of the impurity concentration, the thickness of the SOI thin film, and the thickness t BOX of the insulating layer corresponding to the capacitance C ox per unit area of the insulating layer are known, based on the equation (1), The interface state density can be obtained simply and approximately.
【図1】疑似(Pseudo)MOSFETの構造を示す斜視
図。FIG. 1 is a perspective view showing a structure of a pseudo (Pseudo) MOSFET.
【図2】ドレイン電流とゲート電圧をそれぞれ線形にし
てプロットしたId−Vg特性図。FIG. 2 is an Id-Vg characteristic diagram in which a drain current and a gate voltage are respectively linearly plotted.
【図3】空乏層が絶縁層界面より広がっている状態を示
す疑似MOSFETの構成図。FIG. 3 is a configuration diagram of a pseudo MOSFET showing a state in which a depletion layer extends from an interface of an insulating layer.
【図4】SIMOXウェーハを用いた疑似MOSFET
のId−Vg特性図。FIG. 4 Pseudo MOSFET using SIMOX wafer
FIG.
【図5】SOI薄膜中のボロン濃度が変化するとき、S
OI薄膜の膜厚により、本発明の補正値Aが変動する範
囲を示す図。FIG. 5 shows that when the boron concentration in the SOI thin film changes, S
The figure which shows the range where the correction value A of this invention fluctuates with the thickness of the OI thin film.
【図6】SOI薄膜中のボロン濃度が変化するとき、S
OI薄膜の膜厚により、従来の補正値が変動する範囲を
示す図。FIG. 6 shows that when the boron concentration in the SOI thin film changes, S
The figure which shows the range where the conventional correction value fluctuates with the thickness of the OI thin film.
10 SOI基板 11 シリコン基板 12 ゲート電極 13 絶縁層 14 SOI薄膜 14a 空乏層 15 ドレインプローブ 16 ソースプローブ REFERENCE SIGNS LIST 10 SOI substrate 11 silicon substrate 12 gate electrode 13 insulating layer 14 SOI thin film 14 a depletion layer 15 drain probe 16 source probe
Claims (14)
のSOI薄膜(14)と絶縁層(13)との界面における界面準
位密度を算出する方法において、 次の式(1)に基づいて界面準位密度(Dit)を算出する
ことを特徴とする界面準位密度の算出方法。 【数1】 但し、Ditは界面準位密度、Vthは強反転開始時のゲー
ト電圧、V0は空乏層がSOI薄膜表面到達した時のゲ
ート電圧、Coxは絶縁層の単位面積当りの容量、qは素
電荷、AはSOI薄膜中の不純物濃度の上限値とSOI
薄膜の膜厚により算出される一定補正値である。An SOI substrate (10) using a pseudo MOSFET.
In the method for calculating the interface state density at the interface between the SOI thin film (14) and the insulating layer (13), the interface state density (D it ) is calculated based on the following equation (1). To calculate the interface state density. (Equation 1) Here, D it is the interface state density, V th is the gate voltage at the start of strong inversion, V 0 is the gate voltage when the depletion layer reaches the surface of the SOI thin film, Cox is the capacitance per unit area of the insulating layer, q Is the elementary charge, and A is the upper limit of the impurity concentration in the SOI thin film and SOI.
This is a constant correction value calculated based on the thickness of the thin film.
が1×1014〜1×1017atoms/cm3であっ
て、SOI薄膜の膜厚(tsoi)が30nm以上300nm
以下であるとき、補正値(A)が−1.0〜0.8の範囲
にある一定値である請求項1記載の界面準位密度の算出
方法。2. The p-type or n-type impurity concentration in the SOI thin film is 1 × 10 14 to 1 × 10 17 atoms / cm 3 , and the thickness (t soi ) of the SOI thin film is 30 nm or more and 300 nm or more.
2. The method for calculating an interface state density according to claim 1, wherein the correction value (A) is a constant value in a range of -1.0 to 0.8 when:
50nm未満であるとき、補正値(A)が0.4〜0.8
の範囲にある一定値である請求項2記載の界面準位密度
の算出方法。3. When the thickness (t soi ) of the SOI thin film is 30 nm or more and less than 50 nm, the correction value (A) is 0.4 to 0.8.
3. The method for calculating the interface state density according to claim 2, wherein the constant is a constant value within a range of:
80nm未満であるとき、補正値(A)が0.3〜0.7
の範囲にある一定値である請求項2記載の界面準位密度
の算出方法。4. When the thickness (t soi ) of the SOI thin film is 50 nm or more and less than 80 nm, the correction value (A) is 0.3 to 0.7.
3. The method for calculating the interface state density according to claim 2, wherein the constant is a constant value within a range of:
100nm未満であるとき、補正値(A)が0〜0.7の
範囲にある一定値である請求項2記載の界面準位密度の
算出方法。5. The interface state according to claim 2, wherein when the thickness (t soi ) of the SOI thin film is 80 nm or more and less than 100 nm, the correction value (A) is a constant value in the range of 0 to 0.7. How to calculate density.
上150nm未満であるとき、補正値(A)が−1.0〜
0.7の範囲にある一定値である請求項2記載の界面準
位密度の算出方法。6. When the thickness (t soi ) of the SOI thin film is 100 nm or more and less than 150 nm, the correction value (A) is −1.0 to
3. The method for calculating the interface state density according to claim 2, wherein the constant is a constant value in a range of 0.7.
が1×1014〜1×1016atoms/cm3であっ
て、SOI薄膜の膜厚(tsoi)が30nm以上300nm
以下であるとき、補正値(A)が−1.0〜0.75の範
囲にある一定値である請求項1記載の界面準位密度の算
出方法。7. The p-type or n-type impurity concentration in the SOI thin film is 1 × 10 14 to 1 × 10 16 atoms / cm 3 , and the thickness (t soi ) of the SOI thin film is 30 nm or more and 300 nm or more.
2. The method for calculating an interface state density according to claim 1, wherein the correction value (A) is a constant value in a range of -1.0 to 0.75 when:
50nm未満であるとき、補正値(A)が0.4〜0.7
5の範囲にある一定値である請求項7記載の界面準位密
度の算出方法。8. When the thickness (t soi ) of the SOI thin film is 30 nm or more and less than 50 nm, the correction value (A) is 0.4 to 0.7.
The method for calculating an interface state density according to claim 7, wherein the interface state density is a constant value in a range of 5.
80nm未満であるとき、補正値(A)が0.4〜0.7
の範囲にある一定値である請求項7記載の界面準位密度
の算出方法。9. When the thickness (t soi ) of the SOI thin film is 50 nm or more and less than 80 nm, the correction value (A) is 0.4 to 0.7.
8. The method for calculating the interface state density according to claim 7, wherein the constant is in a range of:
上100nm未満であるとき、補正値(A)が0.4〜
0.7の範囲にある一定値である請求項7記載の界面準
位密度の算出方法。10. When the thickness (t soi ) of the SOI thin film is 80 nm or more and less than 100 nm, the correction value (A) is 0.4 to
8. The method for calculating an interface state density according to claim 7, wherein the constant is in a range of 0.7.
以上150nm未満であるとき、補正値(A)が0.4〜
0.7の範囲にある一定値である請求項7記載の界面準
位密度の算出方法。11. The thickness (t soi ) of the SOI thin film is 100 nm.
When it is less than 150 nm, the correction value (A) is 0.4 to
8. The method for calculating an interface state density according to claim 7, wherein the constant is in a range of 0.7.
以上200nm未満であるとき、補正値(A)が0.3〜
0.7の範囲にある一定値である請求項7記載の界面準
位密度の算出方法。12. The SOI thin film has a thickness (t soi ) of 150 nm.
When less than 200 nm, the correction value (A) is 0.3 to
8. The method for calculating an interface state density according to claim 7, wherein the constant is in a range of 0.7.
以上250nm未満であるとき、補正値(A)が0.2〜
0.6の範囲にある一定値である請求項7記載の界面準
位密度の算出方法。13. The SOI thin film has a thickness (t soi ) of 200 nm.
When it is less than 250 nm, the correction value (A) is 0.2 to
The method for calculating an interface state density according to claim 7, wherein the constant is a constant value in a range of 0.6.
以上300nm未満であるとき、補正値(A)が−0.1
〜0.6の範囲にある一定値である請求項7記載の界面
準位密度の算出方法。14. The SOI thin film has a thickness (t soi ) of 250 nm.
When it is less than 300 nm, the correction value (A) is -0.1
8. The method for calculating an interface state density according to claim 7, wherein the interface state density is a constant value in a range of 0.6 to 0.6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23339599A JP2001060676A (en) | 1999-08-20 | 1999-08-20 | Computing method of interface state density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23339599A JP2001060676A (en) | 1999-08-20 | 1999-08-20 | Computing method of interface state density |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001060676A true JP2001060676A (en) | 2001-03-06 |
Family
ID=16954424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23339599A Pending JP2001060676A (en) | 1999-08-20 | 1999-08-20 | Computing method of interface state density |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001060676A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006001156A1 (en) * | 2004-06-25 | 2006-01-05 | Shin-Etsu Handotai Co., Ltd. | Method for evaluating soi wafer |
WO2006016448A1 (en) * | 2004-08-13 | 2006-02-16 | Shin-Etsu Handotai Co., Ltd. | Apparatus for evaluating semiconductor wafer |
CN100356182C (en) * | 2005-08-31 | 2007-12-19 | 中国科学院上海微系统与信息技术研究所 | Quick characterization method for charge density of buried oxide layer of SOI |
WO2008047478A1 (en) | 2006-10-20 | 2008-04-24 | Shin-Etsu Handotai Co., Ltd. | Method for evaluating semiconductor wafer |
JP2009016681A (en) * | 2007-07-06 | 2009-01-22 | Shin Etsu Handotai Co Ltd | Method of evaluating soi wafer |
US7633305B2 (en) | 2004-09-13 | 2009-12-15 | Shin-Etsu Handotai Co., Ltd. | Method for evaluating semiconductor wafer and apparatus for evaluating semiconductor wafer |
JP2012515447A (en) * | 2009-01-19 | 2012-07-05 | ソイテック | Inspection method for supporting substrate of semiconductor-on-insulator type substrate |
CN106415806A (en) * | 2014-05-14 | 2017-02-15 | 信越半导体株式会社 | Method for evaluating soi substrate |
-
1999
- 1999-08-20 JP JP23339599A patent/JP2001060676A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006001156A1 (en) * | 2004-06-25 | 2006-01-05 | Shin-Etsu Handotai Co., Ltd. | Method for evaluating soi wafer |
WO2006016448A1 (en) * | 2004-08-13 | 2006-02-16 | Shin-Etsu Handotai Co., Ltd. | Apparatus for evaluating semiconductor wafer |
US7525327B2 (en) | 2004-08-13 | 2009-04-28 | Shin-Etsu Handotai Co., Ltd. | Apparatus for evaluating semiconductor wafer |
US7633305B2 (en) | 2004-09-13 | 2009-12-15 | Shin-Etsu Handotai Co., Ltd. | Method for evaluating semiconductor wafer and apparatus for evaluating semiconductor wafer |
CN100356182C (en) * | 2005-08-31 | 2007-12-19 | 中国科学院上海微系统与信息技术研究所 | Quick characterization method for charge density of buried oxide layer of SOI |
WO2008047478A1 (en) | 2006-10-20 | 2008-04-24 | Shin-Etsu Handotai Co., Ltd. | Method for evaluating semiconductor wafer |
JP2009016681A (en) * | 2007-07-06 | 2009-01-22 | Shin Etsu Handotai Co Ltd | Method of evaluating soi wafer |
JP2012515447A (en) * | 2009-01-19 | 2012-07-05 | ソイテック | Inspection method for supporting substrate of semiconductor-on-insulator type substrate |
CN106415806A (en) * | 2014-05-14 | 2017-02-15 | 信越半导体株式会社 | Method for evaluating soi substrate |
CN106415806B (en) * | 2014-05-14 | 2019-06-04 | 信越半导体株式会社 | The appraisal procedure of SOI substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1190854C (en) | Silicon insulator structure semiconductor device | |
Shi et al. | Characterization of low-temperature processed single-crystalline silicon thin-film transistor on glass | |
US6512252B1 (en) | Semiconductor device | |
US7019357B2 (en) | Transistor | |
JP3265569B2 (en) | Semiconductor device and manufacturing method thereof | |
Sturm et al. | Increased drain saturation current in ultra-thin silicon-on-insulator (SOI) MOS transistors | |
Numata et al. | Device design for subthreshold slope and threshold voltage control in sub-100-nm fully depleted SOI MOSFETs | |
Tanaka et al. | Analysis of p/sup+/poly Si double-gate thin-film SOI MOSFETs | |
CN101061587A (en) | Strained fully depleted silicon on insulator semiconductor device and manufacturing method therefor | |
US6686629B1 (en) | SOI MOSFETS exhibiting reduced floating-body effects | |
JP2003332583A (en) | Semiconductor device and its manufacturing method | |
JP2001060676A (en) | Computing method of interface state density | |
JP2000260991A (en) | Circuit having mos transistor for controlling threshold voltage and method for controlling the threshold voltage | |
US20130214854A1 (en) | Semiconductor device and method of driving the same | |
US7713821B2 (en) | Thin silicon-on-insulator high voltage auxiliary gated transistor | |
WO2003063254A1 (en) | Semiconductor device | |
JP4389065B2 (en) | SOI-MOSFET | |
US6194282B1 (en) | Method for stabilizing SOI semiconductor device and SOI semiconductor device | |
Rahal et al. | Flicker noise in gate overlapped polycrystalline silicon thin-film transistors | |
JP4313822B2 (en) | Manufacturing method of semiconductor device | |
Nakajima et al. | Characterization of trap states at silicon-on-insulator (SOI)/buried oxide (BOX) interface by back gate transconductance characteristics in SOI MOSFETs | |
JP2002246601A (en) | Semiconductor device and its manufacturing method | |
da Silva et al. | Effect of substrate bias and temperature variation in the capacitive coupling of SOI UTBB MOSFETs | |
US20070023836A1 (en) | Semiconductor device | |
Liu et al. | Characterization of the ultrathin vertical channel CMOS technology |