JP2000301516A - Manufacture of ceramic honeycomb structural body - Google Patents

Manufacture of ceramic honeycomb structural body

Info

Publication number
JP2000301516A
JP2000301516A JP11114656A JP11465699A JP2000301516A JP 2000301516 A JP2000301516 A JP 2000301516A JP 11114656 A JP11114656 A JP 11114656A JP 11465699 A JP11465699 A JP 11465699A JP 2000301516 A JP2000301516 A JP 2000301516A
Authority
JP
Japan
Prior art keywords
ceramic
aggregated particles
honeycomb structure
particles
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11114656A
Other languages
Japanese (ja)
Inventor
Masanori Yamada
正徳 山田
Tomohiko Nakanishi
友彦 中西
Masakazu Murata
雅一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP11114656A priority Critical patent/JP2000301516A/en
Priority to DE2000112501 priority patent/DE10012501A1/en
Priority to BE2000/0211A priority patent/BE1014620A3/en
Publication of JP2000301516A publication Critical patent/JP2000301516A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/02Conditioning the material prior to shaping
    • B28B17/026Conditioning ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C1/00Apparatus or methods for obtaining or processing clay
    • B28C1/10Apparatus or methods for obtaining or processing clay for processing clay-containing substances in non-fluid condition ; Plants
    • B28C1/14Apparatus or methods for obtaining or processing clay for processing clay-containing substances in non-fluid condition ; Plants specially adapted for homogenising, comminuting or conditioning clay in non-fluid condition or for separating undesired admixtures therefrom
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Catalysts (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high quality ceramic honeycomb structural body with a low heat capacity by a method wherein the cell wall is prevented from falling out at an extrusion molding when the thickness of the cell wall is made thinner. SOLUTION: After one or more kinds of ceramic stocks prepared so as to realize a desired ceramic composition is measured, before a kneading process is executed, the ceramic stocks forming agglutinated particles among the ceramic stocks are dispersed in advance in a solvent with either one or both of a chemical and a physical dispersing methods in order to realize the ceramics, which pass the slits of an extrusion mold. The resultant solution is added with other ceramic stock without drying so as to obtain a body, the re-agglutination of which is prevented from occurring, through kneading in order to allow to extrusion-mold under the state that stock particles are dispersed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、自動車エ
ンジン等の内燃機関の排ガス浄化用触媒における触媒担
体、あるいは水質浄化用のろ過フィルター等に使用さ
れ、狭小スリットを有する押出成形金型で坏土をハニカ
ム状に押出成形してなるセラミックスハニカム構造体の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extrusion molding die having a narrow slit, which is used for a catalyst carrier in an exhaust gas purifying catalyst of an internal combustion engine such as an automobile engine or a filter for water purification. The present invention relates to a method for manufacturing a ceramic honeycomb structure formed by extruding soil into a honeycomb shape.

【0002】[0002]

【従来の技術】近年、自動車の排ガス規制が強化される
のに伴い、エンジン始動直後の炭化水素排出量を低減す
るために、排ガス浄化用触媒の早期活性化が求められて
いる。これに対応する手段の1つに、触媒担体を構成す
るセラミックスハニカム構造体の熱容量の低減があり、
このためにセル壁厚を薄肉化することが検討されてい
る。ところが、セル壁厚を薄くしようとすると、ハニカ
ム構造体の押出成形時にセル壁が抜けてしまうことがあ
った。この原因は、ハニカム構造体を成形するための原
料中に存在する粗大凝集粒子にあり、押出成形金型の格
子状のスリット内あるいは入口で粗大凝集粒子が目詰ま
りして坏土の供給を阻害するためと考えられる。
2. Description of the Related Art In recent years, as exhaust gas regulations for automobiles have been tightened, early activation of exhaust gas purifying catalysts has been required in order to reduce the amount of hydrocarbon emissions immediately after engine start. One of the means corresponding to this is to reduce the heat capacity of the ceramic honeycomb structure constituting the catalyst carrier.
For this purpose, it has been studied to reduce the cell wall thickness. However, when trying to reduce the cell wall thickness, the cell walls may come off during extrusion molding of the honeycomb structure. This is due to coarse aggregated particles present in the raw material for forming the honeycomb structure, and the coarse aggregated particles are clogged in the lattice-shaped slits or at the entrance of the extrusion molding die, hindering the supply of the clay. It is thought to be.

【0003】原料粉末の粒径に関しては、例えば、特開
平8−112528に、成形用押出型のスリット幅Mに
対する原料粉末の最大粒径Rの割合R/Mを、1/3以
下とすることにより、格子欠損の無い成形体が得られる
ことが開示されている。しかしながら、凝集して二次粒
子を形成しやすいセラミックス原料では、分級あるいは
ふるい分け等により所定の大きさ以下に調製した原料粉
末は、これを構成する一次粒子が非常に小さいために、
成形、焼成によってハニカム構造体が緻密化し、気孔率
が小さくなる。このため、熱容量が大きくなり、さらに
熱膨張係数も大きくなって、耐熱衝撃性が低下する。ま
た、一次粒子としてスリット幅より小さい原料であって
も、原料調合前の合成過程およびその後の原料保管時の
取り扱いに注意を払わないと、湿気等により再凝集して
見かけ上の粒径が大きくなってしまう。このように一旦
凝集した粒子を、より低次の粒子へ再解膠、再分散する
ことは容易ではなく、セル壁厚の薄肉化の障害となって
いた。
[0003] Regarding the particle size of the raw material powder, for example, Japanese Patent Application Laid-Open No. HEI 8-112528 discloses that the ratio R / M of the maximum particle size R of the raw material powder to the slit width M of the extrusion die for molding should be 1/3 or less. Discloses that a molded body without lattice defects can be obtained. However, in a ceramic raw material that easily forms secondary particles by agglomeration, a raw material powder prepared to a predetermined size or less by classification or sieving or the like has a very small primary particle constituting the raw material powder,
The honeycomb structure is densified by molding and firing, and the porosity is reduced. For this reason, the heat capacity increases, and the thermal expansion coefficient also increases, and the thermal shock resistance decreases. Also, even if the raw material is smaller than the slit width as the primary particles, if care is not taken during the synthesis process before the raw material preparation and during the storage of the raw material, the apparent particle size increases due to re-aggregation due to moisture and the like. turn into. It is not easy to re-pulverize and re-disperse the once-agglomerated particles into lower-order particles, which is an obstacle to thinning the cell wall thickness.

【0004】また、ふるい分け等を行う際、乾式ふるい
では、凝集粒子をふるいにかけてもすぐにふるい網が目
詰まりし、ふるい収率が悪くなってコストが上昇する。
また、湿式ふるいでは、折角ふるいにかけても乾燥後に
再凝集したり、工程数の増加によりコストが上昇する不
具合がある。
[0004] When sieving or the like, in the case of a dry sieve, even if the agglomerated particles are sieved, the sieve mesh is immediately clogged, and the sieving yield is deteriorated and the cost is increased.
In addition, wet sieves have problems that they are re-agglomerated after drying even if they are sieved, or that the cost increases due to an increase in the number of steps.

【0005】[0005]

【発明が解決しようとする課題】このように、従来の方
法では、ハニカム構造体のセル壁厚を薄くしようとする
と、坏土中に存在する粗大凝集粒子によって押出成形時
に目詰まりが生じ、セル壁の抜けが生じて、ハニカム構
造体の品質が低下する不具合があった。そこで、本発明
は、押出成形時のセル壁の抜けを防止して、セル壁厚の
薄肉化が可能であり、低熱容量で、高品質なセラミック
スハニカム構造体を得ることを目的とする。
As described above, according to the conventional method, when trying to reduce the cell wall thickness of the honeycomb structure, clogging occurs at the time of extrusion molding due to coarse aggregated particles present in the kneaded clay, and the cell is clogged. There was a problem that the quality of the honeycomb structure deteriorated due to the removal of the wall. Accordingly, an object of the present invention is to obtain a high-quality ceramic honeycomb structure that can prevent the cell wall from coming off during extrusion molding, can reduce the thickness of the cell wall, and have a low heat capacity.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1の方法
では、所望のセラミックス組成となるように秤量された
一種類以上のセラミックス原料に溶媒を混合し、混練し
て得た坏土を、ハニカム状の狭小スリットを有する押出
成形型を用いて押出成形し、焼成することによりセラミ
ックスハニカム構造体を製造するにあたり、上記セラミ
ックス原料を秤量した後、混練する工程に先立って、凝
集粒子を分散させる工程を実施する。この分散工程で
は、上記セラミックス原料のうち、凝集粒子を形成して
いるセラミックス原料を予め上記溶媒中にて化学的また
は物理的分散方法あるいはそれらの両方を用いて分散さ
せることにより、上記凝集粒子を上記押出成形型の上記
スリットを通過する大きさとした後、乾燥させることな
く、続く上記混練工程に供することを特徴とする。
According to the method of claim 1 of the present invention, a kneaded material obtained by mixing and kneading a solvent with one or more kinds of ceramic raw materials weighed to obtain a desired ceramic composition is obtained. In manufacturing a ceramic honeycomb structure by extrusion molding using an extrusion mold having a honeycomb-shaped narrow slit and firing, the above-mentioned ceramic raw materials are weighed, and prior to the step of kneading, the aggregated particles are dispersed. The step of causing the step to be performed. In the dispersing step, among the ceramic raw materials, the ceramic raw materials forming the aggregated particles are dispersed in advance in the solvent using a chemical or physical dispersion method or both of them, so that the aggregated particles are formed. After the extrusion mold has a size that passes through the slit, it is subjected to the subsequent kneading step without drying.

【0007】セラミックス原料は凝集して二次粒子を形
成しやすく、原料調合時にふるい分け等を行っても、そ
の後に再凝集して、押出成形時のセル抜けの原因となる
ことがある。これに対し、本発明の方法によれば、上記
分散工程において、セラミックス原料中の凝集粒子を上
記溶媒に予め分散させて、押出成形型のスリットを通過
可能な大きさの粒子とし、その状態で、続く上記混練工
程において、他のセラミックス原料や成形助剤等を添加
し、混練するので、原料粒子を分散させたまま、上記坏
土とすることができる。よって、凝集粒子による目詰ま
りを起こすことなく押出成形して、セルの抜けを防止す
ることができるので、セル壁厚の薄肉化が可能であり、
高品質で熱容量の低いセラミックスハニカム構造体が得
られる。また、原料のふるい分け等の手間が要らないの
で、製造工程が簡単になり、コストの低減が可能であ
る。
[0007] Ceramic raw materials are liable to aggregate to form secondary particles, and even if sieving or the like is performed at the time of mixing raw materials, the raw materials may re-agglomerate and cause cell loss during extrusion molding. On the other hand, according to the method of the present invention, in the dispersing step, the aggregated particles in the ceramic raw material are dispersed in the solvent in advance to obtain particles having a size that can pass through the slit of the extrusion die. In the subsequent kneading step, other ceramic raw materials, forming aids and the like are added and kneaded, so that the kneaded clay can be obtained with the raw material particles dispersed. Therefore, extrusion molding can be performed without causing clogging due to aggregated particles, and the cell can be prevented from coming off.Thus, the cell wall thickness can be reduced.
A high quality ceramic honeycomb structure having a low heat capacity can be obtained. Further, since no labor such as sieving the raw materials is required, the manufacturing process is simplified, and the cost can be reduced.

【0008】請求項2の方法では、上記化学的分散方法
を、陰イオン型、陽イオン型、両性型および非イオン型
の界面活性剤から選ばれる少なくとも一種類を分散剤と
して用い、この分散剤を上記凝集粒子を含むセラミック
ス原料とともに上記溶媒に添加して均一に混合すること
により、上記凝集粒子を解膠、分散させる方法とする。
[0008] In the method of claim 2, the chemical dispersion method uses at least one selected from anionic, cationic, amphoteric and nonionic surfactants as a dispersant. Is added to the above-mentioned solvent together with the ceramic raw material containing the above-mentioned aggregated particles, and uniformly mixed to peptize and disperse the above-mentioned aggregated particles.

【0009】凝集粒子を形成したセラミックス原料微粒
子の周囲に、適当な界面活性剤よりなる上記分散剤を配
置すると、その界面活性剤の持つ同一極性によって互い
に反発する力が生じるために、凝集粒子がより低次の粒
子に解膠、分散しやすくなり、また再凝集を防止する。
この溶液に、他のセラミックス原料および成形助剤を添
加すれば、分散した状態を保持したまま坏土を形成する
ことが可能となる。
When the above-mentioned dispersing agent composed of a suitable surfactant is disposed around the ceramic raw material fine particles having formed the aggregated particles, the repelling force is generated due to the same polarity of the surfactant. It is easier to peptize and disperse into lower order particles, and prevents reaggregation.
If another ceramic raw material and a forming aid are added to this solution, it is possible to form a clay while maintaining a dispersed state.

【0010】請求項3の方法では、上記物理的分散方法
を、上記溶媒に上記凝集粒子を含むセラミックス原料を
添加した溶液に、振動または回転力を加えることによ
り、上記凝集粒子を解膠、分散させる方法とする。
According to a third aspect of the present invention, the physical dispersion method is characterized in that the aggregated particles are peptized and dispersed by applying vibration or rotation to a solution obtained by adding the ceramic raw material containing the aggregated particles to the solvent. Method.

【0011】凝集粒子を形成したセラミックス原料微粒
子に、振動または回転力といった物理的な力を加えるこ
とによっても、凝集粒子をより低次の粒子に解膠、分散
しやすくし、また再凝集を防止することができる。
By applying a physical force such as vibration or rotational force to the ceramic raw material fine particles having formed the aggregated particles, the aggregated particles are easily peptized and dispersed into lower order particles, and reagglomeration is prevented. can do.

【0012】請求項4の方法では、請求項3における上
記溶液に、陰イオン型、陽イオン型、両性型および非イ
オン型の界面活性剤から選ばれる少なくとも一種類を分
散剤として添加する。
[0012] In the method of claim 4, at least one selected from anionic, cationic, amphoteric and nonionic surfactants is added to the solution of claim 3 as a dispersant.

【0013】上記物理的分散方法に、上記化学的分散方
法で使用する上記分散剤を併用すれば、より分散効果を
高めて、効率よく上記凝集粒子を解膠、分散させること
ができる。
If the above-mentioned dispersant used in the above-mentioned chemical dispersion method is used in combination with the above-mentioned physical dispersion method, the dispersing effect can be further enhanced, and the above-mentioned aggregated particles can be peptized and dispersed efficiently.

【0014】[0014]

【発明の実施の形態】以下、本発明のセラミックスハニ
カム構造体の製造方法について詳細に説明する。本発明
において、ハニカム構造体を構成するセラミックスとし
ては、例えば、コーディエライトが挙げられる。コーデ
ィエライトは、理論組成が2MgO・2Al23 ・5
SiO2 で表され、通常、組成中にSiO2 49.0〜
53.0重量%、Al23 33.0〜37.0重量
%、MgO11.5〜15.5重量%の割合で含有す
る。コーディエライトに限らず、押出成形可能な他のセ
ラミックスよりなるハニカム構造体に適用できることは
もちろんである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a ceramic honeycomb structure of the present invention will be described in detail. In the present invention, examples of the ceramics constituting the honeycomb structure include cordierite. Cordierite theoretical composition 2MgO · 2Al 2 O 3 · 5
It is represented by SiO 2 , and usually has 49.0 SiO 2 in the composition.
53.0 wt%, Al 2 O 3 33.0~37.0 wt%, a proportion of MgO11.5~15.5 wt%. It is needless to say that the present invention can be applied not only to cordierite but also to a honeycomb structure made of other extrudable ceramics.

【0015】図1は本発明方法によるセラミックスハニ
カム構造体の製造工程を示す図である。まず、(1)に
示す工程では、出発原料となる一種類以上のセラミック
ス原料を、所望のセラミックス組成となるように秤量す
る。セラミックス原料としては、通常、目的とするセラ
ミックスを構成する金属元素の少なくとも1つを含む酸
化物、窒化物、炭化物、硼化物、水酸化物、塩化物等が
使用され、必要に応じ適宜選択することができる。例え
ば、コーディエライトハニカム構造体を製造する場合に
は、コーディエライト化原料として、タルク(Mg3
4 10(OH)2 )、カオリン(Al2 Si2
5 (OH)4 )、アルミナ(Al2 3 )、水酸化アル
ミニウム(Al(OH)3 )等が一般的に用いられ、こ
れら原料を、上記理論組成となるように調合して使用す
ればよい。
FIG. 1 is a view showing a process of manufacturing a ceramic honeycomb structure according to the method of the present invention. First, in the step shown in (1), one or more types of ceramic raw materials as starting materials are weighed so as to have a desired ceramic composition. As the ceramic raw material, an oxide, a nitride, a carbide, a boride, a hydroxide, a chloride and the like containing at least one of the metal elements constituting the target ceramics are usually used, and are appropriately selected as necessary. be able to. For example, when producing a cordierite honeycomb structure, talc (Mg 3 S
i 4 O 10 (OH) 2 ), kaolin (Al 2 Si 2 O)
5 (OH) 4 ), alumina (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), and the like are generally used. Good.

【0016】(2)に示す工程では、これらセラミック
ス原料のうち、少なくとも押出金型のスリットを通過し
ない粗大凝集粒子を形成しているセラミックス原料を、
予め溶媒中にて化学的または物理的分散方法あるいはそ
れらの両方を用いて分散させる。この工程では、少なく
とも凝集粒子を形成しているセラミックス原料を、解
膠、分散させれば効果は得られ、セラミックス原料の一
部のみが凝集している場合には、凝集粒子のみを(2)
の分散工程に供しても、あるいは凝集粒子を含むセラミ
ックス原料の全部を分散させてもよい。
In the step shown in (2), among these ceramic raw materials, at least the ceramic raw material which forms coarse aggregated particles which do not pass through the slit of the extrusion die is used.
It is dispersed in a solvent in advance using a chemical or physical dispersion method or both. In this step, the effect can be obtained by pulverizing and dispersing at least the ceramic raw material forming the aggregated particles. When only a part of the ceramic raw material is aggregated, only the aggregated particles are used (2).
Or the whole of the ceramic raw material including the aggregated particles may be dispersed.

【0017】化学的分散方法は、凝集粒子を分散剤を用
いて押出金型のスリットを通過可能な大きさに解膠、分
散させる方法で、分散剤としては、陰イオン型、陽イオ
ン型、両性型および非イオン型(エーテル、エステル、
アミン、アミド、誘導体などイオン型以外)の界面活性
剤から選ばれる少なくとも一種類が用いられ、分散させ
ようとする凝集粒子の種類に応じて、最適な分散剤の種
類や使用量が選択される。また、この時、少量の添加量
で高い分散性を示すものを用いるとより好ましい。溶媒
としては、水の他、アルコールをはじめとする有機系溶
媒が好適に使用できる。この方法により分散させる場合
には、分散剤を溶媒に添加して充分に混合した溶液に、
凝集粒子を形成しているセラミックス原料を添加して均
一になるまでさらに混合すればよく、分散剤の作用で凝
集粒子を解膠、分散しやすくするとともに、再凝集を防
止することができる。
The chemical dispersing method is a method of peptizing and dispersing aggregated particles into a size that can pass through a slit of an extrusion die by using a dispersing agent. Amphoteric and nonionic (ethers, esters,
At least one selected from surfactants other than ionic type such as amines, amides, and derivatives) is used, and the type and amount of the dispersant that are optimally selected are selected according to the type of aggregated particles to be dispersed. . At this time, it is more preferable to use a material which shows high dispersibility with a small amount of addition. As the solvent, in addition to water, organic solvents such as alcohols can be suitably used. In the case of dispersing by this method, a solution in which a dispersant is added to a solvent and mixed well,
The ceramic raw material forming the aggregated particles may be added and further mixed until the mixture becomes uniform. The action of the dispersant facilitates peptization and dispersion of the aggregated particles, and prevents reaggregation.

【0018】凝集粒子を含むセラミックス原料が複数あ
る場合には、一種類ずつそれぞれに最適な分散剤を用い
て分散させた後、続く坏土の混練工程において混合して
もよいが、同一の分散剤を使用することができる場合に
は、凝集粒子を含む複数のセラミックス原料を分散剤を
含む溶液中に同時に添加、分散させることもできる。な
お、この工程において、凝集粒子を含まない他のセラミ
ックス原料を添加することも可能であるが、その割合が
多くなると分散効果が低くなるため、分散性を低下させ
ない程度とすることが望ましい。
When there are a plurality of ceramic raw materials containing agglomerated particles, they may be dispersed one by one using an optimal dispersant, and then mixed in the subsequent kneading step of the kneaded clay. When an agent can be used, a plurality of ceramic raw materials containing aggregated particles can be simultaneously added and dispersed in a solution containing a dispersant. In this step, it is possible to add another ceramic raw material that does not contain aggregated particles. However, if the proportion is increased, the dispersing effect is reduced. Therefore, it is desirable that the dispersibility is not reduced.

【0019】物理的分散方法は、溶媒に凝集粒子を含む
セラミックス原料を添加した溶液に、公知の分散装置を
用いて振動または回転力を加える方法であり、これによ
り、溶液中の凝集粒子を形成するセラミックス原料粒子
に剪断応力を加え、物理的に凝集粒子を解膠、分散させ
る。溶媒としては、水、およびアルコール等の有機系溶
媒が好適に使用できる。分散装置は、超音波を利用した
超音波分散機など高周波数(高回転数)、高出力のもの
ほど分散効果は高くなるが、低出力、低剪断応力であっ
ても比較的短時間に解膠、分散が可能であれば、経済的
に有利である。この方法においても、凝集粒子を含むセ
ラミックス原料が複数ある場合には、一種類ずつ別々
に、あるいは、同一溶液中で同時に分散させることがで
きる。
The physical dispersion method is a method in which vibration or rotational force is applied to a solution obtained by adding a ceramic raw material containing aggregated particles to a solvent by using a known dispersing apparatus, thereby forming aggregated particles in the solution. Shear stress is applied to the ceramic raw material particles to be physically peptized and dispersed. As the solvent, water and organic solvents such as alcohols can be suitably used. As for the dispersing device, the dispersing effect is higher for high frequency (high rotational speed) and high output devices such as ultrasonic dispersing machines that use ultrasonic waves. It is economically advantageous if glue and dispersion are possible. Also in this method, when there are a plurality of ceramic raw materials containing aggregated particles, they can be dispersed separately one by one or simultaneously in the same solution.

【0020】また、物理的分散方法に、上記化学的分散
方法を併用することもできる。この場合には、上述した
陰イオン型、陽イオン型、両性型、非イオン型の少なく
とも一種類の界面活性剤を分散剤として用い、これを溶
媒に均一混合した溶液に、凝集粒子を含むセラミックス
原料を添加し、分散装置を用いて凝集粒子を解膠、分散
させる。このようにすると、分散効果が高くなり、効率
よく凝集粒子を解膠、分散できるため好ましい。
The above-mentioned chemical dispersion method can be used in combination with the physical dispersion method. In this case, at least one of the above-described anionic, cationic, amphoteric, and nonionic surfactants is used as a dispersant, and a solution obtained by uniformly mixing the same with a solvent contains a ceramic containing aggregated particles. The raw materials are added, and the aggregated particles are peptized and dispersed using a dispersion device. This is preferable because the dispersing effect is enhanced and the aggregated particles can be peptized and dispersed efficiently.

【0021】(3)の工程では、このようにして解膠、
分散されたセラミックス原料を含む溶液に、その他のセ
ラミックス原料と、成形助剤として通常使用される、保
湿剤、潤滑剤、バインダ等を添加し、さらに適量の溶媒
を加えて混練して、押出成形可能な坏土とする。保湿剤
および保湿剤としては、ワックス、水溶性多価アルコー
ル誘導体、界面活性剤等が、バインダとしては、メチル
セルロース、ポリビニルアルコール等が挙げられる。こ
れら成形助剤は、分散性に影響を与えない範囲で、
(2)の分散工程において添加することも可能である。
ここで、(3)の工程は、(2)の分散工程に引き続い
て行い、乾燥によって再凝集が生じることを防止する。
混練時には粒子が移動するためのエネルギーを大きく必
要とするため、凝集が生じにくく、このようにすること
で、原料粒子が分散した状態のまま坏土を作製すること
ができる。
In the step (3), deflocculation,
To the solution containing the dispersed ceramic raw materials, add other ceramic raw materials, humectants, lubricants, binders, etc., which are usually used as molding aids, add an appropriate amount of solvent, knead, and extrude It should be possible clay. Examples of the humectant and the humectant include wax, a water-soluble polyhydric alcohol derivative, a surfactant, and the like, and examples of the binder include methyl cellulose, polyvinyl alcohol, and the like. As long as these molding aids do not affect the dispersibility,
It can be added in the dispersing step (2).
Here, the step (3) is performed subsequent to the dispersion step (2) to prevent re-aggregation due to drying.
At the time of kneading, a large amount of energy is required for the particles to move, so that agglomeration is unlikely to occur. By doing so, the clay can be produced while the raw material particles are dispersed.

【0022】次いで、(4)の工程で、上記坏土を丸棒
に成形したものをハニカム状の狭小スリットを有する押
出成形金型を用いて押出成形する。この時、丸棒を構成
する原料粒子はいずれもスリットを通過可能な大きさと
なっているので、得られた成形体のセル壁に抜け等の不
良が生じることが防止できる。これを、(5)の工程で
乾燥させた後、(6)の工程で、所定長にカットし、
(7)の工程において、セラミックスの種類に応じた所
定の条件で焼成することによりハニカム構造体とする。
Next, in step (4), the kneaded clay is formed into a round bar by extrusion using a die having a honeycomb-shaped narrow slit. At this time, since the raw material particles constituting the round bar are all large enough to pass through the slits, it is possible to prevent the occurrence of defects such as detachment on the cell walls of the obtained molded body. This is dried in the step (5), and then cut to a predetermined length in the step (6).
In the step (7), a honeycomb structure is obtained by firing under predetermined conditions according to the type of ceramics.

【0023】以上のように、本発明方法によれば、混練
工程の前に凝集粒子を分散させる工程を導入することに
より、坏土中に原料粒子を押出成形金型のスリットを通
過可能な大きさで分散させることができる。よって、押
出成形時に凝集粒子が目詰まりして坏土の供給を阻害す
るのを防止し、セル壁の抜けがなく、しかもセル壁の薄
いセラミックスハニカム構造体を得ることができる。ま
た、粗大凝集粒子を含む原料でも、ふるい分け等を行う
ことなく使用することができるので、工程が簡略化し、
製造コストの低減が可能である。
As described above, according to the method of the present invention, by introducing the step of dispersing the agglomerated particles before the kneading step, the raw material particles can be passed through the slit of the extrusion mold in the kneaded material. Can be dispersed. Therefore, it is possible to prevent the aggregated particles from being clogged at the time of the extrusion molding and hinder the supply of the clay, and it is possible to obtain a ceramic honeycomb structure in which the cell wall does not come off and the cell wall is thin. In addition, since the raw material containing coarse aggregated particles can be used without sieving or the like, the process is simplified,
Manufacturing costs can be reduced.

【0024】[0024]

【実施例】本発明方法に基づいてコーディエライトハニ
カム構造体を製造した。コーディエライト化原料とし
て、タルク、カオリン、アルミナ、および水酸化アルミ
ニウムの各粉末を使用し、焼成後の組成がコーディエラ
イトの理論組成近傍となるように調合した。これらコー
ディエライト化原料のうち、一次粒子が針状結晶のカオ
リン(ハロイサイト)は凝集粒子を形成しており、他の
コーディエライト化原料は凝集粒子を含んでいなかっ
た。そこで、次に、凝集粒子を形成しているカオリン
を、化学的および物理的分散方法を用いて分散させる処
理を行った。この時、溶媒として、押出成形用坏土を混
練するに必要な量の水に、分散剤として陰イオン型界面
活性剤であり水系分散剤であるポリカルボン酸アンモニ
ウムを、カオリンに対して0.4重量%添加し、これら
を均一になるまで混合した。この溶液に、カオリンを添
加し、短時間で分散させるために分散装置として超音波
分散機を用いて、さらに均一になるまで混合し、凝集粒
子を解膠、分散させた。
EXAMPLE A cordierite honeycomb structure was manufactured based on the method of the present invention. Powders of talc, kaolin, alumina, and aluminum hydroxide were used as cordierite-forming raw materials, and were prepared such that the composition after firing was close to the theoretical composition of cordierite. Among these cordierite-forming raw materials, kaolin (halloysite) whose primary particles were needle-like crystals formed aggregated particles, and the other cordierite-forming raw materials did not contain aggregated particles. Therefore, next, a process of dispersing kaolin forming aggregated particles using a chemical and physical dispersion method was performed. At this time, as a solvent, an amount of water necessary for kneading the kneaded material for extrusion molding, ammonium polycarboxylate, which is an anionic surfactant and an aqueous dispersant, as a dispersant, and 0.1 to kaolin. 4% by weight were added and mixed until uniform. Kaolin was added to this solution, and the mixture was further mixed using an ultrasonic disperser as a dispersing device until the mixture became uniform to pulverize and disperse the aggregated particles in order to disperse the aggregated particles in a short time.

【0025】図2は、カオリンを解膠、分散処理する前
のレーザ散乱法による湿式法の粒度分布測定結果であ
り、図3は、上記のようにして凝集粒子を解膠、分散さ
せた後の粒度分布測定結果である。図を比較して明らか
なように、処理前には、粒度分布のピークが数10μm
付近にあり、100μmを超える粗大凝集粒子も多数含
んでいるが、解膠、分散処理を行うことによって、粒子
径が約1μm程度ないしそれ以下に小さくなっているこ
とがわかる。
FIG. 2 shows the results of measuring the particle size distribution of the wet method by the laser scattering method before peptizing and dispersing kaolin. FIG. 3 shows the results after pulverizing and dispersing the aggregated particles as described above. Of the particle size distribution measurement results. As is clear from the comparison of the figures, before the treatment, the peak of the particle size distribution is several tens of μm.
In the vicinity, there are a lot of coarse aggregated particles exceeding 100 μm, but it can be seen that the particle size is reduced to about 1 μm or less by peptization and dispersion treatment.

【0026】次に、このようにして得られた分散溶液
に、他のコーディエライト化原料であるタルク、アルミ
ナおよび水酸化アルミニウムと、コーディエライト化原
料100重量%に対して、潤滑剤および保湿剤を2.8
重量%、バインダを5.5重量%を添加し、さらに水分
を坏土状態(粘性、保形性、流動性、硬さ等)の調整量
程度に添加して、混練し、坏土を作製した。ここで、潤
滑剤および保湿剤としてはポリアルキレングリコールの
5%溶液を、バインダとしては水溶性バインダであるメ
チルセルロースを使用した。この坏土をさらに押出成形
機に適したサイズの丸棒に成形し、これをスリット幅が
50μmの押出成形金型を用いて押出成形した。次い
で、得られた成形体を乾燥させた後、所定長にカット
し、コーディエライトの焼成温度以上で焼成することに
よりコーディエライトハニカム構造体を製造した。
Next, a lubricant and a lubricant were added to the dispersion solution obtained in this manner, with talc, alumina and aluminum hydroxide, which are other cordierite-forming raw materials, and 100% by weight of the cordierite-forming raw materials. 2.8 humectant
5.5% by weight of a binder and 5.5% by weight of a binder are added, and water is further added to an adjusted amount of a clay state (viscosity, shape retention, fluidity, hardness, etc.) and kneaded to produce a clay. did. Here, a 5% solution of a polyalkylene glycol was used as a lubricant and a humectant, and methyl cellulose as a water-soluble binder was used as a binder. The kneaded material was further formed into a round bar having a size suitable for an extruder, and extruded using an extrusion die having a slit width of 50 μm. Next, the obtained molded body was dried, cut into a predetermined length, and fired at a firing temperature of cordierite or higher to produce a cordierite honeycomb structure.

【0027】図4に得られたコーディエライトハニカム
構造体の端面の状態を示す。また、比較のため、調合後
のカオリンの解膠、分散処理を実施せずに製造したハニ
カム構造体の端面の状態を、図5に示す。図4に明らか
なように、本発明方法によれば、セル抜けを生じること
なく、セル壁厚の薄いコーディエライトハニカム構造体
を製造することができる。これに対し、図5では、多数
のセル抜けが見られ、坏土中に存在する凝集粒子によ
り、押出成形時に目詰まりが生じていることがわかる。
FIG. 4 shows the state of the end face of the obtained cordierite honeycomb structure. For comparison, FIG. 5 shows a state of an end face of a honeycomb structure manufactured without performing pulverization and dispersion of kaolin after preparation. As is clear from FIG. 4, according to the method of the present invention, a cordierite honeycomb structure having a thin cell wall can be manufactured without cell loss. On the other hand, in FIG. 5, many cells are missing, and it can be seen that clogging occurs during extrusion molding due to the aggregated particles present in the clay.

【0028】以上のようにして製造されるコーディエラ
イトハニカム構造体は、セル抜けがほとんどなく、セル
壁厚が薄いので、内燃機関の排ガス浄化用触媒等におけ
る触媒担体として好適であり、熱容量を低減できるた
め、触媒の早期活性化が可能である。また、上記実施例
では、コーディエライトハニカム構造体の製造例を示し
たが、例えば、水質浄化用のろ過フィルタに用いられる
セラミックスハニカム構造体等、押出成形によりハニカ
ム状に成形されるセラミックスハニカム構造体であれ
ば、いずれにも好適に適用できることはもちろんであ
る。
The cordierite honeycomb structure manufactured as described above has almost no cell loss, and has a small cell wall thickness. Therefore, the cordierite honeycomb structure is suitable as a catalyst carrier for an exhaust gas purifying catalyst of an internal combustion engine, and has a low heat capacity. Since it can be reduced, the catalyst can be activated early. Further, in the above embodiment, a production example of a cordierite honeycomb structure was described. For example, a ceramic honeycomb structure formed into a honeycomb shape by extrusion molding, such as a ceramic honeycomb structure used for a filtration filter for water purification, and the like. Of course, any body can be suitably applied.

【0029】なお、上記実施例では、溶媒として水を使
用したこと、凝集粒子を含むコーディエライト化原料と
して針状結晶のハロイサイト(カオリン)を使用したこ
と、分散装置として超音波分散機を併用し、溶液のpH
がより中性に近いことが望ましいこと、等の理由から、
陰イオン型界面活性剤である上記分散剤を使用している
が、溶媒やセラミックス材料の種類、粒子形状、成形助
剤、分散装置等を考慮して、陰イオン型、陽イオン型、
両性型、非イオン型の界面活性剤の中から、随時適した
ものを使用することができる。
In the above embodiment, water was used as a solvent, halloysite (kaolin) having needle-like crystals was used as a cordierite-forming raw material containing agglomerated particles, and an ultrasonic disperser was used as a dispersing device. And the pH of the solution
Is desirable to be more neutral, etc.
Although the above dispersant, which is an anionic surfactant, is used, the type of the solvent or the ceramic material, the particle shape, the molding aid, the dispersing device, etc. are taken into account, and the anionic type, the cationic type,
From the amphoteric and nonionic surfactants, any suitable surfactant can be used as needed.

【0030】また、分散装置として、超音波分散機をし
たが、溶液に回転力を与える、いわゆる攪拌機(ミキサ
ー)を使用しても、同様に凝集粒子の解膠、分散効果が
得られることを確認した。ただし、高速で回転翼とセラ
ミックス原料が接触、磨耗して、回転翼材料が不純物と
して混入するおそれがあるため、その場合には、不純物
の混入のおそれのない振動を用いた超音波分散機がより
望ましい。
Although an ultrasonic dispersing machine is used as the dispersing device, it is to be noted that the so-called stirrer (mixer) for applying a rotational force to the solution can be similarly used to obtain the peptizing and dispersing effects of the aggregated particles. confirmed. However, the rotor blade and the ceramic raw material may contact and wear at high speed, and the rotor blade material may be mixed as impurities. In this case, an ultrasonic dispersing machine using vibration that does not have the possibility of mixing impurities is used. More desirable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法によるセラミックスハニカム構造体
の製造工程を示す図である。
FIG. 1 is a view showing a manufacturing process of a ceramic honeycomb structure according to a method of the present invention.

【図2】実施例における解膠、分散処理前のカオリンの
粒度分布を示す図である。
FIG. 2 is a diagram showing the particle size distribution of kaolin before peptization and dispersion treatment in an example.

【図3】実施例における解膠、分散処理後のカオリンの
粒度分布を示す図である。
FIG. 3 is a diagram showing the particle size distribution of kaolin after peptization and dispersion treatment in an example.

【図4】本発明方法によって製造したセラミックスハニ
カム構造体の端面の状態を示す図である。
FIG. 4 is a view showing a state of an end face of a ceramic honeycomb structure manufactured by the method of the present invention.

【図5】解膠、分散処理を行わずに製造したセラミック
スハニカム構造体の端面の状態を示す図である。
FIG. 5 is a diagram showing a state of an end face of a ceramic honeycomb structure manufactured without performing peptization and dispersion treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 友彦 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 村田 雅一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4G030 BA34 GA03 GA04 GA16 GA17 GA18 GA21 4G054 AA05 AB09 BD19 DA01 4G056 AA03 BA07 CB11  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tomohiko Nakanishi 14 Iwatani, Shimowasumi-cho, Nishio-shi, Aichi Prefecture Inside Japan Automotive Parts Research Institute Co., Ltd. (72) Masakazu Murata 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture F term in DENSO Corporation (reference) 4G030 BA34 GA03 GA04 GA16 GA17 GA18 GA21 4G054 AA05 AB09 BD19 DA01 4G056 AA03 BA07 CB11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所望のセラミックス組成となるように秤
量された一種類以上のセラミックス原料に溶媒を混合
し、混練して得た坏土を、ハニカム状の狭小スリットを
有する押出成形型を用いて押出成形し、焼成することに
よりセラミックスハニカム構造体を製造する方法におい
て、上記セラミックス原料を秤量した後、混練する工程
に先立って、上記セラミックス原料のうち、凝集粒子を
形成しているセラミックス原料を予め上記溶媒中にて化
学的または物理的分散方法あるいはそれらの両方を用い
て分散させることにより、上記凝集粒子を上記押出成形
型の上記スリットを通過する大きさの粒子とし、乾燥さ
せることなく、続く上記混練工程に供することを特徴と
するセラミックスハニカム構造体の製造方法。
1. A kneaded material obtained by mixing and kneading a solvent with one or more kinds of ceramic raw materials weighed so as to obtain a desired ceramic composition by using an extrusion mold having a honeycomb-shaped narrow slit. In a method of manufacturing a ceramic honeycomb structure by extrusion molding and firing, after weighing the ceramic raw material, prior to the step of kneading, the ceramic raw material forming aggregated particles among the ceramic raw materials is previously By dispersing in the solvent using a chemical or physical dispersion method or both, the aggregated particles are converted into particles having a size that passes through the slits of the extrusion mold, and are dried without drying. A method for producing a ceramic honeycomb structure, which is provided in the kneading step.
【請求項2】 上記化学的分散方法が、陰イオン型、陽
イオン型、両性型および非イオン型の界面活性剤から選
ばれる少なくとも一種類を分散剤として用い、この分散
剤を上記凝集粒子を含むセラミックス原料とともに上記
溶媒に添加して均一に混合することにより、上記凝集粒
子を解膠、分散させる方法である請求項1記載のセラミ
ックスハニカム構造体の製造方法。
2. The chemical dispersion method according to claim 1, wherein at least one selected from anionic, cationic, amphoteric, and nonionic surfactants is used as the dispersant, and the dispersant is used to disperse the aggregated particles. 2. The method for producing a ceramic honeycomb structure according to claim 1, wherein the method is a method of pulverizing and dispersing the agglomerated particles by adding to the solvent and uniformly mixing the same with the ceramic raw material to be contained.
【請求項3】 上記物理的分散方法が、上記溶媒に上記
凝集粒子を含むセラミックス原料を添加した溶液に、振
動または回転力を加えることにより、上記凝集粒子を解
膠、分散させる方法である請求項1記載のセラミックス
ハニカム構造体の製造方法。
3. The physical dispersion method according to claim 1, wherein the aggregated particles are peptized and dispersed by applying vibration or rotation to a solution obtained by adding the ceramic raw material containing the aggregated particles to the solvent. Item 3. A method for producing a ceramic honeycomb structure according to Item 1.
【請求項4】 上記溶液に、陰イオン型、陽イオン型、
両性型および非イオン型の界面活性剤から選ばれる少な
くとも一種類を分散剤として添加する請求項3記載のセ
ラミックスハニカム構造体の製造方法。
4. An anionic type, a cationic type,
4. The method for producing a ceramic honeycomb structure according to claim 3, wherein at least one selected from amphoteric and nonionic surfactants is added as a dispersant.
JP11114656A 1999-04-22 1999-04-22 Manufacture of ceramic honeycomb structural body Withdrawn JP2000301516A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11114656A JP2000301516A (en) 1999-04-22 1999-04-22 Manufacture of ceramic honeycomb structural body
DE2000112501 DE10012501A1 (en) 1999-04-22 2000-03-15 Honeycomb or web structure ceramic body production process, including chemical or physical dispersion process
BE2000/0211A BE1014620A3 (en) 1999-04-22 2000-03-22 Method for producing ceramic structures honeycomb.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11114656A JP2000301516A (en) 1999-04-22 1999-04-22 Manufacture of ceramic honeycomb structural body

Publications (1)

Publication Number Publication Date
JP2000301516A true JP2000301516A (en) 2000-10-31

Family

ID=14643279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11114656A Withdrawn JP2000301516A (en) 1999-04-22 1999-04-22 Manufacture of ceramic honeycomb structural body

Country Status (3)

Country Link
JP (1) JP2000301516A (en)
BE (1) BE1014620A3 (en)
DE (1) DE10012501A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206390A (en) * 2005-01-28 2006-08-10 National Institute Of Advanced Industrial & Technology Ceramic body, ceramic carrier having catalyst carrying capacity, ceramic catalyst body and method for producing the same
JP2007111918A (en) * 2005-10-18 2007-05-10 Yamaha Livingtec Corp Manufacturing method of molded body for baking and manufacturing method of baked body
US7503957B2 (en) 2003-04-21 2009-03-17 Ngk Insulators, Ltd. Honeycomb structure, method of manufacturing the same, die for forming, and discharge fluid purification system
JP2010513073A (en) * 2006-12-22 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド Additives containing cellulose ethers for ceramic extrusion
JP2011524846A (en) * 2008-06-19 2011-09-08 ダウ グローバル テクノロジーズ エルエルシー Additives containing cellulose ether for ceramic extrusion
JP2013520393A (en) * 2010-02-25 2013-06-06 コーニング インコーポレイテッド Compositions and methods for producing low thermal expansion ceramic bodies

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018893A1 (en) * 2003-08-20 2005-03-03 Ngk Insulators, Ltd. Method for manufacturing honeycomb formed article, method for manufacturing honeycomb filter, and honeycomb filter
BRPI0617350A2 (en) * 2005-10-12 2011-07-26 Institut National Interuniversitaire Des Silicates, Sols ET Materiaux I.N.I.Ma Method for the manufacture of refractory ceramic material, Method for the manufacture of ceramic material with multimodal porosity, Method of manufacture of ceramic material with multimodal porosity from 70% to 90%, and Method of manufacture of insulating ceramic material
CN110834375B (en) * 2019-11-26 2024-08-16 福建省东浦科技实业有限公司 Steel mould spinning ceramic forming machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256965A (en) * 1985-05-10 1986-11-14 日本碍子株式会社 Manufacture of cordierite ceramic
JPH0738930B2 (en) * 1990-03-30 1995-05-01 日本碍子株式会社 Manufacturing method of porous ceramic filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503957B2 (en) 2003-04-21 2009-03-17 Ngk Insulators, Ltd. Honeycomb structure, method of manufacturing the same, die for forming, and discharge fluid purification system
JP2006206390A (en) * 2005-01-28 2006-08-10 National Institute Of Advanced Industrial & Technology Ceramic body, ceramic carrier having catalyst carrying capacity, ceramic catalyst body and method for producing the same
JP2007111918A (en) * 2005-10-18 2007-05-10 Yamaha Livingtec Corp Manufacturing method of molded body for baking and manufacturing method of baked body
JP2010513073A (en) * 2006-12-22 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド Additives containing cellulose ethers for ceramic extrusion
KR101429927B1 (en) * 2006-12-22 2014-08-13 다우 글로벌 테크놀로지스 엘엘씨 Additives comprising cellulose ethers for ceramics extrusion
JP2011524846A (en) * 2008-06-19 2011-09-08 ダウ グローバル テクノロジーズ エルエルシー Additives containing cellulose ether for ceramic extrusion
JP2013520393A (en) * 2010-02-25 2013-06-06 コーニング インコーポレイテッド Compositions and methods for producing low thermal expansion ceramic bodies
US9227875B2 (en) 2010-02-25 2016-01-05 Corning Incorporated Compositions and methods for making low thermal expansion ceramic bodies
US9932272B2 (en) 2010-02-25 2018-04-03 Corning Incorporated Compositions and methods for making low thermal expansion ceramic bodies

Also Published As

Publication number Publication date
DE10012501A1 (en) 2000-10-26
BE1014620A3 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
EP1657039B1 (en) Method for manufacturing a ceramic honeycomb filter
DE10301959B4 (en) Honeycomb porous body, its use and method of manufacture
EP2254678B1 (en) Honeycomb manufacturing method using ground nut shells
DE102009052192B4 (en) Process for coating a ceramic honeycomb structure and coating material for the ceramic honeycomb structure
US11591265B2 (en) Batch compositions comprising pre-reacted inorganic particles and methods of manufacture of green bodies therefrom
DE102018008711A1 (en) filter
KR100704221B1 (en) Method for manufacturing silicon carbide based honeycomb structure and silicon carbide based honeycomb structure
DE102010008477B4 (en) Process for producing an aluminum titanate ceramic
JP2000301516A (en) Manufacture of ceramic honeycomb structural body
EP1316538A1 (en) Method for producing honeycomb structure
EP1428809B1 (en) Process for production of formed honeycomb body
JPWO2005090262A1 (en) Method for producing porous ceramic structure
US8926875B2 (en) Managed pore size distribution in honeycomb substrates
EP1203758B1 (en) Method for producing honeycomb ceramic structure
US5679292A (en) Process for producing cordierite ceramic body
DE102006000291B4 (en) Process for producing a ceramic structure and ceramic structure
US11542205B2 (en) Manufacturing method of honeycomb structure
KR960004387B1 (en) Process for the preparation of ceramic sintering
JP2000302533A (en) Production of cordierite ceramic body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704