JP2000291542A - Control valve for variable displacement type compressor - Google Patents

Control valve for variable displacement type compressor

Info

Publication number
JP2000291542A
JP2000291542A JP11289827A JP28982799A JP2000291542A JP 2000291542 A JP2000291542 A JP 2000291542A JP 11289827 A JP11289827 A JP 11289827A JP 28982799 A JP28982799 A JP 28982799A JP 2000291542 A JP2000291542 A JP 2000291542A
Authority
JP
Japan
Prior art keywords
valve
pressure
valve body
chamber
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11289827A
Other languages
Japanese (ja)
Other versions
JP3925006B2 (en
Inventor
Takeshi Mizufuji
健 水藤
Masahiro Kawaguchi
真広 川口
Hiroshi Ataya
拓 安谷屋
Masaki Ota
太田  雅樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP28982799A priority Critical patent/JP3925006B2/en
Priority to EP00101971A priority patent/EP1026398A3/en
Publication of JP2000291542A publication Critical patent/JP2000291542A/en
Application granted granted Critical
Publication of JP3925006B2 publication Critical patent/JP3925006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1845Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control valve allowing accurate setting of a set suction pressure, without being affected by a pressure in a crank chamber of a variable displacement type compressor. SOLUTION: In this control valve, a valve seat 54 partitions a passage chamber 53, formed in a valve housing 51 into an upper crank chamber side area 53a and a lower suction chamber side area 53b, while a valve element 60 disposed in the crank chamber side area 53a is elastically supported by first spring mechanisms 61, 62 which energize the valve element 60 in the seating direction onto the valve seat 54 and second spring mechanisms 74, 75, 76 to energize the valve element 60 to the separating direction from the valve seat 54. A bellows 61, capable of displacement in response to a crank pressure Pc, is provided in the crank chamber side area 53a. The effective area of the bellows 61 is set nearly equal to a bore diameter area of the suction chamber side area 53b (i.e., the sealing area of the valve element 60).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、容量可変型圧縮機
の制御弁に関し、特に傾動可能な斜板を収容したクラン
ク室の内圧を制御することで吐出容量を変更可能な容量
可変型斜板式圧縮機に用いられる制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control valve for a variable displacement compressor, and more particularly to a variable displacement type swash plate system capable of changing a discharge displacement by controlling an internal pressure of a crank chamber containing a tiltable swash plate. The present invention relates to a control valve used for a compressor.

【0002】[0002]

【従来の技術】圧縮機内部のクランク室に傾動可能に設
けられた斜板の角度を制御することで圧縮機からの吐出
容量を変更可能な容量可変型斜板式圧縮機が知られてい
る。この種の圧縮機では、クランク室内に満たされた冷
媒ガス圧力(クランク圧Pc)を特殊な制御弁を用いて
調節することで斜板角度を適宜調節している。例えば、
特開平6−26454号公報は、圧縮機のクランク室と
吸入室(蒸発器の出口側に連通する)とをむすぶ抽気通
路の途中に設けられた抜き側制御弁を開示する。その抜
き側制御弁では、電磁コイルへの通電量制御によって設
定吸入圧を可変とすると共に、ベローズとその可動端に
取着された弁体とを収めた部屋に吸入圧Psを導いてい
る。そして、クランク室と吸入室とを連通させる弁口
(弁孔)に対し、前記吸入圧Psに応じて弁体を接離位
置決めして該制御弁の開度を制御し、クランク室からの
ガス放出量を調節してクランク圧Pcを自律制御してい
る。この弁構造では、ベローズ自体の付勢作用によって
弁体が弁口(弁孔)を閉塞しようとするのに対し、クラ
ンク圧Pcは弁体を弁口から離す方向に作用する。
2. Description of the Related Art There is known a variable displacement swash plate type compressor in which the displacement of a compressor can be changed by controlling the angle of a swash plate provided in a crank chamber inside a compressor so as to be tiltable. In this type of compressor, the swash plate angle is appropriately adjusted by adjusting the refrigerant gas pressure (crank pressure Pc) filled in the crank chamber by using a special control valve. For example,
Japanese Patent Laying-Open No. 6-26454 discloses a vent-side control valve provided in the middle of a bleed passage connecting a crank chamber of a compressor and a suction chamber (communicating with an outlet side of an evaporator). In the removal side control valve, the set suction pressure is made variable by controlling the amount of electricity supplied to the electromagnetic coil, and the suction pressure Ps is guided to a room containing the bellows and the valve element attached to the movable end thereof. Then, the valve body is moved toward and away from the valve port (valve hole) for communicating the crank chamber with the suction chamber in accordance with the suction pressure Ps to control the opening degree of the control valve, and the gas from the crank chamber is controlled. The crank pressure Pc is controlled autonomously by adjusting the release amount. In this valve structure, the valve body tries to close the valve port (valve hole) by the urging action of the bellows itself, whereas the crank pressure Pc acts in a direction to separate the valve element from the valve port.

【0003】[0003]

【発明が解決しようとする課題】上記特開平6−264
54号公報の第0018段落には、その抜き側制御弁に
おいて弁体を含む作動機構に働く力の釣り合いが考察さ
れている。仮にその段落中に示された上向きの力に関す
る式と下向きの力に関する式とで等式を立てその等式を
吸入圧Psを左辺とする式に整理したとすると、そのP
s式の右辺にはクランク圧Pcの項が必ず含まれる。換
言すれば、電磁コイルへの通電量制御に基づいて設定吸
入圧Psetを一義的に定めようとしても、吸入圧Ps
はクランク圧Pcの影響を常に受ける。即ち、その抜き
側制御弁では弁自体の構造的要因のために、圧縮機の運
転状況によって様々に変化するクランク圧Pcが不可避
的に吸入圧Psの外乱要因となってしまう。このため、
電磁コイルへの通電量制御にどれほどの正確を期そうと
も、設定吸入圧Psetの可変精度を向上させることが
難しい。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 6-264.
In paragraph No. 0018 of JP-A-54, the balance of the forces acting on the actuating mechanism including the valve element in the withdrawal side control valve is considered. Assuming that an equation is established from an equation relating to an upward force and an equation relating to a downward force shown in the paragraph, and the equation is arranged into an equation in which the suction pressure Ps is on the left side, the P
The right side of the s expression always includes the term of the crank pressure Pc. In other words, even if the set suction pressure Pset is uniquely determined based on the control of the amount of current to the electromagnetic coil, the suction pressure Ps
Is always affected by the crank pressure Pc. That is, in the removal side control valve, the crank pressure Pc that variously changes depending on the operating condition of the compressor is inevitably a disturbance factor of the suction pressure Ps due to a structural factor of the valve itself. For this reason,
It is difficult to improve the variable accuracy of the set suction pressure Pset, no matter how accurate the control of the energization amount to the electromagnetic coil is.

【0004】本発明の目的は、容量可変型斜板式圧縮機
のクランク室の圧力(Pc)に影響されることなく、設
定吸入圧を正確に設定することが可能な容量可変型斜板
式圧縮機の制御弁を提供することにある。
An object of the present invention is to provide a variable displacement swash plate compressor capable of accurately setting a set suction pressure without being affected by the pressure (Pc) of a crank chamber of a variable displacement swash plate compressor. To provide a control valve.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、クラ
ンク室の内圧を制御することで吐出容量を変更可能な容
量可変型圧縮機に用いる制御弁であって、前記圧縮機の
クランク室と吸入室とを結ぶ抽気通路の一部となるよう
にバルブハウジング内に設けられた通路室と、前記通路
室内に設けられて該通路室をクランク室側領域と吸入室
側領域とに区分すると共に両者を連通する弁孔が形成さ
れた弁座と、前記通路室のクランク室側領域に配設され
て前記弁座に離接可能な弁体と、前記通路室のクランク
室側領域に配設されクランク室内圧に感応して変位可能
であり、且つ、前記弁体に作動連結されて該弁体を弾性
支持しながらそれを弁座に着座させる方向に常に付勢可
能な感圧部材とを備えており、前記弁体が弁座に着座す
るときの当該弁体によるシール面積と、前記感圧部材の
有効面積とが一致又は近似するように設定されているこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a control valve for use in a variable displacement compressor capable of changing a discharge capacity by controlling an internal pressure of a crank chamber. A passage chamber provided in the valve housing so as to be a part of a bleed passage connecting the suction chamber and the suction chamber; and a passage chamber provided in the passage chamber and divided into a crank chamber side area and a suction chamber side area. A valve seat formed with a valve hole communicating the two, a valve body disposed in a crank chamber side region of the passage chamber and capable of being separated from and connected to the valve seat, and a valve body disposed in a crank chamber side region of the passage chamber. A pressure-sensitive member which is displaceable in response to the pressure in the crank chamber, and which is operatively connected to the valve body, and which can be constantly biased in a direction to seat the valve body while elastically supporting the valve body. And the valve element when the valve element is seated on a valve seat. A seal area due, characterized in that the effective area of the pressure sensing member is configured to match or approximate.

【0006】この構成によれば、制御弁の弁開度つまり
通路室内での弁体の配置は少なくとも、クランク室の内
圧(クランク圧Pc)に感応する感圧部材に影響され
る。感圧部材はそれ自体が持つ付勢力(f1とする)に
よって弁体を弁座に着座させる方向に付勢する一方、感
圧部材に作用するクランク圧Pcは、弁体を弁座から離
間させる方向に感圧部材を変位させるべく働く。その力
は、感圧部材の有効面積をAとするとPc・Aで表され
る。他方、弁体はクランク室側領域のクランク圧Pcに
よって着座方向に押圧される一方で、吸入室側領域の吸
入圧Psによって弁座から離間させる方向に押圧され
る。弁体が弁座に着座するときの当該弁体によるシール
面積をBとし、弁体を弁座に着座させる方向を正方向と
して、弁体に働く力を式にまとめると、f1−Pc・A
+Pc・B−Ps・B=0となり、これを整理すると、
f1=Ps・B+Pc(A−B)となる。本発明では、
弁体によるシール面積Bと、感圧部材の有効面積Aとが
一致又は近似するように設定されるため、前記式のPc
(A−B)項はゼロ又は無視できるほどに小さいと考え
てよい。すると結局、弁体に作用する力の関係式は、f
1=Ps・Bとなり、この式にPcは全く含まれない。
即ちこの構成によれば、一見クランク圧Pcが弁体に作
用しているようで、実際にはクランク圧Pcは弁体の位
置決めに一切関与せず、弁体の位置決めに関与する力
は、感圧部材自体が弁体を弁座に着座させようとする力
f1と、吸入圧Psが弁体を弁座から離間させようとす
る力(Ps・B)だけとなる。そして、両者のバランス
に基づいて通路室内での弁体の配置が決まり、制御弁の
開度すなわち抽気通路の開度(絞り量)が決定されてク
ランク圧Pcが制御される。そして上記計算結果から、
この制御弁の弁開度調節動作によって最終的に実現され
る吸入圧(設定吸入圧)は、Ps=f1/Bとなる。こ
のように本発明によれば、弁体によるシール面積Bと感
圧部材の有効面積Aとを一致又は近似させることによ
り、クランク圧Pcの影響を弁開度決定の力学関係から
ほぼ排除できると共に、吸入圧Psの変化に呼応した自
律的な弁開度調節動作を従来例よりも正確なものとする
ことができる。
According to this configuration, the valve opening of the control valve, that is, the arrangement of the valve element in the passage chamber is affected by at least the pressure-sensitive member that is sensitive to the internal pressure of the crank chamber (crank pressure Pc). The pressure-sensitive member biases the valve body in the direction of seating on the valve seat by the biasing force (referred to as f1) of the pressure-sensitive member, while the crank pressure Pc acting on the pressure-sensitive member causes the valve body to move away from the valve seat. Acts to displace the pressure sensitive member in the direction. The force is represented by Pc · A, where A is the effective area of the pressure-sensitive member. On the other hand, the valve body is pressed in the seating direction by the crank pressure Pc in the crank chamber side region, and is pressed in the direction to separate from the valve seat by the suction pressure Ps in the suction chamber side region. When the sealing area of the valve element when the valve element is seated on the valve seat is B, and the direction in which the valve element is seated on the valve seat is the positive direction, the force acting on the valve element can be summarized as f1-Pc · A.
+ Pc.B-Ps.B = 0, and when this is arranged,
f1 = Ps · B + Pc (A−B) In the present invention,
Since the sealing area B by the valve body and the effective area A of the pressure-sensitive member are set to be equal or approximate to each other, Pc of the above equation is obtained.
The (AB) term may be considered zero or negligibly small. Then, after all, the relational expression of the force acting on the valve element is f
1 = Ps · B, and this expression does not include Pc at all.
That is, according to this configuration, at first glance, it seems that the crank pressure Pc acts on the valve body, and in fact, the crank pressure Pc does not participate in the positioning of the valve body at all, and the force involved in the positioning of the valve body is not felt. The pressure member itself has only a force f1 for seating the valve body on the valve seat, and the suction pressure Ps is only a force (Ps · B) for separating the valve body from the valve seat. The arrangement of the valve element in the passage chamber is determined based on the balance between the two, and the opening of the control valve, that is, the opening (throttle amount) of the bleed passage is determined, and the crank pressure Pc is controlled. And from the above calculation result,
The suction pressure (set suction pressure) finally achieved by the valve opening adjustment operation of the control valve is Ps = f1 / B. As described above, according to the present invention, the effect of the crank pressure Pc can be almost eliminated from the dynamic relationship of determining the valve opening by making the sealing area B of the valve body and the effective area A of the pressure-sensitive member coincide or approximate. In addition, the autonomous valve opening adjustment operation corresponding to the change in the suction pressure Ps can be made more accurate than in the conventional example.

【0007】請求項2の発明は、請求項1に記載の容量
可変型圧縮機の制御弁において、前記感圧部材は前記弁
体を弁座に着座させる方向に付勢する第1バネ機構を構
成すると共に、前記通路室の吸入室側領域の側には、前
記弁体を弁座から離間させる方向に付勢する第2バネ機
構が設けられており、前記第1バネ機構と前記第2バネ
機構とによって前記弁体は弁座に対し接離可能に弾性支
持されていることを特徴とする。
According to a second aspect of the present invention, in the control valve of the variable displacement compressor according to the first aspect, the pressure sensing member includes a first spring mechanism for urging the valve body in a direction of seating the valve body on a valve seat. In addition, a second spring mechanism for urging the valve body in a direction to separate the valve body from a valve seat is provided on the suction chamber side region side of the passage chamber, and the first spring mechanism and the second spring mechanism are provided. The valve body is elastically supported by a spring mechanism so as to be able to contact and separate from the valve seat.

【0008】この構成によれば、通路室のクランク室側
領域内に配置された弁体は、第1バネ機構と第2バネ機
構との協働により弁座に対し接離可能に弾性支持され
る。故に、吸入圧Psの僅かな変化も感知して、弁体の
配置つまり弁開度を迅速に変化させることができる。
According to this configuration, the valve body disposed in the crank chamber side region of the passage chamber is elastically supported so as to be able to contact and separate from the valve seat by cooperation of the first spring mechanism and the second spring mechanism. You. Therefore, even a slight change in the suction pressure Ps is sensed, and the arrangement of the valve body, that is, the valve opening can be quickly changed.

【0009】請求項3の発明は、請求項1又は2に記載
の容量可変型圧縮機の制御弁において、前記通路室の吸
入室側領域において前記弁体に作動連結された先端部を
有するロッドと、外部からの電気制御によって調節可能
な電磁付勢力でもって前記弁体を弁座から離す方向に前
記ロッドを付勢可能なソレノイド部とを更に備えている
ことを特徴とする。
According to a third aspect of the present invention, in the control valve of the variable displacement compressor according to the first or second aspect, a rod having a distal end operatively connected to the valve body in a suction chamber side region of the passage chamber. And a solenoid portion capable of urging the rod in a direction separating the valve body from the valve seat with an electromagnetic urging force that can be adjusted by external electric control.

【0010】この構成によれば、ソレノイド部による電
磁付勢が行われるとき、通路室内での弁体の位置決めに
関与する力は、前述の感圧部材が弁体を弁座に着座させ
ようとする力(f1)と、吸入圧が弁体を弁座から離そ
うとする力(Ps・B)と、ソレノイド部の電磁付勢力
が弁体を弁座から離そうとする力(F)の少なくとも三
者となる。故にこれら三者のバランス関係(f1=Ps
・B+F)に基づいて弁体の配置が決定され、制御弁の
開度ひいては抽気通路の開度(絞り量)が決定される。
前記電磁付勢力Fは外部からの電気制御によって調節可
能であることから、請求項3の制御弁は、外部制御によ
って設定吸入圧Pset=(f1−F)/Bを変更可能
な設定吸入圧可変型の制御弁となる。設定吸入圧可変弁
を用いれば、圧縮機の容量制御が周辺状況の変化に柔軟
に対応可能となる。
According to this configuration, when electromagnetic bias is performed by the solenoid portion, the force related to positioning of the valve body in the passage chamber is such that the above-described pressure-sensitive member attempts to seat the valve body on the valve seat. The force (f1), the force (Ps · B) that the suction pressure tries to separate the valve body from the valve seat, and the force (F) that the electromagnetic biasing force of the solenoid unit tries to separate the valve body from the valve seat. Be at least three. Therefore, the balance relationship of these three (f1 = Ps
(B + F), the arrangement of the valve body is determined, and the opening degree of the control valve and thus the opening degree (throttle amount) of the bleed passage are determined.
Since the electromagnetic urging force F can be adjusted by external electric control, the control valve according to claim 3 has a variable set suction pressure in which the set suction pressure Pset = (f1-F) / B can be changed by external control. Type control valve. If the set suction pressure variable valve is used, the capacity control of the compressor can flexibly respond to changes in the surrounding conditions.

【0011】請求項4の発明は、請求項3に記載の容量
可変型圧縮機の制御弁において、前記ロッドの先端部と
反対側の端部を収容する領域には、前記圧縮機の吸入室
の圧力(Ps)が導かれ、且つ、前記弁体によるシール
面積(B)は、前記感圧部材の有効面積(A)に一致す
ることを特徴とする(図2,図3及び図4参照)。ま
た、請求項5の発明は、請求項3に記載の容量可変型圧
縮機の制御弁において、前記ロッドの先端部と反対側の
端部を収容する領域には、前記圧縮機のクランク室の圧
力(Pc)が導かれ、且つ、前記弁体によるシール面積
(B)は、前記感圧部材の有効面積(A)と前記ロッド
の反対側端部における有効受圧面積(S)との和に一致
することを特徴とする(図5参照)。請求項4及び5は
本発明の最も好ましい態様を限定したものであり、その
技術的意義は、後記「発明の実施の形態」の説明で明ら
かとなる。尚、請求項5は、請求項1における「弁体に
よるシール面積と感圧部材の有効面積とが近似するよう
に設定」の一文における近似幅の一例を示すものであ
る。
According to a fourth aspect of the present invention, in the control valve for a variable displacement compressor according to the third aspect, the suction chamber of the compressor is provided in an area for accommodating an end of the rod opposite to a tip end thereof. , And the sealing area (B) of the valve element coincides with the effective area (A) of the pressure-sensitive member (see FIGS. 2, 3 and 4). ). According to a fifth aspect of the present invention, in the control valve of the variable displacement compressor according to the third aspect, a region for accommodating an end of the rod opposite to a tip end thereof is provided with a crank chamber of the compressor. The pressure (Pc) is guided, and the sealing area (B) of the valve element is the sum of the effective area (A) of the pressure-sensitive member and the effective pressure-receiving area (S) at the opposite end of the rod. The feature is that they match (see FIG. 5). Claims 4 and 5 limit the most preferable aspects of the present invention, and the technical significance will be clear in the description of “Embodiments of the invention” described later. Claim 5 shows an example of the approximation width in the sentence of “set so that the seal area by the valve element and the effective area of the pressure-sensitive member are approximated” in claim 1.

【0012】請求項6の発明は、請求項1〜5のいずれ
か一項に記載の容量可変型圧縮機の制御弁において、前
記容量可変型圧縮機は、外部駆動源の動力を該圧縮機に
選択的に伝達するためのクラッチを備えたものであるこ
とを特徴とする。これは、本発明の制御弁が特にクラッ
チ付きの容量可変型圧縮機に適する旨を明確化したもの
である。
According to a sixth aspect of the present invention, in the control valve of the variable displacement compressor according to any one of the first to fifth aspects, the variable displacement compressor uses power of an external drive source for the compressor. And a clutch for selectively transmitting the clutch to the clutch. This clarifies that the control valve of the present invention is particularly suitable for a variable displacement compressor with a clutch.

【0013】[0013]

【発明の実施の形態】以下、本発明を具体化した車載用
の容量可変型斜板式圧縮機に組み込まれる抜き側制御弁
の一実施形態を図面を参照しながら説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a variable displacement type swash plate type compressor mounted on a vehicle according to an embodiment of the present invention.

【0014】(圧縮機本体の概要)図1に示すように、
複数のシリンダボア1a(一つのみ図示)が形成された
シリンダブロック1のフロント側端面にはフロントハウ
ジング2が接合固定され、フロントハウジング2内には
クランク室3が区画形成されている。又、シリンダブロ
ック1のリヤ側端面には、リヤハウジング4がバルブプ
レート5を介して接合固定されている。シリンダブロッ
ク1、フロントハウジング2、リヤハウジング4及びバ
ルブプレート5は圧縮機のハウジングを構成する。バル
ブプレート5の前後には、吸入弁6aを備えた吸入プレ
ート6及び吐出弁7aを備えた吐出プレート7が介在さ
れている。前記リヤハウジング4には、内側に位置する
吐出室9と、それを取り囲むように設けられた吸入室8
とが区画されている。そして、バルブプレート5に形成
した吸入孔5aを介して吸入室8と各シリンダボア1a
とが連通され、バルブプレート5に形成した吐出孔5b
を介して各シリンダボア1aと吐出室9とが連通され
る。
(Outline of Compressor Body) As shown in FIG.
A front housing 2 is joined and fixed to a front end surface of a cylinder block 1 in which a plurality of cylinder bores 1a (only one is shown) are formed, and a crank chamber 3 is defined in the front housing 2. A rear housing 4 is joined and fixed to a rear end surface of the cylinder block 1 via a valve plate 5. The cylinder block 1, the front housing 2, the rear housing 4 and the valve plate 5 constitute a compressor housing. A suction plate 6 having a suction valve 6a and a discharge plate 7 having a discharge valve 7a are interposed in front of and behind the valve plate 5. The rear housing 4 includes a discharge chamber 9 located inside and a suction chamber 8 provided to surround the discharge chamber 9.
And are partitioned. Then, the suction chamber 8 and each cylinder bore 1a are formed through a suction hole 5a formed in the valve plate 5.
And a discharge hole 5b formed in the valve plate 5.
Each of the cylinder bores 1a and the discharge chamber 9 are communicated via the.

【0015】シリンダブロック1及びフロントハウジン
グ2には回転軸12が前後一対のベアリング13により
回転可能に支持されている。回転軸12の外端部は、電
磁クラッチ40を介して外部駆動源としての車輌エンジ
ンEに作動連結されている。電磁クラッチ40は、フロ
ントハウジング2の前方筒部上にベアリング41により
回動可能に支持されたプーリ42と、環状のソレノイド
コイル43と、回転軸12の前端域にて板バネ44付勢
された状態で前後摺動可能に設けられたアーマチュア4
5とを備えている。図1には、板バネ44の付勢力に抗
してアーマチュア45がプーリ42の端面に接合した状
態が示されている。ソレノイドコイル43への通電に基
づく電磁力によってアーマチュア45がプーリ42の端
面に吸引接合されると、動力伝達ベルト46、プーリ4
2及びアーマチュア45を介してエンジンEの駆動力が
回転軸12に伝達される。コイル43への通電停止によ
って電磁力が消失すれば、アーマチュア45は板バネ4
4の付勢力によってプーリ42から離間し動力伝達が遮
断される。このようにコイル43への通電制御によって
エンジン動力が回転軸12に選択的に伝達される。
A rotary shaft 12 is rotatably supported on the cylinder block 1 and the front housing 2 by a pair of front and rear bearings 13. The outer end of the rotating shaft 12 is operatively connected to a vehicle engine E as an external drive source via an electromagnetic clutch 40. The electromagnetic clutch 40 is biased by a pulley 42 rotatably supported by a bearing 41 on a front cylindrical portion of the front housing 2, an annular solenoid coil 43, and a leaf spring 44 in the front end region of the rotating shaft 12. Armature 4 provided to be able to slide back and forth in the state
5 is provided. FIG. 1 shows a state in which the armature 45 is joined to the end face of the pulley 42 against the urging force of the leaf spring 44. When the armature 45 is attracted and joined to the end face of the pulley 42 by an electromagnetic force based on the energization of the solenoid coil 43, the power transmission belt 46, the pulley 4
The driving force of the engine E is transmitted to the rotating shaft 12 via the armature 2 and the armature 45. If the electromagnetic force disappears due to the stoppage of the current supply to the coil 43, the armature 45
The urging force of 4 separates the pulley 42 from the pulley 42 and cuts off power transmission. Thus, the engine power is selectively transmitted to the rotating shaft 12 by controlling the energization of the coil 43.

【0016】クランク室3内において回転軸12上には
回転支持体14が一体回転可能に固定されている。この
回転支持体14とフロントハウジング2の内側面との間
にはスラストベアリング15が介在されている。更に回
転支持体14の外周側に対しシリンダブロック1に向か
って突出形成された支持アーム部14aには長孔14b
が形成され、ヒンジ機構を構成する連結ピン16を介し
て回転斜板17が前後方向に揺動可能に連結されてい
る。他方、回転軸12上にはスリーブ19が前後方向に
スライド可能に設けられ、該スリーブ19は左右一対の
連結ピン20(図1では一つのみ図示)を介して回転斜
板17のボス部17a内周部に連結されている。回転斜
板17のボス部17a外周側には揺動斜板18が相対回
転可能に設けられている。この揺動斜板18はクランク
室3内の固定位置に設けた回転防止用の案内ロッド21
により回転不能且つ前後方向の傾動可能に支持されてい
る。又、揺動斜板18は、各シリンダボア1aに収容し
た各ピストン22に対しピストンロッド23を介してそ
れぞれ連結されている。又、回転軸12にはバネ受け2
4が取り付けられ、該バネ受け24とスリーブ19との
間にはバネ25が介装されている。バネ25は好ましく
はコイルバネであり、斜板17,18をその傾角が最大
となる方向(図1では左方)へ付勢する。
A rotating support 14 is fixed on the rotating shaft 12 in the crank chamber 3 so as to be integrally rotatable. A thrust bearing 15 is interposed between the rotating support 14 and the inner surface of the front housing 2. Further, a support arm 14a protruding toward the cylinder block 1 with respect to the outer peripheral side of the rotary support 14 has an elongated hole 14b.
Are formed, and the rotary swash plate 17 is connected via a connecting pin 16 constituting a hinge mechanism to be swingable in the front-rear direction. On the other hand, a sleeve 19 is provided on the rotating shaft 12 so as to be slidable in the front-rear direction. The sleeve 19 is connected to a boss 17a of the rotating swash plate 17 through a pair of left and right connecting pins 20 (only one is shown in FIG. It is connected to the inner periphery. A swinging swash plate 18 is provided on the outer peripheral side of the boss 17a of the rotating swash plate 17 so as to be relatively rotatable. The swing swash plate 18 is provided at a fixed position in the crank chamber 3 with a guide rod 21 for preventing rotation.
, So that it is not rotatable and tiltable in the front-rear direction. Further, the swinging swash plate 18 is connected to each piston 22 housed in each cylinder bore 1a via a piston rod 23. The rotation shaft 12 has a spring receiver 2.
4 is attached, and a spring 25 is interposed between the spring receiver 24 and the sleeve 19. The spring 25 is preferably a coil spring and urges the swash plates 17, 18 in a direction (leftward in FIG. 1) in which the inclination angle is maximum.

【0017】図1の斜板式圧縮機では、エンジンEから
の動力伝達により回転軸12が回転されると、それに伴
い所定角度に傾斜した回転斜板17が回転し、それによ
って揺動斜板18が波打ち揺動運動を行う。すると、各
ピストン22が斜板傾角に応じたストロークで往復動さ
れ、各シリンダボア1aでは、吸入室8(吸入圧Psの
領域)からの冷媒ガスの吸入、圧縮、吐出室9(吐出圧
Pdの領域)への圧縮冷媒ガスの吐出が順次繰り返され
る。
In the swash plate type compressor shown in FIG. 1, when the rotating shaft 12 is rotated by the transmission of power from the engine E, the rotating swash plate 17 inclined at a predetermined angle is rotated with the rotation. Performs a waving rocking motion. Then, each piston 22 is reciprocated at a stroke corresponding to the inclination angle of the swash plate, and in each cylinder bore 1a, the suction and compression of the refrigerant gas from the suction chamber 8 (area of the suction pressure Ps) and the discharge chamber 9 (the discharge pressure Pd) are performed. The discharge of the compressed refrigerant gas to the region is sequentially repeated.

【0018】圧縮機の回転斜板17及び揺動斜板18
(以下両者を併せて「斜板」と呼ぶ)の傾角決定要因と
して、斜板回転時の遠心力に基づく回転運動のモーメン
ト、バネ25の付勢作用に基づくバネ力によるモーメン
ト、ピストンの往復慣性力によるモーメント、ガス圧に
よるモーメント等の各種のモーメントがあげられる。こ
れらモーメントの相互バランスに基づいて斜板の傾角が
決定される。ガス圧によるモーメントとは、圧縮行程に
あるシリンダボアのピストンに作用する圧縮反力と、吸
入行程にあるシリンダボアの内圧と、ピストン背圧にあ
たるクランク室3の内圧(クランク圧Pc)との相互関
係に基づいて発生するモーメントであり、クランク圧P
cに応じて傾角減少方向にも増大方向にも作用し得る。
そして、本実施形態ではクランク圧Pcを大きく維持す
ることでガス圧によるモーメントが前記回転運動及びバ
ネ力による傾角増大方向のモーメントを凌駕し、斜板を
最小傾角(例えば回転軸12に直交する面と斜板とのな
す角が3°〜5°)に設定できるように設計されてい
る。又、クランク圧Pcを小さくし、ガス圧によるモー
メントと、前記回転運動及びバネ力によるモーメントと
をバランスさせることで斜板の傾角を前記最小傾角と最
大傾角との間の任意の角度に設定することができるよう
になっている。このように、クランク圧Pcの制御に基
づいて斜板の傾角が決定され、その傾角に応じて各ピス
トン22のストローク即ち圧縮機の吐出容量が可変調節
される。
Rotating swash plate 17 and swinging swash plate 18 of the compressor
Factors that determine the tilt angle of the swash plate (hereinafter referred to as a “swash plate”) include the moment of the rotational motion based on the centrifugal force when the swash plate rotates, the moment due to the spring force based on the urging action of the spring 25, and the reciprocating inertia of the piston There are various moments such as a moment due to a force and a moment due to a gas pressure. The inclination angle of the swash plate is determined based on the mutual balance of these moments. The moment due to the gas pressure refers to the mutual relation between the compression reaction force acting on the piston of the cylinder bore in the compression stroke, the internal pressure of the cylinder bore in the suction stroke, and the internal pressure of the crank chamber 3 (crank pressure Pc) corresponding to the piston back pressure. Is a moment generated based on the crank pressure P
Depending on c, it can act in both the inclination decreasing direction and the increasing direction.
In the present embodiment, by maintaining the crank pressure Pc large, the moment due to the gas pressure exceeds the moment in the direction of increasing the tilt angle due to the rotational motion and the spring force, and the swash plate is set to the minimum tilt angle (for example, a plane perpendicular to the rotation axis 12). The angle between the swash plate and the swash plate is set to 3 ° to 5 °). Further, the inclination of the swash plate is set to an arbitrary angle between the minimum inclination and the maximum inclination by reducing the crank pressure Pc and balancing the moment due to the gas pressure and the moment due to the rotational movement and the spring force. You can do it. As described above, the inclination angle of the swash plate is determined based on the control of the crank pressure Pc, and the stroke of each piston 22, that is, the displacement of the compressor is variably adjusted according to the inclination angle.

【0019】なお、図1の圧縮機におけるクランク圧P
cの制御構成は、クランク室3と吸入室8とをつなぐよ
うに圧縮機ハウジング内に設けられた通路58,59
と、その通路58,59の途中に介在された抜き側制御
弁50とからなる。このクランク圧の制御構成について
は後ほど詳述する。
The crank pressure P in the compressor shown in FIG.
The control configuration of c is such that passages 58, 59 provided in the compressor housing to connect the crank chamber 3 and the suction chamber 8 are provided.
And a withdrawal-side control valve 50 interposed in the passages 58 and 59. The control configuration of the crank pressure will be described later in detail.

【0020】図1及び図2に示す圧縮機の吐出室9と吸
入室8とは外部冷媒回路30を介して接続されている。
この外部冷媒回路30は該圧縮機とともに車輌用空調シ
ステムの冷房回路を構成する。外部冷媒回路30には、
凝縮器(コンデンサ)31、温度式の膨張弁32及び蒸
発器(エバポレータ)33が設けられている。膨張弁3
2の開度は、蒸発器33の出口側に設けられた感温筒3
2aの検知温度および蒸発圧力に基づいてフィードバッ
ク制御され、膨張弁32は熱負荷に見合った液冷媒を蒸
発器33に供給する。これにより、蒸発器33での冷媒
の蒸発状態が適度な過熱度を持つように外部冷媒回路3
0における冷媒流量が調節される。
The discharge chamber 9 and the suction chamber 8 of the compressor shown in FIGS. 1 and 2 are connected via an external refrigerant circuit 30.
The external refrigerant circuit 30 constitutes a cooling circuit of the vehicle air conditioning system together with the compressor. In the external refrigerant circuit 30,
A condenser (condenser) 31, a temperature-type expansion valve 32, and an evaporator (evaporator) 33 are provided. Expansion valve 3
The opening degree of the thermosensitive cylinder 3 provided on the outlet side of the evaporator 33 is
The feedback control is performed based on the detected temperature and the evaporation pressure in 2a, and the expansion valve 32 supplies the liquid refrigerant corresponding to the heat load to the evaporator 33. Thereby, the external refrigerant circuit 3 is controlled so that the evaporation state of the refrigerant in the evaporator 33 has an appropriate degree of superheat.
The refrigerant flow at zero is adjusted.

【0021】更に図2に示すように、蒸発器33の近傍
には温度センサ34が設置されている。この温度センサ
34は蒸発器33の温度を検出し、その蒸発器温度情報
を制御コンピュータ38に提供する。この制御コンピュ
ータ38は、車輌用空調システムの冷暖房に関する一切
の制御を司る。制御コンピュータ38の入力側には、温
度センサ34の他に、車輌の室内温度を検出する室温セ
ンサ35、車輌の室内温度を設定するための室温設定器
36、空調システム作動スイッチ37およびエンジンE
の電子制御装置(ECU)が接続されている。他方、制
御コンピュータ38の出力側には、前述の電磁クラッチ
40のソレノイドコイル43への通電を制御する駆動回
路39Aと、後述する制御弁50のコイル77への通電
を制御する駆動回路39Bが接続されている。制御コン
ピュータ38は、温度センサ34から得られる蒸発器温
度、室温センサ35から得られる車室内温度、室温設定
器36によって設定された所望室温、空調システム作動
スイッチ37からのON/OFF設定状況、及び、EC
UからエンジンEの起動・停止やエンジン回転数に関す
る情報等の外部情報に基づき、電磁クラッチ40を制御
すると共に、制御弁50のコイル77への適切な通電量
Iを演算する。そして、その演算した電流値の電流を駆
動回路39Bから制御弁50に供給させ、制御弁50の
開度あるいは設定吸入圧Psetを外部制御する。
Further, as shown in FIG. 2, a temperature sensor 34 is provided near the evaporator 33. The temperature sensor 34 detects the temperature of the evaporator 33 and provides the evaporator temperature information to the control computer 38. The control computer 38 controls all controls related to cooling and heating of the vehicle air conditioning system. On the input side of the control computer 38, in addition to the temperature sensor 34, a room temperature sensor 35 for detecting the vehicle indoor temperature, a room temperature setting device 36 for setting the vehicle indoor temperature, an air conditioning system operation switch 37, and the engine E
Electronic control unit (ECU) is connected. On the other hand, a drive circuit 39A for controlling the energization of the solenoid coil 43 of the electromagnetic clutch 40 and a drive circuit 39B for controlling the energization of the coil 77 of the control valve 50 described later are connected to the output side of the control computer 38. Have been. The control computer 38 controls the evaporator temperature obtained from the temperature sensor 34, the vehicle interior temperature obtained from the room temperature sensor 35, the desired room temperature set by the room temperature setting device 36, the ON / OFF setting status from the air conditioning system operation switch 37, and , EC
U controls the electromagnetic clutch 40 based on external information such as information on the start / stop of the engine E and the engine speed from U, and calculates an appropriate amount of current I to the coil 77 of the control valve 50. Then, the current having the calculated current value is supplied from the drive circuit 39B to the control valve 50, and the opening of the control valve 50 or the set suction pressure Pset is externally controlled.

【0022】(抜き側制御弁50の構成)クランク室3
からの冷媒ガスの放出量を調節することでクランク圧P
cを制御する抜き側制御弁50の構成を図2を参照して
説明する。なお、図1の斜板式圧縮機におけるクランク
室3へのガス供給は、圧縮行程にあるピストン22とシ
リンダボア1aの内周壁との間からクランク室3へ漏れ
出るブローバイガス(及び/又は図示しない絞り付き給
気通路)によって確保される。
(Structure of the withdrawal side control valve 50) Crank chamber 3
Pressure by adjusting the amount of refrigerant gas released from the
The configuration of the extraction side control valve 50 for controlling c will be described with reference to FIG. The gas supply to the crank chamber 3 in the swash plate type compressor shown in FIG. 1 is performed by blow-by gas (and / or a throttle (not shown)) leaking into the crank chamber 3 from between the piston 22 and the inner peripheral wall of the cylinder bore 1a in the compression stroke. Attached air supply passage).

【0023】抜き側制御弁50は、バルブハウジング5
1内に設けられた弁機構部52と、その下側に接合され
たソレノイド部70とを備えている。バルブハウジング
51は、本体部51aと、その上に設けられたキャップ
状のカバー部51bとからなり、バルブハウジング51
内には、通路室としての弁室53が区画形成されてい
る。弁室53を区画するバルブハウジング本体部51a
の内周壁には、弁室53の軸方向略中央において環状の
弁座部54が形成され、その弁座部54の中心には弁孔
55が存在している。そして、その弁座部54を境界と
して弁室53は上部領域(クランク室側領域)53aと
下部領域(吸入室側領域)53bとに区分されている。
The removal side control valve 50 is connected to the valve housing 5.
1 is provided with a valve mechanism section 52 provided therein and a solenoid section 70 joined to a lower side thereof. The valve housing 51 includes a main body 51a and a cap-shaped cover 51b provided thereon.
Inside, a valve chamber 53 is defined as a passage chamber. Valve housing body 51a that partitions valve chamber 53
An annular valve seat 54 is formed in the inner peripheral wall substantially at the center of the valve chamber 53 in the axial direction, and a valve hole 55 exists at the center of the valve seat 54. The valve chamber 53 is divided into an upper area (crank chamber side area) 53a and a lower area (suction chamber side area) 53b with the valve seat 54 as a boundary.

【0024】弁室53を区画するバルブハウジング51
の周壁には、弁室の上部領域53aに開口形成された導
入ポート56と、弁室の下部領域53bに開口形成され
た導出ポート57とが設けられている。導入ポート56
は、圧縮機内に設けられた通路58を介して弁室の上部
領域53aをクランク室3に連通する。導出ポート57
は、圧縮機内に設けられた通路59を介して弁室の下部
領域53bを吸入室8に連通する。こうしてクランク室
3と吸入室8との間には、通路58、導入ポート56、
弁室53、導出ポート57及び通路59からなる抽気通
路が設定されている。
The valve housing 51 for partitioning the valve chamber 53
Are provided with an introduction port 56 formed in the upper region 53a of the valve chamber and an outlet port 57 formed in the lower region 53b of the valve chamber. Introduction port 56
Connects the upper region 53a of the valve chamber to the crank chamber 3 through a passage 58 provided in the compressor. Outgoing port 57
Communicates the lower region 53b of the valve chamber with the suction chamber 8 via a passage 59 provided in the compressor. Thus, between the crank chamber 3 and the suction chamber 8, the passage 58, the introduction port 56,
A bleed passage including the valve chamber 53, the outlet port 57, and the passage 59 is set.

【0025】弁室の上部領域53aには、弁体60が垂
直方向(制御弁の軸方向)に移動可能に収容され、その
移動に応じて弁体60は弁座部54に接離可能となって
いる。弁体60が弁座部54に着座すると、弁体60に
よって弁孔55が閉塞され、前記上部領域53aと下部
領域53bとの連通が遮断される。尚、弁体60は、図
2に示すように弁体60の上方に突出した係入凸部60
aと下方に開口した係入凹部60bとを備えている。更
に、弁室の上部領域53aには感圧部材としてのベロー
ズ61が設けられている。ベローズ61の上端部は、バ
ルブハウジングカバー部51bの頭頂に形成された窪み
に固定され、ベローズ61の上端部が固定端となり下端
部が可動端となっている。ベローズ61内は真空又は減
圧状態にされると共に、ベローズ61内には伸張バネ6
2が配設されている。この伸張バネ62はベローズ61
の下端(可動端)を下方(伸張方向)に付勢する。ベロ
ーズ61の可動端には下側に開口した凹部が形成され、
その凹部内にはボール63及び弁体60の係入凸部60
aが係入されている。それ故、ベローズ61の可動端と
弁体60とは互いに力を伝達し合う関係にある。従っ
て、ベローズ61は雰囲気圧力(この場合クランク圧P
c)に感応して伸縮(即ち変位)することができると共
に、弁体60に作動連結されて弁体60を弾性支持す
る。更に伸張バネ62を内包したベローズ61は弁体6
0を弁座部54に着座する方向に常に付勢する。なお、
感圧部材としてのベローズ61の有効面積Aと、前記弁
孔55(又は弁室の下部領域53b)の口径面積B(即
ち弁体60が弁座部54に着座したときの弁体によるシ
ール面積B)とは等しくされている(A=B)。
The valve body 60 is accommodated in the upper region 53a of the valve chamber so as to be movable in the vertical direction (the axial direction of the control valve), and the valve body 60 can be moved toward and away from the valve seat 54 in accordance with the movement. Has become. When the valve body 60 is seated on the valve seat portion 54, the valve hole 55 is closed by the valve body 60, and the communication between the upper region 53a and the lower region 53b is cut off. The valve body 60 is provided with an engaging projection 60 protruding above the valve body 60 as shown in FIG.
a and a recess 60b that opens downward. Further, a bellows 61 as a pressure-sensitive member is provided in the upper region 53a of the valve chamber. The upper end of the bellows 61 is fixed to a recess formed at the top of the valve housing cover 51b, and the upper end of the bellows 61 is a fixed end and the lower end is a movable end. The bellows 61 is evacuated or decompressed, and the bellows 61 has an extension spring 6.
2 are provided. This extension spring 62 is a bellows 61
Is urged downward (extending direction). At the movable end of the bellows 61, a concave portion opened to the lower side is formed,
In the recess, the ball 63 and the engagement protrusion 60 of the valve element 60 are provided.
a is engaged. Therefore, the movable end of the bellows 61 and the valve body 60 have a relationship of mutually transmitting forces. Therefore, the bellows 61 is under atmospheric pressure (in this case, the crank pressure P
c) can be expanded and contracted (that is, displaced) in response to (c), and is operatively connected to the valve body 60 to elastically support the valve body 60. Further, the bellows 61 containing the extension spring 62
0 is always urged in the direction of sitting on the valve seat 54. In addition,
The effective area A of the bellows 61 as a pressure sensing member, and the diameter area B of the valve hole 55 (or the lower region 53b of the valve chamber) (ie, the sealing area by the valve when the valve 60 is seated on the valve seat 54). B) (A = B).

【0026】制御弁50の下半部を占めるソレノイド部
70は、有底円筒状の収容筒71を備えている。収容筒
71の上部には固定鉄心72が嵌合され、この嵌合によ
り収容筒71内にはソレノイド室73が区画されてい
る。ソレノイド室73には、プランジャとしての可動鉄
心74が垂直方向に移動可能に収容されている。可動鉄
心74はその中心に支持ピン74aを備え両者は一体化
されている。又、固定鉄心72の中心には、伝達部材と
してのソレノイドロッド75が垂直方向に移動可能に支
持されている。このソレノイドロッド75の一端(上
端)は、前記弁室の下部領域53bに進入して前記弁体
60の係入凹部60b内に係入している。他方、ソレノ
イドロッド75の他端(下端)はソレノイド室73内に
配置されて可動鉄心74の上面に接触している。それ
故、ベローズ61の可動端、弁体60、ソレノイドロッ
ド75及び可動鉄心74の四者は互いに軸方向の力を伝
達し合う関係にある。尚、制御弁内に配設されたソレノ
イドロッド75の外周面と、それに摺接状態で対向する
バルブハウジング51及び固定鉄心72の内周面との間
には微少な隙間CLが確保されている。この隙間CLを
介して前記弁室の下部領域53bとソレノイド室73が
連通している。つまりソレノイド室73には、前記弁室
の下部領域53bと同様、吸入圧Psが及んでいる(図
3参照)。
The solenoid 70 occupying the lower half of the control valve 50 has a cylindrical housing cylinder 71 with a bottom. A fixed iron core 72 is fitted to the upper part of the housing cylinder 71, and a solenoid chamber 73 is defined in the housing cylinder 71 by this fitting. A movable iron core 74 as a plunger is accommodated in the solenoid chamber 73 so as to be movable in the vertical direction. The movable iron core 74 has a support pin 74a at the center thereof, and both are integrated. At the center of the fixed iron core 72, a solenoid rod 75 as a transmission member is supported movably in the vertical direction. One end (upper end) of the solenoid rod 75 enters the lower region 53b of the valve chamber and is engaged in the engagement recess 60b of the valve body 60. On the other hand, the other end (lower end) of the solenoid rod 75 is disposed in the solenoid chamber 73 and is in contact with the upper surface of the movable iron core 74. Therefore, the movable end of the bellows 61, the valve body 60, the solenoid rod 75, and the movable iron core 74 are in a relationship of mutually transmitting an axial force. Note that a small gap CL is secured between the outer peripheral surface of the solenoid rod 75 disposed in the control valve and the inner peripheral surfaces of the valve housing 51 and the fixed iron core 72 which are in sliding contact with the solenoid rod 75. . The lower area 53b of the valve chamber communicates with the solenoid chamber 73 through the gap CL. That is, the suction pressure Ps is applied to the solenoid chamber 73 as in the lower area 53b of the valve chamber (see FIG. 3).

【0027】図2に示すように、可動鉄心74の内部
(又は下側)には支持ピン74aの周りに付勢バネ76
が配設されている。この付勢バネ76は、可動鉄心74
及びソレノイドロッド75を上方(即ち弁体60に向か
う方向)に付勢する。それ故、弁体60は、ベローズ6
1の可動端を介してベローズ61自体及び伸張バネ62
からの下向き付勢力と、可動鉄心74及びロッド75を
介して付勢バネ76からの上向き付勢力とを受けてお
り、上下二方向の付勢力バランスに基づいて弁室53内
での初期位置が決定されている。換言すれば、ベローズ
61、弁体60、ソレノイドロッド75及び可動鉄心7
4の四者の間には常に作動連結関係が存在する。加え
て、固定鉄心72及び可動鉄心74の周囲には、これら
鉄心72,74を跨ぐ範囲においてコイル77が設けら
れている。このコイル77には制御コンピュータ38の
指令に基づき駆動回路39Bから所定電流が供給され、
コイル77はその供給電流量Iに応じた大きさの電磁力
を発生する。その電磁力によって可動鉄心74が固定鉄
心72に吸引されてソレノイドロッド75が上動し、そ
の上動に伴って弁体60が上方付勢される。
As shown in FIG. 2, a biasing spring 76 is provided inside (or below) the movable core 74 around a support pin 74a.
Are arranged. This urging spring 76 is provided with a movable iron core 74.
And urges the solenoid rod 75 upward (that is, in the direction toward the valve body 60). Therefore, the valve body 60 is
The bellows 61 itself and the extension spring 62 through one movable end
And the upward biasing force from the biasing spring 76 via the movable iron core 74 and the rod 75, and the initial position in the valve chamber 53 is adjusted based on the balance of the upward and downward biasing forces. Has been determined. In other words, the bellows 61, the valve body 60, the solenoid rod 75, and the movable core 7
There is always a working connection between the four. In addition, a coil 77 is provided around the fixed iron core 72 and the movable iron core 74 in a range over the iron cores 72 and 74. A predetermined current is supplied to the coil 77 from a drive circuit 39B based on a command from the control computer 38.
The coil 77 generates an electromagnetic force having a magnitude corresponding to the supply current amount I. The movable core 74 is attracted to the fixed core 72 by the electromagnetic force, and the solenoid rod 75 moves upward, and the valve body 60 is urged upward with the upward movement.

【0028】抜き側制御弁50の開度、即ち抽気通路の
開度は、制御弁50を構成する各種バネ材62,76、
クランク圧Pcに影響されるベローズ61の伸張付勢力
およびソレノイド部70の電磁付勢力のバランスによっ
て決定されるが、前記電磁付勢力を外部から電気的に可
変調節することで制御弁50の設定吸入圧Psetを適
宜変更でき、制御弁の作動特性を状況に応じて変えるこ
とができる。なお、制御弁50では、ベローズ61及び
伸張バネ62により弁体60を弁座部54に着座させる
方向に付勢する第1バネ機構が構成され、プランジャ7
4、ロッド75及び付勢バネ76により弁体60を弁座
部54から離間させる方向に付勢する第2バネ機構が構
成され、両バネ機構により弁体60を弁座部54に接離
可能に弾性支持する弾性支持機構が構成される。
The degree of opening of the extraction side control valve 50, that is, the degree of opening of the bleed passage, is determined by various spring members 62, 76 constituting the control valve 50,
It is determined by the balance between the extension urging force of the bellows 61 affected by the crank pressure Pc and the electromagnetic urging force of the solenoid unit 70, and the electromagnetic urging force is electrically variably adjusted from the outside to set the suction of the control valve 50. The pressure Pset can be changed as appropriate, and the operating characteristics of the control valve can be changed according to the situation. In the control valve 50, a first spring mechanism that biases the valve body 60 in a direction in which the valve body 60 is seated on the valve seat 54 by the bellows 61 and the extension spring 62 is configured.
4. A second spring mechanism for urging the valve body 60 away from the valve seat 54 by the rod 75 and the urging spring 76 is configured, and the valve body 60 can be brought into and out of contact with the valve seat 54 by both spring mechanisms. An elastic support mechanism for elastically supporting the elastic member is formed.

【0029】(圧縮機の容量制御に関する作用)空調シ
ステム作動スイッチ37がOFFされた状態では電磁ク
ラッチ40は遮断状態にありエンジンEから圧縮機への
動力供給はなく圧縮機は運転を停止し、又、制御弁50
のコイル77への通電もない。圧縮機の運転停止状態が
長時間続いた場合、圧縮機の各室3,8,9は均圧化し
斜板は初期角度に保持される。
(Operation Regarding Compressor Capacity Control) When the air-conditioning system operation switch 37 is turned off, the electromagnetic clutch 40 is in a disconnected state, power is not supplied from the engine E to the compressor, and the compressor stops operating. Also, the control valve 50
No current is supplied to the coil 77. When the operation of the compressor is stopped for a long time, the pressures in the chambers 3, 8, and 9 of the compressor are equalized, and the swash plate is maintained at the initial angle.

【0030】エンジンEの駆動中で空調システム作動ス
イッチ37がONの場合、制御コンピュータ38は、電
磁クラッチのソレノイドコイル43への通電を行いエン
ジンEと圧縮機とを接続して圧縮機を運転すると共に、
制御弁50のコイル77への通電を行う。コイル77へ
の通電量Iは、室温センサ35の検出室温と室温設定器
36の設定温度との温度格差や温度センサ34からの蒸
発器温度情報等に基づき、空調制御プログラムに予め定
められた計算方式に従って演算される。すると、両鉄心
72,74間には通電量Iに応じた電磁吸引力が生じ、
それに応じてソレノイドロッド75の上向き電磁付勢力
Fが決定される。その結果、制御弁50は前記電磁付勢
力Fに応じた弁開度に調節され、それに応じてクランク
圧Pc及び吸入圧Psがそれぞれ決まってくる。この点
を以下に説明する。
When the air conditioner system operation switch 37 is ON while the engine E is being driven, the control computer 38 energizes the solenoid coil 43 of the electromagnetic clutch to connect the engine E and the compressor to operate the compressor. Along with
The coil 77 of the control valve 50 is energized. The amount of current I to the coil 77 is calculated in advance in the air-conditioning control program based on the temperature difference between the detected room temperature of the room temperature sensor 35 and the set temperature of the room temperature setting device 36, the evaporator temperature information from the temperature sensor 34, and the like. It is calculated according to the method. Then, an electromagnetic attractive force corresponding to the amount of current I is generated between the two cores 72 and 74,
Accordingly, the upward electromagnetic urging force F of the solenoid rod 75 is determined. As a result, the control valve 50 is adjusted to a valve opening corresponding to the electromagnetic urging force F, and the crank pressure Pc and the suction pressure Ps are determined accordingly. This will be described below.

【0031】(クランク圧Pcの制御に基づく斜板の傾
角制御):コイル77への通電によって制御弁50が開
かれると、抽気通路を介してクランク室3から吸入室8
へガスが放出される。弁開度が大きいためにブローバイ
ガス等によるクランク室3へのガス供給量よりも抽気通
路を介してのガス放出量の方が優る場合には、クランク
圧Pcは低下傾向となる(斜板傾角は増大傾向)。他
方、弁開度が小さいために抽気通路を介してのガス放出
量よりもブローバイガス等によるクランク室3へのガス
供給量の方が優る場合には、クランク圧Pcは上昇傾向
となる(斜板傾角は減少傾向)。かかる自律的な弁開度
調節の結果、クランク室3へのガス供給量と抽気通路経
由のガス放出量とが釣り合うと、クランク圧Pcは一定
化し、そのクランク圧Pcに応じた角度に斜板傾角が調
節される。
(Tilt control of the swash plate based on control of crank pressure Pc): When the control valve 50 is opened by energizing the coil 77, the crank chamber 3 is moved from the crank chamber 3 to the suction chamber 8 via a bleed passage.
Gas is released to If the amount of gas released through the bleed passage is greater than the amount of gas supplied to the crank chamber 3 by blow-by gas or the like due to a large valve opening, the crank pressure Pc tends to decrease (swash plate tilt angle). Is increasing). On the other hand, if the amount of gas supplied to the crank chamber 3 by blow-by gas or the like is greater than the amount of gas released through the bleed passage due to the small valve opening, the crank pressure Pc tends to increase (inclined). The plate inclination angle is decreasing.) As a result of such autonomous valve opening adjustment, when the amount of gas supplied to the crank chamber 3 and the amount of gas discharged through the bleed passage are balanced, the crank pressure Pc is made constant, and the swash plate is set at an angle corresponding to the crank pressure Pc. The tilt is adjusted.

【0032】(クランク圧Pcに影響されない吸入圧P
sの設定):この点を図3を参照して説明する。図3
は、制御弁内部機構の力学的関係を単純化して模式的に
表現したものである。図3では、ベローズ61の可動端
と弁体60とを細い線材で連結したように描いている
が、これは一種の等価表現でありこの等価図に基づいて
図2の弁体60及びベローズ61に作用するクランク圧
Pcの影響を考察しても結論は同じである。図3では、
ベローズ61と伸張バネ62とを併せたベローズ全体の
下向き付勢力をf1、付勢バネ76の上向き付勢力をf
2、コイル77への通電時における可動鉄心74の電磁
吸引力(ソレノイドロッド75の上向き付勢力)をFと
している。前述のようにベローズ61の有効面積はA、
弁室の下部領域53bの口径面積(つまり弁体60によ
るシール面積)はBである。又、ソレノイドロッド75
の軸直交断面積をSとし、当該ロッド75及び可動鉄心
74の全表面に作用する吸入圧Psの影響がロッドの下
端部端面に集約されると考えた場合、一体状態で動作す
るロッド75及び可動鉄心74の吸入圧Psに関する有
効受圧面積は、ロッド75の軸直交断面積Sに一致す
る。とすれば、ロッド下端部に作用する吸入圧Psは、
(Ps・S)相当の力でソレノイドロッド75を上向き
付勢する。
(Suction pressure P not affected by crank pressure Pc
Setting of s): This point will be described with reference to FIG. FIG.
Is a simplified schematic representation of the mechanical relationship of the control valve internal mechanism. In FIG. 3, the movable end of the bellows 61 and the valve body 60 are depicted as being connected by a thin wire, but this is a kind of equivalent expression, and based on this equivalent diagram, the valve body 60 and the bellows 61 of FIG. The conclusion is the same even if the effect of the crank pressure Pc acting on is considered. In FIG.
The downward urging force of the entire bellows including the bellows 61 and the extension spring 62 is f1, and the upward urging force of the urging spring 76 is f.
2. The electromagnetic attraction force (upward urging force of the solenoid rod 75) of the movable iron core 74 when the coil 77 is energized is denoted by F. As described above, the effective area of the bellows 61 is A,
The bore area of the lower region 53b of the valve chamber (that is, the sealing area by the valve body 60) is B. Also, the solenoid rod 75
Let S be the cross-sectional area perpendicular to the axis of the rod, and consider that the influence of the suction pressure Ps acting on the entire surface of the rod 75 and the movable iron core 74 is concentrated on the lower end surface of the rod. The effective pressure receiving area of the movable iron core 74 with respect to the suction pressure Ps matches the cross-sectional area S of the rod 75 orthogonal to the axis. Then, the suction pressure Ps acting on the lower end of the rod is
The solenoid rod 75 is urged upward by a force equivalent to (Ps · S).

【0033】すると、弁体60がソレノイド部70から
受ける開弁方向(上向き)の付勢力は、(F+f2+P
s・S)である。又、弁体60がベローズ61から受け
る閉弁方向(下向き)の付勢力は、(f1−Pc・A)
である。更に弁体60の上面側には閉弁方向(下向き)
の力Pc・Bが作用し、弁体60の下面側には開弁方向
(上向き)の力Ps(B−S)が作用する。これらの力
の間には次の数1に示す関係が成立し、それを整理する
と数2の式のようになる。なお、数1式を整理する過程
で有効受圧面積Sを含む項がきれいに消去される。
Then, the urging force in the valve opening direction (upward) received by the valve body 60 from the solenoid portion 70 is (F + f2 + P
s · S). Further, the urging force in the valve closing direction (downward) received by the valve body 60 from the bellows 61 is (f1-Pc · A).
It is. Further, the valve closing direction (downward) is on the upper surface side of the valve body 60.
A force Pc (B−S) acts in the valve opening direction (upward) on the lower surface side of the valve body 60. The following relationship expressed by the following equation 1 is established between these forces. Note that the term including the effective pressure receiving area S is clearly eliminated in the process of rearranging the equation (1).

【0034】[0034]

【数1】 (Equation 1)

【0035】[0035]

【数2】 本実施形態ではA=Bとされているから、この面積条件
を数2式に代入するとPc(B−A)項がゼロとなり、
吸入圧Psは次の数3式のように表される。
(Equation 2) In this embodiment, A = B, so if this area condition is substituted into Equation 2, the Pc (BA) term becomes zero,
The suction pressure Ps is expressed by the following equation (3).

【0036】[0036]

【数3】 数3の式中、f1,f2及びB(=A)は機械構成上予
め定められた定数値と見ることができ、且つ電磁付勢力
Fはコイル77への通電量Iの関数である。それ故、制
御弁50の弁開度調節動作に起因して最終的に実現され
る吸入圧Psつまり設定吸入圧はコイル77への通電量
Iによって可変設定でき、クランク圧Pcに依存しない
物理量となる。なお、この式からわかるように、制御弁
50では、コイル77への通電を停止した場合にはF=
0となって吸入圧Psが最大となり、コイル77への通
電量を増すに連れ吸入圧Psが低下傾向となる。
(Equation 3) In Equation 3, f1, f2, and B (= A) can be regarded as predetermined constant values in the mechanical configuration, and the electromagnetic urging force F is a function of the amount of current I to the coil 77. Therefore, the suction pressure Ps finally realized as a result of the valve opening degree adjustment operation of the control valve 50, that is, the set suction pressure, can be variably set by the energization amount I to the coil 77, and the physical amount independent of the crank pressure Pc Become. As can be seen from this equation, in the control valve 50, when energization of the coil 77 is stopped, F =
0, the suction pressure Ps becomes maximum, and the suction pressure Ps tends to decrease as the amount of current supplied to the coil 77 increases.

【0037】このように、制御コンピュータ38が各種
入力情報に基づいてコイル77への通電量Iを演算して
制御弁50の開度を外部制御することにより、斜板傾角
を調節して圧縮機の吐出容量を可変調節することができ
ると共に、蒸発器33の出口圧力Ps’にほぼ等しい吸
入室8の内圧(吸入圧Ps)を所望の圧力値(即ち設定
吸入圧Pset)付近に維持することが可能となる。制
御弁50及び制御コンピュータ38による圧縮機制御の
目的は、蒸発器33での冷房負荷の変動にかかわらず、
冷房負荷を反映した蒸発器33の出口圧力Ps’を設定
吸入圧Pset付近に安定させるべく圧縮機の吐出容量
を可変調節することにある。この意味で制御弁50のソ
レノイド部70と制御コンピュータ38は、吸入圧Ps
が設定吸入圧Psetとなるように弁開度を外部制御す
るための手段と位置づけられる。又、設定吸入圧Pse
tは制御コンピュータ38によるコイル通電量Iの制御
だけで設定変更できるため、制御弁50のソレノイド部
70と制御コンピュータ38は制御弁50の設定吸入圧
Psetを外部的に設定変更する手段でもある。
As described above, the control computer 38 calculates the amount of current I to the coil 77 based on various types of input information and externally controls the opening of the control valve 50, thereby adjusting the swash plate inclination angle and adjusting the compressor inclination. And the internal pressure of the suction chamber 8 (suction pressure Ps) substantially equal to the outlet pressure Ps' of the evaporator 33 is maintained near a desired pressure value (ie, the set suction pressure Pset). Becomes possible. The purpose of the compressor control by the control valve 50 and the control computer 38 is irrespective of the fluctuation of the cooling load in the evaporator 33.
The discharge capacity of the compressor is variably adjusted so that the outlet pressure Ps ′ of the evaporator 33 reflecting the cooling load is stabilized near the set suction pressure Pset. In this sense, the solenoid 70 of the control valve 50 and the control computer 38 determine the suction pressure Ps
Is externally controlled as a means for controlling the valve opening so that the set suction pressure Pset is obtained. Also, the set suction pressure Pse
Since t can be changed only by controlling the coil current I by the control computer 38, the solenoid unit 70 of the control valve 50 and the control computer 38 are also means for externally changing the set suction pressure Pset of the control valve 50.

【0038】なお、圧縮機の運転中でも、冷房負荷が非
常に小さくなり蒸発器33の温度がフロスト発生温度に
近づくと、制御コンピュータ38はコイル77への通電
を停止し、ソレノイドロッド75の上向き付勢力Fを消
失させる(F=0)。こうして、設定吸入圧Psetを
最大にすることで制御弁開度を閉じ傾向とし、クランク
圧Pcを高め誘導して斜板角度を最小にし、圧縮機の吐
出容量を最小化してフロストの発生を回避する。
During the operation of the compressor, when the cooling load becomes very small and the temperature of the evaporator 33 approaches the frost generation temperature, the control computer 38 stops the energization of the coil 77 and moves the solenoid rod 75 upward. The power F disappears (F = 0). In this way, the control valve opening tends to be closed by maximizing the set suction pressure Pset, and the crank pressure Pc is increased to guide the swash plate angle to a minimum, thereby minimizing the discharge capacity of the compressor and avoiding the occurrence of frost. I do.

【0039】(効果)本実施形態によれば、以下のよう
な効果を得ることができる。 ○ 制御弁50においてベローズ61の有効面積Aと前
記弁孔55の口径面積B(つまり弁体60によるシール
面積B)とを等しくすることで、コイル77への通電量
Iの制御に応じて吸入圧Psを、クランク圧Pc(Pc
はPdの影響を受ける)に依存すること無く正確に決定
することができる。故に、制御弁50によれば、設定吸
入圧Psetを従来よりも正確に設定することができ
る。
(Effects) According to the present embodiment, the following effects can be obtained. By making the effective area A of the bellows 61 equal to the bore area B of the valve hole 55 (that is, the sealing area B of the valve body 60) in the control valve 50, the suction is performed according to the control of the amount of electricity I to the coil 77. The pressure Ps is changed to the crank pressure Pc (Pc
Can be accurately determined without depending on Pd). Therefore, according to the control valve 50, the set suction pressure Pset can be set more accurately than before.

【0040】○ 実際に制御可能な通電量Iの範囲(ゼ
ロから最大値)に対応した吸入圧Psの範囲内に所望の
設定吸入圧Pset(即ち蒸発器33の出口圧力Ps’
の所望値)を包含させることが容易となり、結果とし
て、制御弁50における設定吸入圧Psetの可変幅を
実用上大きく確保することが可能となる。
The desired set suction pressure Pset (that is, the outlet pressure Ps' of the evaporator 33) is set within the range of the suction pressure Ps corresponding to the range of the amount of current I actually controllable (from zero to the maximum value).
(Desired value) can be easily included, and as a result, the variable width of the set suction pressure Pset in the control valve 50 can be ensured in a practically large range.

【0041】(別例)本発明の実施形態を以下のように
変更してもよい。 〇 図2の構成ではベローズ61の可動端と弁体60と
の間にボール63を介在させることで力の伝達の偏心を
防止する連結構造を採用したが、図4に示すようなより
簡易な連結構造を採用してもよい。即ち図4では、ベロ
ーズ61の可動端がそのまま弁体60と一体化されてい
る。この場合、弁体60の上面側の大部分がベローズ6
1の下端部で覆われてしまうが、クランク圧Pcの影響
に関して図4の構造と図2の構造とは等価である。図4
の弁体60の上半部がクランク圧Pcの影響にさらされ
る有効受圧面積は、シール面積Bから、弁体の上面を覆
い隠しているベローズの有効面積Aを控除した面積(B
−A)である。他方、弁体60の下半部が吸入圧Psの
影響にさらされる面積は(B−S)である。この点を考
慮して前記と同様に式をたてると、次の数4式が得られ
る。
(Another Example) The embodiment of the present invention may be modified as follows.で は In the configuration of FIG. 2, a connection structure that prevents eccentricity of force transmission by interposing a ball 63 between the movable end of the bellows 61 and the valve body 60 is adopted, but a simpler structure as shown in FIG. 4 is used. A connection structure may be employed. That is, in FIG. 4, the movable end of the bellows 61 is integrated with the valve body 60 as it is. In this case, most of the upper surface side of the valve body 60 is the bellows 6.
1 is covered by the lower end portion of FIG. 1, but the structure of FIG. 4 and the structure of FIG. 2 are equivalent with respect to the influence of the crank pressure Pc. FIG.
The effective pressure receiving area in which the upper half of the valve body 60 is exposed to the influence of the crank pressure Pc is the area (B) obtained by subtracting the effective area A of the bellows covering and covering the upper surface of the valve body from the seal area B.
-A). On the other hand, the area where the lower half of the valve body 60 is exposed to the influence of the suction pressure Ps is (BS). Taking this point into account and formulating the same as above, the following equation 4 is obtained.

【0042】[0042]

【数4】 数4式は前記数1式と同じであり、これを整理すれば前
記数2式と全く同じ式が得られ、更にA=Bの条件を適
用すれば前記数3式と全く同じ結果となる。故に図4の
構造は図2の構造と等価であり、図4の構造も図3の等
価図で表現できる。この結果から本発明においては、感
圧部材としてのベローズ60の可動端と弁体60とが同
期して移動可能な関係を保持する限り、両者の連結部分
の太さ又は径がどのように設定されても発明の本質に変
わりはない。
(Equation 4) Equation (4) is the same as Equation (1). By rearranging Equation (4), the same equation as Equation (2) is obtained, and if the condition of A = B is applied, the result is exactly the same as Equation (3). . Therefore, the structure of FIG. 4 is equivalent to the structure of FIG. 2, and the structure of FIG. 4 can also be represented by the equivalent diagram of FIG. From this result, according to the present invention, as long as the movable end of the bellows 60 as the pressure-sensitive member and the valve body 60 maintain a relation in which they can move synchronously, the thickness or diameter of the connecting portion between the two can be set. This does not change the essence of the invention.

【0043】〇 図5に示すように、ソレノイドロッド
75の下端部が収容されたソレノイド室73に、吸入圧
Psではなくクランク圧Pcを導いてもよい。もちろん
その場合には、弁室の下部領域53bとソレノイド室7
3との間の圧力隔絶を確実ならしめる必要がある。図5
の構成に従う制御弁では、次の数5式に示すような力学
関係式が成立し、それを整理すると数6式が得られる。
As shown in FIG. 5, the crank pressure Pc may be introduced into the solenoid chamber 73 in which the lower end of the solenoid rod 75 is housed, instead of the suction pressure Ps. Of course, in that case, the lower region 53b of the valve chamber and the solenoid chamber 7
3 must be ensured. FIG.
In the control valve according to the configuration of the above, a dynamic relational expression as shown in the following Expression 5 is established, and by rearranging it, Expression 6 is obtained.

【0044】[0044]

【数5】 (Equation 5)

【0045】[0045]

【数6】 図5の制御弁で仮に、弁体60によるシール面積Bが、
ベローズ61の有効面積Aとソレノイドロッド75の下
端部の有効受圧面積Sとの和に等しくなるように設定さ
れた場合には、B=A+Sの面積条件から数6式中のP
c(B−A−S)項がゼロとなり、又、(B−S)=A
となる。これらを数6式に代入して整理すると、次の数
7式が得られる。
(Equation 6) In the control valve of FIG. 5, if the sealing area B by the valve body 60 is
When it is set to be equal to the sum of the effective area A of the bellows 61 and the effective pressure receiving area S at the lower end of the solenoid rod 75, P in the equation (6) is obtained from the area condition of B = A + S.
The term c (B−A−S) becomes zero, and (B−S) = A
Becomes By substituting these into Equation 6 and rearranging, the following Equation 7 is obtained.

【0046】[0046]

【数7】 数7式中、f1,f2及びAは機械構成上予め定められ
た定数値と見ることができ、且つ電磁付勢力Fはコイル
77への通電量Iの関数であるから、数7式も前記数3
式と同様の物理的意味を持つ。故に図5の構成に従う制
御弁も、クランク圧Pcに依存しない設定吸入圧可変型
の抜き側制御弁として機能し、図2及び図3に示す制御
弁と同様の作用及び効果を奏する。
(Equation 7) In Equation 7, f1, f2, and A can be regarded as predetermined constant values on the mechanical configuration, and the electromagnetic biasing force F is a function of the amount of current I to the coil 77. Number 3
It has the same physical meaning as an expression. Therefore, the control valve according to the configuration of FIG. 5 also functions as a variable suction pressure control valve that does not depend on the crank pressure Pc, and has the same operation and effect as the control valve shown in FIGS. 2 and 3.

【0047】○ 前記実施形態及び別例では、感圧部材
としてベローズ61を用いたが、これに代えてダイヤフ
ラムが用いられてもよい。 ○ この明細書でいう「斜板式圧縮機」とは、図1に示
すようなワッブル型の圧縮機のみならず、斜板たるスワ
ッシュプレートを備えた圧縮機をも含むものであり、傾
斜したカムプレートによってピストンを往復動させる方
式の圧縮機のすべてを意味するものである。
In the above-described embodiment and other examples, the bellows 61 is used as the pressure-sensitive member, but a diaphragm may be used instead. The term “swash plate type compressor” as used in this specification includes not only a wobble type compressor as shown in FIG. 1 but also a compressor having a swash plate as a swash plate. It means all compressors that reciprocate the piston by the plate.

【0048】(前記請求項に記載した事項以外の技術的
思想の要点): (イ)請求項2において、前記第1バネ機構をベローズ
61及び伸張バネ62によって構成し、前記第2バネ機
構をプランジャ74、ソレノイドロッド75及び付勢バ
ネ76によって構成すること。第1及び第2バネ機構に
より、通路室内において弁体を弁座に接離可能に弾性支
持する弾性支持機構が構成される。(ロ)請求項1〜6
において、前記感圧部材はベローズであること。ベロー
ズは伸縮変位の自由度が大きく、通路室内にあってクラ
ンク圧Pcに感応して弁体に作用を及ぼす感圧部材とし
て極めて適している。(ハ)請求項1〜6において、弁
体によるシール面積は通路室の吸入室側領域の口径面積
に等しいこと。
(Points of the technical idea other than the matters described in the claims) (a) In claim 2, the first spring mechanism is constituted by a bellows 61 and an extension spring 62, and the second spring mechanism is The plunger 74, the solenoid rod 75, and the urging spring 76 are used. The first and second spring mechanisms constitute an elastic support mechanism that elastically supports the valve body so as to be able to contact and separate from the valve seat in the passage chamber. (B) Claims 1 to 6
, Wherein the pressure-sensitive member is a bellows. The bellows has a large degree of freedom of expansion and contraction displacement, and is extremely suitable as a pressure-sensitive member which acts on the valve element in response to the crank pressure Pc in the passage chamber. (C) In the first to sixth aspects, the sealing area by the valve body is equal to the diameter area of the suction chamber side area of the passage chamber.

【0049】[0049]

【発明の効果】以上詳述したように各請求項に記載の制
御弁によれば、容量可変型圧縮機のクランク室の圧力
(Pc)に影響されることなく、設定吸入圧を正確に設
定することが可能となる。
As described in detail above, according to the control valve described in each claim, the set suction pressure can be accurately set without being affected by the pressure (Pc) of the crank chamber of the variable displacement compressor. It is possible to do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施形態に従う容量可変型斜板式圧縮機の縦
断面図。
FIG. 1 is a longitudinal sectional view of a variable displacement swash plate type compressor according to one embodiment.

【図2】抜き側制御弁の縦断面図。FIG. 2 is a vertical sectional view of a control valve on the extraction side.

【図3】図2の制御弁についての力学関係の等価図。FIG. 3 is an equivalent diagram of a dynamic relationship of the control valve of FIG. 2;

【図4】感圧部材と弁体との連結構造の別例を示す要部
断面図。
FIG. 4 is an essential part cross-sectional view showing another example of the connection structure between the pressure-sensitive member and the valve body.

【図5】別例となる制御弁の力学関係の等価図。FIG. 5 is an equivalent view of a dynamic relationship of another control valve.

【符号の説明】[Explanation of symbols]

3…クランク室、8…吸入室、9…吐出室、17…回転
斜板、18…揺動斜板(17,18は斜板を構成す
る)、40…クラッチ、50…制御弁、51…バルブハ
ウジング、53…弁室(通路室)、53a…弁室の上部
領域(クランク室側領域)、53b…弁室の下部領域
(吸入室側領域)、54…弁座部(弁座)、55…弁
孔、56,57…導入ポート,導出ポート、58,59
…通路(53,56,57,58,59は抽気通路を構
成する)、60…弁体、61…ベローズ(感圧部材)、
62…伸張バネ(61,62は第1バネ機構を構成す
る)、70…ソレノイド部、73…ソレノイド室(ロッ
ドの先端部と反対側の端部を収容する領域)、74…可
動鉄心(プランジャ)、75…ソレノイドロッド(ロッ
ド)、76…付勢バネ(74,75,76は第2バネ機
構を構成する)、Pc…クランク圧、Ps…吸入圧。
3 ... Crank chamber, 8 ... Suction chamber, 9 ... Discharge chamber, 17 ... Rotating swash plate, 18 ... Swinging swash plate (17 and 18 constitute a swash plate), 40 ... Clutch, 50 ... Control valve, 51 ... Valve housing, 53: valve chamber (passage chamber), 53a: upper area of valve chamber (crank chamber side area), 53b: lower area of valve chamber (suction chamber side area), 54: valve seat (valve seat), 55 ... valve hole, 56, 57 ... introduction port, outlet port, 58, 59
... passages (53, 56, 57, 58, 59 constitute bleed passages), 60 ... valve bodies, 61 ... bellows (pressure-sensitive members),
62: an extension spring (61 and 62 constitute a first spring mechanism); 70: a solenoid portion; 73: a solenoid chamber (a region for accommodating the end opposite to the tip of the rod); 74: a movable core (plunger) ), 75: solenoid rod (rod), 76: biasing spring (74, 75, 76 constitutes a second spring mechanism), Pc: crank pressure, Ps: suction pressure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安谷屋 拓 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 太田 雅樹 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 Fターム(参考) 3H045 AA04 AA10 AA13 AA27 BA19 BA28 CA02 CA03 DA25 EA33 3H076 AA06 BB33 CC16 CC17 CC41 CC84 CC85 CC92 CC93  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taku Yasiya 2-1-1 Toyotamachi, Kariya-shi, Aichi Prefecture Inside Toyota Industries Corporation (72) Inventor Masaki Ota 2-1-1 Toyotamachi, Kariya-shi, Aichi Prefecture Shares F term in Toyota Industries Corporation (reference) 3H045 AA04 AA10 AA13 AA27 BA19 BA28 CA02 CA03 DA25 EA33 3H076 AA06 BB33 CC16 CC17 CC41 CC84 CC85 CC92 CC93

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 クランク室の内圧を制御することで吐出
容量を変更可能な容量可変型圧縮機に用いる制御弁であ
って、 前記圧縮機のクランク室と吸入室とを結ぶ抽気通路の一
部となるようにバルブハウジング内に設けられた通路室
と、 前記通路室内に設けられて該通路室をクランク室側領域
と吸入室側領域とに区分すると共に両者を連通する弁孔
が形成された弁座と、 前記通路室のクランク室側領域に配設されて前記弁座に
離接可能な弁体と、 前記通路室のクランク室側領域に配設されクランク室内
圧に感応して変位可能であり、且つ、前記弁体に作動連
結されて該弁体を弾性支持しながらそれを弁座に着座さ
せる方向に常に付勢可能な感圧部材とを備えており、 前記弁体が弁座に着座するときの当該弁体によるシール
面積と、前記感圧部材の有効面積とが一致又は近似する
ように設定されていることを特徴とする容量可変型圧縮
機の制御弁。
1. A control valve for use in a variable displacement compressor capable of changing a discharge capacity by controlling an internal pressure of a crank chamber, a part of a bleed passage connecting a crank chamber and a suction chamber of the compressor. A passage chamber provided in the valve housing, and a valve hole provided in the passage chamber, which divides the passage chamber into a crank chamber side region and a suction chamber side region and communicates the two. A valve seat, a valve body disposed in the crank chamber side region of the passage chamber and detachable from the valve seat, and a valve body disposed in the crank chamber side region of the passage chamber and displaceable in response to a crank chamber pressure. And a pressure-sensitive member operably connected to the valve body and capable of constantly biasing the valve body in a direction of elastically supporting the valve body while seating the valve body on the valve seat. The sealing area of the valve body when seated on the Variable displacement compressor control valve, characterized in that the effective area and is configured to match or approximate the.
【請求項2】 前記感圧部材は前記弁体を弁座に着座さ
せる方向に付勢する第1バネ機構を構成すると共に、前
記通路室の吸入室側領域の側には、前記弁体を弁座から
離間させる方向に付勢する第2バネ機構が設けられてお
り、前記第1バネ機構と前記第2バネ機構とによって前
記弁体は弁座に対し接離可能に弾性支持されていること
を特徴とする請求項1に記載の容量可変型圧縮機の制御
弁。
2. The pressure-sensitive member constitutes a first spring mechanism for urging the valve body in a direction in which the valve body is seated on a valve seat, and the valve body is provided on the suction chamber side region side of the passage chamber. A second spring mechanism is provided for urging the valve body away from the valve seat, and the valve body is elastically supported by the first spring mechanism and the second spring mechanism so as to be able to contact and separate from the valve seat. The control valve for a variable displacement compressor according to claim 1, wherein:
【請求項3】 前記通路室の吸入室側領域において前記
弁体に作動連結された先端部を有するロッドと、外部か
らの電気制御によって調節可能な電磁付勢力でもって前
記弁体を弁座から離す方向に前記ロッドを付勢可能なソ
レノイド部とを更に備えていることを特徴とする請求項
1又は2に記載の容量可変型圧縮機の制御弁。
3. A valve having a distal end operatively connected to the valve body in a region of the passage chamber on the suction chamber side, and the valve body being moved from a valve seat by an electromagnetic biasing force adjustable by external electric control. The control valve for a variable displacement compressor according to claim 1 or 2, further comprising: a solenoid portion capable of urging the rod in a separating direction.
【請求項4】 前記ロッドの先端部と反対側の端部を収
容する領域には、前記圧縮機の吸入室の圧力(Ps)が
導かれ、且つ、前記弁体によるシール面積(B)は、前
記感圧部材の有効面積(A)に一致することを特徴とす
る請求項3に記載の容量可変型圧縮機の制御弁。
4. A pressure (Ps) of a suction chamber of the compressor is guided to a region for accommodating an end of the rod opposite to a tip end thereof, and a sealing area (B) of the valve body is 4. The control valve for a variable displacement compressor according to claim 3, wherein the control valve is equal to an effective area (A) of the pressure-sensitive member.
【請求項5】 前記ロッドの先端部と反対側の端部を収
容する領域には、前記圧縮機のクランク室の圧力(P
c)が導かれ、且つ、前記弁体によるシール面積(B)
は、前記感圧部材の有効面積(A)と前記ロッドの反対
側端部における有効受圧面積(S)との和に一致するこ
とを特徴とする請求項3に記載の容量可変型圧縮機の制
御弁。
5. A pressure (P) pressure of a crank chamber of the compressor is provided in a region for accommodating an end portion of the rod opposite to a tip end portion thereof.
c) is derived and the sealing area by the valve element (B)
4 is equal to the sum of the effective area (A) of the pressure-sensitive member and the effective pressure-receiving area (S) at the opposite end of the rod. Control valve.
【請求項6】 前記容量可変型圧縮機は、外部駆動源の
動力を該圧縮機に選択的に伝達するためのクラッチを備
えたものであることを特徴とする請求項1〜5のいずれ
か一項に記載の容量可変型圧縮機の制御弁。
6. The variable displacement compressor according to claim 1, further comprising a clutch for selectively transmitting power of an external drive source to the compressor. A control valve for the variable displacement compressor according to claim 1.
JP28982799A 1999-02-02 1999-10-12 Control valve for variable capacity compressor Expired - Fee Related JP3925006B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28982799A JP3925006B2 (en) 1999-02-02 1999-10-12 Control valve for variable capacity compressor
EP00101971A EP1026398A3 (en) 1999-02-02 2000-02-01 Control valve for variable displacement compressors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2489699 1999-02-02
JP11-24896 1999-02-02
JP28982799A JP3925006B2 (en) 1999-02-02 1999-10-12 Control valve for variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2000291542A true JP2000291542A (en) 2000-10-17
JP3925006B2 JP3925006B2 (en) 2007-06-06

Family

ID=26362474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28982799A Expired - Fee Related JP3925006B2 (en) 1999-02-02 1999-10-12 Control valve for variable capacity compressor

Country Status (2)

Country Link
EP (1) EP1026398A3 (en)
JP (1) JP3925006B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116349A (en) * 2002-09-25 2004-04-15 Tgk Co Ltd Capacity control valve for variable capacity compressor
US6739843B2 (en) 2001-07-04 2004-05-25 Kabushiki Kaisha Toyota Jidoshokki Control valve and variable displacement compressor having the same
DE10256989B4 (en) * 2001-12-06 2006-11-02 Kabushiki Kaisha Toyota Jidoshokki, Kariya Solenoid unit for an electromagnetic valve and method for its manufacture
WO2006137270A1 (en) * 2005-06-22 2006-12-28 Eagle Industry Co., Ltd. Capacity control valve
US7533687B2 (en) 2003-08-11 2009-05-19 Eagle Industry Co., Ltd. Capacity control valve
JP2009114898A (en) * 2007-11-02 2009-05-28 Fuji Koki Corp Control valve for variable displacement compressor
JP5128466B2 (en) * 2006-03-29 2013-01-23 イーグル工業株式会社 Control valve for variable displacement compressor
JP2014080927A (en) * 2012-10-17 2014-05-08 Tgk Co Ltd Control valve for variable displacement compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089442A (en) * 2000-09-08 2002-03-27 Toyota Industries Corp Control valve for variable displacement compressor
JP2002155858A (en) * 2000-09-08 2002-05-31 Toyota Industries Corp Control valve for variable displacement compressor
JP4333042B2 (en) * 2001-02-20 2009-09-16 株式会社豊田自動織機 Control valve for variable capacity compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174727A (en) * 1987-11-30 1992-12-29 Sanden Corporation Slant plate type compressor with variable displacement mechanism
JPH0331581A (en) * 1989-06-28 1991-02-12 Sanden Corp Variable-capacity swash plate type compressor
JPH0724630Y2 (en) * 1991-05-22 1995-06-05 株式会社ゼクセル Variable displacement oscillating plate compressor
JP3131036B2 (en) 1992-07-07 2001-01-31 株式会社鷺宮製作所 Solenoid proportional control valve
JPH09228956A (en) * 1996-02-20 1997-09-02 Toyota Autom Loom Works Ltd Variable displacement compressor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739843B2 (en) 2001-07-04 2004-05-25 Kabushiki Kaisha Toyota Jidoshokki Control valve and variable displacement compressor having the same
DE10256989B4 (en) * 2001-12-06 2006-11-02 Kabushiki Kaisha Toyota Jidoshokki, Kariya Solenoid unit for an electromagnetic valve and method for its manufacture
JP2004116349A (en) * 2002-09-25 2004-04-15 Tgk Co Ltd Capacity control valve for variable capacity compressor
US7533687B2 (en) 2003-08-11 2009-05-19 Eagle Industry Co., Ltd. Capacity control valve
WO2006137270A1 (en) * 2005-06-22 2006-12-28 Eagle Industry Co., Ltd. Capacity control valve
US7644729B2 (en) 2005-06-22 2010-01-12 Eagle Industry Co., Ltd. Capacity control valve
JP4913734B2 (en) * 2005-06-22 2012-04-11 イーグル工業株式会社 Capacity control valve
JP5128466B2 (en) * 2006-03-29 2013-01-23 イーグル工業株式会社 Control valve for variable displacement compressor
JP2009114898A (en) * 2007-11-02 2009-05-28 Fuji Koki Corp Control valve for variable displacement compressor
JP2014080927A (en) * 2012-10-17 2014-05-08 Tgk Co Ltd Control valve for variable displacement compressor

Also Published As

Publication number Publication date
EP1026398A2 (en) 2000-08-09
EP1026398A3 (en) 2001-01-03
JP3925006B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3984724B2 (en) Control valve for variable capacity swash plate compressor and swash plate compressor
JP3432995B2 (en) Control valve for variable displacement compressor
JP4081965B2 (en) Capacity control mechanism of variable capacity compressor
JP3783434B2 (en) Variable capacity swash plate compressor and air conditioning cooling circuit
US6361283B1 (en) Displacement control valve
JP4000694B2 (en) Capacity control valve in variable capacity compressor
JP3789023B2 (en) Solenoid control valve
JPH10176659A (en) Control valve for variable displacement compressor
JPH028154B2 (en)
JP2000064957A (en) Variable displacement swash prate compressor and extraction side control valve
JPH06200875A (en) Rocking swash plate type variable displacement compressor
JP2000220763A (en) Capacity control valve for variable displacement compressor
JP2001349624A (en) Volume control valve for air conditioner and variable volume type compressor
JP2001280237A (en) Control valve for variable displacement compressor
JP2000291542A (en) Control valve for variable displacement type compressor
JP2002285956A (en) Control valve of variable displacement compressor
JP3899719B2 (en) Control valve for variable capacity compressor
JP2002021720A (en) Control valve for variable displacement compressor
JP2000249050A (en) Displacement control valve for variable displacement compressor
JP2002081374A (en) Control valve of variable displacement type compressor
JP2006017087A (en) Electromagnetic control valve and variable displacement compressor equipped with the same
JP3214354B2 (en) Clutchless variable displacement compressor
JP3080280B2 (en) Control valve for variable displacement compressor
JP3082485B2 (en) Oscillating swash plate type variable displacement compressor
JP3952425B2 (en) Control valve for variable capacity compressor, variable capacity compressor, and method for assembling control valve for variable capacity compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees