JP2000226235A - Low-emissivity glass and its production - Google Patents

Low-emissivity glass and its production

Info

Publication number
JP2000226235A
JP2000226235A JP11029528A JP2952899A JP2000226235A JP 2000226235 A JP2000226235 A JP 2000226235A JP 11029528 A JP11029528 A JP 11029528A JP 2952899 A JP2952899 A JP 2952899A JP 2000226235 A JP2000226235 A JP 2000226235A
Authority
JP
Japan
Prior art keywords
layer
glass
thickness
film
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11029528A
Other languages
Japanese (ja)
Other versions
JP3732349B2 (en
Inventor
Masaji Onishi
正司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP02952899A priority Critical patent/JP3732349B2/en
Publication of JP2000226235A publication Critical patent/JP2000226235A/en
Application granted granted Critical
Publication of JP3732349B2 publication Critical patent/JP3732349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/216ZnO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Special Wing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To scarcely change a color tone at a viewing angle without reddening color when viewed from an oblique direction, remarkably improve the moisture resistance of a film, reduce the resistance of the film and impart excellent heat insulating characteristics by providing a low-emissivity glass having a specific value or above of the density of an Ag layer by a sputtering method. SOLUTION: This glass is obtained by regulating the density of an Ag layer to >=8.5 g/cm3. When a low-emissivity film is formed by a sputtering method, the film is obtained by installing a freezing coil for adsorbing steam or various kinds of gases by a cold trap method near an Ag target, regulating the surface temperature of the freezing coil to -120 to -140 deg.C, locally keeping the periphery of the target in a high vacuum state and forming the Ag layer on the glass surface. The glass is preferably composed of a glass/transparent oxide or a nitride layer having 10-50 nm thickness/Ag layer having 8-50 nm thickness/metal barrier layer having <=8.0 nm thickness/transparent oxide or nitride layer having 70-150 nm thickness/Ag layer having 8-50 nm thickness/metal barrier layer having <=8.0 nm thickness/transparent oxide or nitride layer having 10-50 nm thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、住宅やオフィス等
の建築用はもちろん車両用等の窓ガラス、さらには船舶
用や航空機用の窓ガラス等各種ガラス物品として有用な
低放射率ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low emissivity glass useful as a window glass for a vehicle as well as a building, such as a house or an office, and also as various glass articles such as a window glass for a ship or an aircraft.

【0002】[0002]

【従来の技術】最近、例えばオフィスや住宅等におい
て、断熱性、保温性、遮熱性に優れた低放射率ガラス
が、寒冷地を中心に用いられている。このガラスは、2
枚のガラス間に乾燥空気を封入して構成される複層ガラ
スにおいて、中間空気層側に可視光線は透過するが赤外
線は反射する、いわゆる低放射膜をガラスに被覆したも
のである。これらの被膜の主なものとしては、金属層と
してAgを用い、該Ag層の上下層をZnOまたはSn
2等の非金属層で被覆するのが一般に知られている。
その内、特に放射率が低い膜としては、一般にAg層を
2層に設け、ZnO2,SnO2,TiO2,ITO,Si
23,AI23等の透明酸化物で積層したもの、例え
ば、銀層の厚みを110Å以下とし、可視光線透過率を
70%以上とした高透過率を有する低放射率ガラスに関
する特公平5-70580公報,金属酸化物層は酸化錫
及び酸化亜鉛の何れか一方または双方からなり、第3層
の金属酸化物層の厚さが65〜80nm、第2層の銀層
の膜厚が7nm以上11nm未満、第4層の金属酸化物
層の膜厚が11nmを越えて14nm以下であることか
らなる特開平8−104547号公報等が知られてい
る。
2. Description of the Related Art Recently, for example, in offices and houses, low-emissivity glass having excellent heat insulating properties, heat retaining properties and heat shielding properties has been used mainly in cold regions. This glass is 2
In a double-glazing unit configured by sealing dry air between sheets of glass, a so-called low-emission film, which transmits visible light but reflects infrared light on the intermediate air layer side, is coated on the glass. The main component of these coatings is that Ag is used as a metal layer, and the upper and lower layers of the Ag layer are formed of ZnO or Sn.
It is coated with a non-metallic layer such as O 2 are generally known.
Among them, as a film having a particularly low emissivity, an Ag layer is generally provided in two layers, and ZnO 2 , SnO 2 , TiO 2 , ITO, Si
A laminate of transparent oxides such as 2N 3 and AI 2 N 3 , for example, a low-emissivity glass having a high transmittance with a silver layer having a thickness of 110 ° or less and a visible light transmittance of 70% or more. The metal oxide layer is composed of one or both of tin oxide and zinc oxide, the thickness of the third metal oxide layer is 65 to 80 nm, and the thickness of the second silver layer is Japanese Patent Application Laid-Open No. H8-104547, in which the thickness of the fourth metal oxide layer is more than 11 nm and not more than 14 nm.

【0003】また、従来はメカニカルポンプとオイル拡
散ポンプ及びターボ分子ポンプを組み合わせることによ
り真空チャンバー全体の圧力を高真空にすることが一般
的に実施されている。
[0003] Conventionally, it has been generally practiced to combine a mechanical pump, an oil diffusion pump, and a turbo-molecular pump to make the pressure in the entire vacuum chamber high.

【0004】[0004]

【発明が解決しようとする課題】Ag層と透明酸化物層
等を積層した低放射率ガラスは、高透過率で高断熱性能
のものを得ることができるが、目視で見る微妙な角度変
化により反射色調がさまざまに変化し、ガラスの取付角
度に非常に精度が要求される結果となっている。またビ
ル等に取付けた場合、ガラス面を人が見る角度が45度
以上となった場合、反射色が赤色等の非常に濃い色とな
り外観品質上に非常に問題がある。このように斜めから
ガラス面を見る場合に赤色を目立ちにくくする方法とし
ては、正面からの色調を赤色の補色である緑色にして斜
めから見た場合の色調を緩和する方法等が取られている
が、この方法では正面からの反射率が高くなり、色調も
ニュートラルでなくなってしまうため根本的解決方法と
はいえない。
The low-emissivity glass in which the Ag layer and the transparent oxide layer are laminated can have a high transmittance and a high heat insulating performance. Various changes in the reflection color tone have resulted in very high requirements for the mounting angle of the glass. In addition, when it is attached to a building or the like, if the angle at which a person looks at the glass surface becomes 45 degrees or more, the reflection color becomes very dark, such as red, which is very problematic in appearance quality. As a method of making red less noticeable when the glass surface is viewed obliquely, a method of changing the color from the front to green, which is a complementary color of red, to reduce the color when viewed obliquely, and the like are taken. However, this method is not a fundamental solution because the reflectance from the front is high and the color tone is not neutral.

【0005】また、Ag層を設けた従来の低放射率ガラ
スは、大気中に放置するとAg膜の酸化による白濁の欠
陥が発生しやすく、複層ガラス組立時の複層処理するま
では防湿保管が必要であるという欠陥がある。
Further, the conventional low-emissivity glass provided with an Ag layer is liable to cause clouding defects due to oxidation of the Ag film when left in the air. Is necessary.

【0006】さらに、従来のスパッタリング装置に用い
られているメカニカルポンプとオイル拡散ポンプ及びタ
ーボ分子ポンプを組み合わせた設備は、真空チャンバー
全体の圧力を高真空にするものであり、ターゲットの近
傍周辺を局所的に高真空な状態にすることは、他の高性
能なポンプ(クライオポンプやイオンポンプ)と組み合
わせて用いても難かしく、特にガラス、キャリヤー等で
系外から持ち込まれガスが脱離するのに長時間が要する
水蒸気等にはほとんど効果がなかった。
[0006] Further, the equipment that combines a mechanical pump, an oil diffusion pump, and a turbo molecular pump used in a conventional sputtering apparatus is for increasing the pressure of the entire vacuum chamber to a high vacuum. It is difficult to achieve a high vacuum state in combination with other high-performance pumps (cryopumps or ion pumps), especially when gases are introduced from outside the system with glass, carriers, etc., and gas is desorbed. Had little effect on water vapor and the like which required a long time.

【0007】[0007]

【課題を解決するための手段】本発明は、従来のかかる
課題に鑑みてなしたものであって、鋭意検討した結果、
スパッタリング装置中のAgターゲットの近傍にコール
ドトラップ法によるクライオコイル冷却装置を設置し、
該コイル周辺の雰囲気を常にクリーンな真空状態に制御
し保持することにより、この状態でスパッタ成膜された
Ag膜は非常に不純物が少なく緻密で規則正しく積層が
行われ、この方法で成膜されたAg膜を使用した低放射
率ガラスは、見る角度による色調の変化が少なく、正
面の色をニュートラル色にしても斜めからの色が赤くな
らない、従来の膜より耐湿性が大幅に向上する、膜
抵抗が低く断熱特性が優れたものとなることが判明し
た。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and as a result of intensive studies,
The cryo coil cooling device by the cold trap method is installed near the Ag target in the sputtering device,
By constantly controlling and maintaining the atmosphere around the coil in a clean vacuum state, the Ag film sputter-deposited in this state has very little impurities, and is densely and regularly laminated. The low-emissivity glass using the Ag film has a small change in color tone depending on the viewing angle, the color of the front does not become red even when the front color is neutral, and the moisture resistance is significantly improved compared to the conventional film. It was found that the resistance was low and the heat insulating property was excellent.

【0008】すなわち本発明は、Ag層を少なくとも1
層有するスパッタリング法による低放射率ガラスにおい
て、Ag層の密度が8.5g/cm3以上であることを
特徴とする低放射率ガラスに関する。
That is, according to the present invention, at least one Ag layer is formed.
The present invention relates to a low-emissivity glass obtained by a sputtering method having a layer, wherein the Ag layer has a density of 8.5 g / cm 3 or more.

【0009】また、本発明の低放射率ガラスは、ガラス
/透明酸化物もしくは窒化物よりなる第1層/Agよりな
る第2層/金属バリヤーよりなる第3層/透明酸化物も
しくは窒化物よりなる第4層/Agよりなる第5層/金
属バリヤーよりなる第6層/透明酸化物もしくは窒化物
よりなる第7層よりなる被膜より構成され、第1層目の
膜厚が10〜50nm,第2層及び第5層の膜厚が8n
m〜50nm、第3層及び第6層の膜厚が8.0nm以
下、第4層の膜厚が70〜150nm、第7層の膜厚が
10〜50nmであることが好ましい。
The low emissivity glass of the present invention is a glass
/ First layer made of transparent oxide or nitride / second layer made of Ag / third layer made of metal barrier / fourth layer made of transparent oxide or nitride / fifth layer made of Ag / metal barrier The first layer has a thickness of 10 to 50 nm, and the second and fifth layers have a thickness of 8 n.
Preferably, the thickness of the third layer and the sixth layer is 8.0 nm or less, the thickness of the fourth layer is 70 to 150 nm, and the thickness of the seventh layer is 10 to 50 nm.

【0010】さらに、L*、a*、b*表色系において、
入射角8°の正反射色がa*(8度)に対し45°の正
反射光のa*(45度)が下記の関係にあるとともに、 a*(8度)−a*(45度)>−2.0 低放射膜のガラス面反射特性値が下記の関係にあること
が好ましい。
Further, in the L *, a *, b * color system,
The specular color at an incident angle of 8 ° is a * (8 degrees) and the a * (45 degrees) of specularly reflected light at 45 degrees has the following relationship: a * (8 degrees) −a * (45 degrees) )>-2.0 The glass surface reflection characteristic value of the low-emissivity film preferably has the following relationship.

【0011】入射角8°の場合; 反射率=4〜15
(%)a*(8度)=0〜−10 入射角45°の場合;反射率=4〜15(%)a*
(45度)=2〜−15 またさらに、可視光透過率が65%〜85%、表面抵抗
値が6.0Ω/□以下であることが好ましい。
When the incident angle is 8 °; reflectance = 4 to 15
(%) A * (8 degrees) = 0 to -10 at an incident angle of 45 °; reflectance = 4 to 15 (%) a *
(45 degrees) = 2 to -15 Further, it is preferable that the visible light transmittance is 65% to 85% and the surface resistance is 6.0 Ω / □ or less.

【0012】また、本発明は、低放射膜をスパッタリン
グ法で成膜する方法において、水蒸気や各種ガスをコー
ルドトラップ法で吸着する冷凍コイルをAgターゲット
の近傍に設置し、該冷凍コイルの表面温度を−120〜
−140℃とすることにより、該ターゲット周辺を局所
的に高真空な状態に保持して、ガラス表面にAg層を成
膜することを特徴とする低放射率ガラスの製法。また、
Agの密度は8.5g/cm3以上であることが好まし
い。
Further, the present invention provides a method for forming a low-emission film by sputtering, wherein a refrigeration coil for adsorbing water vapor and various gases by a cold trap method is provided near an Ag target, and the surface temperature of the refrigeration coil is controlled. From -120 to
A method for producing a low-emissivity glass, characterized in that the target is kept at a high vacuum locally at -140 ° C. to form an Ag layer on the glass surface. Also,
The density of Ag is preferably 8.5 g / cm 3 or more.

【0013】[0013]

【発明の実施の形態】本発明は、スパッタリング法で成
膜するにおいて、チャンバーの内壁、ガラス、或いはガ
ラスを搬送するキャリアー等により真空チャンバー内に
持ち込まれる水蒸気、或いはオイル拡散ポンプより逆流
するオイル、或いは成膜中の酸素、アルゴン、窒素等の
プロセスガス中に含まれる不純物を取り除き、これらの
ガスに成膜された膜中に混入するのを防ぐ。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, when a film is formed by a sputtering method, water vapor brought into a vacuum chamber by an inner wall of a chamber, glass, a carrier for conveying glass, or oil flowing backward from an oil diffusion pump is used. Alternatively, impurities contained in a process gas such as oxygen, argon, or nitrogen during film formation are removed to prevent these gases from being mixed into a film formed.

【0014】本発明は、成膜された膜中に水蒸気、オイ
ル、不純物等が混入するのを防ぐために、図1に示すよ
うにAg層を被膜する真空チャンバー内にキャリアー上
に載置されて搬送されるガラス基板の直下に冷凍コイル
を設け、Agターゲットとアノード間に高電圧がかけら
れ、該ガラス基板上に銀粒子がスパッタされる際に、前
記水蒸気、オイル、ガス不純物等のガスをコールドトラ
ップ法で冷凍コイルにより吸着する。なお、該冷凍コイ
ルの表面温度は、−120〜−140℃とするととも
に、Agターゲット周辺の真空度を10-4Pa以下にす
ることがこれらのガスを除去するにおいて特に好まし
い。なお、該冷凍コイルは、冷凍機に配管されたコイル
(冷媒がコイル中を流れる)をAg成膜室を搬送される
ガラス板状体の下面に該ガラスの幅にわたり面状に配設
するのが好ましい。また、ターゲット、ガラス、アノー
ド電極、冷凍コイル等の配置については特に限定される
ものではない。特に、冷凍コイルの配置については出来
るだけAgターゲットの近傍に設置することにより、成
膜中のプロセスガス等に含まれる水蒸気等の不純物が取
り除かれ非常にクリーンな真空状態を保持できる場所で
あれば特に限定されるものではないが、直接プラズマが
放射される場所やスパッタ粉が付着する場所に設置する
ことは好ましくない。
According to the present invention, in order to prevent water vapor, oil, impurities and the like from being mixed in the formed film, the film is placed on a carrier in a vacuum chamber for coating an Ag layer as shown in FIG. A refrigeration coil is provided immediately below the glass substrate to be conveyed, a high voltage is applied between the Ag target and the anode, and when silver particles are sputtered on the glass substrate, the gas such as water vapor, oil, gas impurities, etc. It is adsorbed by a refrigeration coil by the cold trap method. It is particularly preferable that the surface temperature of the refrigeration coil be -120 to -140 ° C and the degree of vacuum around the Ag target be 10 -4 Pa or less in order to remove these gases. The refrigeration coil is formed by arranging a coil (refrigerant flowing in the coil) piped to the refrigerator on the lower surface of a glass plate conveyed through the Ag film forming chamber in a planar manner over the width of the glass. Is preferred. Further, the arrangement of the target, glass, anode electrode, refrigeration coil and the like is not particularly limited. In particular, regarding the disposition of the refrigeration coil, if it is a place where impurities such as water vapor contained in a process gas or the like during film formation can be removed by installing the refrigeration coil as close as possible to a very clean vacuum state. Although not particularly limited, it is not preferable to install the device in a place where plasma is directly emitted or a place where sputtered powder adheres.

【0015】従来の方法は図2に示すように、Ag原子
がAgターゲットを飛び出してからガラスに積層される
までに真空中に従来存在していた不純物原子、分子にA
g原子が衝突し飛び出しの方向がずれてしまったり、或
いは速度が変化してしまい、多孔質なAg膜が形成され
たが、本発明は、冷凍コイルをターゲットの近傍に設置
することにより、Ag原子がAgターゲットを飛び出し
てからガラスに積層されるまでに真空中に従来存在して
いた不純物原子、分子にAg原子が衝突し飛び出しの方
向がずれてしまったり、或いは速度が変化してしまう確
率が激減し、図3に示すようにガラス面上に緻密で規則
正しい膜厚の薄い結晶性の優れたAg粒子層が整然と積
層される。なお、本発明のAg層におけるAgの密度
は、8.5g/cm3以上であることが好ましく、この
密度以下であると、同じ放射率を有する低放射率ガラス
を形成するためのAg層の膜厚は厚くなり、施工した該
ガラスを斜めから見た場合と正面から見た場合で、色調
が異なり好ましいものではない。
In the conventional method, as shown in FIG. 2, the impurity atoms and molecules which existed in a vacuum before the Ag atoms protruded from the Ag target and were deposited on the glass were converted to A atoms.
Although g atoms collided and the direction of ejection was shifted or the speed was changed, a porous Ag film was formed. However, the present invention provides an Ag film by installing a refrigeration coil near the target. The probability that Ag atoms will collide with impurity atoms and molecules that existed in vacuum in the past from when the atoms jumped out of the Ag target to when they were stacked on the glass, causing the direction of the jumping out or a change in velocity. As shown in FIG. 3, a dense, regular thin Ag particle layer having excellent crystallinity is regularly laminated on the glass surface. The Ag density in the Ag layer of the present invention is preferably 8.5 g / cm 3 or more, and if it is less than this density, the Ag layer for forming a low-emissivity glass having the same emissivity may be used. The film thickness becomes thick, and the color tone differs between when the applied glass is viewed obliquely and when viewed from the front, which is not preferable.

【0016】また、低放射率膜の色調はAgの膜厚に大
きく依存し、従来の方法で成膜したAg層の膜厚が厚い
場合には、斜めから見た場合の光路長の絶対値の変化が
大きくなり角度による影響を受けやすくなる。しかし本
発明の方法で成膜した膜は、従来法で成膜した膜よりも
約35%程度密度が大きく緻密に積層されるため、膜厚
を薄くすることが出来、色調の改善が容易になり得、角
度による色調の変化を抑えることができるものと考えら
れる。
Further, the color tone of the low emissivity film greatly depends on the thickness of Ag, and when the thickness of the Ag layer formed by the conventional method is large, the absolute value of the optical path length when viewed obliquely is considered. Change becomes large, and is easily affected by the angle. However, the film formed by the method of the present invention has a density of about 35% higher than the film formed by the conventional method and is densely laminated, so that the film thickness can be reduced and the color tone can be easily improved. It is considered that a change in color tone due to an angle can be suppressed.

【0017】本発明に用いられるガラス基板としては、
自動車用ならびに建築用ガラス等に通常用いられている
普通板ガラス、所謂フロート板ガラスなどであり、クリ
アをはじめグリ−ン、ブロンズ等各種着色ガラスや各種
機能性ガラス、強化ガラスやそれに類するガラス、合せ
ガラスのほか複層ガラス等、さらに平板あるいは曲げ板
等各種板ガラス製品として使用できることは言うまでも
ない。また、ガラスは透明プラスチック板等との積層体
であってもよい。なお、ガラスの組成は、ソーダ石灰ガ
ラス、アルミノシリケートガラス等であるが、これらに
限定されないことは、言うまでもない。
The glass substrate used in the present invention includes:
It is ordinary plate glass or so-called float plate glass which is usually used for automotive and architectural glass, etc., and various colored glass such as clear, green and bronze, various functional glass, tempered glass and similar glass, laminated glass Needless to say, it can be used as various kinds of sheet glass products such as double-glazed glass, flat and bent sheets. Further, the glass may be a laminate with a transparent plastic plate or the like. The composition of the glass is soda-lime glass, aluminosilicate glass or the like, but it goes without saying that the glass is not limited to these.

【0018】本発明における低放射率ガラスは、Ag層
の積層数は特に限定するものではないが、透明酸化物層
もしくは窒化物層とAg層が繰り返されるAg層が2層
以上の場合に色調の改善が顕著であり、特に好ましい。
なお、Ag層が2層の場合の最適膜組成は、ガラス/透
明酸化物もしくは窒化物よりなる第1層/Agよりなる
第2層/金属バリヤーよりなる第3層/透明酸化物もし
くは窒化物よりなる第4層/Agよりなる第5層/金属
バリヤーよりなる第6層/透明酸化物もしくは窒化物よ
りなる第7層よりなる膜構成である。
In the low emissivity glass of the present invention, the number of Ag layers laminated is not particularly limited, but the color tone is obtained when the transparent oxide layer or the nitride layer and the Ag layer are repeated two or more Ag layers. Is remarkable, and it is particularly preferable.
When the Ag layer is composed of two layers, the optimum film composition is as follows: glass / transparent oxide or nitride first layer / Ag second layer / metal barrier third layer / transparent oxide or nitride This is a film configuration including a fourth layer made of Ag / a fifth layer made of Ag / a sixth layer made of a metal barrier / a seventh layer made of a transparent oxide or nitride.

【0019】なお、第1層、第4層、第7層としては、
透明酸化物としては、ZnO2、SnO2、TiO2,IT
O,SiO2等、透明窒化物としては、Al23、Si2
3等を単層膜或いは多層膜として用いることが出来
る。第2層、第5層のAg層としては、純度100%、
或いはTi,Zr,V,Nb,Ta,Cr,Ni,P
d、Pt,Zn,In,Snを少なくとも1つの元素を
0.0〜10.0重量%含んだAgを用いることが出来
る。第3層、第6層の金属バリヤー層としては、Zn,
Sn,Ti,Al,NiCr,Cr、Zn及びSn合金
(各金属にAl,Sb金属を0.0〜10.0重量%含
んだもの)等を用いることができる。
The first, fourth, and seventh layers include:
As the transparent oxide, ZnO 2 , SnO 2 , TiO 2, IT
Examples of transparent nitrides such as O and SiO 2 include Al 2 N 3 and Si 2
N 3 or the like can be used as a single-layer film or a multilayer film. The second and fifth Ag layers have a purity of 100%,
Alternatively, Ti, Zr, V, Nb, Ta, Cr, Ni, P
Ag containing at least one element of d, Pt, Zn, In, and Sn in an amount of 0.0 to 10.0% by weight can be used. As the third and sixth metal barrier layers, Zn,
Sn, Ti, Al, NiCr, Cr, Zn, and Sn alloys (each metal containing 0.0 to 10.0% by weight of Al and Sb metals) can be used.

【0020】各層の膜厚としては、第1層目の膜厚が1
0〜50nm,第2層及び第5層の膜厚がそれぞれ8n
m〜50nm、第3層及び第6層の膜厚がそれぞれ8.
0nm以下、第4層の膜厚が70〜150nm、第7層
の膜厚が10〜50nmであることが好ましい。
As for the thickness of each layer, the thickness of the first layer is 1
0 to 50 nm, and each of the second and fifth layers has a thickness of 8 n.
m to 50 nm, and the thickness of each of the third and sixth layers is 8.
Preferably, the thickness of the fourth layer is 70 nm to 150 nm, and the thickness of the seventh layer is 10 nm to 50 nm.

【0021】なお、代表的な透明酸化物としての酸化錫
層及び/又は酸化チタン層よりなる非晶質の被膜は、化
学的にも機械的にも強く、且つ非晶質のルーズな構造の
ためガラスとの密着力も強く、内部応力も発生しにく
い。従ってガラスの直上に被覆する第1層被膜は酸化錫
層及び/又は酸化チタン層が望ましい。ガラスとの密着
力を高め、アルカリイオンの影響を断つための第1層の
酸化錫層及び/又は酸化チタン層の厚みは少なくとも5
nmが必要である。しかし酸化錫層及び/又は酸化チタ
ン層は金属特にAgとの密着力が劣り、酸化錫層、酸化
チタン層/銀層界面での剥離が起こりやすい。又、酸化
錫はそのイオン化傾向から分かるように酸素との結合が
弱く、被膜内の酸素の化学的ポテンシャルが高いため、
Ag層に酸素が拡散しやすい。このためAg層の電気抵
抗が上がり低い放射率を達成し難くなる。以上より、酸
化錫層及び/又は酸化チタン層よりなる層は銀層と接触
させないことが好ましい。なお、酸化錫層及び/または
酸化チタン層には化学的、機械的特性を向上し、またガ
ラスとの密着力も強くする非晶質の被膜成分としての元
素が含まれても良い。
The amorphous film composed of a tin oxide layer and / or a titanium oxide layer as a typical transparent oxide is chemically and mechanically strong and has an amorphous loose structure. Therefore, the adhesive strength with glass is strong and internal stress is hardly generated. Therefore, the first layer coating directly over the glass is preferably a tin oxide layer and / or a titanium oxide layer. The thickness of the first tin oxide layer and / or titanium oxide layer for enhancing adhesion to glass and cutting off the influence of alkali ions is at least 5
nm is required. However, the tin oxide layer and / or the titanium oxide layer have poor adhesion to metals, particularly Ag, and are likely to peel off at the tin oxide layer, the titanium oxide layer / silver layer interface. Also, tin oxide has a weak bond with oxygen, as can be seen from its ionization tendency, and the chemical potential of oxygen in the coating is high,
Oxygen easily diffuses into the Ag layer. For this reason, the electrical resistance of the Ag layer increases and it is difficult to achieve a low emissivity. From the above, it is preferable that the layer composed of the tin oxide layer and / or the titanium oxide layer is not brought into contact with the silver layer. Note that the tin oxide layer and / or the titanium oxide layer may contain an element as an amorphous coating component that improves chemical and mechanical properties and enhances adhesion to glass.

【0022】また、酸化亜鉛層はAg層との密着力が高
く、又酸素との高い結合力によって層内の酸素のポテン
シャルが低いため、銀層内に酸素が拡散しにくく、低い
放射率が達成しやすい。従ってAg層直下の層は酸化亜
鉛層が望ましい。その下の酸化錫層からの酸素の拡散を
防ぎ、Ag層との強い密着力を得るための第2層の酸化
亜鉛層の厚みは少なくとも3nmは必要である。なお、
酸化亜鉛層には銀層との密着力を低下せず、銀層内に酸
素が拡散しにくくするような被膜の成分としての公知の
元素が含まれても良い。Ag層に接触する酸化物層中の
酸素の化学ポテンシャルはできる限り低く保つことが肝
要で、酸化亜鉛成膜時の雰囲気は酸素と共にできるだけ
多くのアルゴンを添加するのが望ましい。望ましいアル
ゴンの添加率は設備によって異なるが、概ね10〜30
%である。この値は酸素雰囲気から徐々にアルゴンを添
加していき、ターゲットに掛かる電圧が急に上がるか、
電流が急に下がる現象を観測し、そこからアルゴンを若
干減らすことで決められる。
Further, the zinc oxide layer has a high adhesion to the Ag layer, and has a low oxygen potential in the layer due to a high bonding force with oxygen, so that oxygen is hardly diffused into the silver layer, and a low emissivity is obtained. Easy to achieve. Therefore, a layer immediately below the Ag layer is preferably a zinc oxide layer. The thickness of the second zinc oxide layer is required to be at least 3 nm in order to prevent diffusion of oxygen from the underlying tin oxide layer and to obtain a strong adhesion to the Ag layer. In addition,
The zinc oxide layer may contain a known element as a component of the coating that does not decrease the adhesion to the silver layer and makes it difficult for oxygen to diffuse into the silver layer. It is important to keep the chemical potential of oxygen in the oxide layer in contact with the Ag layer as low as possible, and it is desirable to add as much argon as possible together with oxygen to the atmosphere during the formation of zinc oxide. Desirable addition rates of argon vary depending on the equipment, but are generally in the range of 10 to 30.
%. This value is obtained by gradually adding argon from the oxygen atmosphere and suddenly increasing the voltage applied to the target,
It is determined by observing a sudden drop in the current and then slightly reducing the argon.

【0023】さらに、ガラスと銀層間に成膜する第1層
の透明酸化物、透明窒化物の膜厚は、高い可視光線透過
率、とりわけ70%以上の可視光線透過率を確保し、且
つ反射色調を極力中性に保つようにするためには、10
〜50nmが好ましい。この範囲を下回っても、上回っ
ても反射率が高くなり、従って透過率が低くなる。
Further, the thickness of the transparent oxide and the transparent nitride of the first layer formed between the glass and the silver layer ensures a high visible light transmittance, especially 70% or more visible light transmittance, and reflects light. In order to keep the color tone as neutral as possible, 10
~ 50 nm is preferred. Above or below this range, the reflectance will be high and the transmittance will be low.

【0024】また、第3層、第6層のAg層の厚みは放
射率と可視光線透過率及び反射色調に影響し、放射率が
約0.1程度以下の低放射率ガラスにおいては少なくと
も8nmが必要である。
The thickness of the third and sixth Ag layers affects the emissivity, visible light transmittance and reflection color tone, and is at least 8 nm for low emissivity glass having an emissivity of about 0.1 or less. is necessary.

【0025】またさらに、Ag層の直上部に形成する第
3層、第6層の金属バリアー層は、銀層と酸化物層の両
方に高い密着性をもつ亜鉛または亜鉛を主成分とした合
金層が望ましい。なお、ここでいう金属バリアー層と
は、銀層の直上に第4層及び/又は第7層の金属バリア
ー層を成膜した直後は全厚が金属層であるが、次いで該
金属層の上層に第4層あるいは第7層の酸化物層を成膜
する時、酸化性雰囲気(例えば酸素80%、アルゴン2
0%)で成膜するため、該金属層の上層部の一部が酸化
物に変換されるが、この上層部が酸化された酸化物層と
残った金属層を含めて金属バリアー層と呼ぶ。該金属バ
リアー層の作用は、前記第4層或いは第7層の酸化物層
を成膜する際に、その酸化性雰囲気の影響が下部の銀層
に及ばないように該金属バリアー層を介在させて銀層が
酸化されるのを保護するためのものである。金属バリア
ー層として、アルミニウムを2〜10原子%含む亜鉛合
金は、酸素との結合力が高く、最も効果的に銀層中に拡
散してきた酸素その他の腐食性イオンをトラップするの
で特に好ましい。該金属バリアー層の厚みは厚いほど強
い効果が長続きすることは当然であるが、厚すぎると可
視光線透過率を下げてしまう。しかし次に酸化物を成膜
する際、該金属バリアー層の一部は酸化されるので、そ
の酸化前の最初の金属層の厚みは8.0nm以下であれ
ば高い透過率が得られる。
Further, the third and sixth metal barrier layers formed immediately above the Ag layer are made of zinc or an alloy containing zinc as a main component, which has high adhesion to both the silver layer and the oxide layer. Layers are preferred. Note that the metal barrier layer referred to here is a metal layer immediately after the metal barrier layer of the fourth layer and / or the seventh layer is formed immediately above the silver layer. When forming the fourth or seventh oxide layer on the substrate, an oxidizing atmosphere (for example, oxygen 80%, argon 2
0%), a part of the upper layer portion of the metal layer is converted to an oxide, but this upper layer portion is referred to as a metal barrier layer including the oxidized oxide layer and the remaining metal layer. . The function of the metal barrier layer is to interpose the metal barrier layer so that the oxidizing atmosphere does not affect the lower silver layer when the fourth or seventh oxide layer is formed. To protect the silver layer from being oxidized. As the metal barrier layer, a zinc alloy containing 2 to 10 atomic% of aluminum is particularly preferable because it has a high bonding force with oxygen and most effectively traps oxygen and other corrosive ions diffused into the silver layer. It goes without saying that the thicker the metal barrier layer is, the longer the strong effect lasts. However, if the metal barrier layer is too thick, the visible light transmittance is reduced. However, when the next oxide film is formed, a part of the metal barrier layer is oxidized, so that if the thickness of the first metal layer before the oxidation is 8.0 nm or less, a high transmittance can be obtained.

【0026】ここに酸化された金属バアリアー層、中で
も酸化された亜鉛合金層、とりわけ酸化されたアルミニ
ウムを2〜10原子%含む亜鉛合金層(ZnAlO)と
酸化亜鉛層(ZnO)の違いの一つは、後者が太陽光線
に含まれる紫外線を強く吸収するのに対して、前者はそ
の吸収が弱い点である。これは不純物が添加されること
によって酸化亜鉛のバンドギャップが広がり、吸収域が
短波長側にずれるためである。更に今一つの相違点は、
後者に比べ前者の成膜速度が約70%に下がることであ
る。この原因は前者の、とりわけアルミニウムを2〜1
0原子%含む亜鉛合金の融点が、亜鉛の420℃に対し
約20℃低ことから成膜に必要な電力をターゲットに十
分に与えられないためである。従って酸化亜鉛層は金属
バリアー層の酸化による部分以外は不純物金属元素を多
くとも2原子%以上含まない純粋な酸化亜鉛層であるこ
とが好ましい。
Here, one of the differences between the oxidized metal barrier layer, especially the oxidized zinc alloy layer, especially the zinc alloy layer containing 2 to 10 atomic% of oxidized aluminum (ZnAlO) and the zinc oxide layer (ZnO) Is that the latter strongly absorbs the ultraviolet rays contained in the sunlight, whereas the former is weak in the absorption. This is because the band gap of zinc oxide is widened by the addition of the impurity, and the absorption region shifts to the short wavelength side. Another difference is that
That is, the film forming rate of the former is reduced to about 70% as compared with the latter. This is due to the former, especially aluminum
This is because the melting point of the zinc alloy containing 0 atomic% is lower by about 20 ° C. than 420 ° C. of zinc, so that the power required for film formation cannot be sufficiently provided to the target. Therefore, it is preferable that the zinc oxide layer be a pure zinc oxide layer which does not contain at most 2 atomic% or more of the impurity metal element except for the portion where the metal barrier layer is oxidized.

【0027】酸化亜鉛層は緻密で大気中の腐食性ガスの
拡散を防ぐ効果があり、また太陽光線に含まれる紫外線
を吸収する働きがあるが化学的耐久性が低いため、最上
層としては余り好ましくなく、最上層として用いる場合
には、酸化亜鉛層の上にさらに非晶質酸化物である酸化
錫層及び/又は酸化チタン層を設けるのが望ましい。該
酸化錫及び/又は酸化チタン層の膜厚は1nm以上が好
ましい。
The zinc oxide layer is dense and has an effect of preventing the diffusion of corrosive gas in the atmosphere, and has a function of absorbing ultraviolet rays contained in sunlight, but has low chemical durability. When used as the uppermost layer, it is preferable to further provide a tin oxide layer and / or a titanium oxide layer, which are amorphous oxides, on the zinc oxide layer. The thickness of the tin oxide and / or titanium oxide layer is preferably 1 nm or more.

【0028】また、第4層の厚みは、好ましい光学的特
性を得るために70〜150nmの範囲が好ましい。
The thickness of the fourth layer is preferably in the range of 70 to 150 nm in order to obtain preferable optical characteristics.

【0029】第7層は、高い可視光線透過率と反射色調
を極力中性に保つために合計で10〜50nmの範囲が
適正であり、膜厚が薄すぎても厚すぎても反射率が高く
なり、従って透過率が低くなる。
The total thickness of the seventh layer is suitably in the range of 10 to 50 nm in order to keep the visible light transmittance and the reflection color tone as neutral as possible. Higher, thus lowering the transmittance.

【0030】本発明の低放射率ガラスの光学特性は、L
*、a*、b*表色系において、入射角8°の正反射色が
a*(8度)に対し45°の正反射光のa*(45度)が
下記の関係にあることが好ましく、(a*(8度)−a*
(45度))が−2.0より小さくなると、無彩色でな
くなるため好ましくない。
The optical properties of the low emissivity glass of the present invention are as follows:
In the *, a *, b * color system, the specular color at an incident angle of 8 ° may have the following relationship with the a * (45 °) of specularly reflected light at 45 ° with respect to a * (8 °). Preferably, (a * (8 degrees) -a *
If (45 degrees)) is smaller than -2.0, it is not preferable because achromatic color is not obtained.

【0031】a*(8度)−a*(45度)>−2.0 また、L*、a*、b*表色系において、低放射膜のガラ
ス面反射特性値が下記の関係にあることが好ましく、こ
の範囲を外れると無彩色でなくなり、好ましくないい。
A * (8 degrees) -a * (45 degrees)>-2.0 Further, in the L *, a *, b * color system, the glass surface reflection characteristic value of the low-emission film has the following relationship. It is preferable that the ratio be outside the above range.

【0032】入射角8°の場合; 反射率=4〜15
(%)a*(8度)=0〜−10 入射角45°の場合;反射率=4〜15(%)a*
(45度)=2〜−15 さらに、可視光透過率は65%〜85%、表面抵抗値は
6.0Ω/□以下であることが好ましい。
When the incident angle is 8 °; reflectance = 4 to 15
(%) A * (8 degrees) = 0 to -10 at an incident angle of 45 °; reflectance = 4 to 15 (%) a *
(45 degrees) = 2 to -15 Further, it is preferable that the visible light transmittance is 65% to 85% and the surface resistance value is 6.0Ω / □ or less.

【0033】[0033]

【作用】冷凍コイルを、目的とするターゲットの近傍に
設置することにより、この方法で成膜したAg膜に効果
がある理由は、下記のように考えられる。
The reason why the placement of the refrigeration coil in the vicinity of the intended target is effective for the Ag film formed by this method is considered as follows.

【0034】従来の製法によるAg膜は、Ag原子がA
gターゲットを飛び出してからガラスに積層されるまで
に真空中に存在する不純物原子、分子にAg原子が衝突
してしまい、飛び出しの方向がずれてしまったり、速度
が変化してしまう確率が増加し、ガラスに乱雑に積層さ
れ多孔質の膜となり見掛の膜厚が厚くなる。この低放射
率膜の色調はAgの膜厚に大きく依存し、膜厚が厚い場
合斜めから見た場合の光路長の絶対値の変化が大きくな
り角度による影響を受けやすくなる。しかし今回の方法
で成膜した膜は、従来法で成膜した膜よりも緻密(約3
5%減)に積層されることにより角度による色調の変化
を抑えることができるものと考えられる。
The Ag film formed by the conventional manufacturing method has an Ag atom of A
The probability that Ag atoms collide with impurity atoms and molecules existing in the vacuum from the time when the target is ejected to the time when the target is laminated on the glass will increase the probability that the ejecting direction will shift or the speed will change. The film is randomly stacked on the glass and becomes a porous film, and the apparent film thickness becomes large. The color tone of the low emissivity film largely depends on the thickness of the Ag film. When the film thickness is large, the change in the absolute value of the optical path length when viewed obliquely becomes large, and the film is easily affected by the angle. However, the film formed by this method is denser (about 3 times) than the film formed by the conventional method.
It is considered that the change of the color tone due to the angle can be suppressed by stacking (5% reduction).

【0035】当然この緻密なAg膜の構造は抵抗値の性
能にも影響し、各Ag原子間の接触電気抵抗が減少し低
抵抗の特性が得られ結果として断熱性能が向上する。な
お、抵抗値と断熱特性の性能を表す半球放射率の値が相
関関係にあるのは周知の事実である。
Naturally, the structure of the dense Ag film also affects the performance of the resistance value, and the contact electric resistance between each Ag atom is reduced, and a low resistance characteristic is obtained. As a result, the heat insulating performance is improved. It is a well-known fact that there is a correlation between the resistance value and the value of the hemispherical emissivity representing the performance of the heat insulating property.

【0036】また、耐湿性の性能が従来方法よりも向上
するのも、従来方法ではAg原子が水蒸気の分子に衝突
した際Agが酸化し、その酸化Ag膜がそのまま正常な
Agに取り込まれてしまい、この酸化Agを拠点として
Agの酸化が拡がるものと考えられる、従って今回の方
法で成膜したAg膜はこの酸化Agの欠陥が少なく劣化
するのが押さえられる。
Also, the moisture resistance performance is improved as compared with the conventional method. In the conventional method, Ag is oxidized when Ag atoms collide with water vapor molecules, and the oxidized Ag film is taken into normal Ag as it is. It is considered that the oxidation of Ag is spread based on the Ag oxide. Therefore, the Ag film formed by the method of the present invention has less defects of the Ag oxide and is prevented from deteriorating.

【0037】[0037]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、成膜はDCマグネトロンスパッタリング法に
より行った。ただし本発明は係る実施例に限定されるも
のではない。
The present invention will be described below in detail with reference to examples. The film was formed by DC magnetron sputtering. However, the present invention is not limited to such an embodiment.

【0038】実施例1 大きさが1800mm×24000mm×約3mmのフ
ロートガラス上に、下記順序で被膜を形成した。スパッ
タ装置は、各チャンバー内の各カソードに予めSn、Z
n(3台)、Ag、ZnAl(Al含有率4原子%)の
各金属ターゲットを取り付けたのち、成膜前の圧力が1
-4Pa以下となるまで真空チャンバー内の排気を充分
に行った。本方法は、真空チャンバー内のAgターゲッ
トの下方に搬送ロールが設置され、そのロール上に載置
されたガラス板が往復動する時に電力が印加されたター
ゲットより所定の金属層あるいは金属酸化物層がガラス
板上に成膜されるようになっている。
Example 1 A coating was formed on a float glass measuring 1800 mm × 24000 mm × about 3 mm in the following order. The sputtering apparatus previously provided Sn, Z in each cathode in each chamber.
After attaching each metal target of n (3 units), Ag, and ZnAl (Al content: 4 atomic%), the pressure before film formation was 1
The vacuum chamber was sufficiently evacuated until the pressure became 0 -4 Pa or less. In this method, a transport roll is installed below an Ag target in a vacuum chamber, and when a glass plate placed on the roll reciprocates, a predetermined metal layer or metal oxide layer is applied from a target to which power is applied. Is formed on a glass plate.

【0039】なお、図1に示すようにAg成膜室のガラ
ス板の下方(Agターゲットから5m以内の距離)に
は、冷凍コイル(型式;PFC−1100、メ−カー;
米国POLYCOLD SYSTEMS INTERN
ATIONAL社製、コイル仕様;5/8インチ(コイ
ル外径) 20m(コイル長さ) 表面積:10,00
0cm2(表面積) −120℃〜−140℃(コイル
表面温度))をガラス板の幅にわたり配設した。
As shown in FIG. 1, a refrigeration coil (model: PFC-1100, manufacturer; below the glass plate in the Ag film forming chamber (within 5 m from the Ag target))
US POLYCOLD SYSTEMS INTERN
5/8 inch (coil outer diameter) 20 m (coil length) Surface area: 10,000
0 cm 2 (surface area) −120 ° C. to −140 ° C. (coil surface temperature)) was disposed over the width of the glass plate.

【0040】成膜については、先ず1パス目として、成
膜室の雰囲気を酸化性雰囲気(O2:Ar=8:2)に
保持し、第1層の第1層目としてのSnO層を12.5
nm、第1層の第2層目としてのZnO層を20.1n
m成膜した。次に2パス目として雰囲気をAr100%
の還元性雰囲気に保持し、第2層としてのAg層を1
0.0nm、第3層のZnAl合金層を6.5nm成膜
した。3パス目として成膜室の雰囲気を再び酸化性雰囲
気(O2:Ar=8:2)に保持し、第4層の第1層目
としてのSnO層を12.0nm、第2層目としてのZ
nO層を51.3nmを順次成膜し、さらに4パス目と
して3パス目と同じ雰囲気で第3層目としてのSnO層
を7.1nm、第4層目としてのZnO層を3.0nm
成膜した。次いで、5パス目として雰囲気をAr100
%の還元性雰囲気に保持し、第5層としてのAg層を1
2.0nm、第6層のZnAl合金層を6.7nm成膜
した。さらに、6パス目として成膜室の雰囲気を再び酸
化性雰囲気(O2:Ar=8:2)に保持し、第7層の
第1層目としてのSnO層を5.5nm、第2層目とし
てのZnO層を17.8nmを順次成膜し、さらに8パ
ス目として7パス目と同じ雰囲気で第7層の第3層目と
してのSnO層を2nm成膜した。次いで、ガラスを成
膜室より排出した。なお、銀層の上層の第4層ZnAl
合金層6.5nm及び第7層のZnAl合金層6.7n
mの一部は酸化し、それぞれのZnAl合金層は約5n
mが酸化物層に変化していた。第3層のAg層と第9層
のAg層間の酸化物層の厚さは、合計78.4nmであ
り、第9層より上層の酸化物層の厚さは、30.4nm
であった。
First, as the first pass, the atmosphere in the deposition chamber is kept in an oxidizing atmosphere (O 2 : Ar = 8: 2), and the SnO layer as the first layer of the first layer is deposited. 12.5
nm, the ZnO layer as the second layer of the first layer is 20.1 n
m was formed. Next, as the second pass, the atmosphere is Ar 100%.
, And the Ag layer as the second layer is
A third ZnAl alloy layer having a thickness of 0.0 nm and a thickness of 6.5 nm was formed. In the third pass, the atmosphere in the film forming chamber is again kept in the oxidizing atmosphere (O 2 : Ar = 8: 2), the SnO layer as the first layer of the fourth layer is 12.0 nm, and the second layer is the second layer. Z
A 51.3 nm nO layer is sequentially formed, and the fourth pass is 7.1 nm in SnO layer as the third layer and 3.0 nm in ZnO layer as the fourth layer in the same atmosphere as the third pass.
A film was formed. Next, the atmosphere was Ar100 as the fifth pass.
% Of the Ag layer as the fifth layer.
A ZnAl alloy layer of 2.0 nm and a sixth layer of 6.7 nm were formed. Further, as the sixth pass, the atmosphere in the film forming chamber is again kept in the oxidizing atmosphere (O 2 : Ar = 8: 2), the SnO layer as the first layer of the seventh layer is 5.5 nm, and the second layer is the second layer. A ZnO layer as an eye was sequentially formed to a thickness of 17.8 nm, and a second SnO layer as a third layer of a thickness of 2 nm was formed as an eighth pass in the same atmosphere as in the seventh pass. Next, the glass was discharged from the film forming chamber. The fourth layer ZnAl on the silver layer
Alloy layer 6.5 nm and seventh layer ZnAl alloy layer 6.7 n
m is oxidized, and each ZnAl alloy layer is about 5 n
m was changed to an oxide layer. The total thickness of the oxide layer between the third Ag layer and the ninth Ag layer is 78.4 nm, and the thickness of the oxide layer above the ninth layer is 30.4 nm.
Met.

【0041】また、Ag層の密度は9.0g/cm3
あった。なお、銀の密度は、湿式分析と膜厚測定の結果
より求めた。なお、膜構成を表1に示す。
The Ag layer had a density of 9.0 g / cm 3 . The density of silver was determined from the results of wet analysis and film thickness measurement. Table 1 shows the film configuration.

【0042】[0042]

【表1】 [Table 1]

【0043】各被膜の膜厚Dは、搬送速度とカソード電
力で調整し、その値は予め100nm前後の厚さに電力
0、搬送速度V0で成膜した被膜を部分的にエッチング
によって除去し、その段差を触針式表面粗さ計で測定し
て厚みD0を求め、実施例におけるカソード電力E、搬
送速度をVとして、D=D0×E/E0×V0/Vの式に従
って求めた。なお、表1の膜構成の欄の数字は、各被膜
の膜厚(nm)を示す。
The film thickness D of each film is adjusted by the transport speed and the cathode power, and the value is previously removed to a thickness of about 100 nm by partially etching the film formed at the power E 0 and the transport speed V 0. Then, the step was measured with a stylus type surface roughness meter to determine the thickness D 0, and the cathode power E and the transport speed were V in the example, and D = D 0 × E / E 0 × V 0 / V. It was determined according to the formula. The numbers in the column of the film configuration in Table 1 indicate the thickness (nm) of each film.

【0044】得られた低放射率ガラスの光学特性は、分
光光度計(型式;U−4000、日立製)によって、ま
た抵抗値は、4探針プローブ抵抗計(エプソン社製)に
より、さらに放射率は、赤外分光光度計(型式;270
−30、日立製)によりそれぞれ測定した。また、表3
に示す複層ガラスの性能評価は、JIS 3209(複
層ガラス)及びJIS 3106(板ガラスの透過率、
反射率、日射熱取得率試験方法)に基づき評価した。
The optical characteristics of the obtained low-emissivity glass were further radiated by a spectrophotometer (model: U-4000, manufactured by Hitachi), and the resistance was further measured by a four-probe probe ohmmeter (manufactured by Epson). The rate was measured using an infrared spectrophotometer (model: 270
-30, manufactured by Hitachi). Table 3
The performance evaluation of the double glazing shown in JIS 3209 (double glazing) and JIS 3106 (transmittance of flat glass,
(Reflectance, solar heat acquisition rate test method).

【0045】その評価結果は、光学特性については表2
及に示すように全て良好な結果を示すとともに、熱特性
については表3に示すように遮蔽係数(SC値(夏);
夏場に熱線を遮蔽する性能)の値が低く、日射熱除去率
(1-η;夏場に日射熱を除去する性能)の値も高くなっ
ており、さらに熱貫流率(断熱性能)の値も低くなって
おり、何れも良好な結果を示した。
The evaluation results are shown in Table 2 for the optical characteristics.
As shown in Table 3, all of the results show good results. Regarding the thermal characteristics, the shielding coefficient (SC value (summer);
The value of the solar heat removal rate (1-η; the ability to remove solar heat in the summer) is high, and the value of the heat transfer rate (insulation performance) is also low. It was low, and all showed good results.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】また、耐湿性の評価は、100×100m
mのガラスサンプル(n=3)を、30℃ーRH90%
の環境試験機の中で2週間、及び3週間暴露した後、膜
面に発生したピンホールの数を数えた。その結果は表4
に示すように、3週間暴露後も0.5mm以上のピンホ
ールは皆無であるとともに、発生数も少なく良好であっ
た。
The moisture resistance was evaluated as 100 × 100 m
m glass sample (n = 3) at 30 ° C.-RH 90%
After exposure for 2 weeks and 3 weeks in an environmental tester, the number of pinholes generated on the film surface was counted. Table 4 shows the results.
As shown in Fig. 7, even after exposure for 3 weeks, there was no pinhole of 0.5 mm or more, and the number of generated pinholes was small and good.

【0049】[0049]

【表4】 [Table 4]

【0050】また、低放射率ガラスの入射角度8°、3
0°、45°のそれぞれの角度別反射色調は、表5,図
4に示すように緑色調にシフトし、好ましいものであっ
た。なお、角度別反射色調は、photal(型式;M
C−850A(コントロール),MCPD100(スペ
クトロマルチチャンネル),UV−VIS(フォトディ
テクター)、大塚エレクトロニクス製)により測定し
た。
The incident angle of low emissivity glass is 8 °, 3 °
The reflection color tone at each angle of 0 ° and 45 ° shifted to a green tone as shown in Table 5 and FIG. In addition, the reflection color tone by angle is photoal (model; M
The measurement was performed using C-850A (control), MCPD100 (spectromultichannel), UV-VIS (photodetector, manufactured by Otsuka Electronics).

【0051】[0051]

【表5】 [Table 5]

【0052】実施例2 実施例1と同様の方法により、表1に示すように、第3
層のAg層と第9層のAg層間の酸化物層を78.6n
m、第9層より上層の酸化物層の厚さを29.6nmに
変更した以外は、実施例1と同様に成膜した。なお、A
g層の密度は8.8g/cm3であった。評価結果は、
光学特性、熱特性、耐湿性ともに表2、3、4に示すよ
うに実施例1と同様に良好な結果であった。
Example 2 In the same manner as in Example 1, as shown in Table 1,
78.6 n of the oxide layer between the first Ag layer and the ninth Ag layer
m, a film was formed in the same manner as in Example 1 except that the thickness of the oxide layer above the ninth layer was changed to 29.6 nm. Note that A
The density of the g layer was 8.8 g / cm 3 . The evaluation result is
As shown in Tables 2, 3, and 4, the optical properties, thermal properties, and moisture resistance were as good as in Example 1.

【0053】実施例3 実施例1と同様の方法により、表1に示すように、第3
層のAg層と第9層のAg層間の酸化物層を77.0n
m、第9層より上層の酸化物層の厚さを29.6nmに
変更した以外は、実施例1と同様に成膜した。なお、A
g層の密度は9.0g/cm3であった。評価結果は、
光学特性、熱特性、耐湿性ともに表2、3、4に示すよ
うに実施例1と同様に良好な結果であった。
Example 3 By the same method as in Example 1, as shown in Table 1,
The oxide layer between the Ag layer of the first layer and the Ag layer of the ninth layer is 77.0 n.
m, a film was formed in the same manner as in Example 1 except that the thickness of the oxide layer above the ninth layer was changed to 29.6 nm. Note that A
The density of the g layer was 9.0 g / cm 3 . The evaluation result is
As shown in Tables 2, 3, and 4, the optical properties, thermal properties, and moisture resistance were as good as in Example 1.

【0054】比較例1 ガラス板の下部に冷凍コイルを設置せずに成膜し、且つ
膜構成を表1に示すように変更した以外は、実施例1と
同じ方法で行った。なお、Ag層の密度は7.3g/c
3であった。評価結果は、表3に示す通り、複層時の
断熱性能(遮蔽係数(SC値))が好ましくなく、さら
に耐湿性試験において表3に示すように、0.4mm以
上の大きなピンホールが多数発生した。また、角度別の
反射色調においては、表4,図4に示すように見る角度
が斜めになる程赤くなり、好ましいものではなかった。
Comparative Example 1 A film was formed in the same manner as in Example 1 except that a film was formed without installing a refrigeration coil below the glass plate and the film configuration was changed as shown in Table 1. The density of the Ag layer was 7.3 g / c.
m 3 . As shown in Table 3, as shown in Table 3, the heat insulation performance (shielding coefficient (SC value)) at the time of the multi-layer was not preferable, and in the moisture resistance test, as shown in Table 3, there were many large pinholes of 0.4 mm or more. Occurred. In addition, as shown in Table 4 and FIG. 4, the reflection color tone by angle was redder as the viewing angle became oblique, and was not preferable.

【0055】比較例2 ガラス板の下部に冷凍コイルを設置せずに成膜し、且つ
膜構成を表1に示すように変更した以外は、実施例1と
同じ方法で行った。なお、Ag層の密度は比較例1と同
じ7.3g/cm3であった。評価結果は、表3に示す
通り、複層時の断熱性能(遮蔽係数(SC値))が好ま
しくなく、さらに耐湿性試験において表4に示すよう
に、0.4mm以上の大きなピンホールが多数発生し
た。また、角度別の反射色調においては、表5,図4に
示すように見る角度が斜めになる程赤くなり、好ましい
ものではなかった。
Comparative Example 2 A film was formed in the same manner as in Example 1 except that a film was formed without a refrigeration coil under the glass plate and the film configuration was changed as shown in Table 1. The density of the Ag layer was 7.3 g / cm 3, which was the same as that of Comparative Example 1. As shown in Table 3, as shown in Table 3, the heat insulation performance (shielding coefficient (SC value)) at the time of the multilayer was not preferable, and in the moisture resistance test, as shown in Table 4, many large pinholes of 0.4 mm or more were found. Occurred. Further, as shown in Table 5 and FIG. 4, the reflection color tone by angle was redder as the viewing angle became oblique, which was not preferable.

【0056】比較例3 ガラス板の下部に冷凍コイルを設置せずに成膜し、且つ
膜構成を表1に示すように変更した以外は、実施例1と
同じ方法で行った。なお、Ag層の密度は比較例1と同
じ7.3g/cm3であった。評価結果は、表3に示す
通り、複層時の断熱性能(遮蔽係数(SC値))が好ま
しくなく、さらに耐湿性試験において表4に示すよう
に、0.4mm以上の大きなピンホールが多数発生し
た。また、角度別の反射色調においては、表5,図4に
示すように見る角度が斜めになる程赤くなり、好ましい
ものではなかった。
Comparative Example 3 A film was formed in the same manner as in Example 1 except that a film was formed without installing a refrigeration coil below the glass plate and the film configuration was changed as shown in Table 1. The density of the Ag layer was 7.3 g / cm 3, which was the same as that of Comparative Example 1. As shown in Table 3, as shown in Table 3, the heat insulation performance (shielding coefficient (SC value)) at the time of the multilayer was not preferable, and in the moisture resistance test, as shown in Table 4, many large pinholes of 0.4 mm or more were found. Occurred. Further, as shown in Table 5 and FIG. 4, the reflection color tone by angle was redder as the viewing angle became oblique, which was not preferable.

【0057】[0057]

【発明の効果】本発明の低放射率ガラスは、見る角度
による色調の変化が少なく、正面の色をニュートラル色
にしても斜めからの色が赤くならない、従来の膜より
耐湿性が大幅に向上する、膜抵抗が低く断熱特性が優
れる等の効果を有する。
The low-emissivity glass of the present invention has a small change in color tone depending on the viewing angle, and does not turn red obliquely even when the front color is neutral. And the heat resistance is low and the heat insulation properties are excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスパッタ室の冷凍コイル配置図FIG. 1 is a layout diagram of a refrigeration coil in a sputtering chamber according to the present invention.

【図2】従来のスパッタ状況図FIG. 2 is a diagram showing a conventional sputtering situation.

【図3】本発明のスパッタ状況図FIG. 3 is a diagram showing the state of sputtering according to the present invention.

【図4】角度別のガラス面反射色調図(実施例1)FIG. 4 is a diagram showing a reflection color tone on a glass surface according to an angle (Example 1).

【図5】角度別のガラス面反射色調図(比較例1)FIG. 5 is a graph showing a reflection color tone of a glass surface at different angles (Comparative Example 1).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Ag層を少なくとも1層有するスパッタリ
ング法による低放射率ガラスにおいて、Ag層の密度が
8.5g/cm3以上であることを特徴とする低放射率
ガラス。
1. A low-emissivity glass obtained by sputtering having at least one Ag layer, wherein the density of the Ag layer is 8.5 g / cm 3 or more.
【請求項2】ガラス/透明酸化物もしくは窒化物よりな
る第1層/Agよりなる第2層/金属バリヤーよりなる
第3層/透明酸化物もしくは窒化物よりなる第4層/A
gよりなる第5層/金属バリヤーよりなる第6層/透明
酸化物もしくは窒化物よりなる第7層よりなる被膜より
順次構成され、第1層目の膜厚が10〜50nm,第2
層及び第5層の膜厚がそれぞれ8nm〜50nm、第3
層及び第6層の膜厚がそれぞれ8.0nm以下、第4層
の膜厚が70〜150nm、第7層の膜厚が10〜50
nmであることを特徴とする請求項1記載の低放射率ガ
ラス。
2. A first layer made of glass / transparent oxide or nitride / a second layer made of Ag / a third layer made of metal barrier / a fourth layer made of transparent oxide or nitride / A
g of a fifth layer / a sixth layer of a metal barrier / a coating of a seventh layer of a transparent oxide or nitride. The first layer has a thickness of 10 to 50 nm,
Each of the layer and the fifth layer has a thickness of 8 nm to 50 nm,
Each of the layer and the sixth layer has a thickness of 8.0 nm or less, the fourth layer has a thickness of 70 to 150 nm, and the seventh layer has a thickness of 10 to 50.
2. The low-emissivity glass according to claim 1, wherein
【請求項3】L*、a*、b*表色系において、入射角8
°の正反射色がa*(8度)に対し、45°の正反射光
のa*(45度)が下記の関係にあるとともに、 a*(8度)−a*(45度)>−2.0 低放射膜のガラス面反射特性値が下記の関係にあること
を特徴とする請求項1乃至2記載の低放射率ガラス。 入射角8°の場合; 反射率=4〜15% a*(8
度)=0〜−10 入射角45°の場合;反射率=4〜15% a*(4
5度)=2〜−15
3. An incident angle of 8 in the L *, a *, b * color system.
The a * (45 degrees) of the specular reflection light of 45 degrees has the following relationship with the a * (8 degrees) of the specular reflection color of degree: a * (8 degrees) -a * (45 degrees)> -2.0 Low emissivity glass according to claim 1 or 2, wherein the glass surface reflection characteristic value of the low emissivity film has the following relationship. At an incident angle of 8 °; reflectance = 4 to 15% a * (8
Degree) = 0 to -10 at an incident angle of 45 °; reflectance = 4 to 15% a * (4
5 degrees) = 2 to -15
【請求項4】可視光透過率が65%〜85%、表面抵抗
値が6.0Ω/□以下であることを特徴とする請求項1
乃至3記載の低放射率ガラス。
4. The method according to claim 1, wherein the visible light transmittance is 65% to 85% and the surface resistance is 6.0 Ω / □ or less.
4. A low-emissivity glass according to any one of claims 1 to 3.
【請求項5】低放射膜をスパッタリング法で成膜する方
法において、水蒸気や各種ガスをコールドトラップ法で
吸着する冷凍コイルをAgターゲットの近傍に設置し、
該冷凍コイルの表面温度を−120〜−140℃とする
ことにより、該ターゲット周辺を局所的に高真空な状態
に保持し、ガラス表面にAg層を成膜することを特徴と
する低放射率ガラスの製法。
5. A method of forming a low-emission film by a sputtering method, wherein a refrigeration coil for adsorbing water vapor or various gases by a cold trap method is provided near an Ag target,
By setting the surface temperature of the refrigeration coil to −120 to −140 ° C., the surroundings of the target are locally kept in a high vacuum state, and an Ag layer is formed on the glass surface. Glass manufacturing method.
【請求項6】Agの密度が8.5g/cm3以上である
ことを特徴とする請求項5記載の低放射率ガラスの製
法。
6. The method for producing a low-emissivity glass according to claim 5, wherein the density of Ag is 8.5 g / cm 3 or more.
JP02952899A 1999-02-08 1999-02-08 Low emissivity glass and its manufacturing method Expired - Fee Related JP3732349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02952899A JP3732349B2 (en) 1999-02-08 1999-02-08 Low emissivity glass and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02952899A JP3732349B2 (en) 1999-02-08 1999-02-08 Low emissivity glass and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2000226235A true JP2000226235A (en) 2000-08-15
JP3732349B2 JP3732349B2 (en) 2006-01-05

Family

ID=12278615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02952899A Expired - Fee Related JP3732349B2 (en) 1999-02-08 1999-02-08 Low emissivity glass and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3732349B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026488A1 (en) * 2000-09-29 2002-04-04 Nippon Sheet Glass Co., Ltd. Transparent laminate having low emissivity
US6596399B2 (en) * 2000-12-04 2003-07-22 Guardian Industries Corp. UV absorbing/reflecting silver oxide layer, and method of making same
JP2007326774A (en) * 2002-04-29 2007-12-20 Nippon Sheet Glass Co Ltd Coating having low emissivity and low solar reflectance
KR100859159B1 (en) 2006-08-31 2008-09-19 한국세큐리트 주식회사 Glazing
CN103786384A (en) * 2014-02-12 2014-05-14 天津南玻节能玻璃有限公司 Silicon carbide coated low-emissivity glass and preparation method thereof
JP2014122401A (en) * 2012-12-21 2014-07-03 Mitsubishi Materials Corp Laminated film
WO2023032535A1 (en) 2021-09-06 2023-03-09 日本板硝子株式会社 Glass body
WO2023033034A1 (en) 2021-09-06 2023-03-09 日本板硝子株式会社 Glass body
WO2023035955A1 (en) * 2021-09-07 2023-03-16 惠州市拓普金属材料有限公司 Silver alloy target material, and preparation method therefor and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026488A1 (en) * 2000-09-29 2002-04-04 Nippon Sheet Glass Co., Ltd. Transparent laminate having low emissivity
GB2386127A (en) * 2000-09-29 2003-09-10 Nippon Sheet Glass Co Ltd Transparent laminate having low emissivity
GB2386127B (en) * 2000-09-29 2004-09-15 Nippon Sheet Glass Co Ltd Transparent layered product with low emissivity coating
US6596399B2 (en) * 2000-12-04 2003-07-22 Guardian Industries Corp. UV absorbing/reflecting silver oxide layer, and method of making same
JP2007326774A (en) * 2002-04-29 2007-12-20 Nippon Sheet Glass Co Ltd Coating having low emissivity and low solar reflectance
KR100859159B1 (en) 2006-08-31 2008-09-19 한국세큐리트 주식회사 Glazing
JP2014122401A (en) * 2012-12-21 2014-07-03 Mitsubishi Materials Corp Laminated film
CN103786384A (en) * 2014-02-12 2014-05-14 天津南玻节能玻璃有限公司 Silicon carbide coated low-emissivity glass and preparation method thereof
WO2023032535A1 (en) 2021-09-06 2023-03-09 日本板硝子株式会社 Glass body
WO2023033034A1 (en) 2021-09-06 2023-03-09 日本板硝子株式会社 Glass body
WO2023035955A1 (en) * 2021-09-07 2023-03-16 惠州市拓普金属材料有限公司 Silver alloy target material, and preparation method therefor and application thereof

Also Published As

Publication number Publication date
JP3732349B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
AU678207B2 (en) Durable low-emmisivity solar control thin film coating
EP3589596B1 (en) Coated article with low-e coating having protective doped silver or doped copper layer for protecting silver based ir reflecting layer(s), and method of making same
US7537677B2 (en) Method of making low-E coating using ceramic zinc inclusive target, and target used in same
US5962115A (en) Pane of transparent material having a low emissivity
JP6113794B2 (en) Coated article including low radiation coating, insulated glass unit including coated article, and / or method for producing the same
JP4519136B2 (en) Corrosion resistant low emissivity coating
CN103443044B (en) Include the isolation multiple glazing of two low diathermaneity laminations
US9315414B2 (en) Low-e panels with ternary metal oxide dielectric layer and method for forming the same
CZ299337B6 (en) Process for producing glass pane coating by magnetron sputtering process, glass pane with transparent thin-layer system and double-glazing pane incorporating the coated glass pane
KR20080109899A (en) Coated glass pane
EP3004015A2 (en) Low-emissivity glazing
CN112194383A (en) Low-emissivity glass and preparation method thereof
AU2013237314A1 (en) Solar control glazing
PL226180B1 (en) Coated article with niobium chromium inclusive barrier layers(s) and method of making same
JPH1134216A (en) Laminate and glass laminate for window
JP2000226235A (en) Low-emissivity glass and its production
JP3724936B2 (en) Low emission glass laminate
JPH03187735A (en) Selective permeable membrane
KR20160067169A (en) Thermal control glazing
JP2002173343A (en) Method of manufacturing low-emissivity transparent laminate
CN217868650U (en) Single silver layer HTLE glass
JP2007070146A (en) Low emissive multilayered glass
WO2010098200A1 (en) Stack article
JP2004217432A (en) Laminate and structure
CN218174832U (en) Temperable offline Low-E coated glass and hollow glass structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees