JP2000201485A - Uninterruptible power supply - Google Patents

Uninterruptible power supply

Info

Publication number
JP2000201485A
JP2000201485A JP11000385A JP38599A JP2000201485A JP 2000201485 A JP2000201485 A JP 2000201485A JP 11000385 A JP11000385 A JP 11000385A JP 38599 A JP38599 A JP 38599A JP 2000201485 A JP2000201485 A JP 2000201485A
Authority
JP
Japan
Prior art keywords
voltage
rectifier
storage battery
command value
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11000385A
Other languages
Japanese (ja)
Other versions
JP3653659B2 (en
Inventor
Tetsuji Ogiwara
哲次 荻原
Yuji Kawagoe
祐司 川越
Chuichi Aoki
忠一 青木
Masahiro Hashiwaki
正浩 橋脇
Takeshi Doishita
健 土井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
NTT Power and Building Facilities Inc
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
NTT Power and Building Facilities Inc
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, NTT Power and Building Facilities Inc, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP00038599A priority Critical patent/JP3653659B2/en
Publication of JP2000201485A publication Critical patent/JP2000201485A/en
Application granted granted Critical
Publication of JP3653659B2 publication Critical patent/JP3653659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To sustain power supply to a load even if a battery fails or a circuit is interrupted by setting the output voltage of a rectifier slightly lower than the battery voltage so that power is not recovered from the battery to the AC power supply side when discharge test is started thereby controlling the output voltage of the rectifier to follow up the discharge characteristics. SOLUTION: When the rectifier output voltage Vrdc is controlled below a battery discharge voltage Vbdc, a discharge test voltage command value and battery discharge voltage Vbdc are inputted to a differential amplifier 7. When the battery discharge voltage Vbdc drops, the differential amplifier 7 functions to elevate the rectifier output voltage Vrdc but since an output current signal from a current transformer CT2 is added to a second voltage command value Vref2, the rectifier output voltage Vrdc is controlled below the battery discharge voltage Vbdc so that power is not recovered from the battery to the AC power supply side. More specifically, the rectifier output voltage Vrdc is controlled based on the battery discharge voltage to follow up the battery discharge voltage Vbdc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流電源を直流電
力に変換する整流器と、整流器の出力直流電力を交流電
力に変換するインバータと、交流電源が停電した時にイ
ンバータに直流電力を供給する蓄電池等から構成され、
第1電圧指令値と整流器出力電圧とを比較することによ
り整流器出力電圧を制御する無停電電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rectifier for converting AC power into DC power, an inverter for converting DC power output from the rectifier into AC power, and a storage battery for supplying DC power to the inverter when the AC power fails. Etc.,
The present invention relates to an uninterruptible power supply that controls a rectifier output voltage by comparing a first voltage command value with a rectifier output voltage.

【0002】[0002]

【従来の技術】図5はスイッチング変換部にPWM制御
方式を使用した一般的な無停電電源装置の構成である。
図において1は交流電源を直流に変換する整流器で、直
流を交流に逆変換するインバータ2に電力を供給すると
共に、蓄電池3を充電する。T1は無停電電源装置の入
力電流波形を正弦波化する基準信号を供給する変圧器、
CT1は入力電流を検出する変流器である。常時、整流
器1は交流入力電源の変動、負荷の変動に対して直流出
力電圧を一定に制御している。整流器出力電圧の制御
は、整流器出力電圧Vrdcと、任意の電圧値に設定す
る第1電圧指令値Vref1を差動増幅器7に入力し、
差動増幅器7で検出される誤差信号をPWM波形生成回
路8に入力する。PWM波形生成回路8は、差動増幅器
7の信号と、変圧器T1から供給される入力電圧波形信
号と変流器CT1から得られる入力電流信号とにより、
無停電電源装置の入力電流波形を正弦波化すると共に、
入力力率も1に近似するように制御する駆動信号を整流
器1のスイッチング素子(図示せず)に送出する。
2. Description of the Related Art FIG. 5 shows a configuration of a general uninterruptible power supply using a PWM control system for a switching converter.
In the figure, reference numeral 1 denotes a rectifier for converting an AC power supply to a DC, and supplies power to an inverter 2 for converting a DC into an AC, and charges a storage battery 3. T1 is a transformer for supplying a reference signal for converting the input current waveform of the uninterruptible power supply into a sine wave,
CT1 is a current transformer that detects an input current. The rectifier 1 constantly controls the DC output voltage to be constant with respect to the fluctuation of the AC input power supply and the fluctuation of the load. The rectifier output voltage is controlled by inputting the rectifier output voltage Vrdc and a first voltage command value Vref1 set to an arbitrary voltage value to the differential amplifier 7,
An error signal detected by the differential amplifier 7 is input to a PWM waveform generation circuit 8. The PWM waveform generation circuit 8 uses the signal of the differential amplifier 7, the input voltage waveform signal supplied from the transformer T1, and the input current signal obtained from the current transformer CT1.
While making the input current waveform of the uninterruptible power supply a sine wave,
A drive signal for controlling the input power factor to be close to 1 is sent to a switching element (not shown) of the rectifier 1.

【0003】無停電電源装置において蓄電池3は、使用
する環境により劣化状態が異なり、定期的な点検を必要
とする。蓄電池3の劣化状態を点検する方法として、通
常の運転状態で無停電電源装置の交流電源を遮断、また
は整流器入力の開閉器Aをオフとし、インバータ2を蓄
電池運転とし、蓄電池3を一定時間放電することで蓄電
池3の劣化状態を判定していた。
In the uninterruptible power supply, the storage battery 3 has a deteriorated state depending on the environment in which it is used, and requires periodic inspection. As a method for checking the deterioration state of the storage battery 3, the AC power supply of the uninterruptible power supply is shut off or the switch A of the rectifier input is turned off in the normal operation state, the inverter 2 is operated as the storage battery, and the storage battery 3 is discharged for a certain time. Thus, the deterioration state of the storage battery 3 is determined.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
無停電電源装置における上記のような方法では、整流器
1が停止しているために蓄電池3および蓄電池3の放電
回路に異常があった場合はインバータ2は整流器1およ
び蓄電池3のいずれからも電力が供給されず停止してし
まう。すなわち、インバータ2が停止すると、負荷への
給電も停止するという問題がある。
However, according to the above-described method in the conventional uninterruptible power supply, the inverter is operated when the storage battery 3 and the discharge circuit of the storage battery 3 are abnormal because the rectifier 1 is stopped. No. 2 is stopped because power is not supplied from either the rectifier 1 or the storage battery 3. That is, there is a problem that when the inverter 2 stops, the power supply to the load also stops.

【0005】本発明はこのような点に鑑みてなされたも
のであり、蓄電池3の劣化状態を点検するときに、蓄電
池3が寿命あるいは蓄電池回路が遮断されていてもイン
バータ2が停止することなく負荷への給電が継続できる
無停電電源装置を提供することを目的とする。
The present invention has been made in view of such a point, and when checking the deterioration state of the storage battery 3, the inverter 2 does not stop even if the storage battery 3 has reached the end of its life or the storage battery circuit is shut off. An object of the present invention is to provide an uninterruptible power supply that can continuously supply power to a load.

【0006】[0006]

【課題を解決するための手段】本発明の無停電電源装置
は、蓄電池を放電させて劣化状態を実稼動状態で判定す
るときに、蓄電池および放電回路が異常であってもイン
バータ運転継続を可能にするとともに、整流器の回路方
式により発生する電力回生を防止する整流器出力電圧の
制御機能を具備している。すなわち、放電試験開始時に
蓄電池から交流電源側に電力回生しないよう、整流器出
力電圧を蓄電池電圧よりもわずかに低く設定して整流器
が待機状態となるようにし、かつ、蓄電池の放電電圧特
性に追従するように制御している。また、蓄電池の不良
あるいは放電回路の断線に起因する整流器出力電圧の低
下が下限値以下にならないようにしている。
According to the uninterruptible power supply of the present invention, when the storage battery is discharged and the deterioration state is determined in the actual operation state, the inverter operation can be continued even if the storage battery and the discharge circuit are abnormal. And a control function of the rectifier output voltage for preventing power regeneration generated by the circuit system of the rectifier. That is, at the start of the discharge test, the rectifier output voltage is set slightly lower than the storage battery voltage so that the rectifier is in a standby state, and follows the discharge voltage characteristics of the storage battery so that power is not regenerated from the storage battery to the AC power supply side. Control. In addition, a decrease in the rectifier output voltage due to a failure in the storage battery or a disconnection in the discharge circuit is prevented from falling below the lower limit.

【0007】[0007]

【発明の実施の形態】上記の課題を達成するために本発
明の無停電電源装置は、交流電源を直流電力に変換する
整流器と、整流器の出力直流電力を交流電力に変換する
インバータと、交流電源が停電した時にインバータに直
流電力を供給する蓄電池等から構成され、第1電圧指令
値と整流器出力電圧とを比較することにより整流器出力
電圧を制御する無停電電源装置において、整流器1の出
力電流を検出して出力電流信号を送出する変流器CT2
と、整流器出力電圧Vrdcの下限値以下の降圧を制限
するリミッタ回路4と、蓄電池放電時の基準となる第2
電圧指令値Vref2と、常時運転時の基準となる前記
第1電圧指令値Vref1と、第2電圧指令値Vref
2に前記出力電流信号と前記下限値を加算した放電試験
電圧指令値とを切り換える切換回路6とを設け、蓄電池
の劣化状態を判定するために切換回路6により第1電圧
指令値Vref1から切り換えられた前記放電試験電圧
指令値と、整流器出力電圧Vrdc/蓄電池放電電圧V
bdcとを比較することにより整流器出力電圧Vrdc
を蓄電池放電電圧Vbdcよりも常に低めに制御すると
共に蓄電池放電電圧Vbdcに追従させることに特徴を
有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS To achieve the above object, an uninterruptible power supply according to the present invention comprises a rectifier for converting AC power into DC power, an inverter for converting DC power output from the rectifier into AC power, In an uninterruptible power supply device configured to control a rectifier output voltage by comparing a first voltage command value with a rectifier output voltage, the output current of the rectifier 1 is configured by a storage battery or the like that supplies DC power to the inverter when the power supply fails. Current transformer CT2 that detects the current and sends an output current signal
A limiter circuit 4 for limiting the voltage drop below the lower limit value of the rectifier output voltage Vrdc;
A voltage command value Vref2, the first voltage command value Vref1, which serves as a reference during a constant operation, and a second voltage command value Vref.
2 is provided with a switching circuit 6 for switching between the output current signal and a discharge test voltage command value obtained by adding the lower limit value. The switching circuit 6 is switched from the first voltage command value Vref1 by the switching circuit 6 to determine the deterioration state of the storage battery. The discharge test voltage command value, the rectifier output voltage Vrdc / the storage battery discharge voltage V
rectifier output voltage Vrdc
Is controlled to be always lower than the storage battery discharge voltage Vbdc, and is made to follow the storage battery discharge voltage Vbdc.

【0008】また、上記の課題を達成するために本発明
の無停電電源装置は、交流電源を直流電力に変換する整
流器と、整流器の出力直流電力を交流電力に変換するイ
ンバータと、交流電源が停電した時にインバータに直流
電力を供給する蓄電池等から構成され、第1電圧指令値
と整流器出力電圧とを比較することにより整流器出力電
圧を制御する無停電電源装置において、整流器出力電圧
Vrdcの下限値以下の降圧を制限するリミッタ回路4
と、蓄電池放電時の基準となる蓄電池電圧を分圧した分
圧値と、常時運転時の基準となる前記第1電圧指令値V
ref1と、前記分圧値に前記下限値を加算した放電試
験電圧指令値とを切り換える切換回路6とを設け、蓄電
池の劣化状態を判定するために切換回路6により第1電
圧指令値Vref1から切り換えられた前記放電試験電
圧指令値と、蓄電池放電電圧Vbdcとを比較すること
により整流器出力電圧Vrdcを蓄電池放電電圧Vbd
cよりも常に低めに制御すると共に蓄電池放電電圧Vb
dcに追従させることに特徴を有している。
In order to achieve the above object, an uninterruptible power supply according to the present invention comprises a rectifier for converting AC power to DC power, an inverter for converting DC power output from the rectifier to AC power, and an AC power supply. In an uninterruptible power supply configured to control a rectifier output voltage by comparing a first voltage command value and a rectifier output voltage, the lower limit value of the rectifier output voltage Vrdc is configured by a storage battery or the like that supplies DC power to an inverter when a power failure occurs Limiter circuit 4 for limiting the following step-down
And a divided voltage value obtained by dividing a storage battery voltage serving as a reference when discharging the storage battery, and the first voltage command value V serving as a reference when constantly operating.
ref1 and a switching circuit 6 for switching between the divided voltage value and the discharge test voltage command value obtained by adding the lower limit value. The switching circuit 6 switches from the first voltage command value Vref1 to determine the deterioration state of the storage battery. The rectifier output voltage Vrdc is calculated by comparing the discharge test voltage command value thus obtained with the battery discharge voltage Vbdc.
c and control the battery discharge voltage Vb
dc.

【0009】[0009]

【実施例】以下本発明の具体例を図面を参照して説明す
る。図1は本発明の第1実施例における整流器制御回路
を具備した無停電電源装置のブロック図である。図にお
いてコンデンサC1,リアクトルL1は入力の波形整形
用フィルタ、CT1は入力電流を制御する変流器、T1
は無停電電源装置の入力電流波形を正弦波形に制御する
基準信号を供給する変圧器、1は交流を直流に変換する
整流器、CT2は整流器出力電流を検出する変流器、コ
ンデンサC2は整流器直流出力を平滑するフィルタ、2
は直流を交流に変換するインバータ、3は蓄電池であ
る。常時は整流器出力電圧Vrdcを差動増幅器7に入
力し、第1電圧指令値Vref1との差分を検出し、交
流入力電源変動、出力電流変動に対して一定の値に制御
する信号をPWM波形生成回路8から整流器1に供給し
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an uninterruptible power supply having a rectifier control circuit according to a first embodiment of the present invention. In the figure, a capacitor C1 and a reactor L1 are input waveform shaping filters, CT1 is a current transformer for controlling an input current, T1
Is a transformer for supplying a reference signal for controlling the input current waveform of the uninterruptible power supply into a sine waveform, 1 is a rectifier for converting AC to DC, CT2 is a current transformer for detecting rectifier output current, and capacitor C2 is rectifier DC. Filter for smoothing the output, 2
Is an inverter for converting DC to AC, and 3 is a storage battery. Normally, the rectifier output voltage Vrdc is input to the differential amplifier 7, the difference between the rectifier output voltage Vrdc and the first voltage command value Vref1 is detected, and a signal for controlling the AC input power supply fluctuation and the output current fluctuation to a constant value is generated as a PWM waveform. The circuit 8 supplies the rectifier 1.

【0010】蓄電池3の劣化状態を判定するために蓄電
池3を放電させる場合、試験操作スイッチ5により指令
信号を切換回路6に入力すると、整流器出力電圧Vrd
cを制御する電圧指令値は第2電圧指令値Vref2に
切り替わる。変流器CT2により検出される検出電流に
よる出力電流信号が整流器出力電圧Vrdcの下限値以
下の降圧を制限するリミッタ回路4を介して第2電圧指
令値Vref2に加算される。従って、整流器出力電圧
Vrdcが蓄電池放電電圧Vbdcよりも高ければ交流
電源から電力を供給しようとして整流器1に電流が流
れ、変流器CT2で検出される検出電流による出力電流
信号は、電圧指令値Vref2と下限値に加算された放
電試験電圧指令値として差動増幅器7に入力され、整流
器出力電圧Vrdcとの差分を0にするよう整流器出力
電圧Vrdcを蓄電池放電電圧Vbdc以下に制御す
る。
When the storage battery 3 is discharged to determine the deterioration state of the storage battery 3, when a command signal is input to the switching circuit 6 by the test operation switch 5, the rectifier output voltage Vrd
The voltage command value for controlling c is switched to the second voltage command value Vref2. An output current signal based on the detection current detected by the current transformer CT2 is added to the second voltage command value Vref2 via the limiter circuit 4 that limits the voltage drop below the lower limit of the rectifier output voltage Vrdc. Therefore, if the rectifier output voltage Vrdc is higher than the storage battery discharge voltage Vbdc, a current flows through the rectifier 1 in an attempt to supply power from the AC power supply, and the output current signal based on the detection current detected by the current transformer CT2 is the voltage command value Vref2. Is input to the differential amplifier 7 as a discharge test voltage command value added to the lower limit value and the rectifier output voltage Vrdc is controlled to be equal to or lower than the storage battery discharge voltage Vbdc so that the difference between the rectifier output voltage Vrdc and the rectifier output voltage Vrdc becomes zero.

【0011】整流器出力電圧Vrdcが蓄電池放電電圧
Vbdc以下に制御されると、差動増幅器7には、放電
試験電圧指令値と蓄電池放電電圧Vbdcが入力され
る。蓄電池放電電圧Vbdcが低下してくると、差動増
幅器7の働きで整流器出力電圧Vrdcを上昇させる
が、先に説明したように、変流器CT2からの出力電流
信号が第2電圧指令値Vref2に加算されるので、整
流器出力電圧Vrdcを蓄電池放電電圧Vbdc以下に
制御する。すなわち、整流器出力電圧Vrdcは蓄電池
放電電圧Vbdcに基づいて制御され、蓄電池放電電圧
Vbdcに追従することになる。
When the rectifier output voltage Vrdc is controlled to be equal to or lower than the battery discharge voltage Vbdc, the discharge test voltage command value and the battery discharge voltage Vbdc are input to the differential amplifier 7. When the storage battery discharge voltage Vbdc decreases, the rectifier output voltage Vrdc is increased by the operation of the differential amplifier 7, but as described above, the output current signal from the current transformer CT2 is changed to the second voltage command value Vref2. Therefore, the rectifier output voltage Vrdc is controlled to be equal to or lower than the storage battery discharge voltage Vbdc. That is, the rectifier output voltage Vrdc is controlled based on the storage battery discharge voltage Vbdc, and follows the storage battery discharge voltage Vbdc.

【0012】リミッタ回路4は蓄電池試験放電の時、蓄
電池3が寿命となっていて正常な電圧が供給されないと
き、または蓄電池3との回路が遮断されていると、整流
器出力からインバータ2に電力を供給し、整流器出力に
設けられている変流器CT2に全電流が流れ、このとき
に整流器出力電圧Vrdcを下限値以下に下げすぎない
ことを目的として設けられている。蓄電池3の放電は、
あらかじめ決められた保持時間が経過すると、放電試験
指令信号を解除し、電圧指令値は第1電圧指令値Vre
f1に切り替り、変流器CT2で検出される電流も解除
されて整流器出力電圧Vrdcは蓄電池放電開始前の状
態に復帰する。
The limiter circuit 4 supplies power to the inverter 2 from the output of the rectifier when the storage battery 3 has reached the end of its life and a normal voltage is not supplied or when the circuit with the storage battery 3 is interrupted. The current is supplied to the current transformer CT2 provided at the rectifier output so that the entire current flows, and at this time, the rectifier output voltage Vrdc is provided so as not to drop below the lower limit value. The discharge of the storage battery 3 is
When the predetermined holding time has elapsed, the discharge test command signal is released, and the voltage command value is changed to the first voltage command value Vre.
Switching to f1, the current detected by the current transformer CT2 is also released, and the rectifier output voltage Vrdc returns to the state before the start of storage battery discharge.

【0013】蓄電池3が不良、あるいは蓄電池3からの
放電回路が断線しているようなときに蓄電池放電試験を
実施すると、蓄電池3から供給される電圧は急激に低下
するため、待機している整流器出力が自動的にインバー
タ2に電力を供給し、インバータ2の運転を継続すると
共に放電試験指令信号を解除して蓄電池放電開始前の状
態に復帰する。本実施例では整流器1の出力電流を検出
しているが、整流器1の入力電流を使用してもよい。
When the storage battery discharge test is performed when the storage battery 3 is defective or when the discharge circuit from the storage battery 3 is disconnected, the voltage supplied from the storage battery 3 drops sharply, and the rectifier that is on standby The output automatically supplies power to the inverter 2 to continue the operation of the inverter 2 and release the discharge test command signal to return to the state before the start of discharging of the storage battery. In this embodiment, the output current of the rectifier 1 is detected, but the input current of the rectifier 1 may be used.

【0014】図2は本発明の第2実施例における整流器
制御回路を具備した無停電電源装置のブロック図であ
り、蓄電池3を放電する時に、蓄電池3の電圧を抵抗器
R1,R2で分圧した信号を、差動増幅器7の電圧指令
値として使用する方法である。図1と同様コンデンサC
1,リアクトルL1は入力の波形整形用フィルタ、CT
1は入力電流を制御する変流器、T1は無停電電源装置
の入力電流波形を正弦波形に制御する基準信号を供給す
る変圧器、1は交流を直流に変換する整流器、コンデン
サC2は整流器直流出力を平滑するフィルタ、2は直流
を交流に変換するインバータ、3は蓄電池である。常時
は整流器出力電圧Vrdcを差動増幅器7に入力し、第
1電圧指令値Vref1との差分を検出し、交流入力電
源変動、出力電流変動に対して一定の値に制御する信号
をPWM波形生成回路8から整流器1に供給している。
FIG. 2 is a block diagram of an uninterruptible power supply having a rectifier control circuit according to a second embodiment of the present invention. When discharging the storage battery 3, the voltage of the storage battery 3 is divided by resistors R1 and R2. This is a method of using the obtained signal as a voltage command value of the differential amplifier 7. Capacitor C as in FIG.
1, reactor L1 is an input waveform shaping filter, CT
1 is a current transformer for controlling an input current, T1 is a transformer for supplying a reference signal for controlling an input current waveform of the uninterruptible power supply into a sine waveform, 1 is a rectifier for converting AC to DC, and a capacitor C2 is a rectifier DC. A filter for smoothing the output, 2 is an inverter for converting DC to AC, and 3 is a storage battery. Normally, the rectifier output voltage Vrdc is input to the differential amplifier 7, the difference between the rectifier output voltage Vrdc and the first voltage command value Vref1 is detected, and a signal for controlling the AC input power supply fluctuation and the output current fluctuation to a constant value is generated as a PWM waveform. The circuit 8 supplies the rectifier 1.

【0015】蓄電池3の劣化状態を判定するために蓄電
池3を放電させる場合、試験操作スイッチ5により指令
信号を切換回路6に入力すると、整流器出力電圧Vrd
cを制御する電圧指令値は、蓄電池3の分圧抵抗R1,
R2,制御電源Vc,Vs及びリミッタ回路4の下限値
によって定まる放電試験電圧指令値に切り替り、蓄電池
放電電圧Vbdcと比較されて整流器出力電圧Vrdc
を蓄電池放電電圧Vbdcに追従して制御される。
When the storage battery 3 is discharged in order to determine the deterioration state of the storage battery 3, when a command signal is input to the switching circuit 6 by the test operation switch 5, the rectifier output voltage Vrd
The voltage command value for controlling c is divided by the voltage dividing resistors R1 and R1 of the storage battery 3.
R2, switches to a discharge test voltage command value determined by the control power supplies Vc, Vs and the lower limit value of the limiter circuit 4, and is compared with the storage battery discharge voltage Vbdc to output a rectifier output voltage Vrdc.
Is controlled in accordance with the storage battery discharge voltage Vbdc.

【0016】リミッタ回路4は蓄電池試験放電の時、蓄
電池3が寿命となっていて正常な電圧が供給されない場
合、または蓄電池3との回路が遮断されていると、放電
試験電圧指令値が低くなりすぎるか、またはなくなって
しまうために、整流器出力電圧Vrdcを下げすぎない
ことを目的として下限値が設けられている。第1実施例
と同様に、蓄電池3の放電は、あらかじめ決められた保
持時間が経過すると、放電試験指令信号を解除し、電圧
指令値は第1電圧指令値Vref1に切り替り、整流器
出力電圧Vrdcは蓄電池放電開始前の状態に復帰す
る。蓄電池3が不良、あるいは蓄電池3からの放電回路
が断線しているようなときに蓄電池放電試験を実施する
と、蓄電池3から供給される電圧は急激に低下するた
め、待機している整流器出力が自動的にインバータ2に
電力を供給し、インバータ2の運転を継続すると共に放
電試験指令信号を解除して蓄電池放電開始前の状態に復
帰する。第2実施例は分流器CT2を必要としないので
その分第1実施例よりも優れている。
The limiter circuit 4 lowers the discharge test voltage command value if the storage battery 3 has reached the end of its service life and a normal voltage is not supplied, or if the circuit with the storage battery 3 is interrupted. A lower limit is provided for the purpose of not lowering the rectifier output voltage Vrdc too much or too little. As in the first embodiment, when the predetermined holding time elapses, the discharge test command signal is released, the voltage command value is switched to the first voltage command value Vref1, and the rectifier output voltage Vrdc is discharged. Returns to the state before the start of storage battery discharge. When the storage battery discharge test is performed when the storage battery 3 is defective or the discharge circuit from the storage battery 3 is disconnected, the voltage supplied from the storage battery 3 rapidly decreases, and the output of the standby rectifier automatically decreases. Power is supplied to the inverter 2 to continue the operation of the inverter 2 and release the discharge test command signal to return to the state before the start of storage battery discharge. The second embodiment does not require the shunt CT2 and is therefore superior to the first embodiment.

【0017】図3は、本発明の無停電電源装置において
蓄電池が正常な場合における整流器出力電圧と蓄電池放
電電圧との電流分担の関係を示す図である。放電試験開
始から放電試験終了までの時間(t)の間、蓄電池放電
電圧は蓄電池放電電流Ibによって穏やかに低下し、整
流器出力電圧は蓄電池放電電圧よりも常に低めに制御さ
れているので、整流器出力電流Irは流れない。
FIG. 3 is a diagram showing the current sharing relationship between the rectifier output voltage and the storage battery discharge voltage when the storage battery is normal in the uninterruptible power supply of the present invention. During the time (t) from the start of the discharge test to the end of the discharge test, the storage battery discharge voltage is gently reduced by the storage battery discharge current Ib, and the rectifier output voltage is always controlled to be lower than the storage battery discharge voltage. The current Ir does not flow.

【0018】図4は、本発明の無停電電源装置において
蓄電池が不良あるいは蓄電池放電回路が異常である場合
の整流器出力電圧と蓄電池放電電圧との電流分担を示す
図である。放電試験を開始しても蓄電池放電電圧が0ま
たは極端に低いために蓄電池放電電流は0である。整流
器出力電流Irは整流器出力電圧が下限値まで低下する
ために一時的に増加(蓄電池放電回路すなわちインバー
タの負荷が一定である場合)するが、電試験指令信号を
解除して短時間内で蓄電池放電開始前の状態に復帰す
る。
FIG. 4 is a diagram showing current sharing between the rectifier output voltage and the battery discharge voltage when the battery is defective or the battery discharge circuit is abnormal in the uninterruptible power supply of the present invention. Even when the discharge test is started, the battery discharge current is 0 because the battery discharge voltage is 0 or extremely low. The rectifier output current Ir temporarily increases because the rectifier output voltage decreases to the lower limit (when the battery discharge circuit, that is, the load of the inverter is constant). It returns to the state before the start of discharge.

【0019】[0019]

【発明の効果】以上説明したように本発明の無停電電源
装置では、電力の供給を停止することのできない重要な
負荷設備に使用される蓄電池が、交流入力停電のときに
正常に機能するかを点検することを目的として、実負荷
状態で蓄電池放電試験を実施する時、蓄電池が不良ある
いは蓄電池を充放電する回路が断線していて蓄電池から
電力が供給できない場合においても、待機している整流
器から電力を供給することで、インバータを停止するこ
となく負荷装置に対して安定な電力を供給できる効果が
ある。
As described above, in the uninterruptible power supply according to the present invention, whether the storage battery used for the important load equipment whose power supply cannot be stopped functions normally in the event of AC input power failure. When performing a storage battery discharge test under the actual load condition for the purpose of checking the condition, even if the storage battery is defective or the circuit that charges and discharges the storage battery is disconnected and power cannot be supplied from the storage battery, the rectifier that is on standby By supplying power from the inverter, there is an effect that stable power can be supplied to the load device without stopping the inverter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例における無停電電源装置の
回路ブロック図である。
FIG. 1 is a circuit block diagram of an uninterruptible power supply according to a first embodiment of the present invention.

【図2】本発明の第2実施例における無停電電源装置の
回路ブロック図である。
FIG. 2 is a circuit block diagram of an uninterruptible power supply according to a second embodiment of the present invention.

【図3】本発明の無停電電源装置において蓄電池が正常
な場合における整流器出力電圧と蓄電池放電電圧との電
流分担の関係を示す図である。
FIG. 3 is a diagram showing a current sharing relationship between a rectifier output voltage and a storage battery discharge voltage when the storage battery is normal in the uninterruptible power supply of the present invention.

【図4】本発明の無停電電源装置において蓄電池が不良
あるいは蓄電池放電回路が異常である場合の整流器出力
電圧と蓄電池放電電圧との電流分担を示す図である。
FIG. 4 is a diagram showing current sharing between a rectifier output voltage and a storage battery discharge voltage when the storage battery is defective or the storage battery discharge circuit is abnormal in the uninterruptible power supply of the present invention.

【図5】従来例における無停電電源装置の回路ブロック
図である。
FIG. 5 is a circuit block diagram of a conventional uninterruptible power supply.

【符号の説明】[Explanation of symbols]

1 整流器 2 インバータ 3 蓄電池 4 リミッタ回路 5 試験操作スイッチ 6 切換回路 7 差動増幅器 8 PWM波形生成回路 C1 コンデンサ C2 コンデンサ CT1 変流器 CT2 変流器 L1 リアクトル R1 抵抗 R2 抵抗 RF1 ダイオード T1 変圧器 Vbdc 蓄電池放電電圧 Vrdc 整流器出力電圧 Vc 制御電源 Vs 制御電源 Vref1 第1電圧指令値 Vref2 第2電圧指令値 DESCRIPTION OF SYMBOLS 1 Rectifier 2 Inverter 3 Storage battery 4 Limiter circuit 5 Test operation switch 6 Switching circuit 7 Differential amplifier 8 PWM waveform generation circuit C1 Capacitor C2 Capacitor CT1 Current transformer CT2 Current transformer L1 Reactor R1 Resistance R2 Resistance RF1 Diode T1 Transformer Vbdc Battery Discharge voltage Vrdc Rectifier output voltage Vc Control power supply Vs Control power supply Vref1 First voltage command value Vref2 Second voltage command value

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川越 祐司 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 (72)発明者 青木 忠一 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 (72)発明者 橋脇 正浩 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 (72)発明者 土井下 健 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 Fターム(参考) 5G003 AA01 BA01 CA01 CA11 DA05 DA15 DA18 EA09 GB06 5G015 FA18 GA04 JA15 JA21 JA34 JA35 JA54 5H007 AA06 AA17 BB05 CC12 DA06 DB01 DC02 DC05 EA13 FA02 FA12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Kawagoe 3-4-1 Shibaura, Minato-ku, Tokyo Inside NTT Facilities Inc. (72) Inventor Chuichi Aoki 3-4-2 Shibaura, Minato-ku, Tokyo No. 1 Inside NTT Facilities Co., Ltd. (72) Inventor Masahiro Hashiwaki 3-4-1 Shibaura, Minato-ku, Tokyo Inside 72 NTT Co., Ltd. (72) Inventor Ken Doshita Port, Tokyo 3-4-1, Shibaura-ku, F-term in NTT Facilities Inc. (reference) 5G003 AA01 BA01 CA01 CA11 DA05 DA15 DA18 EA09 GB06 5G015 FA18 GA04 JA15 JA21 JA34 JA35 JA54 5H007 AA06 AA17 BB05 CC12 DA06 DB01 DC02 DC05 EA13 FA02 FA12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 交流電源を直流電力に変換する整流器
と、整流器の出力直流電力を交流電力に変換するインバ
ータと、交流電源が停電した時にインバータに直流電力
を供給する蓄電池等から構成され、第1電圧指令値と整
流器出力電圧とを比較することにより整流器出力電圧を
制御する無停電電源装置において、 整流器(1)の出力電流を検出して出力電流信号を送出
する変流器(CT2)と、 整流器出力電圧(Vrdc)の下限値以下の降圧を制限
するリミッタ回路(4)と、 蓄電池放電時の基準となる第2電圧指令値(Vref
2)と、 常時運転時の基準となる前記第1電圧指令値(Vref
1)と、第2電圧指令値(Vref2)に前記出力電流
信号と前記下限値を加算した放電試験電圧指令値とを切
り換える切換回路(6)とを設け、 蓄電池の劣化状態を判定するために切換回路(6)によ
り第1電圧指令値(Vref1)から切り換えられた前
記放電試験電圧指令値と、整流器出力電圧(Vrdc)
/蓄電池放電電圧(Vbdc)とを比較することにより
整流器出力電圧(Vrdc)を蓄電池放電電圧(Vbd
c)よりも常に低めに制御すると共に蓄電池放電電圧
(Vbdc)に追従させることを特徴とする無停電電源
装置。
1. A rectifier for converting AC power into DC power, an inverter for converting DC power output from the rectifier into AC power, and a storage battery for supplying DC power to the inverter when the AC power fails. (1) In an uninterruptible power supply that controls a rectifier output voltage by comparing a voltage command value with a rectifier output voltage, a current transformer (CT2) that detects an output current of the rectifier (1) and sends out an output current signal. A limiter circuit (4) for limiting the voltage drop below the lower limit of the rectifier output voltage (Vrdc), and a second voltage command value (Vref) serving as a reference when discharging the storage battery.
2) and the first voltage command value (Vref
1) and a switching circuit (6) for switching between a second voltage command value (Vref2) and the discharge test voltage command value obtained by adding the output current signal and the lower limit value to determine a deterioration state of the storage battery. The discharge test voltage command value switched from the first voltage command value (Vref1) by the switching circuit (6), and the rectifier output voltage (Vrdc)
Rectifier output voltage (Vrdc) by comparing the battery discharge voltage (Vbdc) with the battery discharge voltage (Vbdc).
An uninterruptible power supply device characterized in that it is always controlled to be lower than c) and is made to follow a storage battery discharge voltage (Vbdc).
【請求項2】 交流電源を直流電力に変換する整流器
と、整流器の出力直流電力を交流電力に変換するインバ
ータと、交流電源が停電した時にインバータに直流電力
を供給する蓄電池等から構成され、第1電圧指令値と整
流器出力電圧とを比較することにより整流器出力電圧を
制御する無停電電源装置において、 整流器出力電圧(Vrdc)の下限値以下の降圧を制限
するリミッタ回路(4)と、 蓄電池放電時の基準となる蓄電池電圧を分圧した分圧値
と、 常時運転時の基準となる前記第1電圧指令値(Vref
1)と、前記分圧値に前記下限値を加算した放電試験電
圧指令値とを切り換える切換回路(6)とを設け、 蓄電池の劣化状態を判定するために切換回路(6)によ
り第1電圧指令値(Vref1)から切り換えられた前
記放電試験電圧指令値と、蓄電池放電電圧(Vbdc)
とを比較することにより整流器出力電圧(Vrdc)を
蓄電池放電電圧(Vbdc)よりも常に低めに制御する
と共に蓄電池放電電圧(Vbdc)に追従させることを
特徴とする無停電電源装置。
2. A rectifier for converting AC power into DC power, an inverter for converting DC power output from the rectifier into AC power, and a storage battery for supplying DC power to the inverter when the AC power fails. (1) In an uninterruptible power supply that controls a rectifier output voltage by comparing a voltage command value with a rectifier output voltage, a limiter circuit (4) that limits a voltage drop below a lower limit of a rectifier output voltage (Vrdc); A divided voltage value obtained by dividing the storage battery voltage serving as a time reference, and the first voltage command value (Vref
1) and a switching circuit (6) for switching between the divided voltage value and the discharge test voltage command value obtained by adding the lower limit value. The switching circuit (6) determines the deterioration state of the storage battery by using the first voltage. The discharge test voltage command value switched from the command value (Vref1) and the storage battery discharge voltage (Vbdc)
An uninterruptible power supply characterized in that the rectifier output voltage (Vrdc) is always controlled to be lower than the storage battery discharge voltage (Vbdc) and the storage battery discharge voltage (Vbdc) is made to follow the storage battery discharge voltage (Vbdc).
JP00038599A 1999-01-05 1999-01-05 Uninterruptible power system Expired - Lifetime JP3653659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00038599A JP3653659B2 (en) 1999-01-05 1999-01-05 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00038599A JP3653659B2 (en) 1999-01-05 1999-01-05 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JP2000201485A true JP2000201485A (en) 2000-07-18
JP3653659B2 JP3653659B2 (en) 2005-06-02

Family

ID=11472347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00038599A Expired - Lifetime JP3653659B2 (en) 1999-01-05 1999-01-05 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JP3653659B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737832B2 (en) 2000-10-31 2004-05-18 Nec Corporation Power supply apparatus
JP2004180428A (en) * 2002-11-27 2004-06-24 Densei Lambda Kk On line determination method of battery deterioration, deterioration determination method of battery mounted on uninterruptible power supplying apparatus and uninterruptible power supplying apparatus
JP2004328928A (en) * 2003-04-25 2004-11-18 Densei Lambda Kk Uninterruptible power system and on-line deterioration determination method for battery of uninterruptible power system
JP2007330045A (en) * 2006-06-08 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> Dc power system, test method therefor, and program for implementing test method therefor
JP2011200023A (en) * 2010-03-19 2011-10-06 Commuture Corp Uninterruptible power supply device
JP2011244520A (en) * 2010-05-14 2011-12-01 Denso Corp Discharge controller for power conversion system
CN102347618A (en) * 2010-07-30 2012-02-08 广东易事特电源股份有限公司 Three-phase energy feedback device
KR101397672B1 (en) 2012-12-20 2014-05-23 홍선표 Power generation apparatus using current transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097946B (en) * 2010-12-30 2014-07-09 易事特电力系统技术有限公司 Multifunctional rectification and inversion electric energy feedback load

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737832B2 (en) 2000-10-31 2004-05-18 Nec Corporation Power supply apparatus
JP2004180428A (en) * 2002-11-27 2004-06-24 Densei Lambda Kk On line determination method of battery deterioration, deterioration determination method of battery mounted on uninterruptible power supplying apparatus and uninterruptible power supplying apparatus
JP2004328928A (en) * 2003-04-25 2004-11-18 Densei Lambda Kk Uninterruptible power system and on-line deterioration determination method for battery of uninterruptible power system
JP4552385B2 (en) * 2003-04-25 2010-09-29 富士電機システムズ株式会社 Uninterruptible power supply and on-line degradation judgment method for uninterruptible power supply battery
JP2007330045A (en) * 2006-06-08 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> Dc power system, test method therefor, and program for implementing test method therefor
JP4485489B2 (en) * 2006-06-08 2010-06-23 日本電信電話株式会社 DC power supply system and test method thereof, and program for executing DC power supply system test method
JP2011200023A (en) * 2010-03-19 2011-10-06 Commuture Corp Uninterruptible power supply device
JP2011244520A (en) * 2010-05-14 2011-12-01 Denso Corp Discharge controller for power conversion system
CN102347618A (en) * 2010-07-30 2012-02-08 广东易事特电源股份有限公司 Three-phase energy feedback device
KR101397672B1 (en) 2012-12-20 2014-05-23 홍선표 Power generation apparatus using current transformer

Also Published As

Publication number Publication date
JP3653659B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US7405954B2 (en) Method and apparatus for conditional response to a fault condition in a switching power supply
US6181029B1 (en) Method of controlling battery back-up for multiple power supplies
EP0410716A2 (en) Uninterruptible power supply
JP2000116029A (en) Backup power supply device
JP2000201485A (en) Uninterruptible power supply
RU2163049C2 (en) Output dc voltage buffering device for power unit
JP2012130221A (en) Direct current power supply unit and direct current power supply system
JP2001069689A (en) Bypass circuit for uninterruptible power supply
JP4304519B2 (en) Uninterruptible power system
JP2001103679A (en) Emergency power supply device
US7345380B2 (en) Backup power supply system with a null transfer time
JP4394302B2 (en) Uninterruptible power system
JPH0739088A (en) Uninterraptible power supply apparatus
US11258297B2 (en) Inverter control strategy for a transient heavy load
KR102257317B1 (en) Source transfer switch with automatic bypass function
AU721649B2 (en) Switched-mode power supply arrangement
JPH10191579A (en) Uninterruptible power and information processor with uninterruptible power
JP2000245074A (en) Method for avoiding capacity decrease of battery
JP2800078B2 (en) DC uninterruptible power supply system
JP2003009588A (en) Inverter for continuous vehicle drive system
JPH07154921A (en) Parallelly operated power source
JP4497760B2 (en) Uninterruptible power supply system
JP2001268820A (en) Standby battery charging circuit
KR100332739B1 (en) Apparatus for restraining inrush current of inverter
JP2006238514A (en) Uninterruptible power supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term