JP2000111244A - Flowing-down liquid film type condensation evaporator - Google Patents

Flowing-down liquid film type condensation evaporator

Info

Publication number
JP2000111244A
JP2000111244A JP27905098A JP27905098A JP2000111244A JP 2000111244 A JP2000111244 A JP 2000111244A JP 27905098 A JP27905098 A JP 27905098A JP 27905098 A JP27905098 A JP 27905098A JP 2000111244 A JP2000111244 A JP 2000111244A
Authority
JP
Japan
Prior art keywords
liquid
liquid distribution
evaporating
heat exchanger
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27905098A
Other languages
Japanese (ja)
Inventor
Seiichi Sakagami
誠一 坂上
Hideyuki Hashimoto
秀之 橋本
Shigeru Hayashida
茂 林田
Hiroshi Kawakami
浩 川上
Junichi Oya
純一 大家
Koichiro Kasano
公一郎 笠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Sumitomo Precision Products Co Ltd
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Sumitomo Precision Products Co Ltd
Priority to JP27905098A priority Critical patent/JP2000111244A/en
Publication of JP2000111244A publication Critical patent/JP2000111244A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a manufacturing cost and effectively utilize a thermosiphon by providing a liquid distributing means having a liquid distribution expediting function for uniformly introducing evaporating fluid to an evaporating passage above a heat exchanger core separately from the core. SOLUTION: A liquid distributing means 35 is provided with a gap above separately from a heat exchanger core 34, and hence the gap can be used as an introducing passage of oxygen gas evaporated to be vaporized at an evaporating passage 33. Accordingly, at the time of once stopping the evaporator or the like, even in the case of a condensing evaporator 30 dipped in a liquefied oxygen, the oxygen gas evaporated similarly to prior art can be introduced from above, and hence a liquefied oxygen can be circulated by a thermosiphon effect, and a function as the evaporator can be performed. Thus, since a conventional low cost heat exchanger core 34 can be used, a cost of the overall evaporator can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流下液膜式凝縮蒸
発器に関し、詳しくは、仕切板を介して凝縮通路と蒸発
通路とを交互に隣接して設けたプレートフィン型熱交換
器コアの蒸発通路に、蒸発流体を均一に分配して導入す
るための液分配手段を備えた流下液膜式凝縮蒸発器であ
って、特に、空気液化分離装置の蒸留塔に好適に用いら
れるプレートフィン式の流下液膜式凝縮蒸発器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a falling liquid film type condensing evaporator, and more particularly, to a plate-fin type heat exchanger core in which condensing passages and evaporating passages are alternately provided adjacent to each other via a partition plate. A falling-film condensing evaporator provided with a liquid distribution means for uniformly distributing and introducing an evaporating fluid to an evaporating passage, particularly a plate fin type preferably used for a distillation column of an air liquefaction separation device. And a falling film condensing evaporator.

【0002】[0002]

【従来の技術】空気液化分離装置の複式蒸留塔では、低
圧蒸留塔(以下、低圧塔と称す)の底部、あるいは、低
圧塔に連通する容器内の液化酸素と、高圧蒸留塔(以
下、高圧塔と称す)の頂部の窒素ガスとを、複式蒸留塔
の中間部に設けられた熱交換器で間接熱交換させること
により、液化酸素の一部を蒸発気化して低圧塔の上昇ガ
スを生成するとともに、窒素ガスを凝縮液化して両蒸留
塔の還流液を生成している。このような熱交換器は、一
般に凝縮蒸発器と呼ばれている。
2. Description of the Related Art In a double distillation column of an air liquefaction / separation apparatus, liquefied oxygen in the bottom of a low pressure distillation column (hereinafter, referred to as a low pressure column) or in a vessel communicating with the low pressure column, and a high pressure distillation column (hereinafter, high pressure column) are used. Column) is indirectly heat-exchanged with the nitrogen gas at the top of the double distillation column by means of a heat exchanger provided in the middle part of the double distillation column to evaporate part of the liquefied oxygen to produce a rising gas in the low-pressure column. At the same time, nitrogen gas is condensed and liquefied to generate a reflux liquid of both distillation columns. Such a heat exchanger is generally called a condensation evaporator.

【0003】凝縮蒸発器としては、プレートフィン型の
熱交換器コアを使用したものが通常用いられている。こ
のプレートフィン型の熱交換器コアは、仕切板を介して
隣接した凝縮通路と蒸発通路とからなる熱交換通路を多
数有するものであって、気体で導入される凝縮流体(窒
素ガス)と液体で導入される蒸発流体(液化酸素)とを
間接熱交換させることにより、凝縮流体を凝縮液化して
熱交換器の下方へ導出するとともに、蒸発流体の一部を
蒸発気化させて熱交換器の下方又は下方及び上方へ導出
するように形成されている。
As the condensing evaporator, a condensing evaporator using a plate-fin type heat exchanger core is generally used. This plate-fin type heat exchanger core has a large number of heat exchange passages including a condensing passage and an evaporating passage which are adjacent to each other with a partition plate interposed therebetween. Indirect heat exchange with the evaporating fluid (liquefied oxygen) introduced in the above step, condensed fluid is condensed and liquefied and led out below the heat exchanger. It is formed so as to extend downward or downward and upward.

【0004】図8は、サーモサイフォン効果を利用した
液浸漬式のプレートフィン型熱交換器コアを用いた凝縮
蒸発器(液浸漬式凝縮蒸発器)を示すものである。この
凝縮蒸発器1は、低圧塔2の底部の液溜2aに溜まる蒸
発流体である液化酸素LO内に浸漬して用いられるもの
で、蒸発流体(液化酸素LO)側の熱交換通路(蒸発通
路)の出入口両端(上端、下端)は開放されており、高
圧塔3の頂部の窒素ガスGNは、上部ヘッダー1aを介
して凝縮通路内に導入され、凝縮通路で凝縮液化した液
化窒素は、下部ヘッダー1bから導出される。
FIG. 8 shows a condensing evaporator (liquid immersion condensing evaporator) using a liquid immersion type plate fin type heat exchanger core utilizing the thermosiphon effect. The condensing evaporator 1 is used by being immersed in liquefied oxygen LO, which is an evaporating fluid stored in a liquid reservoir 2a at the bottom of the low-pressure column 2, and has a heat exchange passage (evaporating passage) on the evaporating fluid (liquefied oxygen LO) side. ) Are open at both ends (upper and lower ends), and the nitrogen gas GN at the top of the high-pressure column 3 is introduced into the condensing passage via the upper header 1a, and the liquefied nitrogen condensed and liquefied in the condensing passage is discharged to the lower portion. Derived from header 1b.

【0005】蒸発通路内の液化酸素は、隣接する凝縮通
路の凝縮流体である窒素ガスと間接熱交換を行うことに
より、その一部が蒸発気化して酸素ガスの気泡となり、
蒸発通路を上昇する。この酸素ガスの上昇力及び気液混
合の密度差により、凝縮蒸発器1の内外の液化酸素LO
にサーモサイフォン効果による循環流が形成される。蒸
発通路を上昇流として導出した気液混合状態の酸素の
内、蒸発気化しなかった液化酸素は、再び液溜2aに戻
り、蒸発気化した酸素ガスは、低圧塔2の上昇ガスとな
り、その一部が製品として経路4から抜き出される。
The liquefied oxygen in the evaporating passage undergoes indirect heat exchange with nitrogen gas, which is a condensed fluid in an adjacent condensing passage, whereby a part of the liquefied oxygen evaporates and becomes oxygen gas bubbles.
Ascend the evaporation passage. The liquefied oxygen LO inside and outside the condensing evaporator 1 is generated by the rising force of the oxygen gas and the density difference of the gas-liquid mixture.
A circulating flow is formed due to the thermosiphon effect. Of the oxygen in the gas-liquid mixed state derived from the evaporating passage as an ascending flow, the liquefied oxygen that has not been vaporized returns to the liquid reservoir 2a again, and the vaporized oxygen gas becomes the ascending gas in the low-pressure column 2. The part is extracted from the path 4 as a product.

【0006】一方、凝縮通路に導入された窒素ガスは、
前記液化酸素との間接熱交換により凝縮液化して液化窒
素となり、凝縮蒸発器1の下部から排出される。排出さ
れた液化窒素は、還流液として両蒸留塔に導入される
他、一部を液化製品として抜き出すこともある。
On the other hand, the nitrogen gas introduced into the condensation passage
The liquid is condensed and liquefied into liquefied nitrogen by indirect heat exchange with the liquefied oxygen, and is discharged from the lower part of the condensing evaporator 1. The discharged liquefied nitrogen is introduced into both distillation columns as a reflux liquid, and a part thereof may be extracted as a liquefied product.

【0007】このように、サーモサイフォン効果を利用
した液浸漬型の凝縮蒸発器1は、凝縮流体が下降流,蒸
発流体が上昇流の向流型の熱交換器である。そして、凝
縮蒸発器1の全体を液化酸素に浸漬して用いるため、液
化酸素の液ヘッドによって凝縮蒸発器1の下部から蒸発
通路に流入する液化酸素が過冷却状態となる。
As described above, the liquid immersion type condensation evaporator 1 utilizing the thermosiphon effect is a countercurrent type heat exchanger in which the condensed fluid flows downward and the evaporated fluid flows upward. Since the entire condensing evaporator 1 is used by being immersed in liquefied oxygen, the liquefied oxygen flowing into the evaporation passage from the lower part of the condensing evaporator 1 by the liquefied oxygen liquid head is in a supercooled state.

【0008】このため、液化酸素の沸騰が開始するま
で、すなわち、凝縮側の窒素との間接熱交換によって液
化酸素の温度が飽和温度に達するまでに、ある程度の距
離を必要とし、この距離は、熱交換器高さの20〜30
%を占める場合がある。すなわち、液浸漬式の凝縮蒸発
器1は、熱交換器の全高にわたっての伝熱面積を十分に
生かしきれていない。
For this reason, a certain distance is required until the boiling of the liquefied oxygen starts, that is, until the temperature of the liquefied oxygen reaches the saturation temperature by indirect heat exchange with the nitrogen on the condensing side. 20-30 height of heat exchanger
%. That is, the liquid immersion type condensing evaporator 1 does not fully utilize the heat transfer area over the entire height of the heat exchanger.

【0009】また、蒸発流体である液化酸素の液ヘッド
により沸点の上昇を来し、図9に示すように、酸素と窒
素との温度差ΔTが小さくなり(温度ピンチ)、設定さ
れた伝熱面積では交換熱量が低下してしまう。そこで交
換熱量を維持するために、温度差ΔTを一定に保持する
必要が生じるが、この操作方法として、通常、液化酸素
の沸点上昇に見合う分、凝縮側窒素ガスの圧力、即ち高
圧塔の運転圧力を上昇させており、この場合、動力費の
増大を招くことになる。
Further, the boiling point rises due to the liquid head of the liquefied oxygen which is the evaporating fluid, and as shown in FIG. 9, the temperature difference ΔT between oxygen and nitrogen becomes small (temperature pinch), and the set heat transfer In the area, the amount of exchanged heat decreases. Therefore, in order to maintain the exchanged heat, it is necessary to keep the temperature difference ΔT constant. As a method of operating this, usually, the pressure of the condensing-side nitrogen gas corresponding to the rise in the boiling point of liquefied oxygen, that is, the operation of the high-pressure column, The pressure is increased, which in turn leads to an increase in power costs.

【0010】さらに、凝縮蒸発器1を機能させるために
は、多量の液化酸素を貯溜しなければならず、装置の起
動時間が長くかかったり、停止時に放出する液化酸素量
が多くなり、動力費や人件費の損失となっていた。
Further, in order for the condensing evaporator 1 to function, a large amount of liquefied oxygen must be stored, so that it takes a long time to start up the apparatus, or the amount of liquefied oxygen released when the apparatus is stopped increases, resulting in a reduction in power cost. And a loss of labor costs.

【0011】上述のようなサーモサイフォン効果を利用
した液浸漬型の不都合を回避するため、蒸発流体を、熱
交換器の蒸発通路にその上部から流下させながら蒸発気
化させる、並流型熱交換器を用いた凝縮蒸発器が提案さ
れている。これらのものは、通常、流下液膜式凝縮蒸発
器と呼ばれている。
In order to avoid the disadvantage of the liquid immersion type utilizing the thermosiphon effect as described above, a co-current type heat exchanger in which an evaporating fluid is evaporated and vaporized while flowing down from the upper part thereof into an evaporating passage of the heat exchanger. Has been proposed. These are commonly referred to as falling film condensing evaporators.

【0012】図10は、プレートフィン型熱交換器を用
いた流下液膜式凝縮蒸発器5を示すものである。低圧塔
2の蒸留部2bから流下する液化酸素LOは、低圧塔底
部の液溜2aからポンプ6により供給される液化酸素と
ともに、凝縮蒸発器5の上部から蒸発通路に流下し、隣
接する凝縮通路を並流する窒素ガスと間接熱交換してそ
の一部が蒸発気化する。気化した酸素ガスは、蒸発通路
の下部又は下部及び上部から低圧塔2内に導出し、気化
しなかった液化酸素は、蒸発通路の下部から導出して低
圧塔底部の液溜2aに溜り、再びポンプ6で凝縮蒸発器
5の上部に戻されて循環する。なお、窒素側は、前記同
様に形成されているため、同一符号を付して説明は省略
する。
FIG. 10 shows a falling film condensing evaporator 5 using a plate fin type heat exchanger. The liquefied oxygen LO flowing down from the distillation section 2b of the low-pressure column 2 flows down from the upper part of the condensing evaporator 5 to the evaporation path together with the liquefied oxygen supplied by the pump 6 from the liquid reservoir 2a at the bottom of the low-pressure column. Is indirectly heat-exchanged with nitrogen gas flowing in parallel, and a part of the gas is vaporized. The vaporized oxygen gas is led out into the low-pressure tower 2 from the lower or lower part and the upper part of the evaporating passage, and the liquefied oxygen not vaporized is drawn out from the lower part of the evaporating passage and accumulates in the liquid reservoir 2a at the bottom of the low-pressure tower. It is returned to the upper part of the condensing evaporator 5 by the pump 6 and circulates. Since the nitrogen side is formed in the same manner as described above, the same reference numerals are given and the description is omitted.

【0013】このように、流下液膜式凝縮蒸発器5は、
蒸発側の液化酸素に液ヘッドが生じないため、図11に
示すように、温度差ΔTが熱交換器の全高さにわたって
略均一となり、熱交換器全体で液化酸素の蒸発が起こっ
ている。したがって、熱交換効率が向上し、熱交換器の
小型化や低コスト化が図れるとともに、動力費の低減や
起動時間の短縮等も図れる。
As described above, the falling liquid film type condensing evaporator 5 comprises:
Since no liquid head is generated in the liquefied oxygen on the evaporation side, as shown in FIG. 11, the temperature difference ΔT is substantially uniform over the entire height of the heat exchanger, and the liquefied oxygen is evaporated in the entire heat exchanger. Therefore, the heat exchange efficiency is improved, the size and cost of the heat exchanger can be reduced, the power cost can be reduced, and the startup time can be reduced.

【0014】上記流下液膜式凝縮蒸発器に関しては、従
来から種々の構造,構成のものが提案されており、例え
ば、特公平5−31042号公報,特公平7−3101
5号公報,特開平8−61868号公報等に記載されて
いる。これらに記載された流下液膜式凝縮蒸発器におい
ては、液状の蒸発流体を各蒸発通路に均等供給するため
の液分配構造として、液分配を段階的に行うための液分
配手段が提案されている。
Various structures and configurations have been proposed for the falling liquid film type condensing evaporator. For example, Japanese Patent Publication No. Hei 5-31042 and Japanese Patent Publication No. Hei 7-3101 have been proposed.
No. 5, JP-A-8-61868 and the like. In the falling liquid film type condensing evaporator described in these, as a liquid distribution structure for evenly supplying a liquid evaporating fluid to each evaporating passage, a liquid distributing means for performing liquid distribution stepwise is proposed. I have.

【0015】例えば、特公平5−31042号公報に示
されているものは、液分配を段階的に行う液分配手段
を、オリフィスによる予備分配部と、ハードウェイフィ
ン(セレーテッドフィン)の分配作用を利用した精密分
配部とで形成している。また、特公平7−31015号
公報では、パイプオリフィスによる予備分配部と、ハー
ドウェイフィン(セレーテッドフィン)の分配作用を利
用した精密分配部とで形成している。また、特開平8−
61868号公報に示されているものは、ハードウェイ
フィンとして使用するパーフォレイテッドフィンの孔の
開口率を段階的に変化させている。そして、これらの各
特許に示されている液分配手段は、いずれも、ブレージ
ング加工により熱交換器コアと一体構造に製作されて凝
縮蒸発器を形成している。
For example, Japanese Patent Publication No. 5-31042 discloses a liquid distributing means for distributing liquid in a stepwise manner, comprising an orifice for a preliminary distributing section, and a distributing action of hard way fins (serrated fins). And a precision distribution unit utilizing In Japanese Patent Publication No. Hei 7-31015, a pre-distribution unit using a pipe orifice and a precision distribution unit using the distribution function of hard way fins (serrated fins) are formed. Further, Japanese Unexamined Patent Publication No.
Japanese Patent Application Laid-Open No. 61868 discloses a method in which the aperture ratio of holes of perforated fins used as hard way fins is changed stepwise. Each of the liquid distributing means disclosed in each of these patents is formed integrally with the heat exchanger core by brazing to form a condensing evaporator.

【0016】[0016]

【発明が解決しようとする課題】上述のように、従来の
流下液膜式凝縮蒸発器の蒸発流体の液分配手段は、プレ
ートフィン熱交換器内に全て内蔵されており、液分配手
段と熱交換器コアとは、ブレージング加工による一体の
構造のものであった。このように、液分配手段を全て熱
交換器コアの中に内蔵することにより熱交換器の構造は
複雑となり、製作上の制約が発生し、製作コストが高騰
するという問題があった。
As described above, the means for distributing the evaporating fluid of the conventional falling film condensing evaporator is all incorporated in the plate fin heat exchanger, and the liquid distributing means and the heat dissipating means are separated from each other. The exchanger core had an integral structure formed by brazing. As described above, by incorporating all of the liquid distribution means in the heat exchanger core, the structure of the heat exchanger becomes complicated, and there is a problem in that production restrictions are generated and production costs are increased.

【0017】また、装置を一時停止したとき、低圧塔の
保有液が落下して底部に溜り、熱交換器が浸漬されて熱
交換器の下端が液封されてしまう。したがって、上述の
ハードウェイフィンを蒸発通路の上部に設けた構造のも
のは、蒸発通路で蒸発した酸素ガスは、上方がハードウ
ェイフィンで、下方が液封で閉ざされて流出できないの
で、熱交換器としての機能が果たせず運転できなくな
る。このような場合、低圧塔下部に溜まった液を放出す
るか、あるいは、サーモサイフォン効果を有する熱交換
器を、流下液膜式熱交換器とは別に設ける必要があっ
た。液を放出する場合は、装置寒冷のロスを伴い、再起
動時間が長くなって動力の冗費につながり、また、サー
モサイフォン式と流下液膜式とを組み合わせて用いる場
合は、流下液膜式の小温度差,伝熱面積の有効利用とい
う特徴が十分に生かされないという問題があった。
Further, when the apparatus is temporarily stopped, the liquid held in the low-pressure column drops and accumulates at the bottom, so that the heat exchanger is immersed and the lower end of the heat exchanger is sealed. Therefore, in the above-mentioned structure in which the hard way fins are provided at the upper part of the evaporating passage, the oxygen gas evaporated in the evaporating passage is hard upper fin, and the lower part is closed by a liquid seal and cannot flow out. The function as a vessel cannot be fulfilled and operation becomes impossible. In such a case, it is necessary to discharge the liquid accumulated in the lower part of the low-pressure column or to provide a heat exchanger having a thermosiphon effect separately from the falling film heat exchanger. In the case of discharging the liquid, there is a loss of cooling of the device, the restarting time is prolonged, which leads to redundant power consumption.In addition, when the thermosiphon type and the falling liquid film type are used in combination, the falling liquid film type However, there is a problem that the characteristics of small temperature difference and effective use of the heat transfer area cannot be fully utilized.

【0018】そこで本発明は、製作コストの低減が図れ
るとともに、サーモサイフォン効果を利用した熱交換も
可能な流下液膜式凝縮蒸発器を提供することを目的とし
ている。
Accordingly, an object of the present invention is to provide a falling liquid film type condensing evaporator that can reduce the manufacturing cost and can also perform heat exchange utilizing the thermosiphon effect.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するた
め、本発明の流下液膜式凝縮蒸発器は、鉛直方向の仕切
板を介して凝縮通路と蒸発通路とを交互に隣接して多数
積層したプレートフィン型の熱交換器コアにおける前記
凝縮通路の上部からガス状の凝縮流体を導入するととも
に、前記蒸発通路の上方から液状の蒸発流体を流下さ
せ、両流体を前記仕切板を介して間接熱交換させること
により、前記凝縮流体を凝縮液化し、前記蒸発流体を蒸
発気化する流下液膜式凝縮蒸発器において、前記熱交換
器コアの上方に、前記蒸発流体を均一に分配して前記蒸
発通路に導入する液分配促進機能を備えた液分配手段
を、前記熱交換器コアとは分離して設けたことを特徴と
し、さらに、前記蒸発通路の上部に、前記液分配手段か
ら導入される蒸発流体を更に精密に液分配する液分配促
進機能を有する精密液分配手段を設けたことを特徴とし
ている。
In order to achieve the above object, a falling liquid film type condensing evaporator according to the present invention comprises a plurality of condensing passages and evaporating passages which are alternately adjacently stacked via a vertical partition plate. A gaseous condensed fluid is introduced from above the condensing passage in the plate-fin type heat exchanger core, and a liquid evaporating fluid is allowed to flow down from above the evaporating passage, and both fluids are indirectly connected via the partition plate. In a falling liquid film type condensing evaporator that condenses and liquefies the condensed fluid by heat exchange and evaporates and evaporates the evaporating fluid, the evaporating fluid is uniformly distributed above the heat exchanger core and the evaporating is performed. A liquid distribution unit having a liquid distribution promoting function to be introduced into the passage is provided separately from the heat exchanger core, and is further introduced into the upper part of the evaporation passage from the liquid distribution unit. Evaporating fluid It is characterized in that a precision liquid dispensing means having a liquid distribution promoting function to precisely the liquid distribution in the.

【0020】また、本発明は、前記液分配手段の液分配
促進機能を有する部位が、銅,ステンレス鋼,アルミニ
ウム合金,アルミナ,セラミックスのいずれかにより形
成された焼結体、あるいは、比表面積が500m/m
以上の規則充填物又は不規則充填物、あるいは多孔
板、セレーテッドフィン、ハードウェイフィン等で形成
されていることを特徴とし、液分配手段の平面寸法が、
熱交換器コアの平面寸法より大きいこと、液分配手段と
前記熱交換器コアとが一体化手段により一体化されてい
ることを特徴としている。
Further, the present invention provides a liquid distributing means in which the portion having the function of promoting liquid distribution is a sintered body made of any one of copper, stainless steel, aluminum alloy, alumina, and ceramics, or having a specific surface area. 500m 2 / m
Characterized in that it is formed of three or more ordered or irregular packings, or a perforated plate, serrated fins, hard way fins, etc.
It is characterized in that it is larger than the plane dimension of the heat exchanger core, and that the liquid distribution means and the heat exchanger core are integrated by an integrating means.

【0021】さらに、前記精密液分配手段が、セレーテ
ッドフィンあるいはハードウェイフィンからなること、
精密液分配手段の上部が、液分配手段から流下する蒸発
流体の案内作用を有するフィンで構成され、下部が、液
分配促進作用を有するハードウェイフィンで構成されて
いることを特徴としている。
Further, the precise liquid distributing means comprises a serrated fin or a hard way fin,
It is characterized in that the upper part of the precision liquid distribution means is composed of fins having a function of guiding the evaporated fluid flowing down from the liquid distribution means, and the lower part is composed of hardway fins having a function of promoting liquid distribution.

【0022】特に、本発明の流下液膜式凝縮蒸発器は、
前記凝縮流体が、空気液化分離装置における複式蒸留塔
の高圧蒸留塔上部の窒素ガスであり、前記蒸発流体が、
空気液化分離装置における複式蒸留塔の低圧蒸留塔下部
の液化酸素であることを特徴としている。
In particular, the falling film condensing evaporator according to the present invention comprises:
The condensed fluid is nitrogen gas at the top of the high-pressure distillation column of the double distillation column in the air liquefaction separation device, and the evaporating fluid is
It is characterized by liquefied oxygen at the lower part of the low pressure distillation column of the double distillation column in the air liquefaction separation device.

【0023】[0023]

【発明の実施の形態】図1は、本発明の流下液膜式凝縮
蒸発器を空気液化分離装置の複式蒸留塔に適用した一例
を示す系統図である。流下液膜式凝縮蒸発器(以下、凝
縮蒸発器という)11は、複式蒸留塔の高圧塔12と低
圧塔13との中間部分に設けられている。原料ガスとな
る空気は、圧縮された後、不純物である二酸化炭素や水
分等を除去されて精製され、主熱交換器を経て高圧塔1
2の下部に経路14から導入される。高圧塔12に導入
された原料空気は、高圧塔12での周知の低温蒸留操作
により、塔上部の窒素ガスと塔下部の酸素富化液化空気
とに分離される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing an example in which a falling film condensing evaporator of the present invention is applied to a double distillation column of an air liquefaction / separation apparatus. The falling liquid film type condensing evaporator (hereinafter, referred to as condensing evaporator) 11 is provided at an intermediate portion between the high pressure column 12 and the low pressure column 13 of the double distillation column. The air serving as the raw material gas is compressed, purified after removing impurities such as carbon dioxide and water, and then purified through the main heat exchanger.
2 is introduced from the path 14 at the lower part. The raw material air introduced into the high-pressure column 12 is separated into nitrogen gas at the top of the column and oxygen-enriched liquefied air at the bottom of the column by a known low-temperature distillation operation in the high-pressure column 12.

【0024】高圧塔12の頂部の窒素ガスは、経路15
に抜き出されて凝縮蒸発器11の上部ヘッダー11aか
ら凝縮通路の上部に導入され、隣接する蒸発通路を並流
する液化酸素と間接熱交換を行い、凝縮液化されて下部
ヘッダー11bから経路16に導出し、その一部は高圧
塔12の上部に、残部は経路17,弁18を通って低圧
塔13の上部に、それぞれ還流液として導入される。
The nitrogen gas at the top of the high pressure column 12
And is introduced from the upper header 11a of the condensing evaporator 11 to the upper part of the condensing passage, performs indirect heat exchange with liquefied oxygen flowing in the adjacent evaporating passage in parallel, and is condensed and liquefied to the passage 16 from the lower header 11b. A part thereof is introduced as a reflux liquid into the upper part of the high-pressure column 12, and the remaining part is introduced into the upper part of the low-pressure column 13 through the passage 17 and the valve 18.

【0025】一方、低圧塔13の蒸留部を流下する液化
酸素は、低圧塔13の底部から抜き出され、ポンプ19
により送られる液化酸素とともに、凝縮蒸発器11を構
成する熱交換器コア20とは分離してその上方に設けら
れた液分配手段21に導入される。液分配手段21に導
入された液化酸素は、液分配手段21の実質的に液分配
促進機能を有する部位(底部)で液分配が行われた後、
熱交換器コア20の上部に設けられた精密液分配手段2
2で更に均一に液分配され、熱交換器コア20の蒸発通
路の上部に流下する。
On the other hand, liquefied oxygen flowing down the distillation section of the low-pressure column 13 is extracted from the bottom of the low-pressure column 13,
Along with the liquefied oxygen sent by the above, it is separated from the heat exchanger core 20 constituting the condensing evaporator 11 and introduced into a liquid distribution means 21 provided above the core. The liquefied oxygen introduced into the liquid distribution means 21 is subjected to liquid distribution at a portion (bottom part) of the liquid distribution means 21 having substantially the function of promoting liquid distribution.
Precision liquid distributing means 2 provided above heat exchanger core 20
The liquid is further uniformly distributed in 2 and flows down to the upper part of the evaporation passage of the heat exchanger core 20.

【0026】蒸発通路を流下する液化酸素は、隣接する
凝縮通路を並流する窒素ガスとの間接熱交換によってそ
の一部が蒸発気化し、凝縮蒸発器11の下方又は下方及
び上方から導出する。また、蒸発気化しなかった液化酸
素は、凝縮蒸発器11の下方から導出する。蒸発気化し
て導出した酸素ガスは、低圧塔13の上昇ガスとなり、
その一部は製品酸素ガスとして低圧塔13の下部の経路
23から抜き出される。また、蒸発気化せずに導出した
液化酸素は、低圧塔13の底部に集められた後、ポンプ
19により液分配手段21に再導入されて循環する。
A part of the liquefied oxygen flowing down the evaporating passage is vaporized by indirect heat exchange with nitrogen gas flowing concurrently in the adjacent condensing passage, and is discharged from below, below and above the condensing evaporator 11. The liquefied oxygen that has not been evaporated is led out from below the condensing evaporator 11. The oxygen gas derived by evaporating becomes the rising gas of the low-pressure column 13,
A part thereof is extracted from the lower passage 23 of the low-pressure column 13 as product oxygen gas. In addition, the liquefied oxygen derived without being vaporized is collected at the bottom of the low-pressure column 13 and then re-introduced to the liquid distribution means 21 by the pump 19 and circulated.

【0027】図2は、本発明の流下液膜式凝縮蒸発器の
第1形態例を示す要部の断面斜視図である。この凝縮蒸
発器30は、複数枚の仕切板31を介して凝縮通路32
と蒸発通路33とを交互に隣接して多数積層したプレー
トフィン型の熱交換器コア34と、該熱交換器コア34
の上方に設けられた液分配手段35とにより形成されて
いる。
FIG. 2 is a sectional perspective view of a main part showing a first embodiment of the falling film condensing evaporator of the present invention. The condensing evaporator 30 is connected to a condensing passage 32 through a plurality of partition plates 31.
Fin type heat exchanger core 34 in which a large number of heat exchanger cores 34 are alternately stacked adjacent to each other.
And liquid distributing means 35 provided above.

【0028】前記凝縮通路32の上下端は、サイドバー
36で密閉されており、その側方がヘッダーに連通して
いる。また、蒸発通路33の上下端は、液分配手段35
からの液化酸素が流入し、蒸発した酸素ガスが流出する
ように開放されている。
The upper and lower ends of the condensing passage 32 are sealed by side bars 36, and the sides thereof communicate with the header. The upper and lower ends of the evaporating passage 33 are
Is opened so that liquefied oxygen from the gas flows in and vaporized oxygen gas flows out.

【0029】液分配手段35は、実質的に液分配促進機
能を有する部位である底板部37の周囲に堰板38を立
設して上方が開口した箱型容器状に形成したものであっ
て、液化酸素は、底板部37から熱交換器コア34に向
けて均一分配された状態で流下する。液分配手段35か
ら流下した液化酸素は、直接、あるいは、サイドバー3
6に当たった後、蒸発通路33内に流下する。
The liquid distributing means 35 is formed as a box-shaped container having an opening at the top by setting up a weir plate 38 around a bottom plate portion 37 which is a part having a liquid distribution accelerating function. The liquefied oxygen flows down from the bottom plate 37 toward the heat exchanger core 34 while being uniformly distributed. The liquefied oxygen that has flowed down from the liquid distribution means 35 is directly or
After hitting 6, it flows down into the evaporation passage 33.

【0030】前記液分配手段35と熱交換器コア34と
は、別個にそれぞれ製作されるものであって、液分配手
段35の下面と熱交換器コア34の上面との間に、所要
の間隙を持たせて設置することができる。このように、
液分配手段35を、熱交換器コア34から分離してその
上方に間隙を持たせて設けることにより、この間隙を、
蒸発通路33で蒸発気化した酸素ガスの導出通路として
用いることができる。したがって、装置の一時停止時等
により、凝縮蒸発器30が液化酸素で浸漬された状態の
場合でも、従来の液浸漬式凝縮蒸発器と同様に、蒸発し
た酸素ガスを上方から導出することができるので、サー
モサイフォン効果によって液化酸素を循環させることが
でき、凝縮蒸発器としての機能を発揮させることができ
る。
The liquid distribution means 35 and the heat exchanger core 34 are separately manufactured, and a required gap is provided between the lower surface of the liquid distribution means 35 and the upper surface of the heat exchanger core 34. Can be installed. in this way,
By providing the liquid distribution means 35 separated from the heat exchanger core 34 with a gap above the core, this gap is
It can be used as an outlet path for the oxygen gas evaporated and vaporized in the evaporation passage 33. Therefore, even when the condensing evaporator 30 is immersed in liquefied oxygen due to, for example, a temporary stop of the apparatus, the evaporated oxygen gas can be led out from above, similarly to the conventional liquid immersion condensing evaporator. Therefore, liquefied oxygen can be circulated by the thermosiphon effect, and the function as a condensing evaporator can be exhibited.

【0031】これにより、装置を停止させて再起動する
際にも、低圧塔底部の液化酸素を放出する必要がないの
で、寒冷のロスも発生せず、再起動を容易に行うことが
でき、再起動の時間を短縮することができる。また、熱
交換器コア34には、従来の低コストの熱交換器コアを
そのまま用いることができるので、凝縮蒸発器全体のコ
スト低減が図れる。
Thus, even when the apparatus is stopped and restarted, it is not necessary to release the liquefied oxygen at the bottom of the low-pressure column, so that no refrigeration loss occurs and the restart can be performed easily. Reboot time can be reduced. Further, since a conventional low-cost heat exchanger core can be used as the heat exchanger core 34 as it is, the cost of the entire condensing evaporator can be reduced.

【0032】前記液分配手段35と熱交換器コア34と
は、その周囲に設けたフランジ39a,39bによって
一体的に形成することができ、フランジ間に適当なスペ
ーサーを介してボルト結合することにより、前記間隙を
容易にかつ確実に形成できる。また、フランジ同士のボ
ルト結合や、ブレージング,溶接等の一体化手段により
一体化構造にすることもできる。なお、間隙を設けなか
った場合、蒸発通路33内で蒸発気化した酸素ガスは、
蒸発気化しなかった液化酸素とともに熱交換器コア34
の下方から導出する。このように、液分配手段35と熱
交換器コア34とを一体化することにより、凝縮蒸発器
30を低圧塔へ組み込む作業が容易となる。
The liquid distributing means 35 and the heat exchanger core 34 can be integrally formed by flanges 39a and 39b provided around the liquid distributing means 35, and can be bolted to each other via a suitable spacer between the flanges. The gap can be easily and reliably formed. Further, an integrated structure can be formed by means of integral connection such as bolt connection between flanges, brazing or welding. If no gap is provided, the oxygen gas evaporated and vaporized in the evaporation passage 33 is
Heat exchanger core 34 with liquefied oxygen not vaporized
From below. In this way, by integrating the liquid distribution means 35 and the heat exchanger core 34, the work of incorporating the condensing evaporator 30 into the low-pressure column becomes easy.

【0033】液分配手段35は、前述のように、液分配
のための液深を生成するための堰板38と、実質的に液
分配促進機能を有する底板部37とにより形成されてい
るが、底板部37には、例えば、焼結体を用いることが
できる。焼結体を用いた場合、液分配手段35内の液化
酸素は、焼結体が有する微細孔を通ることによって均一
に液分配され、その下方の熱交換器コア34の蒸発通路
33に流下する。このとき、液化酸素は、毛細管現象に
より焼結体内を移動して流下することができるが、蒸発
通路33内で蒸発気化して生成された酸素ガスは、焼結
体の流れ抵抗が大きいために通過・上昇することができ
ず、上昇ガスによって焼結体の液分配機能が阻害される
おそれはない。このような焼結体には、銅,ステンレス
鋼,アルミニウム合金等の金属の他、アルミナやセラミ
ック等の無機物質を用いることができる。
As described above, the liquid distribution means 35 is formed by the weir plate 38 for generating a liquid depth for liquid distribution and the bottom plate 37 having a function of accelerating liquid distribution. For the bottom plate portion 37, for example, a sintered body can be used. When a sintered body is used, the liquefied oxygen in the liquid distribution unit 35 is uniformly distributed by passing through the fine holes of the sintered body, and flows down to the evaporation passage 33 of the heat exchanger core 34 below the liquid oxygen. . At this time, the liquefied oxygen can move down the sintered body due to the capillary phenomenon and flow down. However, oxygen gas generated by evaporating and evaporating in the evaporation passage 33 has a large flow resistance of the sintered body. It cannot pass and rise, and there is no fear that the liquid distribution function of the sintered body is hindered by the rising gas. For such a sintered body, an inorganic substance such as alumina or ceramic can be used in addition to metals such as copper, stainless steel, and aluminum alloy.

【0034】また、液分配手段35の実質的に液分配機
能を有する部位(底板部37)には、前記焼結体以外
に、同様の液分配促進機能を有する規則又は不規則充填
物、あるいは多孔板等を用いることができる。充填物
は、比表面積の大きいものが液分配促進機能に優れてお
り、比表面積が500m/m以上のものが好適であ
る。また、多孔板は、一種類のものを1枚だけ使用して
もよいが、一種類又は二種類以上のものを多層にして用
いることもできる。さらに、セレーテッドフィンを用い
て構成することもできる。
The portion (bottom plate portion 37) of the liquid distributing means 35 having substantially the liquid distributing function is a regular or irregular filler having the same liquid distributing accelerating function in addition to the sintered body. A perforated plate or the like can be used. The packing material having a large specific surface area is excellent in a liquid distribution promoting function, and a packing material having a specific surface area of 500 m 2 / m 3 or more is preferable. As the perforated plate, one kind may be used alone, but one kind or two or more kinds may be used as a multilayer. Furthermore, it can also be configured using serrated fins.

【0035】これらの充填物や多孔板あるいはセレーテ
ッドフィンは、蒸発気化した蒸発流体を通過させること
ができるので、液分配手段35と熱交換器コア34とを
一体化した場合においても、サーモサイフォン効果を利
用して再起動を容易に行うことができる。
Since these fillers, perforated plates or serrated fins can pass the vaporized vaporized fluid, even when the liquid distribution means 35 and the heat exchanger core 34 are integrated, the thermosiphon can be used. The restart can be easily performed using the effect.

【0036】また、液分配手段35は、上部から流下す
る液を捕捉するために、熱交換器コア34の平面寸法よ
り大きい平面寸法にすることが望ましい。さらにその形
状は、熱交換器コア34と同じ角型の平面形状にするこ
とができる他、低圧塔の形状に応じた円形にすることも
できる。
It is preferable that the liquid distribution means 35 has a plane size larger than the plane size of the heat exchanger core 34 in order to capture the liquid flowing down from above. Further, the shape can be the same square planar shape as the heat exchanger core 34, or it can be circular according to the shape of the low pressure column.

【0037】さらに、液分配促進機能を有する別な形態
として、ハードウェイフィンを用いることができる。図
3は、本発明の第2形態例を示すもので、液分配手段3
5の液分配促進機能を有する部位(底板部)37に、ハ
ードウェイフィン40を用いた形態例を示すものであ
る。なお、以下の説明において、前記形態例における構
成要素と同一の構成要素には同一符号を付して詳細な説
明は省略する。
Further, as another form having the function of promoting liquid distribution, a hard way fin can be used. FIG. 3 shows a second embodiment of the present invention.
5 shows an example in which a hard way fin 40 is used for a portion (bottom plate portion) 37 having a liquid distribution promoting function. In the following description, the same components as those in the above-described embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted.

【0038】この液分配手段35の底板部37は、液分
配通路41と、流体が流れないダミー通路42とを交互
に多数積層したものであって、その平面形状は、熱交換
器コア34の平面形状と同じ矩形形状に形成されてい
る。液分配通路41は、上部に、液化酸素の流れを案内
する機能を持たせた液案内フィン43を、中部に、実質
的に液分配促進機能を持たせた前記ハードウェイフィン
40を、下部に、ハードウェイフィン40で均一に分配
された液化酸素をさらに緻密に分配して導出するセレー
テッドフィン44をそれぞれ配置した構造を有してい
る。なお、液案内フィン43及びセレーテッドフィン4
4は、液案内や液分配機能の他に、製作時のブレージン
グ加工を確実にするための機能も有している。
The bottom plate portion 37 of the liquid distribution means 35 is formed by alternately stacking a large number of liquid distribution passages 41 and dummy passages 42 through which fluid does not flow. It is formed in the same rectangular shape as the planar shape. The liquid distribution passage 41 has a liquid guide fin 43 having a function of guiding the flow of liquefied oxygen at an upper part, a hard way fin 40 having a liquid distribution promoting function at a middle part, and a lower part at a lower part. And the serrated fins 44 that distribute the liquefied oxygen evenly distributed by the hard way fins 40 more densely and lead out. The liquid guide fin 43 and the serrated fin 4
Reference numeral 4 has a function for ensuring brazing at the time of manufacturing, in addition to a liquid guiding function and a liquid distributing function.

【0039】前記ハードウェイフィン40は、図4に示
すように、流れ方向に対して最大限に流れ抵抗を課すよ
うに配置されたフィンを称するものであって、鉛直方向
下向きに流下する液化酸素は、ハードウェイフィン40
を構成する各面上40aで、図に矢印で示すように、鉛
直な主流れに対してこれと直角な水平方向のジグザクな
流れを形成しながら流下し、この間に液が均一に分配さ
れる。さらに、このハードウェイフィン40は、セレー
テッドフインやパーフォレイテッドフィン等、使用目的
により選定した適宜なフィンを用いて形成することがで
きる。
As shown in FIG. 4, the hard way fins 40 are fins arranged so as to impose a maximum flow resistance in the flow direction. The hard way fins 40 are liquefied oxygen flowing downward in the vertical direction. Is a hard way fin 40
As shown by arrows in the figure, the liquid flows down while forming a horizontal zigzag flow perpendicular to the vertical main flow, and the liquid is evenly distributed between the vertical main flow and the surface 40a. . Further, the hard way fins 40 can be formed using appropriate fins selected according to the purpose of use, such as serrated fins and perforated fins.

【0040】このように形成され、中部のハードウェイ
フィン40及び下部のセレーテッドフィン44で緻密に
液分配された液化酸素は、液分配通路41の下端から液
分配手段35を導出し、熱交換器コア34の蒸発通路3
3に導入される。
The liquefied oxygen thus formed and densely distributed in liquid by the middle hard way fins 40 and the lower serrated fins 44 flows out from the lower end of the liquid distribution passage 41 to the liquid distribution means 35, where heat exchange is performed. Passage 3 of vessel core 34
3 is introduced.

【0041】なお、液分配通路41は、ハードウェイフ
ィン40のみで形成することもでき、フィンの形状も、
使用状態に合わせて任意のものを用いることができる。
さらに、ダミー通路の部分も液分配通路41として形成
し、液分配手段35の全体を液分配通路で形成すること
もできる。
The liquid distribution passage 41 can be formed only by the hard way fins 40.
Any one can be used according to the state of use.
Further, a portion of the dummy passage may be formed as the liquid distribution passage 41, and the entire liquid distribution means 35 may be formed by the liquid distribution passage.

【0042】図5は、本発明の第3形態例を示すもの
で、熱交換器コア34の蒸発通路33の上部に、液分配
促進機能を有する精密液分配手段50を設けた形態例を
示している。この精密液分配手段50は、液分配手段3
5から流下した液化酸素の液分配を更に促進する機能を
有するものであって、セレーテッドフィン51により形
成されている。
FIG. 5 shows a third embodiment of the present invention, in which a precision liquid distribution means 50 having a function of promoting liquid distribution is provided above the evaporating passage 33 of the heat exchanger core 34. ing. This precision liquid distributing means 50 is
It has a function of further promoting the liquid distribution of the liquefied oxygen flowing down from 5, and is formed by serrated fins 51.

【0043】液分配手段35の焼結体やハードウェイフ
ィン等からなる液分配促進機能を有する部位(底板部)
37で分配されて熱交換器コア34に流下する液化酸素
は、蒸発通路33の上部に一体的に設けられたセレーテ
ッドフィン51部分に流下し、該セレーテッドフィン5
1が有する液分配促進機能によって、より精密に均一分
配されて蒸発通路33内へ導入される。ここで使用する
セレーテッドフィン51は、従来の熱交換器に用いられ
るフィンの一種であるから、熱交換器コア34は、従来
と同様にして低コストで製作できる。
A portion (bottom plate portion) of the liquid distribution means 35 having a liquid distribution promoting function, such as a sintered body or a hard way fin.
The liquefied oxygen distributed at 37 and flowing down to the heat exchanger core 34 flows down to the serrated fin 51 provided integrally with the upper part of the evaporating passage 33, and
Due to the liquid distribution promoting function of 1, the liquid is uniformly distributed more precisely and introduced into the evaporation passage 33. Since the serrated fins 51 used here are a kind of fins used in a conventional heat exchanger, the heat exchanger core 34 can be manufactured at low cost in the same manner as in the related art.

【0044】図6は、前記第3形態例の変形例を示して
いる。すなわち、熱交換器コア34の蒸発通路33の上
部に、ハードウェイフィン52を用いた精密液分配手段
50を設けたものである。ハードウェイフィン52は、
前述のような液分配機能を有するものであって、前記同
様に、セレーテッドフィンやパーフォレイテッドフィン
等で形成することができる。
FIG. 6 shows a modification of the third embodiment. That is, the precise liquid distribution means 50 using the hard way fins 52 is provided above the evaporating passage 33 of the heat exchanger core 34. Hard way fins 52
It has a liquid distribution function as described above, and can be formed of serrated fins, perforated fins, or the like in the same manner as described above.

【0045】図7は、前記第3形態例のさらに別の変形
例である。すなわち、熱交換器コア34の蒸発通路33
の上部に設けたハードウェイフィン51からなる精密液
分配手段50の上部に、液分配手段35から流下する液
化酸素の案内作用を有する液案内フィン53を設けた設
けたものである。この液案内フィン53は液案内の機能
だけではなく、熱交換器コア34を製作する際、熱交換
器コア34の上端におけるブレージング加工を確実にす
る機能も有している。
FIG. 7 shows still another modification of the third embodiment. That is, the evaporation passage 33 of the heat exchanger core 34
The liquid guide fins 53 having the function of guiding the liquefied oxygen flowing down from the liquid distribution means 35 are provided above the precision liquid distribution means 50 comprising the hard way fins 51 provided above the liquid distribution fins 51. The liquid guide fins 53 not only have a liquid guiding function, but also have a function of ensuring brazing at the upper end of the heat exchanger core 34 when the heat exchanger core 34 is manufactured.

【0046】このように、蒸発通路33の上部に精密液
分配手段50を設けることにより、蒸発通路33に導入
する液化酸素をより均一化することができ、凝縮流体で
ある窒素ガスとの熱交換を更に効率よく行うことができ
る。
As described above, by providing the precise liquid distribution means 50 above the evaporating passage 33, the liquefied oxygen introduced into the evaporating passage 33 can be made more uniform, and heat exchange with nitrogen gas as a condensed fluid can be achieved. Can be performed more efficiently.

【0047】上記各形態例においては、本発明の流下液
膜式凝縮蒸発器を、空気液化分離装置の複式蒸留塔の中
間部に設けられる凝縮蒸発器として用いる場合について
説明したが、本発明は、これに限定されるものではな
く、単式蒸留塔の上部に設けられる凝縮蒸発器や、その
他、凝縮流体と蒸発流体とを間接熱交換させる種々の凝
縮蒸発器にも用いることができる。
In each of the above embodiments, the case where the falling film type condensing evaporator of the present invention is used as the condensing evaporator provided in the intermediate portion of the double distillation column of the air liquefaction separation apparatus has been described. However, the present invention is not limited to this, and may be used for a condensing evaporator provided at the upper part of a single distillation column, and various condensing evaporators for indirect heat exchange between a condensed fluid and an evaporated fluid.

【0048】[0048]

【発明の効果】以上説明したように、本発明の流下液膜
式凝縮蒸発器によれば、両流体間の温度差を小さくで
き、熱交換効率が高く、小型化や動力費の低減が図れる
などの流下液膜式の利点を有するだけでなく、液分配手
段と熱交換器コアとを別体に形成したことにより、熱交
換器コアとして、従来の浸漬型と同様の構造を採用する
ことが可能であり、熱交換器コア等の製作コストを低減
できるとともに、サーモサイフォン効果を利用した熱交
換も可能であるという利点を有している。
As described above, according to the falling film condensing evaporator of the present invention, the temperature difference between the two fluids can be reduced, the heat exchange efficiency is high, the size can be reduced, and the power cost can be reduced. In addition to having the advantages of a falling liquid film type, such as the liquid distribution means and the heat exchanger core formed separately, the heat exchanger core adopts the same structure as the conventional immersion type. This is advantageous in that the manufacturing cost of the heat exchanger core and the like can be reduced, and that heat exchange utilizing the thermosiphon effect is also possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の流下液膜式凝縮蒸発器を空気液化分
離装置の複式蒸留塔に適用した一例を示す系統図であ
る。
FIG. 1 is a system diagram showing an example in which a falling liquid film condensing evaporator of the present invention is applied to a double distillation column of an air liquefaction / separation apparatus.

【図2】 本発明の流下液膜式凝縮蒸発器の第1形態例
を示す要部の断面斜視図である。
FIG. 2 is a sectional perspective view of a main part showing a first embodiment of a falling liquid film type condensation evaporator of the present invention.

【図3】 本発明の第2形態例を示す要部の断面斜視図
である。
FIG. 3 is a sectional perspective view of a main part showing a second embodiment of the present invention.

【図4】 ハードウェイフィンにおける液流れを示す説
明図である。
FIG. 4 is an explanatory diagram showing a liquid flow in a hard way fin.

【図5】 本発明の第3形態例を示す要部の断面斜視図
である。
FIG. 5 is a sectional perspective view of a main part showing a third embodiment of the present invention.

【図6】 本発明の第3形態例の変形例を示す要部の断
面斜視図である。
FIG. 6 is a sectional perspective view of a main part showing a modification of the third embodiment of the present invention.

【図7】 本発明の第3形態例のさらに別の変形例を示
す要部の断面斜視図である。
FIG. 7 is a sectional perspective view of a main part showing still another modified example of the third embodiment of the present invention.

【図8】 液浸漬式凝縮蒸発器の一例を示す系統図であ
る。
FIG. 8 is a system diagram showing an example of a liquid immersion type condensation evaporator.

【図9】 液浸漬式凝縮蒸発器内の温度分布の概略を示
す図である。
FIG. 9 is a view schematically showing a temperature distribution in a liquid immersion type condensation evaporator.

【図10】 流下液膜式凝縮蒸発器の一例を示す系統図
である。
FIG. 10 is a system diagram showing an example of a falling liquid film type condensing evaporator.

【図11】 流下液膜式凝縮蒸発器内の温度分布の概略
を示す図である。
FIG. 11 is a diagram schematically showing a temperature distribution in a falling liquid film type condensing evaporator.

【符号の説明】[Explanation of symbols]

11…凝縮蒸発器、12…高圧塔、13…低圧塔、20
…熱交換器コア、21…液分配手段、22…精密液分配
手段、30…凝縮蒸発器、31…仕切板、32…凝縮通
路、33…蒸発通路、34…熱交換器コア、35…液分
配手段、36…サイドバー、37…底板部、38…堰
板、39a,39b…フランジ、40…ハードウェイフ
ィン、41…液分配通路、42…ダミー通路、43…液
案内フィン、44…セレーテッドフィン、50…精密液
分配手段、51…セレーテッドフィン、52…ハードウ
ェイフィン、53…液案内フィン
11: condensation evaporator, 12: high pressure column, 13: low pressure column, 20
... heat exchanger core, 21 ... liquid distribution means, 22 ... precision liquid distribution means, 30 ... condensation evaporator, 31 ... partition plate, 32 ... condensation passage, 33 ... evaporation passage, 34 ... heat exchanger core, 35 ... liquid Distributing means, 36 ... side bar, 37 ... bottom plate, 38 ... weir plate, 39a, 39b ... flange, 40 ... hardway fin, 41 ... liquid distribution passage, 42 ... dummy passage, 43 ... liquid guide fin, 44 ... cell Ted fin, 50: precision liquid distributing means, 51: serrated fin, 52: hard way fin, 53: liquid guide fin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 秀之 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 林田 茂 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 川上 浩 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 大家 純一 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会社内 (72)発明者 笠野 公一郎 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会社内 Fターム(参考) 4D047 AA08 AB01 AB02 DA06 DA17 DB05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideyuki Hashimoto 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Nippon Sanso Corporation (72) Inventor Shigeru Hayashida 1-16-7, Nishi-Shimbashi, Minato-ku, Tokyo Japan Oxygen Co., Ltd. (72) Inventor Hiroshi Kawakami 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Nippon Oxygen Co., Ltd. (72) Inventor Junichi Oya 1-10 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Precision Industries Inside (72) Inventor Koichiro Kasano 1-10 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Precision Industries, Ltd. F-term (reference) 4D047 AA08 AB01 AB02 DA06 DA17 DB05

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 鉛直方向の仕切板を介して凝縮通路と蒸
発通路とを交互に隣接して多数積層したプレートフィン
型の熱交換器コアにおける前記凝縮通路の上部からガス
状の凝縮流体を導入するとともに、前記蒸発通路の上方
から液状の蒸発流体を流下させ、両流体を前記仕切板を
介して間接熱交換させることにより、前記凝縮流体を凝
縮液化し、前記蒸発流体を蒸発気化する流下液膜式凝縮
蒸発器において、前記熱交換器コアの上方に、前記蒸発
流体を均一に分配して前記蒸発通路に導入する液分配促
進機能を備えた液分配手段を、前記熱交換器コアとは分
離して設けたことを特徴とする流下液膜式凝縮蒸発器。
1. A gaseous condensed fluid is introduced from an upper part of a condensing passage in a plate-fin type heat exchanger core in which a large number of condensing passages and evaporating passages are alternately stacked via a vertical partition plate. A falling liquid that condenses and liquefies the condensed fluid by indirectly exchanging heat between the two fluids through the partition plate while allowing the liquid evaporating fluid to flow down from above the evaporating passage. In the membrane-type condensing evaporator, a liquid distribution unit having a liquid distribution promoting function of uniformly distributing the evaporating fluid and introducing the evaporating fluid into the evaporation passage is provided above the heat exchanger core, A falling liquid film type condensing evaporator, which is provided separately.
【請求項2】 鉛直方向の仕切板を介して凝縮通路と蒸
発通路とを交互に隣接して多数積層したプレートフィン
型の熱交換器コアにおける前記凝縮通路の上部からガス
状の凝縮流体を導入するとともに、前記蒸発通路の上方
から液状の蒸発流体を流下させ、両流体を前記仕切板を
介して間接熱交換させることにより、前記凝縮流体を凝
縮液化し、前記蒸発流体を蒸発気化する流下液膜式凝縮
蒸発器において、前記熱交換器コアの上方に、前記蒸発
流体を均一に分配して前記蒸発通路に導入する液分配促
進機能を備えた液分配手段を、前記熱交換器コアとは分
離して設けるとともに、前記蒸発通路の上部に、前記液
分配手段から導入される蒸発流体を更に精密に液分配す
る液分配促進機能を有する精密液分配手段を設けたこと
を特徴とする流下液膜式凝縮蒸発器。
2. A gaseous condensed fluid is introduced from above the condensing passage in a plate-fin type heat exchanger core in which a large number of condensing passages and evaporating passages are alternately stacked adjacently via a vertical partition plate. A falling liquid that condenses and liquefies the condensed fluid by indirectly exchanging heat between the two fluids through the partition plate while allowing the liquid evaporating fluid to flow down from above the evaporating passage. In the membrane-type condensing evaporator, a liquid distribution unit having a liquid distribution promoting function of uniformly distributing the evaporating fluid and introducing the evaporating fluid into the evaporation passage is provided above the heat exchanger core, A separate liquid dispensing means having a function of accelerating the liquid distribution for distributing the evaporating fluid introduced from the liquid dispensing means more precisely, provided separately from the evaporating passage; Membrane condensation evaporator.
【請求項3】 前記液分配手段の液分配促進機能を有す
る部位は、焼結体からなることを特徴とする請求項1又
は2記載の流下液膜式凝縮蒸発器。
3. The falling liquid film type condensing evaporator according to claim 1, wherein the portion of the liquid distribution means having the function of promoting liquid distribution is made of a sintered body.
【請求項4】 前記焼結体は、銅,ステンレス鋼,アル
ミニウム合金のいずれかの金属又はアルミナ,セラミッ
クスのいずれかの無機物質で形成されていることを特徴
とする請求項3記載の流下液膜式凝縮蒸発器。
4. The flowing liquid according to claim 3, wherein the sintered body is formed of any one of metals such as copper, stainless steel, and aluminum alloy, and any one of inorganic substances such as alumina and ceramics. Membrane condensation evaporator.
【請求項5】 前記液分配手段の液分配促進機能を有す
る部位は、比表面積が500m/m以上の規則充填
物又は不規則充填物からなることを特徴とする請求項1
又は2記載の流下液膜式凝縮蒸発器。
5. The liquid distributing means of the liquid distributing means, which has a function of promoting liquid distribution, comprises a structured packing or a random packing having a specific surface area of 500 m 2 / m 3 or more.
Or the falling film condensing evaporator according to item 2.
【請求項6】 前記液分配手段の液分配促進機能を有す
る部位は、多孔板からなることを特徴とする請求項1又
は2記載の流下液膜式凝縮蒸発器。
6. The falling liquid film type condensing evaporator according to claim 1, wherein the portion having the liquid distribution promoting function of the liquid distribution means is formed of a perforated plate.
【請求項7】 前記液分配手段の液分配促進機能を有す
る部位は、セレーテッドフィンからなることを特徴とす
る請求項1又は2記載の流下液膜式凝縮蒸発器。
7. The falling liquid film type condensing evaporator according to claim 1, wherein the portion of the liquid distribution means having a liquid distribution promoting function is formed of a serrated fin.
【請求項8】 前記液分配手段の液分配促進機能を有す
る部位は、ハードウェイフィンからなることを特徴とす
る請求項1又は2記載の流下液膜式凝縮蒸発器。
8. The falling liquid film type condensing evaporator according to claim 1, wherein the portion having the liquid distribution promoting function of the liquid distribution means is made of a hard way fin.
【請求項9】 前記液分配手段の平面寸法は、前記熱交
換器コアの平面寸法より大きいことを特徴とする請求項
1又は2記載の流下液膜式凝縮蒸発器。
9. The falling liquid film type condensing evaporator according to claim 1, wherein a plane dimension of the liquid distribution means is larger than a plane dimension of the heat exchanger core.
【請求項10】 前記液分配手段と前記熱交換器コアと
が、一体化手段により一体化されていることを特徴とす
る請求項1又は2記載の流下液膜凝縮蒸発器。
10. The falling liquid film condensing evaporator according to claim 1, wherein said liquid distribution means and said heat exchanger core are integrated by an integrating means.
【請求項11】 前記精密液分配手段は、セレーテッド
フィンからなることを特徴とする請求項2記載の流下液
膜式凝縮蒸発器。
11. A falling liquid film type condensing evaporator according to claim 2, wherein said precision liquid distribution means comprises a serrated fin.
【請求項12】 前記精密液分配手段は、ハードウェイ
フィンからなることを特徴とする請求項2記載の流下液
膜式凝縮蒸発器。
12. The falling liquid film type condensing evaporator according to claim 2, wherein said precise liquid distributing means comprises a hard way fin.
【請求項13】 前記精密液分配手段は、その上部が、
前記液分配手段から流下する蒸発流体の案内作用を有す
るフィンで構成され、その下部が、液分配促進作用を有
するハードウェイフィンで構成されていることを特徴と
する請求項2記載の流下液膜式凝縮蒸発器。
13. The precision liquid distributing means has an upper part,
The flowing liquid film according to claim 2, wherein the liquid film is formed of fins having a function of guiding an evaporating fluid flowing down from the liquid distribution means, and a lower portion thereof is formed of a hardway fin having a function of promoting liquid distribution. Type condensing evaporator.
【請求項14】 前記凝縮流体が、空気液化分離装置に
おける複式蒸留塔の高圧蒸留塔上部の窒素ガスであり、
前記蒸発流体が、空気液化分離装置における複式蒸留塔
の低圧蒸留塔下部の液化酸素であることを特徴とする請
求項1又は2記載の流下液膜式凝縮蒸発器。
14. The condensed fluid is nitrogen gas at the top of a high-pressure distillation column of a double distillation column in an air liquefaction separation device,
3. The falling film condensing evaporator according to claim 1, wherein the evaporating fluid is liquefied oxygen at the lower part of the low pressure distillation column of the double distillation column in the air liquefaction separation device.
JP27905098A 1998-09-30 1998-09-30 Flowing-down liquid film type condensation evaporator Pending JP2000111244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27905098A JP2000111244A (en) 1998-09-30 1998-09-30 Flowing-down liquid film type condensation evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27905098A JP2000111244A (en) 1998-09-30 1998-09-30 Flowing-down liquid film type condensation evaporator

Publications (1)

Publication Number Publication Date
JP2000111244A true JP2000111244A (en) 2000-04-18

Family

ID=17605710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27905098A Pending JP2000111244A (en) 1998-09-30 1998-09-30 Flowing-down liquid film type condensation evaporator

Country Status (1)

Country Link
JP (1) JP2000111244A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206891A (en) * 2001-01-09 2002-07-26 Nissan Motor Co Ltd Heat exchanger
JP2007218467A (en) * 2006-02-15 2007-08-30 Taiyo Nippon Sanso Corp Heat exchange type distillation device
JP2007289852A (en) * 2006-04-25 2007-11-08 Sumitomo Precision Prod Co Ltd Evaporator
JP2011502074A (en) * 2007-10-31 2011-01-20 イリノイ トゥール ワークス インコーポレイティド Modular compact air conditioning system that can be mounted on an aircraft cart-type ground support system
CN102410673A (en) * 2012-01-04 2012-04-11 天津商业大学 High-pressure working medium condensation evaporator
JP2013194943A (en) * 2012-03-16 2013-09-30 Sumitomo Precision Prod Co Ltd Overhead condenser

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206891A (en) * 2001-01-09 2002-07-26 Nissan Motor Co Ltd Heat exchanger
US6494253B2 (en) 2001-01-09 2002-12-17 Nissan Motor Co., Ltd. Heat exchanger
JP2007218467A (en) * 2006-02-15 2007-08-30 Taiyo Nippon Sanso Corp Heat exchange type distillation device
JP4704928B2 (en) * 2006-02-15 2011-06-22 大陽日酸株式会社 Heat exchange type distillation equipment
JP2007289852A (en) * 2006-04-25 2007-11-08 Sumitomo Precision Prod Co Ltd Evaporator
JP2011502074A (en) * 2007-10-31 2011-01-20 イリノイ トゥール ワークス インコーポレイティド Modular compact air conditioning system that can be mounted on an aircraft cart-type ground support system
KR101545225B1 (en) 2007-10-31 2015-08-18 일리노이즈 툴 워크스 인코포레이티드 A compact, modularized air conditioning system that can be mounted upon an airplane ground support equipment cart
CN102410673A (en) * 2012-01-04 2012-04-11 天津商业大学 High-pressure working medium condensation evaporator
JP2013194943A (en) * 2012-03-16 2013-09-30 Sumitomo Precision Prod Co Ltd Overhead condenser

Similar Documents

Publication Publication Date Title
EP0501471B1 (en) Boiling process and a heat exchanger for use in the process
JP3051662B2 (en) Heat exchange method, heat exchanger, and dual column system including heat exchanger
JP2000111247A (en) Flowing-down liquid film type condensation evaporator
JPH09273699A (en) Liquid vaporizing method and device
JP2009030966A (en) Method and device for producing argon by low-temperature air separation
JP2000111244A (en) Flowing-down liquid film type condensation evaporator
US6189338B1 (en) Brazed-plates condenser and its application to double air-distillation columns
US12130081B2 (en) Multistage liquid storage-type condenser-evaporator and nitrogen production device using the same
JP2017090035A (en) Plate heat exchanger/condensation vaporizer and low temperature separation method of air
JP4174109B2 (en) Falling liquid film type condensation evaporator and method of using the same
JPS63267877A (en) Condensing evaporator
JPH0534082A (en) Condensor/evaporator
JP2001050657A (en) Brazed plate type reboiler condenser and air rectifying plant
JP2787593B2 (en) Evaporator
JP4210088B2 (en) Gas-liquid distribution structure
US3461677A (en) Helically distributed heat exchange fractionating column
JPH10118401A (en) Falling film evaporator
JPH0788924B2 (en) Condensing evaporator
JP2787594B2 (en) Evaporator
JPH10259991A (en) Heat exchanger for air separation device and air separation device
JPH0789008B2 (en) Condensing evaporator
JPH02233985A (en) Condenser-evaporator
JPH0268474A (en) Condensation vaporizer
KR100265818B1 (en) Method of and apparatus for air separation
JPS63141606A (en) Condensation evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050914

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080122

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A02